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Preface

The aim of this book is to teach computer programming using examples from math-
ematics and the natural sciences. We have chosen to use the Python programming
language because it combines remarkable expressive power with very clean, simple,
and compact syntax. Python is easy to learn and very well suited for an introduction
to computer programming. Python is also quite similar to MATLAB and a good
language for doing mathematical computing. It is easy to combine Python with
compiled languages, like Fortran, C, and C++, which are widely used languages for
scientific computations.

The examples in this book integrate programming with applications to mathe-
matics, physics, biology, and finance. The reader is expected to have knowledge
of basic one-variable calculus as taught in mathematics-intensive programs in high
schools. It is certainly an advantage to take a university calculus course in parallel,
preferably containing both classical and numerical aspects of calculus. Although
not strictly required, a background in high school physics makes many of the ex-
amples more meaningful.

Many introductory programming books are quite compact and focus on listing
functionality of a programming language. However, learning to program is learning
how to think as a programmer. This book has its main focus on the thinking pro-
cess, or equivalently: programming as a problem solving technique. That is why
most of the pages are devoted to case studies in programming, where we define a
problem and explain how to create the corresponding program. New constructions
and programming styles (what we could call theory) is also usually introduced via
examples. Particular attention is paid to verification of programs and to finding
errors. These topics are very demanding for mathematical software, because the
unavoidable numerical approximation errors are possibly mixed with programming
mistakes.

By studying the many examples in the book, I hope readers will learn how to
think right and thereby write programs in a quicker and more reliable way. Re-
member, nobody can learn programming by just reading – one has to solve a large
amount of exercises hands on. The book is therefore full of exercises of various
types: modifications of existing examples, completely new problems, or debugging
of given programs.

To work with this book, I recommend using Python version 2.7. For Chaps. 5–9
and Appendices A–E, you need the NumPy and Matplotlib packages, preferably
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vi Preface

also the IPython and SciTools packages, and for Appendix G, Cython is required.
Other packages used in the text are nose and sympy. Section H.1 has more infor-
mation on how you can get access to Python and the mentioned packages.

There is a web page associated with this book, http://hplgit.github.io/scipro-
primer, containing all the example programs from the book as well as information
on installation of the software on various platforms.

Python version 2 or 3? A common problem among Python programmers is to
choose between version 2 or 3, which at the time of this writing means choosing
between version 2.7 and 3.5. A common recommendation is to go for Python 3,
because this is the version that will be further developed in the future. However,
there is a problem that much useful mathematical software in Python has not yet
been ported to Python 3. Therefore, Python version 2.7 is the most popular version
for doing scientific computing, and that is why also this book applies version 2.7.

A widely used strategy for software developers who want to write Python code
that works with both versions, is to develop a common version for Python 2 and 3.
For the programs in this book, a common version can easily be produced by first
developing for version 2.7 and then automatically convert the code by running the
futurize program. Section 4.10 demonstrates how this is done in simple cases.

The Python 2.7 code in this book sticks to all modern constructions that are
backported from version 3 such that the code becomes as close as possible to the
equivalent Python 3 code. At any time, you can just run futurize to see the differ-
ences between your Python 2.7 version and the corresponding Python 3.5 version.

Contents Chapter 1 introduces variables, objects, modules, and text formatting
through examples concerning evaluation of mathematical formulas. Chapter 2
presents programming with while and for loops as well as lists, including nested
lists. The next chapter deals with two other fundamental concepts in programming:
functions and if-else tests.

How to read data into programs and deal with errors in input are the subjects of
Chap. 4. Chapter 5 introduces arrays and array computing (including vectorization)
and how this is used for plotting y D f .x/ curves and making animation of curves.
Many of the examples in the first five chapters are strongly related. Typically, for-
mulas from the first chapter are used to produce tables of numbers in the second
chapter. Then the formulas are encapsulated in functions in the third chapter. In
the next chapter, the input to the functions are fetched from the command line, and
validity checks of the input are added. The formulas are then shown as graphs in
Chap. 5. After having studied Chaps. 1–5, the reader should have enough knowl-
edge of programming to solve mathematical problems by what many refer to as
“MATLAB-style” programming.

Chapter 6 explains how to work with dictionaries and strings, especially for in-
terpreting text data in files and storing the extracted information in flexible data
structures. Class programming, including user-defined types for mathematical com-
putations (with overloaded operators), is introduced in Chap. 7. Chapter 8 deals
with random numbers and statistical computing with applications to games and
random walks. Object-oriented programming, in the meaning of class hierarchies
and inheritance, is the subject of Chap. 9. The key examples here deal with building
toolkits for numerical differentiation and integration as well as graphics.

http://hplgit.github.io/scipro-primer
http://hplgit.github.io/scipro-primer
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Appendix A introduces mathematical modeling, using sequences and differ-
ence equations. Only programming concepts from Chaps. 1–5 are used in this
appendix, the aim being to consolidate basic programming knowledge and apply
it to mathematical problems. Some important mathematical topics are introduced
via difference equations in a simple way: Newton’s method, Taylor series, inverse
functions, and dynamical systems.

Appendix B deals with functions on a mesh, numerical differentiation, and nu-
merical integration. A simple introduction to ordinary differential equations and
their numerical treatment is provided in Appendix C. Appendix D shows how a
complete project in physics can be solved by mathematical modeling, numerical
methods, and programming elements from Chaps. 1–5. This project is a good exam-
ple on problem solving in computational science, where it is necessary to integrate
physics, mathematics, numerics, and computer science.

How to create software for solving ordinary differential equations, using both
function-based and object-oriented programming, is the subject of Appendix E. The
material in this appendix brings together many parts of the book in the context of
physical applications and differential equations.

Appendix F is devoted to the art of debugging, and in fact problem solving in
general. Speeding up numerical computations in Python by migrating code to C via
Cython is exemplified in Appendix G. Finally, Appendix H deals with various more
advanced technical topics.

Most of the examples and exercises in this book are quite short. However, many
of the exercises are related, and together they form larger projects, for example on
Fourier Series (3.21, 4.21, 4.22, 5.41, 5.42), numerical integration (3.11, 3.12, 5.49,
5.50, A.12), Taylor series (3.37, 5.32, 5.39, A.14, A.15, 7.23), piecewise constant
functions (3.29–3.33, 5.34, 5.47, 5.48, 7.19–7.21), inverse functions (E.17–E.20),
falling objects (E.8, E.9, E.38, E.39), oscillatory population growth (A.19, A.21,
A.22, A.23), epidemic disease modeling (E.41–E.48), optimization and finance
(A.24, 8.42, 8.43), statistics and probability (4.24, 4.25, 8.23, 8.24), hazard games
(8.8–8.14), random walk and statistical physics (8.32–8.40), noisy data analysis
(8.44–8.46), numerical methods (5.25–5.27, 7.8, 7.9, A.9, 7.22, 9.15–9.17, E.30–
E.37), building a calculus calculator (7.34, 9.18, 9.19), and creating a toolkit for
simulating vibrating engineering systems (E.50–E.55).

Chapters 1–9 together with Appendices A and E have from 2007 formed the core
of an introductory first semester bachelor course on scientific programming at the
University of Oslo (INF1100, 10 ECTS credits).

Changes from the fourth to the fifth edition Substantial changes were introduced
in the fourth edition, and the fifth edition is primarily a consolidation of those
changes. Many typos have been corrected and many explanations and exercises
have been improved. The emphasis on unit tests and test functions, especially in
exercises, is stronger than in the previous edition. Symbolic computation with the
aid of SymPy is used to a larger extent and integrated with numerical computing
throughout the book. All classes are now new-style (instead of old-style/classic as
in previous editions). Examples on Matplotlib do not use the pylab module any-
more, but pyplot and MATLAB-like syntax is still favored to ease the transition
between Python and MATLAB. The concept of closures is more explicit than in
earlier editions (see the new Sect. 7.1.7) since this is a handy and popular construc-
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tion much used in the scientific Python community. We also discuss the difference
between Python 2 and 3 and demonstrate how to use the future module to write
code that runs under both versions.

The most substantial new material in the fifth edition appears toward the end of
Chap. 5 and regards high-performance computing, linear algebra, and visualization
of scalar and vector fields. Although this material is not used elsewhere in the book,
many readers have requested basic recipes when going from one to two variables
or from vectors to matrices later when solving more advanced problems and using
the book as their programming reference. The new matrial in Chap. 5 was written
jointly with Dr. Øyvind Ryan.
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1Computing with Formulas

Our first examples on computer programming involve programs that evaluate math-
ematical formulas. You will learn how to write and run a Python program, how to
work with variables, how to compute with mathematical functions such as ex and
sin x, and how to use Python for interactive calculations.

We assume that you are somewhat familiar with computers so that you know
what files and folders are (another frequent word for folder is directory), how you
move between folders, how you change file and folder names, and how you write
text and save it in a file.

All the program examples associated with this chapter can be downloaded as
a tarfile or zipfile from the web page http://hplgit.github.com/scipro-primer. I
strongly recommend you to visit this page, download and pack out the files. The
examples are organized in a folder tree with src as root. Each subfolder corre-
sponds to a particular chapter. For example, the subfolder formulas contains the
program examples associated with this first chapter. The relevant subfolder name is
listed at the beginning of every chapter.

The folder structure with example programs can also be directly accessed in
a GitHub repository1 on the web. You can click on the formulas folder to see
all the examples from the present chapter. Clicking on a filename shows a nicely
typeset version of the file. The file can be downloaded by first clicking Raw to
get the plain text version of the file, and then right-clicking in the web page and
choosing Save As. . . .

1.1 The First Programming Encounter: a Formula

The first formula we shall consider concerns the vertical motion of a ball thrown
up in the air. From Newton’s second law of motion one can set up a mathematical
model for the motion of the ball and find that the vertical position of the ball, called
y, varies with time t according to the following formula:

y.t/ D v0t �
1

2
gt2 : (1.1)

1 http://tinyurl.com/pwyasaa

1© Springer-Verlag Berlin Heidelberg 2016
H.P. Langtangen, A Primer on Scientific Programming with Python,
Texts in Computational Science and Engineering 6, DOI 10.1007/978-3-662-49887-3_1

http://hplgit.github.com/scipro-primer
http://tinyurl.com/pwyasaa
http://tinyurl.com/pwyasaa
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Here, v0 is the initial velocity of the ball, g is the acceleration of gravity, and t is
time. Observe that the y axis is chosen such that the ball starts at y D 0 when
t D 0. The above formula neglects air resistance, which is usually small unless v0

is large, see Exercise 1.11.
To get an overview of the time it takes for the ball to move upwards and return

to y D 0 again, we can look for solutions to the equation y D 0:

v0t �
1

2
gt2 D t.v0 �

1

2
gt/ D 0 ) t D 0 or t D 2v0=g :

That is, the ball returns after 2v0=g seconds, and it is therefore reasonable to restrict
the interest of (1.1) to t 2 Œ0; 2v0=g�.

1.1.1 Using a Program as a Calculator

Our first program will evaluate (1.1) for a specific choice of v0, g, and t . Choosing
v0 D 5 m/s and g D 9:81 m/s2 makes the ball come back after t D 2v0=g � 1 s.
This means that we are basically interested in the time interval Œ0; 1�. Say we want
to compute the height of the ball at time t D 0:6 s. From (1.1) we have

y D 5 � 0:6� 1

2
� 9:81 � 0:62 (1.2)

This arithmetic expression can be evaluated and its value can be printed by a very
simple one-line Python program:

print 5*0.6 - 0.5*9.81*0.6**2

The four standard arithmetic operators are written as +, -, *, and / in Python
and most other computer languages. The exponentiation employs a double asterisk
notation in Python, e.g., 0:62 is written as 0.6**2.

Our task now is to create the program and run it, and this will be described next.

1.1.2 About Programs and Programming

A computer program is just a sequence of instructions to the computer, written in
a computer language. Most computer languages look somewhat similar to English,
but they are very much simpler. The number of words and associated instructions
is very limited, so to perform a complicated operation we must combine a large
number of different types of instructions. The program text, containing the sequence
of instructions, is stored in one or more files. The computer can only do exactly
what the program tells the computer to do.

Another perception of the word program is a file that can be run (“double-
clicked”) to perform a task. Sometimes this is a file with textual instructions (which
is the case with Python), and sometimes this file is a translation of all the program
text to a more efficient and computer-friendly language that is quite difficult to read
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for a human. All the programs in this chapter consist of short text stored in a single
file. Other programs that you have used frequently, for instance Firefox or Internet
Explorer for reading web pages, consist of program text distributed over a large
number of files, written by a large number of people over many years. One sin-
gle file contains the machine-efficient translation of the whole program, and this is
normally the file that you double-click on when starting the program. In general,
the word program means either this single file or the collection of files with textual
instructions.

Programming is obviously about writing programs, but this process is more than
writing the correct instructions in a file. First, we must understand how a problem
can be solved by giving a sequence of instructions to the computer. This is one of
the most difficult things with programming. Second, we must express this sequence
of instructions correctly in a computer language and store the corresponding text in
a file (the program). This is normally the easiest part. Third, we must find out how
to check the validity of the results. Usually, the results are not as expected, and we
need to a fourth phase where we systematically track down the errors and correct
them. Mastering these four steps requires a lot of training, which means making
a large number of programs (exercises in this book, for instance!) and getting the
programs to work.

1.1.3 Tools for Writing Programs

There are three alternative types of tools for writing Python programs:

� a plain text editor
� an integrated development environment (IDE) with a text editor
� an IPython notebook

What you choose depends on how you access Python. Section H.1 contains infor-
mation on the various possibilities to install Python on your own computer, access
a pre-installed Python environment on a computer system at an institution, or access
Python in cloud services through your web browser.

Based on teaching this and previous books to more than 3000 students, my rec-
ommendations go as follows.

� If you use this book in a course, the instructor has probably made a choice for
how you should access Python – follow that advice.

� If you are a student at a university where Linux is the dominating operating
system, install a virtual machine with Ubuntu on your own laptop and do all
your scientific work in Ubuntu. Write Python programs in a text editor like
Gedit, Atom, Sublime Text, Emacs, or Vim, and run programs in a terminal
window (the gnome-terminal is recommended).

� If you are a student a university where Windows is the dominating operating
system, and you are a Windows user yourself, install Anaconda. Write and run
Python programs in Spyder.

� If you are uncertain how much you will program with Python and primarily
want to get a taste of Python programming first, access Python in the cloud, e.g.,
through the Wakari site.
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� If you want Python on your Mac and you are experienced with compiling and
linking software in the Mac OS X environment, install Anaconda on the Mac.
Write and run programs in Spyder, or use a text editor like Atom, TextWrangler,
Emacs, or Vim, and run programs in the Terminal application. If you are not
very familiar with building software on the Mac, and with environment variables
like PATH, it will be easier in the long run to access Python in Ubuntu through
a virtual machine.

1.1.4 Writing and Running Your First Python Program

I assume that you have made a decision on how to access Python, which dictates
whether you will be writing programs in a text editor or in an IPython notebook.
What you write will be the same – the difference lies in how you run the program.
Sections H.2 and H.4 briefly describe how to write programs in a text editor, run
them in a terminal window or in Spyder, and how to operate an IPython notebook.
I recommend taking a look at that material before proceeding.

Open up your chosen text editor and write the following line:

print 5*0.6 - 0.5*9.81*0.6**2

This is a complete Python program for evaluating the formula (1.2). Save the line
to a file with name ball1.py.

The action required to run this program depends on what type of tool you use for
running programs:

� terminal window: move to the folder where ball1.py is located and type
python ball1.py

� IPython notebook: click on the “play” button to execute the cell
� Spyder: choose Run from the Run pull-down menu

The output is 1.2342 and appears

� right after the python ball1.py command in a terminal window
� right after the program line (cell) in the IPython notebook
� in the lower right window in Spyder

We remark that there are other ways of running Python programs in the terminal
window, see Appendix H.5.

Suppose you want to evaluate (1.1) for v0 D 1 and t D 0:1. This is easy: move
the cursor to the editor window, edit the program text to

print 1*0.1 - 0.5*9.81*0.1**2

Run the program again in Spyder or re-execute the cell in an IPython notebook. If
you use a plain text editor, always remember to save the file after editing it, then
move back to the terminal window and run the program as before:
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Terminal

Terminal> python ball1.py
0.05095

The result of the calculation has changed, as expected.

Typesetting of operating system commands

We use the prompt Terminal> in this book to indicate commands in a Unix or
DOS/PowerShell terminal window. The text following the Terminal> prompt
must be a valid operating system command. You will likely see a different
prompt in the terminal window on your machine, perhaps something reflecting
your username or the current folder.

1.1.5 Warning About Typing Program Text

Even though a program is just a text, there is one major difference between a text in
a program and a text intended to be read by a human. When a human reads a text,
she or he is able to understand the message of the text even if the text is not perfectly
precise or if there are grammar errors. If our one-line program was expressed as

write 5*0.6 - 0.5*9.81*0.6^2

most humans would interpret write and print as the same thing, and many would
also interpret 6^2 as 62. In the Python language, however, write is a grammar
error and 6^2 means an operation very different from the exponentiation 6**2.
Our communication with a computer through a program must be perfectly precise
without a single grammar or logical error. The famous computer scientist Donald
Knuth put it this way:

Programming demands significantly higher standard of accuracy. Things don’t simply have

to make sense to another human being, they must make sense to a computer. Donald Knuth
[11, p. 18], 1938-.

That is, the computer will only do exactly what we tell it to do. Any error in the
program, however small, may affect the program. There is a chance that we will
never notice it, but most often an error causes the program to stop or produce wrong
results. The conclusion is that computers have a much more pedantic attitude to
language than what (most) humans have.

Now you understand why any program text must be carefully typed, paying at-
tention to the correctness of every character. If you try out program texts from this
book, make sure that you type them in exactly as you see them in the book. Blanks,
for instance, are often important in Python, so it is a good habit to always count
them and type them in correctly. Any attempt not to follow this advice will cause
you frustrations, sweat, and maybe even tears.
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1.1.6 Verifying the Result

We should always carefully control that the output of a computer program is correct.
You will experience that in most of the cases, at least until you are an experienced
programmer, the output is wrong, and you have to search for errors. In the present
application we can simply use a calculator to control the program. Setting t D 0:6

and v0 D 5 in the formula, the calculator confirms that 1.2342 is the correct solution
to our mathematical problem.

1.1.7 Using Variables

When we want to evaluate y.t/ for many values of t , we must modify the t value
at two places in our program. Changing another parameter, like v0, is in principle
straightforward, but in practice it is easy to modify the wrong number. Such modifi-
cations would be simpler to perform if we express our formula in terms of variables,
i.e., symbols, rather than numerical values. Most programming languages, Python
included, have variables similar to the concept of variables in mathematics. This
means that we can define v0, g, t, and y as variables in the program, initialize the
former three with numerical values, and combine these three variables to the desired
right-hand side expression in (1.1), and assign the result to the variable y.

The alternative version of our program, where we use variables, may be written
as this text:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print y

Variables in Python are defined by setting a name (here v0, g, t, or y) equal to
a numerical value or an expression involving already defined variables.

Note that this second program is much easier to read because it is closer to the
mathematical notation used in the formula (1.1). The program is also safer to mod-
ify, because we clearly see what each number is when there is a name associated
with it. In particular, we can change t at one place only (the line t = 0.6) and not
two as was required in the previous program.

We store the program text in a file ball2.py. Running the program results in
the correct output 1.2342.

1.1.8 Names of Variables

Introducing variables with descriptive names, close to those in the mathematical
problem we are going to solve, is considered important for the readability and relia-
bility (correctness) of the program. Variable names can contain any lower or upper
case letter, the numbers from 0 to 9, and underscore, but the first character cannot be



1.1 The First Programming Encounter: a Formula 7

a number. Python distinguishes between upper and lower case, so X is always dif-
ferent from x. Here are a few examples on alternative variable names in the present
example:

initial_velocity = 5
acceleration_of_gravity = 9.81
TIME = 0.6
VerticalPositionOfBall = initial_velocity*TIME - \

0.5*acceleration_of_gravity*TIME**2
print VerticalPositionOfBall

With such long variables names, the code for evaluating the formula becomes so
long that we have decided to break it into two lines. This is done by a backslash at
the very end of the line (make sure there are no blanks after the backslash!).

In this book we shall adopt the convention that variable names have lower case
letters where words are separated by an underscore. Whenever the variable repre-
sents a mathematical symbol, we use the symbol or a good approximation to it as
variable name. For example, y in mathematics becomes y in the program, and v0

in mathematics becomes v0 in the program. A close resemblance between mathe-
matical symbols in the description of the problem and variables names is important
for easy reading of the code and for detecting errors. This principle is illustrated by
the code snippet above: even if the long variable names explain well what they rep-
resent, checking the correctness of the formula for y is harder than in the program
that employs the variables v0, g, t, and y0.

For all variables where there is no associated precise mathematical description
and symbol, one must use descriptive variable names which explain the purpose of
the variable. For example, if a problem description introduces the symbol D for
a force due to air resistance, one applies a variable D also in the program. How-
ever, if the problem description does not define any symbol for this force, one
must apply a descriptive name, such as air_resistance, resistance_force,
or drag_force.

How to choose variable names

� Use the same variable names in the program as in the mathematical descrip-
tion of the problem you want to solve.

� For all variables without a precise mathematical definition and symbol, use
a carefully chosen descriptive name.

1.1.9 ReservedWords in Python

Certain words are reserved in Python because they are used to build up the Python
language. These reserved words cannot be used as variable names: and, as,
assert, break, class, continue, def, del, elif, else, except, False,
finally, for, from, global, if, import, in, is, lambda, None, nonlocal,
not, or, pass, raise, return, True, try, with, while, and yield. If you wish
to use a reserved word as a variable name, it is common to an underscore at the
end. For example, if you need a mathematical quantity � in the program, you may
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work with lambda_ as variable name. See Exercise 1.16 for examples on legal and
illegal variable names.

Program files can have a freely chosen name, but stay away from names that
coincide with keywords or module names in Python. For instance, do not use
math.py, time.py, random.py, os.py, sys.py, while.py, for.py, if.py,
class.py, or def.py.

1.1.10 Comments

Along with the program statements it is often informative to provide some com-
ments in a natural human language to explain the idea behind the statements. Com-
ments in Python start with the # character, and everything after this character on
a line is ignored when the program is run. Here is an example of our program with
explanatory comments:

# Program for computing the height of a ball in vertical motion.
v0 = 5 # initial velocity
g = 9.81 # acceleration of gravity
t = 0.6 # time
y = v0*t - 0.5*g*t**2 # vertical position
print y

This program and the initial version in Sect. 1.1.7 are identical when run on the
computer, but for a human the latter is easier to understand because of the com-
ments.

Good comments together with well-chosen variable names are necessary for any
program longer than a few lines, because otherwise the program becomes difficult to
understand, both for the programmer and others. It requires some practice to write
really instructive comments. Never repeat with words what the program statements
already clearly express. Use instead comments to provide important information
that is not obvious from the code, for example, what mathematical variable names
mean, what variables are used for, a quick overview of a set of forthcoming state-
ments, and general ideas behind the problem solving strategy in the code.

Remark If you use non-English characters in your comments, Python will com-
plain with error messages like

SyntaxError: Non-ASCII character ’\xc3’ in file ...
but no encoding declared; see
http://www.python.org/peps/pep-0263.html for details

Non-English characters are allowed if you put the following magic line in the pro-
gram before such characters are used:

# -*- coding: utf-8 -*-
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(Yes, this is a comment, but it is not ignored by Python!) More information on
non-English characters and encodings like UTF-8 is found in Sect. 6.3.5.

1.1.11 Formatting Text and Numbers

Instead of just printing the numerical value of y in our introductory program, we
now want to write a more informative text, typically something like

At t=0.6 s, the height of the ball is 1.23 m.

where we also have control of the number of digits (here y is accurate up to cen-
timeters only).

Printf syntax The output of the type shown above is accomplished by a print

statement combined with some technique for formatting the numbers. The oldest
and most widely used such technique is known as printf formatting (originating
from the function printf in the C programming language). For a newcomer to
programming, the syntax of printf formatting may look awkward, but it is quite
easy to learn and very convenient and flexible to work with. The printf syntax is
used in a lot of other programming languages as well.

The sample output above is produced by this statement using printf syntax:

print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)

Let us explain this line in detail. The print statement prints a string: everything
that is enclosed in quotes (either single: ’, or double: ") denotes a string in Python.
The string above is formatted using printf syntax. This means that the string has
various “slots”, starting with a percentage sign, here %g and %.2f, where variables
in the program can be put in. We have two “slots” in the present case, and conse-
quently two variables must be put into the slots. The relevant syntax is to list the
variables inside standard parentheses after the string, separated from the string by
a percentage sign. The first variable, t, goes into the first “slot”. This “slot” has
a format specification %g, where the percentage sign marks the slot and the follow-
ing character, g, is a format specification. The g format instructs the real number
to be written as compactly as possible. The next variable, y, goes into the second
“slot”. The format specification here is .2f, which means a real number written
with two digits after the decimal place. The f in the .2f format stands for float,
a short form for floating-point number, which is the term used for a real number on
a computer.

For completeness we present the whole program, where text and numbers are
mixed in the output:

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print ’At t=%g s, the height of the ball is %.2f m.’ % (t, y)



10 1 Computing with Formulas

The program is found in the file ball_print1.py in the src/formulas folder of
the collection of programs associated with this book.

There are many more ways to specify formats. For example, e writes a number
in scientific notation, i.e., with a number between 1 and 10 followed by a power
of 10, as in 1:2432 � 10�3. On a computer such a number is written in the form
1.2432e-03. Capital E in the exponent is also possible, just replace e by E, with
the result 1.2432E-03.

For decimal notation we use the letter f, as in %f, and the output number
then appears with digits before and/or after a comma, e.g., 0.0012432 instead of
1.2432E-03. With the g format, the output will use scientific notation for large
or small numbers and decimal notation otherwise. This format is normally what
gives most compact output of a real number. A lower case g leads to lower case e

in scientific notation, while upper case G implies E instead of e in the exponent.
One can also specify the format as 10.4f or 14.6E, meaning in the first case that

a float is written in decimal notation with four decimals in a field of width equal to
10 characters, and in the second case a float written in scientific notation with six
decimals in a field of width 14 characters.

Here is a list of some important printf format specifications (the program
printf_demo.py exemplifies many of the constructions):

Format Meaning
%s a string
%d an integer
%0xd an integer in a field of with x, padded with leading zeros
%f decimal notation with six decimals
%e compact scientific notation, e in the exponent
%E compact scientific notation, E in the exponent
%g compact decimal or scientific notation (with e)
%G compact decimal or scientific notation (with E)
%xz format z right-adjusted in a field of width x
%-xz format z left-adjusted in a field of width x
%.yz format z with y decimals
%x.yz format z with y decimals in a field of width x
%% the percentage sign % itself

For a complete specification of the possible printf-style format strings, follow
the link from the item printf-style formatting in the index2 of the Python Standard
Library online documentation.

We may try out some formats by writing more numbers to the screen in our
program (the corresponding file is ball_print2.py):

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2

2 http://docs.python.org/2/genindex.html

http://tinyurl.com/pwyasaa/formulas/ball_print1.py
http://tinyurl.com/pwyasaa/formulas/printf_demo.py
http://docs.python.org/2/genindex.html
http://tinyurl.com/pwyasaa/formulas/ball_print2.py
http://docs.python.org/2/genindex.html
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print """
At t=%f s, a ball with
initial velocity v0=%.3E m/s
is located at the height %.2f m.
""" % (t, v0, y)

Observe here that we use a triple-quoted string, recognized by starting and ending
with three single or double quotes: ’’’ or """. Triple-quoted strings are used for
text that spans several lines.

In the print statement above, we print t in the f format, which by default
implies six decimals; v0 is written in the .3E format, which implies three decimals
and the number spans as narrow field as possible; and y is written with two decimals
in decimal notation in as narrow field as possible. The output becomes

Terminal

Terminal> python ball_print2.py

At t=0.600000 s, a ball with
initial velocity v0=5.000E+00 m/s
is located at the height 1.23 m.

You should look at each number in the output and check the formatting in detail.

Format string syntax Python offers all the functionality of the printf format and
much more through a different syntax, often known as format string syntax. Let
us illustrate this syntax on the one-line output previously used to show the printf
construction. The corresponding format string syntax reads

print ’At t={t:g} s, the height of the ball is {y:.2f} m.’.format(
t=t, y=y)

The “slots” where variables are inserted are now recognized by curly braces rather
than a percentage sign. The name of the variable is listed with an optional colon
and format specifier of the same kind as was used for the printf format. The various
variables and their values must be listed at the end as shown. This time the “slots”
have names so the sequence of variables is not important.

The multi-line example is written as follows in this alternative format:

print """
At t={t:f} s, a ball with
initial velocity v0={v0:.3E} m/s
is located at the height {y:.2f} m.
""".format(t=t, v0=v0, y=y)

The newline character We often want a computer program to write out text that
spans several lines. In the last example we obtained such output by triple-quoted
strings. We could also use ordinary single-quoted strings and a special character
for indicating where line breaks should occur. This special character reads \n, i.e.,
a backslash followed by the letter n. The two print statements
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print """y(t) is
the position of
our ball."""

print ’y(t) is\nthe position of\nour ball’

result in identical output:

y(t) is
the position of
our ball.

1.2 Computer Science Glossary

It is now time to pick up some important words that programmers use when they talk
about programming: algorithm, application, assignment, blanks (whitespace), bug,
code, code segment, code snippet, debug, debugging, execute, executable, imple-
ment, implementation, input, library, operating system, output, statement, syntax,
user, verify, and verification. These words are frequently used in English in lots of
contexts, yet they have a precise meaning in computer science.

Program and code are interchangeable terms. A code/program segment is a col-
lection of consecutive statements from a program. Another term with similar mean-
ing is code snippet. Many also use the word application in the same meaning as
program and code. A related term is source code, which is the same as the text
that constitutes the program. You find the source code of a program in one or more
text files. (Note that text files normally have the extension .txt, while program
files have an extension related to the programming language, e.g., .py for Python
programs. The content of a .py file is, nevertheless, plain text as in a .txt file.)

We talk about running a program, or equivalently executing a program or exe-

cuting a file. The file we execute is the file in which the program text is stored. This
file is often called an executable or an application. The program text may appear
in many files, but the executable is just the single file that starts the whole program
when we run that file. Running a file can be done in several ways, for instance, by
double-clicking the file icon, by writing the filename in a terminal window, or by
giving the filename to some program. This latter technique is what we have used so
far in this book: we feed the filename to the program python. That is, we execute
a Python program by executing another program python, which interprets the text
in our Python program file.

The term library is widely used for a collection of generally useful program
pieces that can be applied in many different contexts. Having access to good li-
braries means that you do not need to program code snippets that others have
already programmed (most probable in a better way!). There are huge numbers
of Python libraries. In Python terminology, the libraries are composed of modules

and packages. Section 1.4 gives a first glimpse of the math module, which contains
a set of standard mathematical functions for sin x, cos x, ln x, ex , sinh x, sin�1 x,
etc. Later, you will meet many other useful modules. Packages are just collec-
tions of modules. The standard Python distribution comes with a large number of
modules and packages, but you can download many more from the Internet, see
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in particular www.python.org/pypi. Very often, when you encounter a program-
ming task that is likely to occur in many other contexts, you can find a Python
module where the job is already done. To mention just one example, say you need
to compute how many days there are between two dates. This is a non-trivial task
that lots of other programmers must have faced, so it is not a big surprise that Python
comes with a module datetime to do calculations with dates.

The recipe for what the computer is supposed to do in a program is called algo-

rithm. In the examples in the first couple of chapters in this book, the algorithms
are so simple that we can hardly distinguish them from the program text itself, but
later in the book we will carefully set up an algorithm before attempting to imple-

ment it in a program. This is useful when the algorithm is much more compact than
the resulting program code. The algorithm in the current example consists of three
steps:

� initialize the variables v0, g, and t with numerical values,
� evaluate y according to the formula (1.1),
� print the y value to the screen.

The Python program is very close to this text, but some less experienced program-
mers may want to write the tasks in English before translating them to Python.

The implementation of an algorithm is the process of writing and testing a pro-
gram. The testing phase is also known as verification: After the program text is
written we need to verify that the program works correctly. This is a very important
step that will receive substantial attention in the present book. Mathematical soft-
ware produce numbers, and it is normally quite a challenging task to verify that the
numbers are correct.

An error in a program is known as a bug, and the process of locating and re-
moving bugs is called debugging. Many look at debugging as the most difficult and
challenging part of computer programming. We have in fact devoted Appendix F to
the art of debugging in this book. The origin of the strange terms bug and debugging
can be found in Wikipedia3.

Programs are built of statements. There are many types of statements:

v0 = 3

is an assignment statement, while

print y

is a print statement. It is common to have one statement on each line, but it is
possible to write multiple statements on one line if the statements are separated by
semi-colon. Here is an example:

v0 = 3; g = 9.81; t = 0.6
y = v0*t - 0.5*g*t**2
print y

3 http://en.wikipedia.org/wiki/Software_bug#Etymology

http://en.wikipedia.org/wiki/Software_bug#Etymology
http://en.wikipedia.org/wiki/Software_bug#Etymology
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Although most newcomers to computer programming will think they under-
stand the meaning of the lines in the above program, it is important to be aware
of some major differences between notation in a computer program and notation
in mathematics. When you see the equality sign = in mathematics, it has a certain
interpretation as an equation (xC2 D 5) or a definition (f .x/ D x2C1). In a com-
puter program, however, the equality sign has a quite different meaning, and it is
called an assignment. The right-hand side of an assignment contains an expression,
which is a combination of values, variables, and operators. When the expression is
evaluated, it results in a value that the variable on the left-hand side will refer to.
We often say that the right-hand side value is assigned to the variable on the left-
hand side. In the current context it means that we in the first line assign the number
3 to the variable v0, 9.81 to g, and 0.6 to t. In the next line, the right-hand side
expression v0*t - 0.5*g*t**2 is first evaluated, and the result is then assigned
to the y variable.

Consider the assignment statement

y = y + 3

This statement is mathematically false, but in a program it just means that we evalu-
ate the right-hand side expression and assign its value to the variable y. That is, we
first take the current value of y and add 3. The value of this operation is assigned to
y. The old value of y is then lost.

You may think of the = as an arrow, y <- y+3, rather than an equality sign, to
illustrate that the value to the right of the arrow is stored in the variable to the left of
the arrow. In fact, the R programming language for statistical computing actually
applies an arrow, many old languages (like Algol, Simula, and Pascal) used := to
explicitly state that we are not dealing with a mathematical equality.

An example will illustrate the principle of assignment to a variable:

y = 3
print y
y = y + 4
print y
y = y*y
print y

Running this program results in three numbers: 3, 7, 49. Go through the program
and convince yourself that you understand what the result of each statement be-
comes.

A computer program must have correct syntax, meaning that the text in the
program must follow the strict rules of the computer language for constructing state-
ments. For example, the syntax of the print statement is the word print, followed
by one or more spaces, followed by an expression of what we want to print (a Python
variable, text enclosed in quotes, a number, for instance). Computers are very picky
about syntax! For instance, a human having read all the previous pages may easily
understand what this program does,
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myvar = 5.2
prinnt Myvar

but the computer will find two errors in the last line: prinnt is an unknown instruc-
tion and Myvar is an undefined variable. Only the first error is reported (a syntax
error), because Python stops the program once an error is found. All errors that
Python finds are easy to remove. The difficulty with programming is to remove the
rest of the errors, such as errors in formulas or the sequence of operations.

Blanks may or may not be important in Python programs. In Sect. 2.1.2 you will
see that blanks are in some occasions essential for a correct program. Around =

or arithmetic operators, however, blanks do not matter. We could hence write our
program from Sect. 1.1.7 as

v0=3;g=9.81;t=0.6;y=v0*t-0.5*g*t**2;print y

This is not a good idea because blanks are essential for easy reading of a program
code, and easy reading is essential for finding errors, and finding errors is the diffi-
cult part of programming. The recommended layout in Python programs specifies
one blank around =, +, and -, and no blanks around *, /, and **. Note that the
blank after print is essential: print is a command in Python and printy is not
recognized as any valid command. (Python will complain that printy is an unde-
fined variable.) Computer scientists often use the term whitespace when referring
to a blank. (To be more precise, blank is the character produced by the space bar
on the keyboard, while whitespace denotes any character(s) that, if printed, do not
print ink on the paper: a blank, a tabulator character (produced by backslash fol-
lowed by t), or a newline character (produced by backslash followed by n). (The
newline character is explained in Sect. 1.1.11.)

When we interact with computer programs, we usually provide some informa-
tion to the program and get some information out. It is common to use the term
input data, or just input, for the information that must be known on beforehand.
The result from a program is similarly referred to as output data, or just output. In
our example, v0, g, and t constitute input, while y is output. All input data must be
assigned values in the program before the output can be computed. Input data can
be explicitly initialized in the program, as we do in the present example, or the data
can be provided by the user through keyboard typing while the program is running
(see Chap. 4). Output data can be printed in the terminal window, as in the current
example, displayed as graphics on the screen, as done in Sect. 5.3, or stored in a file
for later access, as explained in Sect. 4.6.

The word user usually has a special meaning in computer science: It means a hu-
man interacting with a program. You are a user of a text editor for writing Python
programs, and you are a user of your own programs. When you write programs, it is
difficult to imagine how other users will interact with the program. Maybe they pro-
vide wrong input or misinterpret the output. Making user-friendly programs is very
challenging and depends heavily on the target audience of users. The author had
the average reader of the book in mind as a typical user when developing programs
for this book.
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A central part of a computer is the operating system. This is actually a collection
of programs that manages the hardware and software resources on the computer.
There are three dominating operating systems today on computers: Windows, Mac
OS X, and Linux. In addition, we have Android and iOS for handheld devices. Sev-
eral versions of Windows have appeared since the 1990s: Windows 95, 98, 2000,
ME, XP, Vista, Windows 7, and Windows 8. Unix was invented already in 1970 and
comes in many different versions. Nowadays, two open source implementations of
Unix, Linux and Free BSD Unix, are most common. The latter forms the core of the
Mac OS X operating system on Macintosh machines, while Linux exists in slightly
different flavors: Red Hat, Debian, Ubuntu, and OpenSuse to mention the most im-
portant distributions. We will use the term Unix in this book as a synonym for all
the operating systems that inherit from classical Unix, such as Solaris, Free BSD,
Mac OS X, and any Linux variant. As a computer user and reader of this book, you
should know exactly what operating system you have.

The user’s interaction with the operation system is through a set of programs.
The most widely used of these enable viewing the contents of folders or starting
other programs. To interact with the operating system, as a user, you can either
issue commands in a terminal window or use graphical programs. For example, for
viewing the file contents of a folder you can run the command ls in a Unix terminal
window or dir in a DOS (Windows) terminal window. The graphical alternatives
are many, some of the most common are Windows Explorer on Windows, Nautilus
and Konqueror on Unix, and Finder on Mac. To start a program, it is common to
double-click on a file icon or write the program’s name in a terminal window.

1.3 Another Formula: Celsius-Fahrenheit Conversion

Our next example involves the formula for converting temperature measured in Cel-
sius degrees to the corresponding value in Fahrenheit degrees:

F D 9

5
C C 32 (1.3)

In this formula, C is the amount of degrees in Celsius, and F is the corresponding
temperature measured in Fahrenheit. Our goal now is to write a computer program
that can compute F from (1.3) when C is known.

1.3.1 Potential Error: Integer Division

Straightforward coding of the formula A straightforward attempt at coding the
formula (1.3) goes as follows:

C = 21
F = (9/5)*C + 32
print F
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The parentheses around 9/5 are not strictly needed, i.e., (9/5)*C is computation-
ally identical to 9/5*C, but parentheses remove any doubt that 9/5*C could mean
9/(5*C). Section 1.3.4 has more information on this topic.

When run under Python version 2.x, the program prints the value 53. You can
find the program in the file c2f_v1.py in the src/formulas folder in the folder
tree of example programs from this book (downloaded from http://hplgit.github.
com/scipro-primer). The v1 part of the name stands for version 1. Throughout
this book, we will often develop several trial versions of a program, but remove the
version number in the final version of the program.

Verifying the results Testing the correctness is easy in this case since we can eval-
uate the formula on a calculator: 9

5
� 21C 32 is 69.8, not 53. What is wrong? The

formula in the program looks correct!

Float and integer division The error in our program above is one of the most
common errors in mathematical software and is not at all obvious for a newcomer to
programming. In many computer languages, there are two types of divisions: float
division and integer division. Float division is what you know from mathematics:
9/5 becomes 1.8 in decimal notation.

Integer division a=b with integers (whole numbers) a and b results in an integer
that is truncated (or mathematically, rounded down). More precisely, the result is
the largest integer c such that bc � a. This implies that 9=5 becomes 1 since
1 �5 D 5 � 9 while 2 �5 D 10 > 9. Another example is 1=5, which becomes 0 since
0 �5 � 1 (and 1 �5 > 1). Yet another example is 16=6, which results in 2 (try 2 �6 and
3 � 6 to convince yourself). Many computer languages, including Fortran, C, C++,
Java, and Python version 2, interpret a division operation a/b as integer division
if both operands a and b are integers. If either a or b is a real (floating-point)
number, a/b implies the standard mathematical float division. Other languages,
such as MATLAB and Python version 3, interprets a/b as float division even if
both operands are integers, or complex division if one of the operands is a complex
number.

The problem with our program is the coding of the formula (9/5)*C + 32.
This formula is evaluated as follows. First, 9/5 is calculated. Since 9 and 5 are
interpreted by Python as integers (whole numbers), 9/5 is a division between two
integers, and Python version 2 chooses by default integer division, which results in
1. Then 1 is multiplied by C, which equals 21, resulting in 21. Finally, 21 and 32
are added with 53 as result.

We shall very soon present a correct version of the temperature conversion pro-
gram, but first it may be advantageous to introduce a frequently used term in Python
programming: object.

1.3.2 Objects in Python

When we write

C = 21

http://tinyurl.com/pwyasaa/formulas/c2f_v1.py
http://hplgit.github.com/scipro-primer
http://hplgit.github.com/scipro-primer
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Python interprets the number 21 on the right-hand side of the assignment as an
integer and creates an int (for integer) object holding the value 21. The variable
C acts as a name for this int object. Similarly, if we write C = 21.0, Python
recognizes 21.0 as a real number and therefore creates a float (for floating-point)
object holding the value 21.0 and lets C be a name for this object. In fact, any
assignment statement has the form of a variable name on the left-hand side and
an object on the right-hand side. One may say that Python programming is about
solving a problem by defining and changing objects.

At this stage, you do not need to know what an object really is, just think of
an int object as a collection, say a storage box, with some information about an
integer number. This information is stored somewhere in the computer’s memory,
and with the name C the program gets access to this information. The fundamental
issue right now is that 21 and 21.0 are identical numbers in mathematics, while in
a Python program 21 gives rise to an int object and 21.0 to a float object.

There are lots of different object types in Python, and you will later learn how to
create your own customized objects. Some objects contain a lot of data, not just an
integer or a real number. For example, when we write

print ’A text with an integer %d and a float %f’ % (2, 2.0)

a str (string) object, without a name, is first made of the text between the quotes
and then this str object is printed. We can alternatively do this in two steps:

s = ’A text with an integer %d and a float %f’ % (2, 2.0)
print s

1.3.3 Avoiding Integer Division

As a quite general rule of thumb, one should be careful to avoid integer division
when programming mathematical formulas. In the rare cases when a mathematical
algorithm does make use of integer division, one should use a double forward slash,
//, as division operator, because this is Python’s way of explicitly indicating integer
division.

Python version 3 has no problem with unintended integer division, so the prob-
lem only arises with Python version 2 (and many other common languages for
scientific computing). There are several ways to avoid integer division with the
plain / operator. The simplest remedy in Python version 2 is to write

from __future__ import division

This import statement must be present in the beginning of every file where the /

operator always shall imply float division. Alternatively, one can run a Python
program someprogram.py from the command line with the argument -Qnew to the
Python interpreter:

Terminal

Terminal> python -Qnew someprogram.py
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A more widely applicable method, also in other programming languages than
Python version 2, is to enforce one of the operands to be a float object. In the
current example, there are several ways to do this:

F = (9.0/5)*C + 32
F = (9/5.0)*C + 32
F = float(C)*9/5 + 32

In the first two lines, one of the operands is written as a decimal number, implying
a float object and hence float division. In the last line, float(C)*9means float
times int, which results in a float object, and float division is guaranteed.

A related construction,

F = float(C)*(9/5) + 32

does not work correctly, because 9/5 is evaluated by integer division, yielding 1,
before being multiplied by a float representation of C (see next section for how
compound arithmetic operations are calculated). In other words, the formula reads
F=C+32, which is wrong.

We now understand why the first version of the program does not work and what
the remedy is. A correct program is

C = 21
F = (9.0/5)*C + 32
print F

Instead of 9.0 we may just write 9. (the dot implies a float interpretation of the
number). The program is available in the file c2f.py. Try to run it – and observe
that the output becomes 69.8, which is correct.

Locating potential integer division Running a Python program with the
-Qwarnall argument, say

Terminal

Terminal> python -Qwarnall someprogram.py

will print out a warning every time an integer division expression is encountered in
Python version 2.

Remark We could easily have run into problems in our very first programs if we
instead of writing the formula 1

2
gt2 as 0.5*g*t**2 wrote (1/2)*g*t**2. This

term would then always be zero!

http://tinyurl.com/pwyasaa/formulas/c2d.py
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1.3.4 Arithmetic Operators and Precedence

Formulas in Python programs are usually evaluated in the same way as we would
evaluate them mathematically. Python proceeds from left to right, term by term in
an expression (terms are separated by plus or minus). In each term, power opera-
tions such as ab, coded as a**b, has precedence over multiplication and division.
As in mathematics, we can use parentheses to dictate the way a formula is evaluated.
Below are two illustrations of these principles.

� 5/9+2*a**4/2: First 5/9 is evaluated (as integer division, giving 0 as result),
then a4 (a**4) is evaluated, then 2 is multiplied with a4, that result is divided by
2, and the answer is added to the result of the first term. The answer is therefore
a**4.

� 5/(9+2)*a**(4/2): First 5
9C2

is evaluated (as integer division, yielding 0), then
4/2 is computed (as integer division, yielding 2), then a**2 is calculated, and that
number is multiplied by the result of 5/(9+2). The answer is thus always zero.

As evident from these two examples, it is easy to unintentionally get integer division
in formulas. Although integer division can be turned off in Python, we think it is
important to be strongly aware of the integer division concept and to develop good
programming habits to avoid it. The reason is that this concept appears in so many
common computer languages that it is better to learn as early as possible how to deal
with the problem rather than using a Python-specific feature to remove the problem.

1.4 Evaluating StandardMathematical Functions

Mathematical formulas frequently involve functions such as sin, cos, tan, sinh, cosh,
exp, log, etc. On a pocket calculator you have special buttons for such functions.
Similarly, in a program you also have ready-made functionality for evaluating these
types of mathematical functions. One could in principle write one’s own program
for evaluating, e.g., the sin.x/ function, but how to do this in an efficient way is
a non-trivial topic. Experts have worked on this problem for decades and imple-
mented their best recipes in pieces of software that we should reuse. This section
tells you how to reach sin, cos, and similar functions in a Python context.

1.4.1 Example: Using the Square Root Function

Problem Consider the formula for the height y of a ball in vertical motion, with
initial upward velocity v0:

yc D v0t �
1

2
gt2;

where g is the acceleration of gravity and t is time. We now ask the question:
How long time does it take for the ball to reach the height yc? The answer is
straightforward to derive. When y D yc we have

yc D v0t � 1

2
gt2 :
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We recognize that this equation is a quadratic equation, which we must solve with
respect to t . Rearranging,

1

2
gt2 � v0t C yc D 0;

and using the well-known formula for the two solutions of a quadratic equation, we
find

t1 D
�

v0 �
q

v2
0 � 2gyc

�

=g; t2 D
�

v0 C
q

v2
0 � 2gyc

�

=g : (1.4)

There are two solutions because the ball reaches the height yc on its way up .t D t1)
and on its way down (t D t2 > t1).

The program To evaluate the expressions for t1 and t2 from (1.4) in a computer
program, we need access to the square root function. In Python, the square root
function and lots of other mathematical functions, such as sin, cos, sinh, exp, and
log, are available in a module called math. We must first import the module be-
fore we can use it, that is, we must write import math. Thereafter, to take the
square root of a variable a, we can write math.sqrt(a). This is demonstrated in
a program for computing t1 and t2:

v0 = 5
g = 9.81
yc = 0.2
import math
t1 = (v0 - math.sqrt(v0**2 - 2*g*yc))/g
t2 = (v0 + math.sqrt(v0**2 - 2*g*yc))/g
print ’At t=%g s and %g s, the height is %g m.’ % (t1, t2, yc)

The output from this program becomes

At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

You can find the program as the file ball_yc.py in the src/formulas folder.

Two ways of importing a module The standard way to import a module, say
math, is to write

import math

and then access individual functions in the module with the module name as prefix
as in

x = math.sqrt(y)

People working with mathematical functions often find math.sqrt(y) less pleas-
ing than just sqrt(y). Fortunately, there is an alternative import syntax that allows

http://tinyurl.com/pwyasaa/formulas/ball_yc.py
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us to skip the module name prefix. This alternative syntax has the form from

module import function. A specific example is

from math import sqrt

Now we can work with sqrt directly, without the math. prefix. More than one
function can be imported:

from math import sqrt, exp, log, sin

Sometimes one just writes

from math import *

to import all functions in the math module. This includes sin, cos, tan, asin,
acos, atan, sinh, cosh, tanh, exp, log (base e), log10 (base 10), sqrt, as
well as the famous numbers e and pi. Importing all functions from a module,
using the asterisk (*) syntax, is convenient, but this may result in a lot of extra
names in the program that are not used. It is in general recommended not to import
more functions than those that are really used in the program. Nevertheless, the
convenience of the compact from math import * syntax occasionally wins over
the general recommendation among practitioners – and in this book.

With a from math import sqrt statement we can write the formulas for the
roots in a more pleasing way:

t1 = (v0 - sqrt(v0**2 - 2*g*yc))/g
t2 = (v0 + sqrt(v0**2 - 2*g*yc))/g

Import with new names Imported modules and functions can be given new names
in the import statement, e.g.,

import math as m
# m is now the name of the math module
v = m.sin(m.pi)

from math import log as ln
v = ln(5)

from math import sin as s, cos as c, log as ln
v = s(x)*c(x) + ln(x)

In Python, everything is an object, and variables refer to objects, so new variables
may refer to modules and functions as well as numbers and strings. The examples
above on new names can also be coded by introducing new variables explicitly:

m = math
ln = m.log
s = m.sin
c = m.cos
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1.4.2 Example: Computing with sinh x

Our next examples involve calling some more mathematical functions from the
math module. We look at the definition of the sinh.x/ function:

sinh.x/ D 1

2
.ex � e�x/ : (1.5)

We can evaluate sinh.x/ in three ways: i) by calling math.sinh, ii) by computing
the right-hand side of (1.5), using math.exp, or iii) by computing the right-hand
side of (1.5) with the aid of the power expressions math.e**x and math.e**(-x).
A program doing these three alternative calculations is found in the file 3sinh.py.
The core of the program looks like this:

from math import sinh, exp, e, pi
x = 2*pi
r1 = sinh(x)
r2 = 0.5*(exp(x) - exp(-x))
r3 = 0.5*(e**x - e**(-x))
print r1, r2, r3

The output from the program shows that all three computations give identical re-
sults:

267.744894041 267.744894041 267.744894041

1.4.3 A First Glimpse of Rounding Errors

The previous example computes a function in three different yet mathematically
equivalent ways, and the output from the print statement shows that the three
resulting numbers are equal. Nevertheless, this is not the whole story. Let us try to
print out r1, r2, r3 with 16 decimals:

print ’%.16f %.16f %.16f’ % (r1,r2,r3)

This statement leads to the output

267.7448940410164369 267.7448940410164369 267.7448940410163232

Now r1 and r2 are equal, but r3 is different! Why is this so?
Our program computes with real numbers, and real numbers need in general an

infinite number of decimals to be represented exactly. The computer truncates the
sequence of decimals because the storage is finite. In fact, it is quite standard to
keep only 17 digits in a real number on a computer. Exactly how this truncation is
done is not explained in this book, but you read more on Wikipedia4. For now the

4 http://en.wikipedia.org/wiki/Floating_point_number

http://tinyurl.com/pwyasaa/formulas/3sinh.py
http://en.wikipedia.org/wiki/Floating_point_number
http://en.wikipedia.org/wiki/Floating_point_number
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purpose is to notify the reader that real numbers on a computer often have a small
error. Only a few real numbers can be represented exactly, the rest of the real
numbers are only approximations.

For this reason, most arithmetic operations involve inaccurate real numbers, re-
sulting in inaccurate calculations. Think of the following two calculations: 1=49 �49

and 1=51 � 51. Both expressions are identical to 1, but when we perform the calcu-
lations in Python,

print ’%.16f %.16f’ % (1/49.0*49, 1/51.0*51)

the result becomes

0.9999999999999999 1.0000000000000000

The reason why we do not get exactly 1.0 as answer in the first case is because 1/49
is not correctly represented in the computer. Also 1/51 has an inexact representa-
tion, but the error does not propagate to the final answer.

To summarize, errors in floating-point numbers may propagate through mathe-
matical calculations and result in answers that are only approximations to the exact
underlying mathematical values. The errors in the answers are commonly known as
rounding errors. As soon as you use Python interactively as explained in the next
section, you will encounter rounding errors quite often.

Python has a special module decimal and the SymPy package has an alternative
module mpmath, which allow real numbers to be represented with adjustable accu-
racy so that rounding errors can be made as small as desired (an example appears
at the end of Sect. 3.1.12). However, we will hardly use such modules because ap-
proximations implied by many mathematical methods applied throughout this book
normally lead to (much) larger errors than those caused by rounding.

1.5 Interactive Computing

A particular convenient feature of Python is the ability to execute statements and
evaluate expressions interactively. The environments where you work interactively
with programming are commonly known as Python shells. The simplest Python
shell is invoked by just typing python at the command line in a terminal window.
Some messages about Python are written out together with a prompt >>>, after
which you can issue commands. Let us try to use the interactive shell as a calculator.
Type in 3*4.5-0.5 and then press the Return key to see Python’s response to this
expression:

Terminal> python
Python 2.7.5+ (default, Sep 19 2013, 13:48:49)
[GCC 4.8.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> 3*4.5-0.5
13.0
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The text on a line after >>> is what we write (shell input) and the text without
the >>> prompt is the result that Python calculates (shell output). It is easy, as
explained below, to recover previous input and edit the text. This editing feature
makes it convenient to experiment with statements and expressions.

1.5.1 Using the Python Shell

The program from Sect. 1.1.7 can be typed in line by line in the interactive shell:

>>> v0 = 5
>>> g = 9.81
>>> t = 0.6
>>> y = v0*t - 0.5*g*t**2
>>> print y
1.2342

We can now easily calculate an y value corresponding to another (say) v0 value: hit
the up arrow key to recover previous statements, repeat pressing this key until the
v0 = 5 statement is displayed. You can then edit the line, e.g., to

>>> v0 = 6

Press return to execute this statement. You can control the new value of v0 by either
typing just v0 or print v0:

>>> v0
6
>>> print v0
6

The next step is to recompute y with this new v0 value. Hit the up arrow key
multiple times to recover the statement where y is assigned, press the Return key,
and write y or print y to see the result of the computation:

>>> y = v0*t - 0.5*g*t**2
>>> y
1.8341999999999996
>>> print y
1.8342

The reason why we get two slightly different results is that typing just y prints out
all the decimals that are stored in the computer (16), while print y writes out y
with fewer decimals. As mentioned in Sect. 1.4.3 computations on a computer often
suffer from rounding errors. The present calculation is no exception. The correct
answer is 1.8342, but rounding errors lead to a number that is incorrect in the 16th
decimal. The error is here 4 � 10�16.
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1.5.2 Type Conversion

Often you can work with variables in Python without bothering about the type of
objects these variables refer to. Nevertheless, we encountered a serious problem in
Sect. 1.3.1 with integer division, which forced us to be careful about the types of
objects in a calculation. The interactive shell is very useful for exploring types. The
following example illustrates the type function and how we can convert an object
from one type to another.

First, we create an int object bound to the name C and check its type by calling
type(C):

>>> C = 21
>>> type(C)
<type ’int’>

We convert this int object to a corresponding float object:

>>> C = float(C) # type conversion
>>> type(C)
<type ’float’>
>>> C
21.0

In the statement C = float(C) we create a new object from the original object
referred to by the name C and bind it to the same name C. That is, C refers to
a different object after the statement than before. The original int with value 21

cannot be reached anymore (since we have no name for it) and will be automatically
deleted by Python.

We may also do the reverse operation, i.e., convert a particular float object to
a corresponding int object:

>>> C = 20.9
>>> type(C)
<type ’float’>
>>> D = int(C) # type conversion
>>> type(D)
<type ’int’>
>>> D
20 # decimals are truncated :-/

In general, one can convert a variable v to type MyType by writing v=MyType(v),
if it makes sense to do the conversion.

In the last input we tried to convert a float to an int, and this operation implied
stripping off the decimals. Correct conversion according to mathematical rounding
rules can be achieved with help of the round function:

>>> round(20.9)
21.0
>>> int(round(20.9))
21
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1.5.3 IPython

There exist several improvements of the standard Python shell presented in
Sect. 1.5. The author advocates IPython as the preferred interactive shell. You
will then need to have IPython installed. Typing ipython in a terminal window
starts the shell. The (default) prompt in IPython is not >>> but In [X]:, where
X is the number of the present input command. The most widely used features of
IPython are summarized below.

Running programs Python programs can be run from within the shell:

In [1]: run ball2.py
1.2342

This command requires that you have taken a cd to the folder where the ball2.py
program is located and started IPython from there.

On Windows you may, as an alternative to starting IPython from a DOS or Pow-
erShell window, double click on the IPython desktop icon or use the Start menu. In
that case, you must move to the right folder where your program is located. This
is done by the os.chdir (change directory) command. Typically, you write some-
thing like

In [1]: import os
In [2]: os.chdir(r’C:\Documents and Settings\me\My Documents\div’)
In [3]: run ball2.py

if the ball2.py program is located in the folder div under My Documents of user
me. Note the r before the quote in the string: it is required to let a backslash
really mean the backslash character. If you end up typing the os.chdir command
every time you enter an IPython shell, this command (and others) can be placed in
a startup file such that they are automatically executed when you launch IPython.

Inside IPython you can invoke any operating system command. This allows us
to navigate to the right folder above using Unix or Windows (cd) rather than Python
(os.chdir):

In [1]: cd C:\Documents and Settings\me\My Documents\div
In [3]: run ball2.py

We recommend running all your Python programs from the IPython shell. Es-
pecially when something goes wrong, IPython can help you to examine the state of
variables so that you become quicker to locate bugs.

Typesetting convention for executing Python programs

In the rest of the book, we just write the program name and the output when we
illustrate the execution of a program:

Terminal

ball2.py
1.2342
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You then need to write run before the program name if you execute the program
in IPython, or if you prefer to run the program directly in a terminal window,
you need to write python prior to the program name. Appendix H.5 describes
various other ways to run a Python program.

Quick recovery of previous output The results of the previous statements in an
interactive IPython session are available in variables of the form _iX (underscore, i,
and a number X), where X is 1 for the last statement, 2 for the second last statement,
and so forth. Short forms are _ for _i1, __ for _i2, and ___ for _i3. The output
from the In [1] input above is 1.2342. We can now refer to this number by an
underscore and, e.g., multiply it by 10:

In [2]: _*10
Out[2]: 12.341999999999999

Output from Python statements or expressions in IPython are preceded by Out[X]

where X is the command number corresponding to the previous In [X] prompt.
When programs are executed, as with the run command, or when operating system
commands are run (as shown below), the output is from the operating system and
then not preceded by any Out[X] label.

The command history from previous IPython sessions is available in a new ses-
sion. This feature makes it easy to modify work from a previous session by just
hitting the up-arrow to recall commands and edit them as necessary.

Tab completion Pressing the TAB key will complete an incompletely typed vari-
able name. For example, after defining my_long_variable_name = 4, write just
my at the In [4]: prompt below, and then hit the TAB key. You will experience
that my is immediately expanded to my_long_variable_name. This automatic ex-
pansion feature is called TAB completion and can save you from quite some typing.

In [3]: my_long_variable_name = 4

In [4]: my_long_variable_name
Out[4]: 4

Recovering previous commands You can walk through the command history by
typing Ctrl+p or the up arrow for going backward or Ctrl+n or the down arrow
for going forward. Any command you hit can be edited and re-executed. Also
commands from previous interactive sessions are stored in the command history.

Running Unix/Windows commands Operating system commands can be run
from IPython. Below we run the three Unix commands date, ls (list files), mkdir
(make directory), and cd (change directory):

In [5]: date
Thu Nov 18 11:06:16 CET 2010

In [6]: ls
myfile.py yourprog.py
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In [7]: mkdir mytestdir

In [8]: cd mytestdir

If you have defined Python variables with the same name as operating system com-
mands, e.g., date=30, you must write !date to run the corresponding operating
system command.

IPython can do much more than what is shown here, but the advanced features
and the documentation of them probably do not make sense before you are more
experienced with Python – and with reading manuals.

Typesetting of interactive shells in this book

In the rest of the book we will apply the >>> prompt in interactive sessions
instead of the input and output prompts as used by default by IPython, simply
because most Python books and electronic manuals use >>> to mark input in
interactive shells. However, when you sit by the computer and want to use an
interactive shell, we recommend using IPython, and then you will see the In

[X] prompt instead of >>>.

Notebooks A particularly interesting feature of IPython is the notebook, which
allows you to record and replay exploratory interactive sessions with a mix of text,
mathematics, Python code, and graphics. See Sect. H.4 for a quick introduction to
IPython notebooks.

1.6 Complex Numbers

Suppose x2 D 2. Then most of us are able to find out that x D
p

2 is a solution
to the equation. The more mathematically interested reader will also remark that
x D �

p
2 is another solution. But faced with the equation x2 D �2, very few are

able to find a proper solution without any previous knowledge of complex numbers.
Such numbers have many applications in science, and it is therefore important to be
able to use such numbers in our programs.

On the following pages we extend the previous material on computing with real
numbers to complex numbers. The text is optional, and readers without knowledge
of complex numbers can safely drop this section and jump to Sect. 1.8.

A complex number is a pair of real numbers a and b, most often written as aCbi ,
or a C ib, where i is called the imaginary unit and acts as a label for the second
term. Mathematically, i D

p
�1. An important feature of complex numbers is

definitely the ability to compute square roots of negative numbers. For example,p
�2 D

p
2i (i.e.,

p
2
p
�1). The solutions of x2 D �2 are thus x1 D C

p
2i and

x2 D �
p

2i .
There are rules for addition, subtraction, multiplication, and division between

two complex numbers. There are also rules for raising a complex number to a real
power, as well as rules for computing sin z, cos z, tan z, ez , ln z, sinh z, cosh z,
tanh z, etc. for a complex number z D a C ib. We assume in the following that
you are familiar with the mathematics of complex numbers, at least to the degree
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encountered in the program examples.

let u D aC bi and v D c C di

The following rules reflect complex arithmetics:

u D v ) a D c; b D d

�u D �a � bi

u� � a � bi (complex conjugate)

uC v D .aC c/C .b C d/i

u � v D .a � c/C .b � d/i

uv D .ac � bd/C .bc C ad/i

u=v D ac C bd

c2 C d 2
C bc � ad

c2 C d 2
i

juj D
p

a2 C b2

eiq D cos q C i sin q

1.6.1 Complex Arithmetics in Python

Python supports computation with complex numbers. The imaginary unit is written
as j in Python, instead of i as in mathematics. A complex number 2�3i is therefore
expressed as (2-3j) in Python. We remark that the number i is written as 1j, not
just j. Below is a sample session involving definition of complex numbers and
some simple arithmetics:

>>> u = 2.5 + 3j # create a complex number
>>> v = 2 # this is an int
>>> w = u + v # complex + int
>>> w
(4.5+3j)

>>> a = -2
>>> b = 0.5
>>> s = a + b*1j # create a complex number from two floats
>>> s = complex(a, b) # alternative creation
>>> s
(-2+0.5j)
>>> s*w # complex*complex
(-10.5-3.75j)
>>> s/w # complex/complex
(-0.25641025641025639+0.28205128205128205j)

A complex object s has functionality for extracting the real and imaginary parts as
well as computing the complex conjugate:
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>>> s.real
-2.0
>>> s.imag
0.5
>>> s.conjugate()
(-2-0.5j)

1.6.2 Complex Functions in Python

Taking the sine of a complex number does not work:

>>> from math import sin
>>> r = sin(w)
Traceback (most recent call last):

File "<input>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)

The reason is that the sin function from the math module only works with real
(float) arguments, not complex. A similar module, cmath, defines functions that
take a complex number as argument and return a complex number as result. As an
example of using the cmathmodule, we can demonstrate that the relation sin.ai/ D
i sinh a holds:

>>> from cmath import sin, sinh
>>> r1 = sin(8j)
>>> r1
1490.4788257895502j
>>> r2 = 1j*sinh(8)
>>> r2
1490.4788257895502j

Another relation, eiq D cos q C i sin q, is exemplified next:

>>> q = 8 # some arbitrary number
>>> exp(1j*q)
(-0.14550003380861354+0.98935824662338179j)
>>> cos(q) + 1j*sin(q)
(-0.14550003380861354+0.98935824662338179j)

1.6.3 Unified Treatment of Complex and Real Functions

The cmath functions always return complex numbers. It would be nice to have
functions that return a float object if the result is a real number and a complex

object if the result is a complex number. The Numerical Python package has such
versions of the basic mathematical functions known from math and cmath. By
taking a

from numpy.lib.scimath import *
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one obtains access to these flexible versions of mathematical functions. The func-
tions also get imported by any of the statements

from scipy import *
from scitools.std import *

A session will illustrate what we obtain. Let us first use the sqrt function in the
math module:

>>> from math import sqrt
>>> sqrt(4) # float
2.0
>>> sqrt(-1) # illegal
Traceback (most recent call last):

File "<input>", line 1, in ?
ValueError: math domain error

If we now import sqrt from cmath,

>>> from cmath import sqrt

the previous sqrt function is overwritten by the new one. More precisely, the name
sqrt was previously bound to a function sqrt from the math module, but is now
bound to another function sqrt from the cmath module. In this case, any square
root results in a complex object:

>>> sqrt(4) # complex
(2+0j)
>>> sqrt(-1) # complex
1j

If we now take

>>> from numpy.lib.scimath import *

we import (among other things) a new sqrt function. This function is slower than
the versions from math and cmath, but it has more flexibility since the returned
object is float if that is mathematically possible, otherwise a complex is returned:

>>> sqrt(4) # float
2.0
>>> sqrt(-1) # complex
1j

As a further illustration of the need for flexible treatment of both complex and
real numbers, we may code the formulas for the roots of a quadratic function
f .x/ D ax2 C bx C c:
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>>> a = 1; b = 2; c = 100 # polynomial coefficients
>>> from numpy.lib.scimath import sqrt
>>> r1 = (-b + sqrt(b**2 - 4*a*c))/(2*a)
>>> r2 = (-b - sqrt(b**2 - 4*a*c))/(2*a)
>>> r1
(-1+9.94987437107j)
>>> r2
(-1-9.94987437107j)

Using the up arrow, we may go back to the definitions of the coefficients and change
them so the roots become real numbers:

>>> a = 1; b = 4; c = 1 # polynomial coefficients

Going back to the computations of r1 and r2 and performing them again, we get

>>> r1
-0.267949192431
>>> r2
-3.73205080757

That is, the two results are float objects. Had we applied sqrt from cmath, r1
and r2 would always be complex objects, while sqrt from the mathmodule would
not handle the first (complex) case.

1.7 Symbolic Computing

Python has a package SymPy for doing symbolic computing, such as symbolic
(exact) integration, differentiation, equation solving, and expansion of Taylor se-
ries, to mention some common operations in mathematics. We shall here only give
a glimpse of SymPy in action with the purpose of drawing attention to this powerful
part of Python.

For interactive work with SymPy it is recommended to either use IPython or the
special, interactive shell isympy, which is installed along with SymPy itself.

Below we shall explicitly import each symbol we need from SymPy to empha-
size that the symbol comes from that package. For example, it will be important
to know whether sin means the sine function from the math module, aimed at real
numbers, or the special sine function from sympy, aimed at symbolic expressions.

1.7.1 Basic Differentiation and Integration

The following session shows how easy it is to differentiate a formula v0t � 1
2
gt2

with respect to t and integrate the answer to get the formula back:
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>>> from sympy import (
... symbols, # define symbols for symbolic math
... diff, # differentiate expressions
... integrate, # integrate expressions
... Rational, # define rational numbers
... lambdify, # turn symbolic expr. into Python functions
... )
>>> t, v0, g = symbols(’t v0 g’)
>>> y = v0*t - Rational(1,2)*g*t**2
>>> dydt = diff(y, t)
>>> dydt
-g*t + v0
>>> print ’acceleration:’, diff(y, t, t) # 2nd derivative
acceleration: -g
>>> y2 = integrate(dydt, t)
>>> y2
-g*t**2/2 + t*v0

Note here that t is a symbolic variable (not a float as it is in numerical computing),
and y (like y2) is a symbolic expression (not a float as it would be in numerical
computing).

A very convenient feature of SymPy is that symbolic expressions can be turned
into ordinary Python functions via lambdify. (Python functions are introduced in
Chap. 3, but when discussing SymPy here in the present chapter, it is very natural
to explain how lambdify can transform symbolic expressions back to ordinary
numerical Python expressions.) Let us take the dydt expression above and turn it
into a Python function v(t, v0, g) for numerical computing:

>>> v = lambdify([t, v0, g], # arguments in v
dydt) # symbolic expression

>>> v(t=0, v0=5, g=9.81)
5
>>> v(2, 5, 9.81)
-14.62
>>> 5 - 9.81*2 # control the previous calculation
-14.62

1.7.2 Equation Solving

A linear equation defined through an expression e that is zero, can be solved by
solve(e, t), if t is the unknown (symbol) in the equation. Here we may find the
roots of y D 0:

>>> from sympy import solve
>>> roots = solve(y, t)
>>> roots
[0, 2*v0/g]

We can easily check the answer by inserting the roots in y. Inserting an expression
e2 for e1 in some expression e is done by e.subs(e1, e2). In our case we check
that
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>>> y.subs(t, roots[0])
0
>>> y.subs(t, roots[1])
0

1.7.3 Taylor Series andMore

A Taylor polynomial of order n for an expression e in a variable t around the point
t0 is computed by e.series(t, t0, n). Testing this on et and esin.t/ gives

>>> from sympy import exp, sin, cos
>>> f = exp(t)
>>> f.series(t, 0, 3)
1 + t + t**2/2 + O(t**3)
>>> f = exp(sin(t))
>>> f.series(t, 0, 8)
1 + t + t**2/2 - t**4/8 - t**5/15 - t**6/240 + t**7/90 + O(t**8)

Output of mathematical expressions in the LATEX typesetting system is possible:

>>> from sympy import latex
>>> print latex(f.series(t, 0, 7))
’1 + t + \frac{t^{2}}{2} - \frac{t^{4}}{8} - \frac{t^{5}}{15} -
\frac{t^{6}}{240} + \mathcal{O}\left(t^{7}\right)’

Finally, we mention that there are tools for expanding and simplifying expres-
sions:

>>> from sympy import simplify, expand
>>> x, y = symbols(’x y’)
>>> f = -sin(x)*sin(y) + cos(x)*cos(y)
>>> simplify(f)
cos(x + y)
>>> expand(sin(x+y), trig=True) # requires a trigonometric hint
sin(x)*cos(y) + sin(y)*cos(x)

Later chapters utilize SymPy where it can save some algebraic work, but this book
is almost exclusively devoted to numerical computing.

1.8 Summary

1.8.1 Chapter Topics

Programs must be accurate! A program is a collection of statements stored in
a text file. Statements can also be executed interactively in a Python shell. Any
error in any statement may lead to termination of the execution or wrong results.
The computer does exactly what the programmer tells the computer to do!
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Variables The statement

some_variable = obj

defines a variable with the name some_variable which refers to an object obj.
Here obj may also represent an expression, say a formula, whose value is a Python
object. For example, 1+2.5 involves the addition of an int object and a float

object, resulting in a float object. Names of variables can contain upper and lower
case English letters, underscores, and the digits from 0 to 9, but the name cannot
start with a digit. Nor can a variable name be a reserved word in Python.

If there exists a precise mathematical description of the problem to be solved in
a program, one should choose variable names that are in accordance with the math-
ematical description. Quantities that do not have a defined mathematical symbol,
should be referred to by descriptive variables names, i.e., names that explain the
variable’s role in the program. Well-chosen variable names are essential for making
a program easy to read, easy to debug, and easy to extend. Well-chosen variable
names also reduce the need for comments.

Comment lines Everything after # on a line is ignored by Python and used to insert
free running text, known as comments. The purpose of comments is to explain, in
a human language, the ideas of (several) forthcoming statements so that the program
becomes easier to understand for humans. Some variables whose names are not
completely self-explanatory also need a comment.

Object types There are many different types of objects in Python. In this chapter
we have worked with the following types.

� Integers (whole numbers, object type int):

x10 = 3
XYZ = 2

� Floats (decimal numbers, object type float):

max_temperature = 3.0
MinTemp = 1/6.0

� Strings (pieces of text, object type str):

a = ’This is a piece of text\nover two lines.’
b = "Strings are enclosed in single or double quotes."
c = """Triple-quoted strings can
span
several lines.
"""

� Complex numbers (object type complex):

a = 2.5 + 3j
real = 6; imag = 3.1
b = complex(real, imag)
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Operators Operators in arithmetic expressions follow the rules from mathematics:
power is evaluated before multiplication and division, while the latter two are eval-
uated before addition and subtraction. These rules are overridden by parentheses.
We suggest using parentheses to group and clarify mathematical expressions, also
when not strictly needed.

-t**2*g/2
-(t**2)*(g/2) # equivalent
-t**(2*g)/2 # a different formula!

a = 5.0; b = 5.0; c = 5.0
a/b + c + a*c # yields 31.0
a/(b + c) + a*c # yields 25.5
a/(b + c + a)*c # yields 1.6666666666666665

Particular attention must be paid to coding fractions, since the division operator /
often needs extra parentheses that are not necessary in the mathematical notation
for fractions (compare a

bCc
with a/(b+c) and a/b+c).

Common mathematical functions The math module contains common mathe-
matical functions for real numbers. Modules must be imported before they can be
used. The three types of alternative module import go as follows:

# Import of module - functions requires prefix
import math
a = math.sin(math.pi*1.5)

# Import of individual functions - no prefix in function calls
from math import sin, pi
a = sin(pi*1.5)

# Import everything from a module - no prefix in function calls
from math import *
a = sin(pi*1.5)

Print To print the result of calculations in a Python program to a terminal window,
we apply the print command, i.e., the word print followed by a string enclosed
in quotes, or just a variable:

print "A string enclosed in double quotes"
print a

Several objects can be printed in one statement if the objects are separated by com-
mas. A space will then appear between the output of each object:

>>> a = 5.0; b = -5.0; c = 1.9856; d = 33
>>> print ’a is’, a, ’b is’, b, ’c and d are’, c, d
a is 5.0 b is -5.0 c and d are 1.9856 33
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The printf syntax enables full control of the formatting of real numbers and integers:

>>> print ’a=%g, b=%12.4E, c=%.2f, d=%5d’ % (a, b, c, d)
a=5, b= -5.0000E+00, c=1.99, d= 33

Here, a, b, and c are of type float and formatted as compactly as possible (%g for
a), in scientific notation with 4 decimals in a field of width 12 (%12.4E for b), and
in decimal notation with two decimals in as compact field as possible (%.2f for c).
The variable d is an integer (int) written in a field of width 5 characters (%5d).

Be careful with integer division!

A common error in mathematical computations is to divide two integers, because
this results in integer division (in Python 2).

� Any number written without decimals is treated as an integer. To avoid integer
division, ensure that every division involves at least one real number, e.g., 9/5
is written as 9.0/5, 9./5, 9/5., or 9/5.0.

� In expressions with variables, a/b, ensure that a or b is a float object, and if
not (or uncertain), do an explicit conversion as in float(a)/b to guarantee
float division.

� If integer division is desired, use a double slash: a//b.
� Python 3 treats a/b as float division also when a and b are integers.

Complex numbers Values of complex numbers are written as (X+Yj), where X

is the value of the real part and Y is the value of the imaginary part. One example
is (4-0.2j). If the real and imaginary parts are available as variables r and i,
a complex number can be created by complex(r, i).

The cmath module must be used instead of math if the argument is a complex
variable. The numpy package offers similar mathematical functions, but with a uni-
fied treatment of real and complex variables.

Terminology Some Python and computer science terms briefly covered in this
chapter are

� object: anything that a variable (name) can refer to, such as a number, string,
function, or module (but objects can exist without being bound to a name:
print ’Hello!’ first makes a string object of the text in quotes and then the
contents of this string object, without a name, is printed)

� variable: name of an object
� statement: an instruction to the computer, usually written on a line in a Python

program (multiple statements on a line must be separated by semicolons)
� expression: a combination of numbers, text, variables, and operators that results

in a new object, when being evaluated
� assignment: a statement binding an evaluated expression (object) to a variable

(name)
� algorithm: detailed recipe for how to solve a problem by programming
� code: program text (or synonym for program)
� implementation: same as code
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� executable: the file we run to start the program
� verification: providing evidence that the program works correctly
� debugging: locating and correcting errors in a program

1.8.2 Example: Trajectory of a Ball

Problem What is the trajectory of a ball that is thrown or kicked with an initial
velocity v0 making an angle � with the horizontal? This problem can be solved by
basic high school physics as you are encouraged to do in Exercise 1.13. The ball
will follow a trajectory y D f .x/ through the air where

f .x/ D x tan � � 1

2v2
0

gx2

cos2 �
C y0 : (1.6)

In this expression, x is a horizontal coordinate, g is the acceleration of gravity, v0

is the size of the initial velocity that makes an angle � with the x axis, and .0; y0/

is the initial position of the ball. Our programming goal is to make a program
for evaluating (1.6). The program should write out the value of all the involved
variables and what their units are.

We remark that the formula (1.6) neglects air resistance. Exercise 1.11 explores
how important air resistance is. For a soft kick (v0 D 30 km/h) of a football, the
gravity force is much larger than the air resistance, but for a hard kick, air resistance
may be as important as gravity.

Solution We use the SI system and assume that v0 is given in km/h; g D 9:81m/s2;
x, y, and y0 are measured in meters; and � in degrees. The program has naturally
four parts: initialization of input data, import of functions and � from math, con-
version of v0 and � to m/s and radians, respectively, and evaluation of the right-hand
side expression in (1.6). We choose to write out all numerical values with one dec-
imal. The complete program is found in the file trajectory.py:

g = 9.81 # m/s**2
v0 = 15 # km/h
theta = 60 # degrees
x = 0.5 # m
y0 = 1 # m

print """\
v0 = %.1f km/h
theta = %d degrees
y0 = %.1f m
x = %.1f m\
""" % (v0, theta, y0, x)

from math import pi, tan, cos
# Convert v0 to m/s and theta to radians
v0 = v0/3.6
theta = theta*pi/180

http://tinyurl.com/pwyasaa/formulas/trajectory.py
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y = x*tan(theta) - 1/(2*v0**2)*g*x**2/((cos(theta))**2) + y0

print ’y = %.1f m’ % y

The backslash in the triple-quoted multi-line string makes the string continue on
the next line without a newline. This means that removing the backslash results in
a blank line above the v0 line and a blank line between the x and y lines in the out-
put on the screen. Another point to mention is the expression 1/(2*v0**2), which
might seem as a candidate for unintended integer division. However, the conversion
of v0 to m/s involves a division by 3.6, which results in v0 being float, and there-
fore 2*v0**2 being float. The rest of the program should be self-explanatory at
this stage in the book.

We can execute the program in IPython or an ordinary terminal window and
watch the output:

Terminal

v0 = 15.0 km/h
theta = 60 degrees
y0 = 1.0 m
x = 0.5 m
y = 1.6 m

1.8.3 About Typesetting Conventions in This Book

This version of the book applies different design elements for different types of
“computer text”. Complete programs and parts of programs (snippets) are typeset
with a light blue background. A snippet looks like this:

a = sqrt(4*p + c)
print ’a =’, a

A complete program has an additional, slightly darker frame:

C = 21
F = (9.0/5)*C + 32
print F

As a reader of this book, you may wonder if a code shown is a complete program
you can try out or if it is just a part of a program (a snippet) so that you need to add
surrounding statements (e.g., import statements) to try the code out yourself. The
appearance of a vertical line to the left or not will then quickly tell you what type
of code you see.

An interactive Python session is typeset as

>>> from math import *
>>> p = 1; c = -1.5
>>> a = sqrt(4*p + c)
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Running a program, say ball_yc.py, in the terminal window, followed by some
possible output is typeset as

Terminal

ball_yc.py
At t=0.0417064 s and 0.977662 s, the height is 0.2 m.

Recall from Sect. 1.5.3 that we just write the program name. A real execution
demands prefixing the program name by python in a terminal window, or by run if
you run the program from an interactive IPython session. We refer to Appendix H.5
for more complete information on running Python programs in different ways.

Sometimes just the output from a program is shown, and this output appears as
plain computer text:

h = 0.2
order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

Files containing data are shown in a similar way in this book:

date Oslo London Berlin Paris Rome Helsinki
01.05 18 21.2 20.2 13.7 15.8 15
01.06 21 13.2 14.9 18 24 20
01.07 13 14 16 25 26.2 14.5

Style guide for Python code This book presents Python code that is (mostly) in
accordance with the official Style Guide for Python Code5, known in the Python
community as PEP8. Some exceptions to the rules are made to make code snippets
shorter: multiple imports on one line and less blank lines.

1.9 Exercises

About solving exercises There is only one way to learn programming: you have to
program yourself. This means that you have to do a lot of exercises! Reading this
book is necessary to learn about the Python syntax and studying the examples in
depth is necessary to grasp how to think about programming and solving problems.
But the main effort in the learning process is your work with exercises or your own
programming projects.

Solving an exercise is a three-stage procedure. First, you have to study the text
in the exercise carefully to understand what the problem is about. Programming
exercises, especially in this book, are about a problem setting that has to be thor-
oughly understood before it makes sense to understand the specific questions in

5 http://www.python.org/dev/peps/pep-0008/

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
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the exercise. The second phase is to write the program. The more efforts you put
into the first phase, the easier it will be to find the right statements and write the
code. The third and final stage is to test the program and remove errors (known
as debugging and verification from Sect. 1.2). This is by far the greatest challenge
for beginners. Very often, especially for newcomers to programming, it boils down
to writing out the result of every statement and checking these results carefully by
playing computer with pen and paper.

Beginners often underestimate the amount of work required in the first and third
stage and instead try to do the second stage (i.e., write the program) as quickly as
possible. The more work you put into the first stage, the easier it will be to find
an example in this book or elsewhere that is similar to the exercise and that can
help you get started. And the more work you put into stage three up front, with
constructing a test case, the better your understanding of the statements will be and
the fewer errors you will commit. Experience will prove that all these assertions are
right!

Most exercises are associated with a filename, e.g., myexer. If the answer to the
exercise is a Python program, you should store the program in a file myexer.py. If
the answer can be an explanation, you may store it in a plain text file, myexer.txt,
or write the text in a word processor and produce a PDF file (myexer.pdf).

When you hand in exercises to teaching assistants, it is often a requirement that
a trial run of the program is inserted at the end of the code. This means that you
run some case with known result, direct the output to a file result,

Terminal

Terminal> python myprogram.py > result

and copy the contents of result to a triple-quoted string with appropriate com-
ments after the statements of the program. Here is an example of a program with its
trial run inserted:

F = 69.8 # Fahrenheit degrees
C = (5.0/9)*(F - 32) # Corresponding Celsius degrees
print C

’’’
Trial run (correct result is 21):
python f2c.py
21.0
’’’

The trial run demonstrates that the program runs and produces correct results in
a test case.

Exercise 1.1: Compute 1+1

The first exercise concerns some very basic mathematics and programming: assign
the result of 1C1 to a variable and print the value of that variable.
Filename: 1plus1.
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Exercise 1.2: Write a Hello World program

Almost all books about programming languages start with a very simple program
that prints the text Hello, World! to the screen. Make such a program in Python.
Filename: hello_world.

Exercise 1.3: Derive and compute a formula

Can a newborn baby in Norway expect to live for one billion (109) seconds? Write
a Python program for doing arithmetics to answer the question.
Filename: seconds2years.

Exercise 1.4: Convert from meters to British length units

Make a program where you set a length given in meters and then compute and write
out the corresponding length measured in inches, in feet, in yards, and in miles. Use
that one inch is 2.54 cm, one foot is 12 inches, one yard is 3 feet, and one British
mile is 1760 yards. For verification, a length of 640 meters corresponds to 25196.85
inches, 2099.74 feet, 699.91 yards, or 0.3977 miles.
Filename: length_conversion.

Exercise 1.5: Compute the mass of various substances

The density of a substance is defined as % D m=V , where m is the mass of a volume
V . Compute and print out the mass of one liter of each of the following substances
whose densities in g/cm3 are found in the file src/files/densities.dat6: iron,
air, gasoline, ice, the human body, silver, and platinum.
Filename: 1liter.

Exercise 1.6: Compute the growth of money in a bank

Let p be a bank’s interest rate in percent per year. An initial amount A has then
grown to

A
�

1C p

100

�n

after n years. Make a program for computing how much money 1000 euros have
grown to after three years with 5 percent interest rate.
Filename: interest_rate.

Exercise 1.7: Find error(s) in a program

Suppose somebody has written a simple one-line program for computing sin.1/:

x=1; print ’sin(%g)=%g’ % (x, sin(x))

Create this program and try to run it. What is the problem?
Filename: find_errors_sin1.

Exercise 1.8: Type in program text

Type the following program in your editor and execute it. If your program does not
work, check that you have copied the code correctly.

6 http://tinyurl.com/pwyasaa/files/densities.dat

http://tinyurl.com/pwyasaa/files/densities.dat
http://tinyurl.com/pwyasaa/files/densities.dat
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from math import pi

h = 5.0 # height
b = 2.0 # base
r = 1.5 # radius

area_parallelogram = h*b
print ’The area of the parallelogram is %.3f’ % area_parallelogram

area_square = b**2
print ’The area of the square is %g’ % area_square

area_circle = pi*r**2
print ’The area of the circle is %.3f’ % area_circle

volume_cone = 1.0/3*pi*r**2*h
print ’The volume of the cone is %.3f’ % volume_cone

Filename: formulas_shapes.

Exercise 1.9: Type in programs and debug them

Type these short programs in your editor and execute them. When they do not work,
identify and correct the erroneous statements.

a) Does sin2.x/C cos2.x/ D 1?

from math import sin, cos
x = pi/4
1_val = math.sin^2(x) + math.cos^2(x)
print 1_VAL

b) Compute s in meters when s D v0t C 1
2
at2, with v0 D 3 m/s, t D 1 s, a D

2 m/s2.

v0 = 3 m/s
t = 1 s
a = 2 m/s**2
s = v0.t + 0,5.a.t**2
print s

c) Verify these equations:

.aC b/2 D a2 C 2ab C b2

.a � b/2 D a2 � 2ab C b2

a = 3,3 b = 5,3
a2 = a**2
b2 = b**2
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eq1_sum = a2 + 2ab + b2
eq2_sum = a2 - 2ab + b2

eq1_pow = (a + b)**2
eq2_pow = (a - b)**2

print ’First equation: %g = %g’, % (eq1_sum, eq1_pow)
print ’Second equation: %h = %h’, % (eq2_pow, eq2_pow)

Filename: find_errors_programs.

Exercise 1.10: Evaluate a Gaussian function

The bell-shaped Gaussian function,

f .x/ D 1p
2� s

exp
�

�1

2

�x �m

s

�2
�

; (1.7)

is one of the most widely used functions in science and technology. The parameters
m and s > 0 are prescribed real numbers. Make a program for evaluating this
function when m D 0, s D 2, and x D 1. Verify the program’s result by comparing
with hand calculations on a calculator.
Filename: gaussian1.

Remarks The function (1.7) is named after Carl Friedrich Gauss7, 1777–1855,
who was a German mathematician and scientist, now considered as one of the
greatest scientists of all time. He contributed to many fields, including number
theory, statistics, mathematical analysis, differential geometry, geodesy, electrostat-
ics, astronomy, and optics. Gauss introduced the function (1.7) when he analyzed
probabilities related to astronomical data.

Exercise 1.11: Compute the air resistance on a football

The drag force, due to air resistance, on an object can be expressed as

Fd D
1

2
CD%AV 2; (1.8)

where % is the density of the air, V is the velocity of the object, A is the cross-
sectional area (normal to the velocity direction), and CD is the drag coefficient,
which depends heavily on the shape of the object and the roughness of the surface.

The gravity force on an object with mass m is Fg D mg, where g D 9:81 m s�2.
We can use the formulas for Fd and Fg to study the importance of air resistance

versus gravity when kicking a football. The density of air is % D 1:2 kg m�3. We
have A D �a2 for any ball with radius a. For a football, a D 11 cm and the mass
is 0.43 kg. The drag coefficient CD varies with the velocity and can be taken as 0.4.

Make a program that computes the drag force and the gravity force on a football.
Write out the forces with one decimal in units of Newton (N D kg m=s2). Also
print the ratio of the drag force and the gravity force. Define CD , %, A, V , m, g,

7 http://en.wikipedia.org/wiki/Carl_Gauss

http://en.wikipedia.org/wiki/Carl_Gauss
http://en.wikipedia.org/wiki/Carl_Gauss
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Fd , and Fg as variables, and put a comment with the corresponding unit. Use the
program to calculate the forces on the ball for a hard kick, V D 120 km=h and for
a soft kick, V D 30 km=h (it is easy to mix inconsistent units, so make sure you
compute with V expressed in m=s).
Filename: kick.

Exercise 1.12: How to cook the perfect egg

As an egg cooks, the proteins first denature and then coagulate. When the temper-
ature exceeds a critical point, reactions begin and proceed faster as the temperature
increases. In the egg white, the proteins start to coagulate for temperatures above
63 ıC, while in the yolk the proteins start to coagulate for temperatures above 70 ıC.
For a soft boiled egg, the white needs to have been heated long enough to coagulate
at a temperature above 63 ıC, but the yolk should not be heated above 70 ıC. For
a hard boiled egg, the center of the yolk should be allowed to reach 70 ıC.

The following formula expresses the time t it takes (in seconds) for the center of
the yolk to reach the temperature Ty (in Celsius degrees):

t D M 2=3c�1=3

K�2.4�=3/2=3
ln

�

0:76
To � Tw

Ty � Tw

�

: (1.9)

Here, M , �, c, and K are properties of the egg: M is the mass, � is the density,
c is the specific heat capacity, and K is thermal conductivity. Relevant values are
M D 47 g for a small egg and M D 67 g for a large egg, � D 1:038 g cm�3, c D
3:7 J g�1 K�1, and K D 5:4 �10�3 W cm�1 K�1. Furthermore, Tw is the temperature
(in C degrees) of the boiling water, and To is the original temperature (in C degrees)
of the egg before being put in the water. Implement the formula in a program, set
Tw D 100 ıC and Ty D 70 ıC, and compute t for a large egg taken from the fridge
(To D 4 ıC) and from room temperature (To D 20 ıC).
Filename: egg.

Exercise 1.13: Derive the trajectory of a ball

The purpose of this exercise is to explain how Equation (1.6) for the trajectory of
a ball arises from basic physics. There is no programming in this exercise, just
physics and mathematics.

The motion of the ball is governed by Newton’s second law:

Fx D max (1.10)

Fy D may (1.11)

where Fx and Fy are the sum of forces in the x and y directions, respectively, ax

and ay are the accelerations of the ball in the x and y directions, and m is the
mass of the ball. Let .x.t/; y.t// be the position of the ball, i.e., the horizontal and
vertical coordinate of the ball at time t . There are well-known relations between
acceleration, velocity, and position: the acceleration is the time derivative of the
velocity, and the velocity is the time derivative of the position. Therefore we have
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that

ax D
d 2x

dt2
; (1.12)

ay D
d 2y

dt2
: (1.13)

If we assume that gravity is the only important force on the ball, Fx D 0 and
Fy D �mg.

Integrate the two components of Newton’s second law twice. Use the initial
conditions on velocity and position,

d

dt
x.0/ D v0 cos �; (1.14)

d

dt
y.0/ D v0 sin �; (1.15)

x.0/ D 0; (1.16)

y.0/ D y0; (1.17)

to determine the four integration constants. Write up the final expressions for x.t/

and y.t/. Show that if � D �=2, i.e., the motion is purely vertical, we get the
formula (1.1) for the y position. Also show that if we eliminate t , we end up with
the relation (1.6) between the x and y coordinates of the ball. You may read more
about this type of motion in a physics book, e.g., [15].
Filename: trajectory.

Exercise 1.14: Find errors in the coding of formulas

Some versions of our program for calculating the formula (1.3) are listed below.
Find the versions that will not work correctly and explain why in each case.

C = 21; F = 9/5*C + 32; print F
C = 21.0; F = (9/5)*C + 32; print F
C = 21.0; F = 9*C/5 + 32; print F
C = 21.0; F = 9.*(C/5.0) + 32; print F
C = 21.0; F = 9.0*C/5.0 + 32; print F
C = 21; F = 9*C/5 + 32; print F
C = 21.0; F = (1/5)*9*C + 32; print F
C = 21; F = (1./5)*9*C + 32; print F

Filename: find_errors_division.

Exercise 1.15: Explain why a program does not work

Figure out why the following program does not work:

C = A + B
A = 3
B = 2
print C

Filename: find_errors_vars.
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Exercise 1.16: Find errors in Python statements

Try the following statements in an interactive Python shell. Explain why some
statements fail and correct the errors.

1a = 2
a1 = b
x = 2
y = X + 4 # is it 6?
from Math import tan
print tan(pi)
pi = "3.14159’
print tan(pi)
c = 4**3**2**3
_ = ((c-78564)/c + 32))
discount = 12%
AMOUNT = 120.-
amount = 120$
address = hpl@simula.no
and = duck
class = ’INF1100, gr 2"
continue_ = x > 0
rev = fox = True
Norwegian = [’a human language’]
true = fox is rev in Norwegian

Hint It is wise to test the values of the expressions on the right-hand side, and the
validity of the variable names, separately before you put the left- and right-hand
sides together in statements. The last two statements work, but explaining why
goes beyond what is treated in this chapter.
Filename: find_errors_syntax.

Exercise 1.17: Find errors in the coding of a formula

Given a quadratic equation,

ax2 C bx C c D 0;

the two roots are

x1 D
�b C

p
b2 � 4ac

2a
; x2 D

�b �
p

b2 � 4ac

2a
: (1.18)

What are the problems with the following program?

a = 2; b = 1; c = 2
from math import sqrt
q = b*b - 4*a*c
q_sr = sqrt(q)
x1 = (-b + q_sr)/2*a
x2 = (-b - q_sr)/2*a
print x1, x2

Correct the program so that it solves the given equation.
Filename: find_errors_roots.
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Exercise 1.18: Find errors in a program

What is the problem in the following program?

from math import pi, tan
tan = tan(pi/4)
tan2 = tan(pi/3)
print tan, tan2

Filename: find_errors_tan.



2Loops and Lists

This chapter explains how repetitive tasks in a program can be automated by loops.
We also introduce list objects for storing and processing collections of data with
a specific order. Loops and lists, together with functions and if tests from Chap. 3,
lay the fundamental programming foundation for the rest of the book. The programs
associated with the chapter are found in the folder src/looplist1.

2.1 While Loops

Our task now is to print out a conversion table with Celsius degrees in the first
column of the table and the corresponding Fahrenheit degrees in the second column.
Such a table may look like this:

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.1.1 A Naive Solution

The formula for converting C degrees Celsius to F degrees Fahrenheit is F D
9C=5C32. Since we know how to evaluate the formula for one value of C , we can
just repeat these statements as many times as required for the table above. Using

1 http://tinyurl.com/pwyasaa/looplist
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three statements per line in the program, for compact layout of the code, we can
write the whole program as

C = -20; F = 9.0/5*C + 32; print C, F
C = -15; F = 9.0/5*C + 32; print C, F
C = -10; F = 9.0/5*C + 32; print C, F
C = -5; F = 9.0/5*C + 32; print C, F
C = 0; F = 9.0/5*C + 32; print C, F
C = 5; F = 9.0/5*C + 32; print C, F
C = 10; F = 9.0/5*C + 32; print C, F
C = 15; F = 9.0/5*C + 32; print C, F
C = 20; F = 9.0/5*C + 32; print C, F
C = 25; F = 9.0/5*C + 32; print C, F
C = 30; F = 9.0/5*C + 32; print C, F
C = 35; F = 9.0/5*C + 32; print C, F
C = 40; F = 9.0/5*C + 32; print C, F

Running this program (which is stored in the file c2f_table_repeat.py),
demonstrates that the output becomes

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

This output suffers from somewhat ugly formatting, but that problem can quickly be
fixed by replacing print C, F by a print statement based on printf formatting.
We will return to this detail later.

The main problem with the program above is that lots of statements are identi-
cal and repeated. First of all it is boring to write this sort of repeated statements,
especially if we want many more C and F values in the table. Second, the idea
of the computer is to automate repetition. Therefore, all computer languages have
constructs to efficiently express repetition. These constructs are called loops and
come in two variants in Python: while loops and for loops. Most programs in this
book employ loops, so this concept is extremely important to learn.

2.1.2 While Loops

The while loop is used to repeat a set of statements as long as a condition is true.
We shall introduce this kind of loop through an example. The task is to generate the
rows of the table of C and F values. The C value starts at �20 and is incremented
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by 5 as long as C � 40. For each C value we compute the corresponding F value
and write out the two temperatures. In addition, we also add a line of dashes above
and below the table.

The list of tasks to be done can be summarized as follows:

� Print line with dashes
� C D �20

� While C � 40:
– F D 9

5
C C 32

– Print C and F

– Increment C by 5

� Print line with dashes

This is the algorithm of our programming task. The way from a detailed algorithm
to a fully functioning Python code can often be made very short, which is definitely
true in the present case:

print ’------------------’ # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0/5)*C + 32 # 1st statement inside loop
print C, F # 2nd statement inside loop
C = C + dC # 3rd statement inside loop

print ’------------------’ # end of table line (after loop)

A very important feature of Python is now encountered: the block of statements
to be executed in each pass of the while loop must be indented. In the example
above the block consists of three lines, and all these lines must have exactly the
same indentation. Our choice of indentation in this book is four spaces. The first
statement whose indentation coincides with that of the while line marks the end
of the loop and is executed after the loop has terminated. In this example this is
the final print statement. You are encouraged to type in the code above in a file,
indent the last line four spaces, and observe what happens (you will experience that
lines in the table are separated by a line of dashes: ––––).

Many novice Python programmers forget the colon at the end of the while line
– this colon is essential and marks the beginning of the indented block of statements
inside the loop. Later, we will see that there are many other similar program con-
structions in Python where there is a heading ending with a colon, followed by an
indented block of statements.

Programmers need to fully understand what is going on in a program and be able
to simulate the program by hand. Let us do this with the program segment above.
First, we define the start value for the sequence of Celsius temperatures: C = -20.
We also define the increment dC that will be added to C inside the loop. Then we
enter the loop condition C <= 40. The first time C is -20, which implies that C
<= 40 (equivalent to C � 40 in mathematical notation) is true. Since the loop
condition is true, we enter the loop and execute all the indented statements. That
is, we compute F corresponding to the current C value, print the temperatures, and
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increment C by dC. For simplicity, we have used a plain print C, F without any
formatting so the columns will not be aligned, but this can easily be fixed later.

Thereafter, we enter the second pass in the loop. First we check the condition:
C is -15 and C <= 40 is still true. We execute the statements in the indented loop
block, C becomes -10, this is still less than or equal to 40, so we enter the loop
block again. This procedure is repeated until C is updated from 40 to 45 in the
final statement in the loop block. When we then test the condition, C <= 40, this
condition is no longer true, and the loop is terminated. We proceed with the next
statement that has the same indentation as the while statement, which is the final
print statement in this example.

Newcomers to programming are sometimes confused by statements like

C = C + dC

This line looks erroneous from a mathematical viewpoint, but the statement is
perfectly valid computer code, because we first evaluate the expression on the right-
hand side of the equality sign and then let the variable on the left-hand side refer to
the result of this evaluation. In our case, C and dC are two different int objects. The
operation C+dC results in a new int object, which in the assignment C = C+dC is
bound to the name C. Before this assignment, C was already bound to an int object,
and this object is automatically destroyed when C is bound to a new object and there
are no other names (variables) referring to this previous object (if you did not get
this last point, just relax and continue reading!).

Since incrementing the value of a variable is frequently done in computer pro-
grams, there is a special short-hand notation for this and related operations:

C += dC # equivalent to C = C + dC
C -= dC # equivalent to C = C - dC
C *= dC # equivalent to C = C*dC
C /= dC # equivalent to C = C/dC

2.1.3 Boolean Expressions

In our first example on a while loop, we worked with a condition C <= 40, which
evaluates to either true or false, written as True or False in Python. Other compar-
isons are also useful:

C == 40 # C equals 40
C != 40 # C does not equal 40
C >= 40 # C is greater than or equal to 40
C > 40 # C is greater than 40
C < 40 # C is less than 40

Not only comparisons between numbers can be used as conditions in while loops:
any expression that has a boolean (True or False) value can be used. Such expres-
sions are known as logical or boolean expressions.

The keyword not can be inserted in front of the boolean expression to change
the value from True to False or from False to True. To evaluate not C ==
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40, we first evaluate C == 40, for C = 1 this is False, and then not turns the
value into True. On the opposite, if C == 40 is True, not C == 40 becomes
False. Mathematically it is easier to read C != 40 than not C == 40, but these
two boolean expressions are equivalent.

Boolean expressions can be combined with and and or to form new compound
boolean expressions, as in

while x > 0 and y <= 1:
print x, y

If cond1 and cond2 are two boolean expressions with values True or False,
the compound boolean expression cond1 and cond2 is True if both cond1 and
cond2 are True. On the other hand, cond1 or cond2 is True if at least one of the
conditions, cond1 or cond2, is True

Remark

In Python, cond1 and cond2 or cond1 or cond2 returns one of the operands
and not just True or False values as in most other computer languages. The
operands cond1 or cond2 can be expressions or objects. In case of expressions,
these are first evaluated to an object before the compound boolean expression is
evaluated. For example, (5+1) or -1 evaluates to 6 (the second operand is not
evaluated when the first one is True), and (5+1) and -1 evaluates to -1.

Here are some more examples from an interactive session where we just evaluate
the boolean expressions themselves without using them in loop conditions:

>>> x = 0; y = 1.2
>>> x >= 0 and y < 1
False
>>> x >= 0 or y < 1
True
>>> x > 0 or y > 1
True
>>> x > 0 or not y > 1
False
>>> -1 < x <= 0 # -1 < x and x <= 0
True
>>> not (x > 0 or y > 0)
False

In the last sample expression, not applies to the value of the boolean expression
inside the parentheses: x>0 is False, y>0 is True, so the combined expression
with or is True, and not turns this value to False.

The common boolean values in Python are True, False, 0 (false), and any inte-
ger different from zero (true). To see such values in action, we recommend doing
Exercises 2.22 and 2.18.

Boolean evaluation of an object

All objects in Python can in fact be evaluated in a boolean context, and all are
True except False, zero numbers, and empty strings, lists, and dictionaries:
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>>> s = ’some string’
>>> bool(s)
True
>>> s = ’’ # empty string
>>> bool(s)
False
>>> L = [1, 4, 6]
>>> bool(L)
True
>>> L = []
>>> bool(L)
False
>>> a = 88.0
>>> bool(a)
True
>>> a = 0.0
>>> bool(a)
False

Essentially, if a tests if a is a non-empty object or if it is non-zero value. Such
constructions are frequent in Python code.

Erroneous thinking about boolean expressions is one of the most common
sources of errors in computer programs, so you should be careful every time you
encounter a boolean expression and check that it is correctly stated.

2.1.4 Loop Implementation of a Sum

Summations frequently appear in mathematics. For instance, the sine function can
be calculated as a polynomial:

sin.x/ � x � x3

3Š
C x5

5Š
� x7

7Š
C � � � ; (2.1)

where 3Š D 3 � 2 � 1, 5Š D 5 � 4 � 3 � 2 � 1, etc., are factorial expressions. Computing
kŠ D k.k � 1/.k � 2/ � � �2 � 1 is done by math.factorial(k).

An infinite number of terms are needed on the right-hand side of (2.1) for the
equality sign to hold. With a finite number of terms, we obtain an approximation
to sin.x/, which is well suited for being calculated in a program since only powers
and the basic four arithmetic operations are involved. Say we want to compute the
right-hand side of (2.1) for powers up to N D 25. Writing out and implementing
each one of these terms is a tedious job that can easily be automated by a loop.

Computation of the sum in (2.1) by a while loop in Python, makes use of (i)
a counter k that runs through odd numbers from 1 up to some given maximum
power N, and (ii) a summation variable, say s, which accumulates the terms, one at
a time. The purpose of each pass of the loop is to compute a new term and add it to
s. Since the sign of each term alternates, we introduce a variable sign that changes
between �1 and 1 in each pass of the loop.

The previous paragraph can be precisely expressed by this piece of Python code:
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x = 1.2 # assign some value
N = 25 # maximum power in sum
k = 1
s = x
sign = 1.0
import math

while k < N:
sign = - sign
k = k + 2
term = sign*x**k/math.factorial(k)
s = s + term

print ’sin(%g) = %g (approximation with %d terms)’ % (x, s, N)

The best way to understand such a program is to simulate it by hand. That is, we
go through the statements, one by one, and write down on a piece of paper what the
state of each variable is.

When the loop is first entered, k < N implies 1 < 25, which is True so
we enter the loop block. There, we compute sign = -1.0, k = 3, term =

-1.0*x**3/(3*2*1)) (note that sign is float so we always have float divided
by int), and s = x - x**3/6, which equals the first two terms in the sum. Then
we test the loop condition: 3 < 25 is True so we enter the loop block again.
This time we obtain term = 1.0*x**5/math.factorial(5), which correctly
implements the third term in the sum. At some point, k is updated to from 23 to
25 inside the loop and the loop condition then becomes 25 < 25, which is False,
implying that the program jumps over the loop block and continues with the print
statement (which has the same indentation as the while statement).

2.2 Lists

Up to now a variable has typically contained a single number. Sometimes numbers
are naturally grouped together. For example, all Celsius degrees in the first col-
umn of our table from Sect. 2.1.2 could be conveniently stored together as a group.
A Python list can be used to represent such a group of numbers in a program. With
a variable that refers to the list, we can work with the whole group at once, but we
can also access individual elements of the group. Figure 2.1 illustrates the difference
between an int object and a list object. In general, a list may contain a sequence of
arbitrary objects in a given order. Python has great functionality for examining and
manipulating such sequences of objects, which will be demonstrated below.

2.2.1 Basic List Operations

To create a list with the numbers from the first column in our table, we just put all
the numbers inside square brackets and separate the numbers by commas:

C = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
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var1 21

var2 0 20

1 21

2 29

3 4.0

Fig. 2.1 Illustration of two variables: var1 refers to an int object with value 21, created by
the statement var1 = 21, and var2 refers to a list object with value [20, 21, 29, 4.0],
i.e., three int objects and one float object, created by the statement var2 = [20, 21, 29,
4.0]

The variable C now refers to a list object holding 13 list elements. All list elements
are in this case int objects.

Every element in a list is associated with an index, which reflects the position of
the element in the list. The first element has index 0, the second index 1, and so
on. Associated with the C list above we have 13 indices, starting with 0 and ending
with 12. To access the element with index 3, i.e., the fourth element in the list, we
can write C[3]. As we see from the list, C[3] refers to an int object with the value
�5.

Elements in lists can be deleted, and new elements can be inserted anywhere.
The functionality for doing this is built into the list object and accessed by a dot
notation. Two examples are C.append(v), which appends a new element v to the
end of the list, and C.insert(i,v), which inserts a new element v in position
number i in the list. The number of elements in a list is given by len(C). Let
us exemplify some list operations in an interactive session to see the effect of the
operations:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35) # add new element 35 at the end
>>> C # view list C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

Two lists can be added:

>>> C = C + [40, 45] # extend C at the end
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

What adding two lists means is up to the list object to define, and not surprisingly,
addition of two lists is defined as appending the second list to the first. The result
of C + [40,45] is a new list object, which we then assign to C such that this
name refers to this new list. In fact, every object in Python and everything you can
do with it is defined by programs made by humans. With the techniques of class
programming (see Chap. 7) you can create your own objects and define (if desired)
what it means to add such objects. All this gives enormous power in the hands of
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programmers. As one example, you can define your own list object if you are not
satisfied with the functionality of Python’s own lists.

New elements can be inserted anywhere in the list (and not only at the end as we
did with C.append):

>>> C.insert(0, -15) # insert new element -15 as index 0
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

With del C[i] we can remove an element with index i from the list C. Observe
that this changes the list, so C[i] refers to another (the next) element after the
removal:

>>> del C[2] # delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] # delete what is now 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) # length of list
11

The command C.index(10) returns the index corresponding to the first element
with value 10 (this is the 4th element in our sample list, with index 3):

>>> C.index(10) # find index for an element (10)
3

To just test if an object with the value 10 is an element in the list, one can write the
boolean expression 10 in C:

>>> 10 in C # is 10 an element in C?
True

Python allows negative indices, which leads to indexing from the right. As demon-
strated below, C[-1] gives the last element of the list C. C[-2] is the element before
C[-1], and so forth.

>>> C[-1] # view the last list element
45
>>> C[-2] # view the next last list element
40

Building long lists by writing down all the elements separated by commas is a te-
dious process that can easily be automated by a loop, using ideas from Sect. 2.1.4.
Say we want to build a list of degrees from �50 to 200 in steps of 2.5 degrees. We
then start with an empty list and use a while loop to append one element at a time:
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C = []
C_value = -50
C_max = 200
while C_value <= C_max:

C.append(C_value)
C_value += 2.5

In the next sections, we shall see how we can express these six lines of code with
just one single statement.

There is a compact syntax for creating variables that refer to the various list
elements. Simply list a sequence of variables on the left-hand side of an assignment
to a list:

>>> somelist = [’book.tex’, ’book.log’, ’book.pdf’]
>>> texfile, logfile, pdf = somelist
>>> texfile
’book.tex’
>>> logfile
’book.log’
>>> pdf
’book.pdf’

The number of variables on the left-hand side must match the number of elements
in the list, otherwise an error occurs.

A final comment regards the syntax: some list operations are reached by a dot
notation, as in C.append(e), while other operations requires the list object as an
argument to a function, as in len(C). Although C.append for a programmer be-
haves as a function, it is a function that is reached through a list object, and it is
common to say that append is a method in the list object, not a function. There
are no strict rules in Python whether functionality regarding an object is reached
through a method or a function.

2.2.2 For Loops

The nature of for loops When data are collected in a list, we often want to perform
the same operations on each element in the list. We then need to walk through all list
elements. Computer languages have a special construct for doing this conveniently,
and this construct is in Python and many other languages called a for loop. Let us
use a for loop to print out all list elements:

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print ’list element:’, C
print ’The degrees list has’, len(degrees), ’elements’

The for C in degrees construct creates a loop over all elements in the list
degrees. In each pass of the loop, the variable C refers to an element in the list,
starting with degrees[0], proceeding with degrees[1], and so on, before ending
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with the last element degrees[n-1] (if n denotes the number of elements in the
list, len(degrees)).

The for loop specification ends with a colon, and after the colon comes a block
of statements that does something useful with the current element. Each statement
in the block must be indented, as we explained for while loops. In the example
above, the block belonging to the for loop contains only one statement. The fi-
nal print statement has the same indentation (none in this example) as the for

statement and is executed as soon as the loop is terminated.
As already mentioned, understanding all details of a program by following the

program flow by hand is often a very good idea. Here, we first define a list degrees
containing 5 elements. Then we enter the for loop. In the first pass of the loop,
C refers to the first element in the list degrees, i.e., the int object holding the
value 0. Inside the loop we then print out the text ’list element:’ and the value
of C, which is 0. There are no more statements in the loop block, so we proceed
with the next pass of the loop. C then refers to the int object 10, the output now
prints 10 after the leading text, we proceed with C as the integers 20 and 40, and
finally C is 100. After having printed the list element with value 100, we move on
to the statement after the indented loop block, which prints out the number of list
elements. The total output becomes

list element: 0
list element: 10
list element: 20
list element: 40
list element: 100
The degrees list has 5 elements

Correct indentation of statements is crucial in Python, and we therefore strongly
recommend you to work through Exercise 2.23 to learn more about this topic.

Making the table Our knowledge of lists and for loops over elements in lists puts
us in a good position to write a program where we collect all the Celsius degrees
to appear in the table in a list Cdegrees, and then use a for loop to compute and
write out the corresponding Fahrenheit degrees. The complete program may look
like this:

Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
for C in Cdegrees:

F = (9.0/5)*C + 32
print C, F

The print C, F statement just prints the value of C and F with a default format,
where each number is separated by one space character (blank). This does not
look like a nice table (the output is identical to the one shown in Sect. 2.1.1. Nice
formatting is obtained by forcing C and F to be written in fields of fixed width and
with a fixed number of decimals. An appropriate printf format is %5d (or %5.0f) for
C and %5.1f for F. We may also add a headline to the table. The complete program
becomes:
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Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
print ’ C F’
for C in Cdegrees:

F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)

This code is found in the file c2f_table_list.py and its output becomes

C F
-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

2.3 Alternative Implementations with Lists and Loops

We have already solved the problem of printing out a nice-looking conversion table
for Celsius and Fahrenheit degrees. Nevertheless, there are usually many alterna-
tive ways to write a program that solves a specific problem. The next paragraphs
explore some other possible Python constructs and programs to store numbers in
lists and print out tables. The various code snippets are collected in the program file
session.py.

2.3.1 While Loop Implementation of a for Loop

Any for loop can be implemented as a while loop. The general code

for element in somelist:
<process element>

can be transformed to this while loop:

index = 0
while index < len(somelist):

element = somelist[index]
<process element>
index += 1

In particular, the example involving the printout of a table of Celsius and Fahrenheit
degrees can be implemented as follows in terms of a while loop:

http://tinyurl.com/pwyasaa/looplist/c2d_table_list.py
http://tinyurl.com/pwyasaa/looplist/session.py
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Cdegrees = [-20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40]
index = 0
print ’ C F’
while index < len(Cdegrees):

C = Cdegrees[index]
F = (9.0/5)*C + 32
print ’%5d %5.1f’ % (C, F)
index += 1

2.3.2 The Range Construction

It is tedious to write the many elements in the Cdegrees in the previous programs.
We should use a loop to automate the construction of the Cdegrees list. The range
construction is particularly useful in this regard:

� range(n) generates integers 0, 1, 2, ..., n-1.
� range(start, stop, step) generates a sequence if integers start,

start+step, start+2*step, and so on up to, but not including, stop. For
example, range(2, 8, 3) returns 2 and 5 (and not 8), while range(1, 11,

2) returns 1, 3, 5, 7, 9.
� range(start, stop) is the same as range(start, stop, 1).

A for loop over integers are written as

for i in range(start, stop, step):
...

We can use this construction to create a Cdegrees list of the values �20;�15; : : : ;

40:

Cdegrees = []
for C in range(-20, 45, 5):

Cdegrees.append(C)

# or just
Cdegrees = range(-20, 45, 5)

Note that the upper limit must be greater than 40 to ensure that 40 is included in the
range of integers.

Suppose we want to create Cdegrees as �10;�7:5;�5; : : : ; 40. This time we
cannot use range directly, because range can only create integers and we have
decimal degrees such as �7:5 and 1:5. In this more general case, we introduce an
integer counter i and generate the C values by the formula C D �10C i � 2:5 for
i D 0; 1; : : : ; 20. The following Python code implements this task:

Cdegrees = []
for i in range(0, 21):

C = -10 + i*2.5
Cdegrees.append(C)
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2.3.3 For Loops with List Indices

Instead of iterating over a list directly with the construction

for element in somelist:
...

we can equivalently iterate of the list indices and index the list inside the loop:

for i in range(len(somelist)):
element = somelist[i]
...

Since len(somelist) returns the length of somelist and the largest legal index
is len(somelist)-1, because indices always start at 0, range(len(somelist))
will generate all the correct indices: 0, 1, : : :, len(somelist)-1.

Programmers coming from other languages, such as Fortran, C, C++, Java, and
C#, are very much used to for loops with integer counters and usually tend to
use for i in range(len(somelist)) and work with somelist[i] inside the
loop. This might be necessary or convenient, but if possible, Python programmers
are encouraged to use for element in somelist, which is more elegant to read.

Iterating over loop indices is useful when we need to process two lists simul-
taneously. As an example, we first create two Cdegrees and Fdegrees lists, and
then we make a list to write out a table with Cdegrees and Fdegrees as the two
columns of the table. Iterating over a loop index is convenient in the final list:

Cdegrees = []
n = 21
C_min = -10
C_max = 40
dC = (C_max - C_min)/float(n-1) # increment in C
for i in range(0, n):

C = -10 + i*dC
Cdegrees.append(C)

Fdegrees = []
for C in Cdegrees:

F = (9.0/5)*C + 32
Fdegrees.append(F)

for i in range(len(Cdegrees)):
C = Cdegrees[i]
F = Fdegrees[i]
print ’%5.1f %5.1f’ % (C, F)

Instead of appending new elements to the lists, we can start with lists of the right
size, containing zeros, and then index the lists to fill in the right values. Creating
a list of length n consisting of zeros (for instance) is done by

somelist = [0]*n
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With this construction, the program above can use for loops over indices every-
where:

n = 21
C_min = -10
C_max = 40
dC = (C_max - C_min)/float(n-1) # increment in C

Cdegrees = [0]*n
for i in range(len(Cdegrees)):

Cdegrees[i] = -10 + i*dC

Fdegrees = [0]*n
for i in range(len(Cdegrees)):

Fdegrees[i] = (9.0/5)*Cdegrees[i] + 32

for i in range(len(Cdegrees)):
print ’%5.1f %5.1f’ % (Cdegrees[i], Fdegrees[i])

Note that we need the construction [0]*n to create a list of the right length, other-
wise the index [i] will be illegal.

2.3.4 Changing List Elements

We have two seemingly alternative ways to traverse a list, either a loop over ele-
ments or over indices. Suppose we want to change the Cdegrees list by adding 5
to all elements. We could try

for c in Cdegrees:
c += 5

but this loop leaves Cdegrees unchanged, while

for i in range(len(Cdegrees)):
Cdegrees[i] += 5

works as intended. What is wrong with the first loop? The problem is that c is an
ordinary variable, which refers to a list element in the loop, but when we execute c
+= 5, we let c refer to a new float object (c+5). This object is never inserted in
the list. The first two passes of the loop are equivalent to

c = Cdegrees[0] # automatically done in the for statement
c += 5
c = Cdegrees[1] # automatically done in the for statement
c += 5

The variable c can only be used to read list elements and never to change them.
Only an assignment of the form
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Cdegrees[i] = ...

can change a list element.
There is a way of traversing a list where we get both the index and an element in

each pass of the loop:

for i, c in enumerate(Cdegrees):
Cdegrees[i] = c + 5

This loop also adds 5 to all elements in the list.

2.3.5 List Comprehension

Because running through a list and for each element creating a new element in
another list is a frequently encountered task, Python has a special compact syntax
for doing this, called list comprehension. The general syntax reads

newlist = [E(e) for e in list]

where E(e) represents an expression involving element e. Here are three examples:

Cdegrees = [-5 + i*0.5 for i in range(n)]
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]
C_plus_5 = [C+5 for C in Cdegrees]

List comprehensions are recognized as a for loop inside square brackets and will
be frequently exemplified throughout the book.

2.3.6 TraversingMultiple Lists Simultaneously

We may use the Cdegrees and Fdegrees lists to make a table. To this end, we need
to traverse both arrays. The for element in list construction is not suitable in
this case, since it extracts elements from one list only. A solution is to use a for

loop over the integer indices so that we can index both lists:

for i in range(len(Cdegrees)):
print ’%5d %5.1f’ % (Cdegrees[i], Fdegrees[i])

It happens quite frequently that two or more lists need to be traversed simultane-
ously. As an alternative to the loop over indices, Python offers a special nice syntax
that can be sketched as

for e1, e2, e3, ... in zip(list1, list2, list3, ...):
# work with element e1 from list1, element e2 from list2,
# element e3 from list3, etc.
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The zip function turns n lists (list1, list2, list3, ...) into one list of n-
tuples, where each n-tuple (e1,e2,e3,...) has its first element (e1) from the
first list (list1), the second element (e2) from the second list (list2), and so
forth. The loop stops when the end of the shortest list is reached. In our specific
case of iterating over the two lists Cdegrees and Fdegrees, we can use the zip

function:

for C, F in zip(Cdegrees, Fdegrees):
print ’%5d %5.1f’ % (C, F)

It is considered more Pythonic to iterate over list elements, here C and F, rather than
over list indices as in the for i in range(len(Cdegrees)) construction.

2.4 Nested Lists

Nested lists are list objects where the elements in the lists can be lists themselves.
A couple of examples will motivate for nested lists and illustrate the basic opera-
tions on such lists.

2.4.1 A table as a List of Rows or Columns

Our table data have so far used one separate list for each column. If there were n

columns, we would need n list objects to represent the data in the table. However,
we think of a table as one entity, not a collection of n columns. It would therefore
be natural to use one argument for the whole table. This is easy to achieve using
a nested list, where each entry in the list is a list itself. A table object, for instance,
is a list of lists, either a list of the row elements of the table or a list of the column
elements of the table. Here is an example where the table is a list of two columns,
and each column is a list of numbers:

Cdegrees = range(-20, 41, 5) # -20, -15, ..., 35, 40
Fdegrees = [(9.0/5)*C + 32 for C in Cdegrees]

table = [Cdegrees, Fdegrees]

(Note that any value in Œ41; 45� can be used as second argument (stop value) to
range and will ensure that 40 is included in the range of generate numbers.)

With the subscript table[0] we can access the first element in table, which is
nothing but the Cdegrees list, and with table[0][2] we reach the third element
in the first element, i.e., Cdegrees[2].

However, tabular data with rows and columns usually have the convention that
the underlying data is a nested list where the first index counts the rows and the
second index counts the columns. To have table on this form, we must construct
table as a list of [C, F] pairs. The first index will then run over rows [C, F].
Here is how we may construct the nested list:
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table1 0 0 20

1 25

2 30

3 35

4 40

1 0 68.0

1 77.0

2 86.0

3 95.0

4 104.0

table2 0 0 20

1 68.0

1 0 25

1 77.0

2 0 30

1 86.0

3 0 35

1 95.0

4 0 40

1 104.0

Fig. 2.2 Two ways of creating a table as a nested list. Left: table of columns C and F, where C
and F are lists. Right: table of rows, where each row [C, F] is a list of two floats

table = []
for C, F in zip(Cdegrees, Fdegrees):

table.append([C, F])

We may shorten this code segment by introducing a list comprehension:

table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]

This construction loops through pairs C and F, and for each pass in the loop we
create a list element [C, F].

The subscript table[1] refers to the second element in table, which is a [C,

F] pair, while table[1][0] is the C value and table[1][1] is the F value. Fig-
ure 2.2 illustrates both a list of columns and a list of pairs. Using this figure, you
can realize that the first index looks up an element in the outer list, and that this
element can be indexed with the second index.

2.4.2 Printing Objects

Modules for pretty print of objects We may write print table to immediately
view the nested list table from the previous section. In fact, any Python object obj
can be printed to the screen by the command print obj. The output is usually one
line, and this line may become very long if the list has many elements. For example,
a long list like our table variable, demands a quite long line when printed.

[[-20, -4.0], [-15, 5.0], [-10, 14.0], ............., [40, 104.0]]
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Splitting the output over several shorter lines makes the layout nicer and more
readable. The pprint module offers a pretty print functionality for this purpose.
The usage of pprint looks like

import pprint
pprint.pprint(table)

and the corresponding output becomes

[[-20, -4.0],
[-15, 5.0],
[-10, 14.0],
[-5, 23.0],
[0, 32.0],
[5, 41.0],
[10, 50.0],
[15, 59.0],
[20, 68.0],
[25, 77.0],
[30, 86.0],
[35, 95.0],
[40, 104.0]]

With this book comes a slightly modified pprint module having the name
scitools.pprint2. This module allows full format control of the printing of
the float objects in lists by specifying scitools.pprint2.float_format as
a printf format string. The following example demonstrates how the output format
of real numbers can be changed:

>>> import pprint, scitools.pprint2
>>> somelist = [15.8, [0.2, 1.7]]
>>> pprint.pprint(somelist)
[15.800000000000001, [0.20000000000000001, 1.7]]
>>> scitools.pprint2.pprint(somelist)
[15.8, [0.2, 1.7]]
>>> # default output is ’%g’, change this to
>>> scitools.pprint2.float_format = ’%.2e’
>>> scitools.pprint2.pprint(somelist)
[1.58e+01, [2.00e-01, 1.70e+00]]

As can be seen from this session, the pprint module writes floating-point numbers
with a lot of digits, in fact so many that we explicitly see the round-off errors.
Many find this type of output is annoying and that the default output from the
scitools.pprint2module is more like one would desire and expect.

The pprint and scitools.pprint2 modules also have a function pformat,
which works as the pprint function, but it returns a pretty formatted string rather
than printing the string:

s = pprint.pformat(somelist)
print s

This last print statement prints the same as pprint.pprint(somelist).
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Manual printing Many will argue that tabular data such as those stored in the
nested table list are not printed in a particularly pretty way by the pprint module.
One would rather expect pretty output to be a table with two nicely aligned columns.
To produce such output we need to code the formatting manually. This is quite easy:
we loop over each row, extract the two elements C and F in each row, and print these
in fixed-width fields using the printf syntax. The code goes as follows:

for C, F in table:
print ’%5d %5.1f’ % (C, F)

2.4.3 Extracting Sublists

Python has a nice syntax for extracting parts of a list structure. Such parts are known
as sublists or slices:

A[i:] is the sublist starting with index i in A and continuing to the end of A:

>>> A = [2, 3.5, 8, 10]
>>> A[2:]
[8, 10]

A[i:j] is the sublist starting with index i in A and continuing up to and includ-
ing index j-1. Make sure you remember that the element corresponding to index j

is not included in the sublist:

>>> A[1:3]
[3.5, 8]

A[:i] is the sublist starting with index 0 in A and continuing up to and including
the element with index i-1:

>>> A[:3]
[2, 3.5, 8]

A[1:-1] extracts all elements except the first and the last (recall that index -1

refers to the last element), and A[:] is the whole list:

>>> A[1:-1]
[3.5, 8]
>>> A[:]
[2, 3.5, 8, 10]

In nested lists we may use slices in the first index, e.g.,

>>> table[4:]
[[0, 32.0], [5, 41.0], [10, 50.0], [15, 59.0], [20, 68.0],
[25, 77.0], [30, 86.0], [35, 95.0], [40, 104.0]]
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We can also slice the second index, or both indices:

>>> table[4:7][0:2]
[[0, 32.0], [5, 41.0]]

Observe that table[4:7]makes a list [[0, 32.0], [5, 41.0], [10, 50.0]]

with three elements. The slice [0:2] acts on this sublist and picks out its first two
elements, with indices 0 and 1.

Sublists are always copies of the original list, so if you modify the sublist the
original list remains unaltered and vice versa:

>>> l1 = [1, 4, 3]
>>> l2 = l1[:-1]
>>> l2
[1, 4]
>>> l1[0] = 100
>>> l1 # l1 is modified
[100, 4, 3]
>>> l2 # l2 is not modified
[1, 4]

The fact that slicing makes a copy can also be illustrated by the following code:

>>> B = A[:]
>>> C = A
>>> B == A
True
>>> B is A
False
>>> C is A
True

The B == A boolean expression is True if all elements in B are equal to the cor-
responding elements in A. The test B is A is True if A and B are names for the
same list. Setting C = A makes C refer to the same list object as A, while B = A[:]

makes B refer to a copy of the list referred to by A.

Example We end this information on sublists by writing out the part of the table
list of [C, F] rows (see Sect. 2.4) where the Celsius degrees are between 10 and
35 (not including 35):

>>> for C, F in table[Cdegrees.index(10):Cdegrees.index(35)]:
... print ’%5.0f %5.1f’ % (C, F)
...

10 50.0
15 59.0
20 68.0
25 77.0
30 86.0

You should always stop reading and convince yourself that you understand why
a code segment produces the printed output. In this latter example, Cdegrees.
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index(10) returns the index corresponding to the value 10 in the Cdegrees list.
Looking at the Cdegrees elements, one realizes (do it!) that the for loop is equiv-
alent to

for C, F in table[6:11]:

This loop runs over the indices 6; 7; : : : ; 10 in table.

2.4.4 Traversing Nested Lists

We have seen that traversing the nested list table could be done by a loop of the
form

for C, F in table:
# process C and F

This is natural code when we know that table is a list of [C, F] lists. Now we
shall address more general nested lists where we do not necessarily know how many
elements there are in each list element of the list.

Suppose we use a nested list scores to record the scores of players in a game:
scores[i] holds a list of the historical scores obtained by player number i. Dif-
ferent players have played the game a different number of times, so the length of
scores[i] depends on i. Some code may help to make this clearer:

scores = []
# score of player no. 0:
scores.append([12, 16, 11, 12])
# score of player no. 1:
scores.append([9])
# score of player no. 2:
scores.append([6, 9, 11, 14, 17, 15, 14, 20])

The list scores has three elements, each element corresponding to a player. The
element no. g in the list scores[p] corresponds to the score obtained in game
number g played by player number p. The length of the lists scores[p] varies and
equals 4, 1, and 8 for p equal to 0, 1, and 2, respectively.

In the general case we may have n players, and some may have played the game
a large number of times, making scores potentially a big nested list. How can
we traverse the scores list and write it out in a table format with nicely formatted
columns? Each row in the table corresponds to a player, while columns correspond
to scores. For example, the data initialized above can be written out as

12 16 11 12
9
6 9 11 14 17 15 14 20

In a program, we must use two nested loops, one for the elements in scores and
one for the elements in the sublists of scores. The example below will make this
clear.
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There are two basic ways of traversing a nested list: either we use integer indices
for each index, or we use variables for the list elements. Let us first exemplify the
index-based version:

for p in range(len(scores)):
for g in range(len(scores[p])):

score = scores[p][g]
print ’%4d’ % score,

print

With the trailing comma after the print string, we avoid a newline so that the column
values in the table (i.e., scores for one player) appear at the same line. The single
print command after the loop over c adds a newline after each table row. The
reader is encouraged to go through the loops by hand and simulate what happens in
each statement (use the simple scores list initialized above).

The alternative version where we use variables for iterating over the elements in
the scores list and its sublists looks like this:

for player in scores:
for game in player:

print ’%4d’ % game,
print

Again, the reader should step through the code by hand and realize what the values
of player and game are in each pass of the loops.

In the very general case we can have a nested list with many indices: somelist
[i1][i2][i3].... To visit each of the elements in the list, we use as many nested
for loops as there are indices. With four indices, iterating over integer indices look
as

for i1 in range(len(somelist)):
for i2 in range(len(somelist[i1])):

for i3 in range(len(somelist[i1][i2])):
for i4 in range(len(somelist[i1][i2][i3])):

value = somelist[i1][i2][i3][i4]
# work with value

The corresponding version iterating over sublists becomes

for sublist1 in somelist:
for sublist2 in sublist1:

for sublist3 in sublist2:
for sublist4 in sublist3:

value = sublist4
# work with value
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2.5 Tuples

Tuples are very similar to lists, but tuples cannot be changed. That is, a tuple can
be viewed as a constant list. While lists employ square brackets, tuples are written
with standard parentheses:

>>> t = (2, 4, 6, ’temp.pdf’) # define a tuple with name t

One can also drop the parentheses in many occasions:

>>> t = 2, 4, 6, ’temp.pdf’
>>> for element in ’myfile.txt’, ’yourfile.txt’, ’herfile.txt’:
... print element,
...
myfile.txt yourfile.txt herfile.txt

The for loop here is over a tuple, because a comma separated sequence of objects,
even without enclosing parentheses, becomes a tuple. Note the trailing comma
in the print statement. This comma suppresses the final newline that the print

command automatically adds to the output string. This is the way to make several
print statements build up one line of output.

Much functionality for lists is also available for tuples, for example:

>>> t = t + (-1.0, -2.0) # add two tuples
>>> t
(2, 4, 6, ’temp.pdf’, -1.0, -2.0)
>>> t[1] # indexing
4
>>> t[2:] # subtuple/slice
(6, ’temp.pdf’, -1.0, -2.0)
>>> 6 in t # membership
True

Any list operation that changes the list will not work for tuples:

>>> t[1] = -1
...
TypeError: object does not support item assignment

>>> t.append(0)
...
AttributeError: ’tuple’ object has no attribute ’append’

>>> del t[1]
...
TypeError: object doesn’t support item deletion

Some list methods, like index, are not available for tuples. So why do we need
tuples when lists can do more than tuples?

� Tuples protect against accidental changes of their contents.
� Code based on tuples is faster than code based on lists.
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� Tuples are frequently used in Python software that you certainly will make use
of, so you need to know this data type.

There is also a fourth argument, which is important for a data type called dictionar-
ies (introduced in Sect. 6.1): tuples can be used as keys in dictionaries while lists
can not.

2.6 Summary

2.6.1 Chapter Topics

While loops Loops are used to repeat a collection of program statements several
times. The statements that belong to the loop must be consistently indented in
Python. A while loop runs as long as a condition evaluates to True:

>>> t = 0; dt = 0.5; T = 2
>>> while t <= T:
... print t
... t += dt
...
0
0.5
1.0
1.5
2.0
>>> print ’Final t:’, t, ’; t <= T is’, t <= T
Final t: 2.5 ; t <= T is False

Lists A list is used to collect a number of values or variables in an ordered se-
quence.

>>> mylist = [t, dt, T, ’mynumbers.dat’, 100]

A list element can be any Python object, including numbers, strings, functions, and
other lists, for instance.

The table below shows some important list operations (only a subset of these are
explained in the present chapter).

Construction Meaning
a = [] initialize an empty list
a = [1, 4.4,
’run.py’]

initialize a list

a.append(elem) add elem object to the end
a + [1,3] add two lists
a.insert(i, e) insert element e before index i

a[3] index a list element
a[-1] get last list element
a[1:3] slice: copy data to sublist (here: index 1, 2)
del a[3] delete an element (index 3)
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Construction Meaning
a.remove(e) remove an element with value e
a.index(’run.py’) find index corresponding to an element’s value
’run.py’ in a test if a value is contained in the list
a.count(v) count how many elements that have the value v
len(a) number of elements in list a
min(a) the smallest element in a
max(a) the largest element in a
sum(a) add all elements in a
sorted(a) return sorted version of list a
reversed(a) return reversed sorted version of list a
b[3][0][2] nested list indexing
isinstance(a, list) is True if a is a list
type(a) is list is True if a is a list

Nested lists If the list elements are also lists, we have a nested list. The following
session summarizes indexing and loop traversal of nested lists:

>>> nl = [[0, 0, 1], [-1, -1, 2], [-10, 10, 5]]
>>> nl[0]
[0, 0, 1]
>>> nl[-1]
[-10, 10, 5]
>>> nl[0][2]
1
>>> nl[-1][0]
-10
>>> for p in nl:
... print p
...
[0, 0, 1]
[-1, -1, 2]
[-10, 10, 5]
>>> for a, b, c in nl:
... print ’%3d %3d %3d’ % (a, b, c)
...

0 0 1
-1 -1 2

-10 10 5

Tuples A tuple can be viewed as a constant list: no changes in the contents of
the tuple is allowed. Tuples employ standard parentheses or no parentheses, and
elements are separated with comma as in lists:

>>> mytuple = (t, dt, T, ’mynumbers.dat’, 100)
>>> mytuple = t, dt, T, ’mynumbers.dat’, 100

Many list operations are also valid for tuples, but those that changes the list content
cannot be used with tuples (examples are append, del, remove, index, and sort).

An object a containing an ordered collection of other objects such that a[i]
refers to object with index i in the collection, is known as a sequence in Python.



2.6 Summary 77

Lists, tuples, strings, and arrays are examples on sequences. You choose a sequence
type when there is a natural ordering of elements. For a collection of unordered
objects a dictionary (see Sect. 6.1) is often more convenient.

For loops A for loop is used to run through the elements of a list or a tuple:

>>> for elem in [10, 20, 25, 27, 28.5]:
... print elem,
...
10 20 25 27 28.5

The trailing comma after the print statement prevents the newline character, which
otherwise print would automatically add.

The range function is frequently used in for loops over a sequence of integers.
Recall that range(start, stop, inc) does not include the upper limit stop
among the list item.

>>> for elem in range(1, 5, 2):
... print elem,
...
1 3
>>> range(1, 5, 2)
[1, 3]

Implementation of a sum
PN

jDM q.j /, where q.j / is some mathematical expres-
sion involving the integer counter j , is normally implemented using a for loop.
Choosing, e.g., q.j / D 1=j 2, the sum is calculated by

s = 0 # accumulation variable
for j in range(M, N+1, 1):

s += 1./j**2

Pretty print To print a list a, print a can be used, but the pprint and scitools.
pprint2 modules and their pprint function give a nicer layout of the output for
long and nested lists. The scitools.pprint2 module has the possibility to
control the formatting of floating-point numbers.

Terminology The important computer science terms in this chapter are

� list
� tuple
� nested list (and nested tuple)
� sublist (subtuple) or slice a[i:j]
� while loop
� for loop
� list comprehension
� boolean expression
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2.6.2 Example: Analyzing List Data

Problem The file src/misc/Oxford_sun_hours.txt2 contains data of the num-
ber of sun hours in Oxford, UK, for every month since January 1929. The data are
already on a suitable nested list format:

[
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]

The list in every line holds the number of sun hours for each of the year’s 12 months.
That is, the first index in the nested list corresponds to year and the second index
corresponds to the month number. More precisely, the double index [i][j] corre-
sponds to year 1929C i and month 1C j (January being month number 1).

The task is to define this nested list in a program and do the following data
analysis.

� Compute the average number of sun hours for each month during the total data
period (1929–2009).

� Which month has the best weather according to the means found in the preceding
task?

� For each decade, 1930–1939, 1940–1949, : : :, 2000–2009, compute the aver-
age number of sun hours per day in January and December. For example, use
December 1949, January 1950, : : :, December 1958, and January 1959 as data
for the decade 1950–1959. Are there any noticeable differences between the
decades?

Solution Initializing the data is easy: just copy the data from the Oxford_sun_

hours.txt file into the program file and set a variable name on the left hand side
(the long and wide code is only indicated here):

data = [
[43.8, 60.5, 190.2, ...],
[49.9, 54.3, 109.7, ...],
[63.7, 72.0, 142.3, ...],
...
]

For task 1, we need to establish a list monthly_mean with the results from the
computation, i.e., monthly_mean[2] holds the average number of sun hours for
March in the period 1929–2009. The average is computed in the standard way: for
each month, we run through all the years, sum up the values, and finally divide by
the number of years (len(data) or 2009� 1929C 1).

2 http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt

http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt
http://tinyurl.com/pwyasaa/misc/Oxford_sun_hours.txt


2.6 Summary 79

monthly_mean = []
n = len(data) # no of years
for m in range(12): # counter for month indices

s = 0 # sum
for y in data: # loop over "rows" (first index) in data

s += y[m] # add value for month m
monthly_mean.append(s/n)

An alternative solution would be to introduce separate variables for the monthly
averages, say Jan_mean, Feb_mean, etc. The reader should as an exercise write the
code associated with such a solution and realize that using the monthly_mean list
is more elegant and yields much simpler and shorter code. Separate variables might
be an okay solution for 2–3 variables, but not for as many as 12.

Perhaps we want a nice-looking printout of the results. This can elegantly be
created by first defining a tuple (or list) of the names of the months and then running
through this list in parallel with monthly_mean:

month_names = ’Jan’, ’Feb’, ’Mar’, ’Apr’, ’May’, ’Jun’,\
’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, ’Dec’

for name, value in zip(month_names, monthly_mean):
print ’%s: %.1f’ % (name, value)

The printout becomes

Jan: 56.6
Feb: 72.7
Mar: 116.5
Apr: 153.2
May: 191.1
Jun: 198.5
Jul: 193.8
Aug: 184.3
Sep: 138.3
Oct: 104.6
Nov: 67.4
Dec: 52.4

Task 2 can be solved by pure inspection of the above printout, which reveals
that June is the winner. However, since we are learning programming, we should
be able to replace our eyes with some computer code to automate the task. The
maximum value max_value of a list like monthly_mean is simply obtained by
max(monthly_mean). The corresponding index, needed to find the right name of
the corresponding month, is found from monthly_mean.index(max_value). The
code for task 2 is then

max_value = max(monthly_mean)
month = month_names[monthly_mean.index(max_value)]
print ’%s has best weather with %.1f sun hours on average’ % \

(month, max_value)

Task 3 requires us to first develop an algorithm for how to compute the decade
averages. The algorithm, expressed with words, goes as follows. We loop over the
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decades, and for each decade, we loop over its years, and for each year, we add the
December data of the previous year and the January data of the current year to an
accumulation variable. Dividing this accumulation variable by 10 � 2 � 30 gives the
average number of sun hours per day in the winter time for the particular decade.
The code segment below expresses this algorithm in the Python language:

decade_mean = []
for decade_start in range(1930, 2010, 10):

Jan_index = 0; Dec_index = 11 # indices
s = 0
for year in range(decade_start, decade_start+10):

y = year - 1929 # list index
print data[y-1][Dec_index] + data[y][Jan_index]
s += data[y-1][Dec_index] + data[y][Jan_index]

decade_mean.append(s/(20.*30))
for i in range(len(decade_mean)):

print ’Decade %d-%d: %.1f’ % \
(1930+i*10, 1939+i*10, decade_mean[i])

The output becomes

Decade 1930-1939: 1.7
Decade 1940-1949: 1.8
Decade 1950-1959: 1.8
Decade 1960-1969: 1.8
Decade 1970-1979: 1.6
Decade 1980-1989: 2.0
Decade 1990-1999: 1.8
Decade 2000-2009: 2.1

The complete code is found in the file sun_data.py.

Remark The file Oxford_sun_hours.txt is based on data from the UK Met
Office3. A Python program for downloading the data, interpreting the content, and
creating a file like Oxford_sun_hours.txt is explained in detail in Sect. 6.3.3.

2.6.3 How to Find More Python Information

This book contains only fragments of the Python language. When doing your own
projects or exercises you will certainly feel the need for looking up more detailed
information on modules, objects, etc. Fortunately, there is a lot of excellent docu-
mentation on the Python programming language.

The primary reference is the official Python documentation website4: docs.

python.org. Here you can find a Python tutorial, the very useful Library Refer-

ence [3], and a Language Reference, to mention some key documents. When you
wonder what functions you can find in a module, say the math module, you can go
to the Library Reference search for math, which quickly leads you to the official

3 http://www.metoffice.gov.uk/climate/uk/stationdata/
4 http://docs.python.org/index.html

http://tinyurl.com/pwyasaa/looplist/sun_data.py
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://docs.python.org/index.html
http://www.metoffice.gov.uk/climate/uk/stationdata/
http://docs.python.org/index.html
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documentation of the math module. Alternatively, you can go to the index of this
document and pick the math (module) item directly. Similarly, if you want to
look up more details of the printf formatting syntax, go to the index and follow the
printf-style formatting index.

Warning

A word of caution is probably necessary here. Reference manuals are very tech-
nical and written primarily for experts, so it can be quite difficult for a newbie to
understand the information. An important ability is to browse such manuals and
dig out the key information you are looking for, without being annoyed by all the
text you do not understand. As with programming, reading manuals efficiently
requires a lot of training.

A tool somewhat similar to the Python Standard Library documentation is the
pydoc program. In a terminal window you write

Terminal

Terminal> pydoc math

In IPython there are two corresponding possibilities, either

In [1]: !pydoc math

or

In [2]: import math
In [3]: help(math)

The documentation of the complete mathmodule is shown as plain text. If a specific
function is wanted, we can ask for that directly, e.g., pydoc math.tan. Since
pydoc is very fast, many prefer pydoc over web pages, but pydoc has often less
information compared to the web documentation of modules.

There are also a large number of books about Python. Beazley [1] is an excellent
reference that improves and extends the information in the web documentation. The
Learning Python book [17] has been very popular for many years as an introduc-
tion to the language. There is a special web page5 listing most Python books on
the market. Very few books target scientific computing with Python, but [4] gives
an introduction to Python for mathematical applications and is more compact and
advanced than the present book. It also serves as an excellent reference for the ca-
pabilities of Python in a scientific context. A comprehensive book on the use of
Python for assisting and automating scientific work is [13].

Quick references, which list almost to all Python functionality in compact tabular
form, are very handy. We recommend in particular the one by Richard Gruet6 [6].

The website http://www.python.org/doc/ contains a list of useful Python intro-
ductions and reference manuals.

5 http://wiki.python.org/moin/PythonBooks
6 http://rgruet.free.fr/PQR27/PQR2.7.html

http://wiki.python.org/moin/PythonBooks
http://rgruet.free.fr/PQR27/PQR2.7.html
http://www.python.org/doc/
http://wiki.python.org/moin/PythonBooks
http://rgruet.free.fr/PQR27/PQR2.7.html
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2.7 Exercises

Exercise 2.1: Make a Fahrenheit-Celsius conversion table

Write a Python program that prints out a table with Fahrenheit degrees 0; 10; 20; : : : ;

100 in the first column and the corresponding Celsius degrees in the second column.

Hint Modify the c2f_table_while.py program from Sect. 2.1.2.
Filename: f2c_table_while.

Exercise 2.2: Generate an approximate Fahrenheit-Celsius conversion table

Many people use an approximate formula for quickly converting Fahrenheit (F ) to
Celsius (C ) degrees:

C � OC D .F � 30/=2 (2.2)

Modify the program from Exercise 2.1 so that it prints three columns: F , C , and
the approximate value OC .
Filename: f2c_approx_table.

Exercise 2.3: Work with a list

Set a variable primes to a list containing the numbers 2, 3, 5, 7, 11, and 13. Write
out each list element in a for loop. Assign 17 to a variable p and add p to the end
of the list. Print out the entire new list.
Filename: primes.

Exercise 2.4: Generate odd numbers

Write a program that generates all odd numbers from 1 to n. Set n in the beginning
of the program and use a while loop to compute the numbers. (Make sure that if n
is an even number, the largest generated odd number is n-1.)
Filename: odd.

Exercise 2.5: Compute the sum of the first n integers

Write a program that computes the sum of the integers from 1 up to and including
n. Compare the result with the famous formula n.nC 1/=2.
Filename: sum_int.

Exercise 2.6: Compute energy levels in an atom

The n-th energy level for an electron in a Hydrogen atom is given by

En D �
mee

4

8�2
0h2
� 1

n2
;

where me D 9:1094 � 10�31 kg is the electron mass, e D 1:6022 � 10�19 C is the
elementary charge, �0 D 8:8542 � 10�12 C2 s2 kg�1 m�3 is the electrical permittivity
of vacuum, and h D 6:6261 � 10�34 Js.

a) Write a Python program that calculates and prints the energy level En for n D
1; : : : ; 20.
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b) The released energy when an electron moves from level ni to level nf is given
by

�E D �mee
4

8�2
0h2
�
 

1

n2
i

� 1

n2
f

!

:

Add statements to the program from a) so that it prints a second, nicely formatted
table where the cell in column i and row f contains the energy released when
an electron moves from energy level i to level f , for i; f D 1; : : : ; 5.

Filename: energy_levels.

Exercise 2.7: Generate equally spaced coordinates

We want to generate nC 1 equally spaced x coordinates in Œa; b�. Store the coordi-
nates in a list.

a) Start with an empty list, use a for loop and append each coordinate to the list.

Hint With n intervals, corresponding to n C 1 points, in Œa; b�, each interval has
length h D .b � a/=n. The coordinates can then be generated by the formula
xi D aC ih, i D 0; : : : ; nC 1.

b) Use a list comprehension as an alternative implementation.

Filename: coor.

Exercise 2.8: Make a table of values from a formula

The purpose of this exercise is to write code that prints a nicely formatted table of t

and y.t/ values, where

y.t/ D v0t �
1

2
gt2 :

Use nC 1 uniformly spaced t values throughout the interval Œ0; 2v0=g�.

a) Use a for loop to produce the table.
b) Add code with a while loop to produce the table.

Hint Because of potential round-off errors, you may need to adjust the upper limit
of the while loop to ensure that the last point (t D 2v0=g, y D 0) is included.
Filename: ball_table1.

Exercise 2.9: Store values from a formula in lists

This exercise aims to produce the same table of numbers as in Exercise 2.8, but with
different code. First, store the t and y values in two lists t and y. Thereafter, write
out a nicely formatted table by traversing the two lists with a for loop.

Hint In the for loop, use either zip to traverse the two lists in parallel, or use an
index and the range construction.
Filename: ball_table2.
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Exercise 2.10: Simulate operations on lists by hand

You are given the following program:

a = [1, 3, 5, 7, 11]
b = [13, 17]
c = a + b
print c
b[0] = -1
d = [e+1 for e in a]
print d
d.append(b[0] + 1)
d.append(b[-1] + 1)
print d[-2:]
for e1 in a:

for e2 in b:
print e1 + e2

Go through each statement and explain what is printed by the program.
Filename: simulate_lists.

Exercise 2.11: Compute a mathematical sum

The following code is supposed to compute the sum s D
PM

kD1
1
k

:

s = 0; k = 1; M = 100
while k < M:

s += 1/k
print s

This program does not work correctly. What are the three errors? (If you try to run
the program, nothing will happen on the screen. Type Ctrl+c, i.e., hold down the
Control (Ctrl) key and then type the c key, to stop the program.) Write a correct
program.

Hint There are two basic ways to find errors in a program:

1. read the program carefully and think about the consequences of each statement,
2. print out intermediate results and compare with hand calculations.

First, try method 1 and find as many errors as you can. Thereafter, try method 2 for
M D 3 and compare the evolution of s with your own hand calculations.
Filename: sum_while.

Exercise 2.12: Replace a while loop by a for loop

Rewrite the corrected version of the program in Exercise 2.11 using a for loop over
k values instead of a while loop.
Filename: sum_for.



2.7 Exercises 85

Exercise 2.13: Simulate a program by hand

Consider the following program for computing with interest rates:

initial_amount = 100
p = 5.5 # interest rate
amount = initial_amount
years = 0
while amount <= 1.5*initial_amount:

amount = amount + p/100*amount
years = years + 1

print years

a) Use a pocket calculator or an interactive Python shell and work through the
program calculations by hand. Write down the value of amount and years in
each pass of the loop.

b) Set p = 5 instead. Why will the loop now run forever? (Apply Ctrl+c, see Ex-
ercise 2.11, to stop a program with a loop that runs forever.) Make the program
robust against such errors.

c) Make use of the operator += wherever possible in the program.
d) Explain with words what type of mathematical problem that is solved by this

program.

Filename: interest_rate_loop.

Exercise 2.14: Explore Python documentation

Suppose you want to compute with the inverse sine function: sin�1 x. How do you
do that in a Python program?

Hint The math module has an inverse sine function. Find the correct name of the
function by looking up the module content in the online Python Standard Library7

document or use pydoc, see Sect. 2.6.3.
Filename: inverse_sine.

Exercise 2.15: Index a nested list

We define the following nested list:

q = [[’a’, ’b’, ’c’], [’d’, ’e’, ’f’], [’g’, ’h’]]

a) Index this list to extract 1) the letter a; 2) the list [’d’, ’e’, ’f’]; 3) the last
element h; 4) the d element. Explain why q[-1][-2] has the value g.

b) We can visit all elements of q using this nested for loop:

for i in q:
for j in range(len(i)):

print i[j]

What type of objects are i and j?

Filename: index_nested_list.

7 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://docs.python.org/2/library/
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Exercise 2.16: Store data in lists

Modify the program from Exercise 2.2 so that all the F , C , and OC values are
stored in separate lists F, C, and C_approx, respectively. Then make a nested list
conversion so that conversion[i] holds a row in the table: [F[i], C[i],

C_approx[i]]. Finally, let the program traverse the conversion list and write
out the same table as in Exercise 2.2.
Filename: f2c_approx_lists.

Exercise 2.17: Store data in a nested list

The purpose of this exercise is to store tabular data in two alternative ways, either
as a list of columns or as a list of rows. In order to write out a nicely formatted
table, one has to traverse the data, and the technique for traversal depends on how
the tabular data is stored.

a) Compute two lists of t and y values as explained in Exercise 2.9. Store the two
lists in a new nested list ty1 such that ty1[0] and ty1[1] correspond to the
two lists. Write out a table with t and y values in two columns by looping over
the data in the ty1 list. Each number should be written with two decimals.

b) Make a list ty2 which holds each row in the table of t and y values (ty1 is a list
of table columns while ty2 is a list of table rows, as explained in Sect. 2.4).
Loop over the ty2 list and write out the t and y values with two decimals each.

Filename: ball_table3.

Exercise 2.18: Values of boolean expressions

Explain the outcome of each of the following boolean expressions:

C = 41
C == 40
C != 40 and C < 41
C != 40 or C < 41
not C == 40
not C > 40
C <= 41
not False
True and False
False or True
False or False or False
True and True and False
False == 0
True == 0
True == 1

Note

It makes sense to compare True and False to the integers 0 and 1, but not other
integers (e.g., True == 12 is False although the integer 12 evaluates to True

in a boolean context, as in bool(12) or if 12).

Filename: eval_bool.
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Exercise 2.19: Explore round-off errors from a large number of inverse

operations

Maybe you have tried to hit the square root key on a calculator multiple times and
then squared the number again an equal number of times. These set of inverse
mathematical operations should of course bring you back to the starting value for
the computations, but this does not always happen. To avoid tedious pressing of
calculator keys, we can let a computer automate the process. Here is an appropriate
program:

from math import sqrt
for n in range(1, 60):

r = 2.0
for i in range(n):

r = sqrt(r)
for i in range(n):

r = r**2
print ’%d times sqrt and **2: %.16f’ % (n, r)

Explain with words what the program does. Then run the program. Round-off
errors are here completely destroying the calculations when n is large enough! In-
vestigate the case when we come back to 1 instead of 2 by fixing an n value where
this happens and printing out r in both for loops over i. Can you now explain why
we come back to 1 and not 2?
Filename: repeated_sqrt.

Exercise 2.20: Explore what zero can be on a computer

Type in the following code and run it:

eps = 1.0
while 1.0 != 1.0 + eps:

print ’...............’, eps
eps = eps/2.0

print ’final eps:’, eps

Explain with words what the code is doing, line by line. Then examine the output.
How can it be that the “equation” 1 ¤ 1C eps is not true? Or in other words, that
a number of approximately size 10�16 (the final eps value when the loop terminates)
gives the same result as if eps were zero?
Filename: machine_zero.

Remarks The nonzero eps value computed above is called machine epsilon or
machine zero and is an important parameter to know, especially when certain math-
ematical techniques are applied to control round-off errors.

Exercise 2.21: Compare two real numbers with a tolerance

Run the following program:

a = 1/947.0*947
b = 1
if a != b:

print ’Wrong result!’



88 2 Loops and Lists

The lesson learned from this program is that one should never compare two
floating-point objects directly using a == b or a != b, because round-off errors
quickly make two identical mathematical values different on a computer. A better
result is to test if abs(a - b) < tol, where tol is a very small number. Modify
the test according to this idea.
Filename: compare_floats.

Exercise 2.22: Interpret a code

The function time in the module time returns the number of seconds since a partic-
ular date (called the Epoch, which is January 1, 1970, on many types of computers).
Python programs can therefore use time.time() to mimic a stop watch. Another
function, time.sleep(n) causes the program to pause for n seconds and is handy
for inserting a pause. Use this information to explain what the following code does:

import time
t0 = time.time()
while time.time() - t0 < 10:

print ’....I like while loops!’
time.sleep(2)

print ’Oh, no - the loop is over.’

How many times is the print statement inside the loop executed? Now, copy the
code segment and change the < sign in the loop condition to a > sign. Explain what
happens now.
Filename: time_while.

Exercise 2.23: Explore problems with inaccurate indentation

Type in the following program in a file and check carefully that you have exactly
the same spaces:

C = -60; dC = 2
while C <= 60:

F = (9.0/5)*C + 32
print C, F

C = C + dC

Run the program. What is the first problem? Correct that error. What is the next
problem? What is the cause of that problem? (See Exercise 2.11 for how to stop
a hanging program.)
Filename: indentation.

Remarks The lesson learned from this exercise is that one has to be very care-
ful with indentation in Python programs! Other computer languages usually en-
close blocks belonging to loops in curly braces, parentheses, or begin-end marks.
Python’s convention with using solely indentation contributes to visually attractive,
easy-to-read code, at the cost of requiring a pedantic attitude to blanks from the
programmer.
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Exercise 2.24: Explore punctuation in Python programs

Some of the following assignments work and some do not. Explain in each case
why the assignment works/fails and, if it works, what kind of object x refers to and
what the value is if we do a print x.

x = 1
x = 1.
x = 1;
x = 1!
x = 1?
x = 1:
x = 1,

Hint Explore the statements in an interactive Python shell.
Filename: punctuation.

Exercise 2.25: Investigate a for loop over a changing list

Study the following interactive session and explain in detail what happens in each
pass of the loop, and use this explanation to understand the output.

>>> numbers = range(10)
>>> print numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> for n in numbers:
... i = len(numbers)/2
... del numbers[i]
... print ’n=%d, del %d’ % (n,i), numbers
...
n=0, del 5 [0, 1, 2, 3, 4, 6, 7, 8, 9]
n=1, del 4 [0, 1, 2, 3, 6, 7, 8, 9]
n=2, del 4 [0, 1, 2, 3, 7, 8, 9]
n=3, del 3 [0, 1, 2, 7, 8, 9]
n=8, del 3 [0, 1, 2, 8, 9]

Warning

The message in this exercise is to never modify a list that we are looping over.

Modification is indeed technically possible, as shown above, but you really need
to know what you are doing. Otherwise you will experience very strange pro-
gram behavior.

Filename: for_changing_list.
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This chapter introduces two fundamental and extremely useful concepts in pro-
gramming: user-defined functions and branching of program flow, the latter often
referred to as if tests. The programs associated with the chapter are found in the
folder src/funcif1.

3.1 Functions

In a computer language like Python, the term function means more than just a math-
ematical function. A function is a collection of statements that you can execute
wherever and whenever you want in the program. You may send variables to the
function to influence what is getting computed by statements in the function, and
the function may return new objects back to you.

In particular, functions help avoid duplicating code snippets by putting all similar
snippets in a common place. This strategy saves typing and makes it easier to
change the program later. Functions are also often used to just split a long program
into smaller, more manageable pieces, so the program and your own thinking about
it become clearer. Python comes with lots of pre-defined functions (math.sqrt,
range, and len are examples we have met so far). This section explains how you
can define your own functions.

3.1.1 Mathematical Functions as Python Functions

Let us start with making a Python function that evaluates a mathematical function,
more precisely the function F.C / for converting Celsius degrees C to the corre-
sponding Fahrenheit degrees F :

F.C / D 9

5
C C 32 :

1 http://tinyurl.com/pwyasaa/funcif
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The corresponding Python function must take C as argument and return the value
F.C /. The code for this looks like

def F(C):
return (9.0/5)*C + 32

All Python functions begin with def, followed by the function name, and then
inside parentheses a comma-separated list of function arguments. Here we have
only one argument C. This argument acts as a standard variable inside the function.
The statements to be performed inside the function must be indented. At the end of
a function it is common to return a value, that is, send a value “out of the function”.
This value is normally associated with the name of the function, as in the present
case where the returned value is the result of the mathematical function F.C /.

The def line with the function name and arguments is often referred to as the
function header, while the indented statements constitute the function body.

To use a function, we must call (or invoke) it. Because the function returns
a value, we need to store this value in a variable or make use of it in other ways.
Here are some calls to F:

temp1 = F(15.5)
a = 10
temp2 = F(a)
print F(a+1)
sum_temp = F(10) + F(20)

The returned object from F(C) is in our case a float object. The call F(C) can
therefore be placed anywhere in a code where a float object would be valid. The
print statement above is one example.

As another example, say we have a list Cdegrees of Celsius degrees and we
want to compute a list of the corresponding Fahrenheit degrees using the F function
above in a list comprehension:

Fdegrees = [F(C) for C in Cdegrees]

Yet another example may involve a slight variation of our F(C) function, where
a formatted string instead of a real number is returned:

>>> def F2(C):
... F_value = (9.0/5)*C + 32
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> s1 = F2(21)
>>> s1
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’

The assignment to F_value demonstrates that we can create variables inside a func-
tion as needed.
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3.1.2 Understanding the Program Flow

A programmer must have a deep understanding of the sequence of statements that
are executed in the program and be able to simulate by hand what happens with
a program in the computer. To help build this understanding, a debugger (see
Sect. F.1) or the Online Python Tutor2 are excellent tools. A debugger can be used
for all sorts of programs, large and small, while the Online Python Tutor is primarily
an educational tool for small programs. We shall demonstrate it here.

Below is a program c2f.py having a function and a for loop, with the purpose
of printing out a table for conversion of Celsius to Fahrenheit degrees:

def F(C):
F = 9./5*C + 32
return F

dC = 10
C = -30
while C <= 50:

print ’%5.1f %5.1f’ % (C, F(C))
C += dC

We shall now ask the Online Python Tutor to visually explain how the program
is executed. Go to http://www.pythontutor.com/visualize.html, erase the code there
and write or paste the c2f.py file into the editor area. Click Visualize Execution.
Press the forward button to advance one statement at a time and observe the evolu-
tion of variables to the right in the window. This demo illustrates how the program
jumps around in the loop and up to the F(C) function and back again. Figure 3.1

Fig. 3.1 Screen shot of the Online Python Tutor and stepwise execution of the c2f.py program

2 http://www.pythontutor.com/

http://www.pythontutor.com/
http://tinyurl.com/pwyasaa/funcif/c2f.py
http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/
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gives a snapshot of the status of variables, terminal output, and what the current and
next statements are.

Tip: How does a program actually work?

Every time you are a bit uncertain about the flow of statements in a program with
loops and/or functions, go to http://www.pythontutor.com/visualize.html, paste
in your program and see exactly what happens.

3.1.3 Local and Global Variables

Local variables are invisible outside functions Let us reconsider the F2(C) func-
tion from Sect. 3.1.1. The variable F_value is a local variable in the function, and
a local variable does not exist outside the function, i.e., in the main program. We
can easily demonstrate this fact by continuing the previous interactive session:

>>> c1 = 37.5
>>> s2 = F2(c1)
>>> F_value
...
NameError: name ’F_value’ is not defined

This error message demonstrates that the surrounding program outside the function
is not aware of F_value. Also the argument to the function, C, is a local variable
that we cannot access outside the function:

>>> C
...
NameError: name ’C’ is not defined

On the contrary, the variables defined outside of the function, like s1, s2, and c1

in the above session, are global variables. These can be accessed everywhere in
a program, also inside the F2 function.

Local variables hide global variables Local variables are created inside a func-
tion and destroyed when we leave the function. To learn more about this fact, we
may study the following session where we write out F_value, C, and some global
variable r inside the function:

>>> def F3(C):
... F_value = (9.0/5)*C + 32
... print ’Inside F3: C=%s F_value=%s r=%s’ % (C, F_value, r)
... return ’%.1f degrees Celsius corresponds to ’\
... ’%.1f degrees Fahrenheit’ % (C, F_value)
...
>>> C = 60 # make a global variable C
>>> r = 21 # another global variable
>>> s3 = F3(r)

http://www.pythontutor.com/visualize.html
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Inside F3: C=21 F_value=69.8 r=21
>>> s3
’21.0 degrees Celsius corresponds to 69.8 degrees Fahrenheit’
>>> C
60

This example illustrates that there are two C variables, one global, defined in the
main program with the value 60 (an int object), and one local, living when the
program flow is inside the F3 function. The value of this latter C is given in the call
to the F3 function (an int object). Inside the F3 function the local C hides the global
C variable in the sense that when we refer to C we access the local variable. (The
global C can technically be accessed as globals()[’C’], but one should avoid
working with local and global variables with the same names at the same time!)

The Online Python Tutor gives a complete overview of what the local and global
variables are at any point of time. For instance, in the example from Sect. 3.1.2,
Fig. 3.1 shows the content of the three global variables F, dC, and C, along with the
content of the variables that are in play in this call of the F(C) function: C and F.

How Python looks up variables

The more general rule, when you have several variables with the same name, is
that Python first tries to look up the variable name among the local variables,
then there is a search among global variables, and finally among built-in Python
functions.

Example Here is a complete sample program that aims to illustrate the rule above:

print sum # sum is a built-in Python function
sum = 500 # rebind the name sum to an int
print sum # sum is a global variable

def myfunc(n):
sum = n + 1
print sum # sum is a local variable
return sum

sum = myfunc(2) + 1 # new value in global variable sum
print sum

In the first line, there are no local variables, so Python searches for a global value
with name sum, but cannot find any, so the search proceeds with the built-in func-
tions, and among them Python finds a function with name sum. The printout of sum
becomes something like <built-in function sum>.

The second line rebinds the global name sum to an int object. When trying to
access sum in the next print statement, Python searches among the global variables
(no local variables so far) and finds one. The printout becomes 500. The call
myfunc(2) invokes a function where sum is a local variable. Doing a print sum

in this function makes Python first search among the local variables, and since sum
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is found there, the printout becomes 3 (and not 500, the value of the global variable
sum). The value of the local variable sum is returned, added to 1, to form an int

object with value 4. This int object is then bound to the global variable sum. The
final print sum leads to a search among global variables, and we find one with
value 4.

Changing global variables inside functions The values of global variables can
be accessed inside functions, but the values cannot be changed unless the variable
is declared as global:

a = 20; b = -2.5 # global variables

def f1(x):
a = 21 # this is a new local variable
return a*x + b

print a # yields 20

def f2(x):
global a
a = 21 # the global a is changed
return a*x + b

f1(3); print a # 20 is printed
f2(3); print a # 21 is printed

Note that in the f1 function, a = 21 creates a local variable a. As a programmer
you may think you change the global a, but it does not happen! You are strongly

encouraged to run the programs in this section in the Online Python Tutor, which
is an excellent tool to explore local versus global variables and thereby get a good
understanding of these concepts.

3.1.4 Multiple Arguments

The previous F(C) and F2(C) functions from Sect. 3.1.1 are functions of one vari-
able, C, or as we phrase it in computer science: the functions take one argument
(C). Functions can have as many arguments as desired; just separate the argument
names by commas.

Consider the mathematical function

y.t/ D v0t �
1

2
gt2;

where g is a fixed constant and v0 is a physical parameter that can vary. Mathemat-
ically, y is a function of one variable, t , but the function values also depends on the
value of v0. That is, to evaluate y, we need values for t and v0. A natural Python
implementation is therefore a function with two arguments:
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def yfunc(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

Note that the arguments t and v0 are local variables in this function. Examples on
valid calls are

y = yfunc(0.1, 6)
y = yfunc(0.1, v0=6)
y = yfunc(t=0.1, v0=6)
y = yfunc(v0=6, t=0.1)

The possibility to write argument=value in the call makes it easier to read and
understand the call statement. With the argument=value syntax for all arguments,
the sequence of the arguments does not matter in the call, which here means that
we may put v0 before t. When omitting the argument= part, the sequence of ar-
guments in the call must perfectly match the sequence of arguments in the function
definition. The argument=value arguments must appear after all the arguments
where only value is provided (e.g., yfunc(t=0.1, 6) is illegal).

Whether we write yfunc(0.1, 6) or yfunc(v0=6, t=0.1), the arguments
are initialized as local variables in the function in the same way as when we assign
values to variables:

t = 0.1
v0 = 6

These statements are not visible in the code, but a call to a function automatically
initializes the arguments in this way.

3.1.5 Function Argument or Global Variable?

Since y mathematically is considered a function of one variable, t , some may argue
that the Python version of the function, yfunc, should be a function of t only. This
is easy to reflect in Python:

def yfunc(t):
g = 9.81
return v0*t - 0.5*g*t**2

The main difference is that v0 now becomes a global variable, which needs to be
initialized outside the function yfunc (in the main program) before we attempt to
call yfunc. The next session demonstrates what happens if we fail to initialize such
a global variable:
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>>> def yfunc(t):
... g = 9.81
... return v0*t - 0.5*g*t**2
...
>>> yfunc(0.6)
...
NameError: global name ’v0’ is not defined

The remedy is to define v0 as a global variable prior to calling yfunc:

>>> v0 = 5
>>> yfunc(0.6)
1.2342

The rationale for having yfunc as a function of t only becomes evident in
Sect. 3.1.12.

3.1.6 BeyondMathematical Functions

So far our Python functions have typically computed some mathematical function,
but the usefulness of Python functions goes far beyond mathematical functions.
Any set of statements that we want to repeatedly execute under potentially slightly
different circumstances is a candidate for a Python function. Say we want to make
a list of numbers starting from some value and stopping at another value, with
increments of a given size. With corresponding variables start=2, stop=8, and
inc=2, we should produce the numbers 2, 4, 6, and 8. Let us write a function
doing the task, together with a couple of statements that demonstrate how we call
the function:

def makelist(start, stop, inc):
value = start
result = []
while value <= stop:

result.append(value)
value = value + inc

return result

mylist = makelist(0, 100, 0.2)
print mylist # will print 0, 0.2, 0.4, 0.6, ... 99.8, 100

Remark 1 The makelist function has three arguments: start, stop, and inc,
which become local variables in the function. Also value and result are local
variables. In the surrounding program we define only one variable, mylist, and
this is then a global variable.

Remark 2 You may think that range(start, stop, inc)makes the makelist
function redundant, but range can only generate integers, while makelist can
generate real numbers too, and more, as demonstrated in Exercise 3.44.
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3.1.7 Multiple Return Values

Python functions may return more than one value. Suppose we are interested in
evaluating both y.t/ and y0.t/:

y.t/ D v0t � 1

2
gt2;

y0.t/ D v0 � gt :

To return both y and y0 we simply separate their corresponding variables by
a comma in the return statement:

def yfunc(t, v0):
g = 9.81
y = v0*t - 0.5*g*t**2
dydt = v0 - g*t
return y, dydt

Calling this latter yfunc function makes a need for two values on the left-hand side
of the assignment operator because the function returns two values:

position, velocity = yfunc(0.6, 3)

Here is an application of the yfunc function for producing a nicely formatted
table of t , y.t/, and y0.t/ values:

t_values = [0.05*i for i in range(10)]
for t in t_values:

position, velocity = yfunc(t, v0=5)
print ’t=%-10g position=%-10g velocity=%-10g’ % \

(t, position, velocity)

The format %-10g prints a real number as compactly as possible (decimal or sci-
entific notation) in a field of width 10 characters. The minus sign (-) after the
percentage sign implies that the number is left-adjusted in this field, a feature that
is important for creating nice-looking columns in the output:

t=0 position=0 velocity=5
t=0.05 position=0.237737 velocity=4.5095
t=0.1 position=0.45095 velocity=4.019
t=0.15 position=0.639638 velocity=3.5285
t=0.2 position=0.8038 velocity=3.038
t=0.25 position=0.943437 velocity=2.5475
t=0.3 position=1.05855 velocity=2.057
t=0.35 position=1.14914 velocity=1.5665
t=0.4 position=1.2152 velocity=1.076
t=0.45 position=1.25674 velocity=0.5855

When a function returns multiple values, separated by a comma in the return

statement, a tuple (Sect. 2.5) is actually returned. We can demonstrate that fact by
the following session:
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>>> def f(x):
... return x, x**2, x**4
...
>>> s = f(2)
>>> s
(2, 4, 16)
>>> type(s)
<type ’tuple’>
>>> x, x2, x4 = f(2) # store in separate variables

Note that storing multiple return values in separate variables, as we do in the last
line, is actually the same functionality as we use for storing list (or tuple) elements
in separate variables, see Sect. 2.2.1.

3.1.8 Computing Sums

Our next example concerns a Python function for calculating the sum

L.xIn/ D
n
X

iD1

1

i

�

x

1C x

�i

: (3.1)

To compute a sum in a program, we use a loop and add terms to an accumulation
variable inside the loop. Section 2.1.4 explains the idea. However, summation
expressions with an integer counter, such as i in (3.1), are normally implemented
by a for loop over the i counter and not a while loop as in Sect. 2.1.4. For example,
the implementation of

Pn
iD1 i2 is typically implemented as

s = 0
for i in range(1, n+1):

s += i**2

For the specific sum (3.1) we just replace i**2 by the right term inside the for

loop:

s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i

Observe the factors 1.0 used to avoid integer division, since i is int and x may
also be int.

It is natural to embed the computation of the sum in a function that takes x and
n as arguments and returns the sum:

def L(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
return s
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Our formula (3.1) is not chosen at random. In fact, it can be shown that L.xIn/

is an approximation to ln.1 C x/ for a finite n and x � 1. The approximation
becomes exact in the limit

lim
n!1

L.xIn/ D ln.1C x/ :

Computational significance of L.xI n/

Although we can compute ln.1 C x/ on a calculator or by math.log(1+x) in
Python, you may have wondered how such a function is actually calculated in-
side the calculator or the math module. In most cases this must be done via
simple mathematical expressions such as the sum in (3.1). A calculator and the
math module will use more sophisticated formulas than (3.1) for ultimate ef-
ficiency of the calculations, but the main point is that the numerical values of
mathematical functions like ln.x/, sin.x/, and tan.x/ are usually computed by
sums similar to (3.1).

Instead of having our L function just returning the value of the sum, we could
return additional information on the error involved in the approximation of ln.1Cx/

by L.xIn/. The size of the terms decreases with increasing n, and the first neglected
term is then bigger than all the remaining terms, but not necessarily bigger than their
sum. The first neglected term is hence an indication of the size of the total error we
make, so we may use this term as a rough estimate of the error. For comparison,
we could also return the exact error since we are able to calculate the ln function by
math.log.

A new version of the L(x, n) function, where we return the value of L.xIn/,
the first neglected term, and the exact error goes as follows:

def L2(x, n):
s = 0
for i in range(1, n+1):

s += (1.0/i)*(x/(1.0+x))**i
value_of_sum = s
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)
from math import log
exact_error = log(1+x) - value_of_sum
return value_of_sum, first_neglected_term, exact_error

# typical call:
value, approximate_error, exact_error = L2(x, 100)

The next section demonstrates the usage of the L2 function to judge the quality of
the approximation L.xIn/ to ln.1C x/.

3.1.9 Functions with No Return Values

Sometimes a function just performs a set of statements, without computing objects
that are natural to return to the calling code. In such situations one can simply skip
the return statement. Some programming languages use the terms procedure or
subroutine for functions that do not return anything.
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Let us exemplify a function without return values by making a table of the accu-
racy of the L.xIn/ approximation to ln.1C x/ from the previous section:

def table(x):
print ’\nx=%g, ln(1+x)=%g’ % (x, log(1+x))
for n in [1, 2, 10, 100, 500]:

value, next, error = L2(x, n)
print ’n=%-4d %-10g (next term: %8.2e ’\

’error: %8.2e)’ % (n, value, next, error)

This function just performs a set of statements that we may want to run several
times. Calling

table(10)
table(1000)

gives the output

x=10, ln(1+x)=2.3979
n=1 0.909091 (next term: 4.13e-01 error: 1.49e+00)
n=2 1.32231 (next term: 2.50e-01 error: 1.08e+00)
n=10 2.17907 (next term: 3.19e-02 error: 2.19e-01)
n=100 2.39789 (next term: 6.53e-07 error: 6.59e-06)
n=500 2.3979 (next term: 3.65e-24 error: 6.22e-15)

x=1000, ln(1+x)=6.90875
n=1 0.999001 (next term: 4.99e-01 error: 5.91e+00)
n=2 1.498 (next term: 3.32e-01 error: 5.41e+00)
n=10 2.919 (next term: 8.99e-02 error: 3.99e+00)
n=100 5.08989 (next term: 8.95e-03 error: 1.82e+00)
n=500 6.34928 (next term: 1.21e-03 error: 5.59e-01)

From this output we see that the sum converges much more slowly when x is large
than when x is small. We also see that the error is an order of magnitude or more
larger than the first neglected term in the sum. The functions L, L2, and table are
found in the file lnsum.py.

When there is no explicit return statement in a function, Python actually inserts
an invisible return None statement. None is a special object in Python that repre-
sents something we might think of as empty data or just “nothing”. Other computer
languages, such as C, C++, and Java, use the word void for a similar thing. Nor-
mally, one will call the table function without assigning the return value to any
variable, but if we assign the return value to a variable, result = table(500),
result will refer to a None object.

The None value is often used for variables that should exist in a program, but
where it is natural to think of the value as conceptually undefined. The standard
way to test if an object obj is set to None or not reads

if obj is None:
...

if obj is not None:
...

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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One can also use obj == None. The is operator tests if two names refer to the
same object, while == tests if the contents of two objects are the same:

>>> a = 1
>>> b = a
>>> a is b # a and b refer to the same object
True
>>> c = 1.0
>>> a is c
False
>>> a == c # a and c are mathematically equal
True

3.1.10 Keyword Arguments

Some function arguments can be given a default value so that we may leave out
these arguments in the call. A typical function may look as

>>> def somefunc(arg1, arg2, kwarg1=True, kwarg2=0):
>>> print arg1, arg2, kwarg1, kwarg2

The first two arguments, arg1 and arg2, are ordinary or positional arguments,
while the latter two are keyword arguments or named arguments. Each keyword ar-
gument has a name (in this example kwarg1 and kwarg2) and an associated default
value. The keyword arguments must always be listed after the positional arguments
in the function definition.

When calling somefunc, we may leave out some or all of the keyword argu-
ments. Keyword arguments that do not appear in the call get their values from the
specified default values. We can demonstrate the effect through some calls:

>>> somefunc(’Hello’, [1,2])
Hello [1, 2] True 0
>>> somefunc(’Hello’, [1,2], kwarg1=’Hi’)
Hello [1, 2] Hi 0
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’)
Hello [1, 2] True Hi
>>> somefunc(’Hello’, [1,2], kwarg2=’Hi’, kwarg1=6)
Hello [1, 2] 6 Hi

The sequence of the keyword arguments does not matter in the call. We may also
mix the positional and keyword arguments if we explicitly write name=value for
all arguments in the call:

>>> somefunc(kwarg2=’Hello’, arg1=’Hi’, kwarg1=6, arg2=[1,2],)
Hi [1, 2] 6 Hello

Example: Function with default parameters Consider a function of t which also
contains some parameters, here A, a, and !:

f .t IA; a; !/ D Ae�at sin.!t/ : (3.2)
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We can implement f as a Python function where the independent variable t is an or-
dinary positional argument, and the parameters A, a, and ! are keyword arguments
with suitable default values:

from math import pi, exp, sin

def f(t, A=1, a=1, omega=2*pi):
return A*exp(-a*t)*sin(omega*t)

Calling f with just the t argument specified is possible:

v1 = f(0.2)

In this case we evaluate the expression e�0:2 sin.2� � 0:2/. Other possible calls
include

v2 = f(0.2, omega=1)
v3 = f(1, A=5, omega=pi, a=pi**2)
v4 = f(A=5, a=2, t=0.01, omega=0.1)
v5 = f(0.2, 0.5, 1, 1)

You should write down the mathematical expressions that arise from these four
calls. Also observe in the third line above that a positional argument, t in that case,
can appear in between the keyword arguments if we write the positional argument
on the keyword argument form name=value. In the last line we demonstrate that
keyword arguments can be used as positional argument, i.e., the name part can be
skipped, but then the sequence of the keyword arguments in the call must match the
sequence in the function definition exactly.

Example: Computing a sum with default tolerance Consider the L.xIn/ sum
and the Python implementations L(x, n) and L2(x, n) from Sect. 3.1.8. Instead
of specifying the number of terms in the sum, n, it is better to specify a tolerance "

of the accuracy. We can use the first neglected term as an estimate of the accuracy.
This means that we sum up terms as long as the absolute value of the next term is
greater than �. It is natural to provide a default value for �:

def L3(x, epsilon=1.0E-6):
x = float(x)
i = 1
term = (1.0/i)*(x/(1+x))**i
s = term
while abs(term) > epsilon:

i += 1
term = (1.0/i)*(x/(1+x))**i
s += term

return s, i

Here is an example involving this function to make a table of the approximation
error as � decreases:
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def table2(x):
from math import log
for k in range(4, 14, 2):

epsilon = 10**(-k)
approx, n = L3(x, epsilon=epsilon)
exact = log(1+x)
exact_error = exact - approx

The output from calling table2(10) becomes

epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

We see that the epsilon estimate is almost 10 times smaller than the exact error,
regardless of the size of epsilon. Since epsilon follows the exact error quite well
over many orders of magnitude, we may view epsilon as a useful indication of the
size of the error.

3.1.11 Doc Strings

There is a convention in Python to insert a documentation string right after the def
line of the function definition. The documentation string, known as a doc string,
should contain a short description of the purpose of the function and explain what
the different arguments and return values are. Interactive sessions from a Python
shell are also common to illustrate how the code is used. Doc strings are usually
enclosed in triple double quotes """, which allow the string to span several lines.

Here are two examples on short and long doc strings:

def C2F(C):
"""Convert Celsius degrees (C) to Fahrenheit."""
return (9.0/5)*C + 32

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (floats).
x1, y1: another point on the line (floats).
return: coefficients a, b (floats) for the line (y=a*x+b).
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

Note that the doc string must appear before any statement in the function body.
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There are several Python tools that can automatically extract doc strings from
the source code and produce various types of documentation. The leading tools is
Sphinx3, see also [13, Appendix B.2].

The doc string can be accessed in a code as funcname.__doc__, where
funcname is the name of the function, e.g.,

print line.__doc__

which prints out the documentation of the line function above:

Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0, y0) and (x1, y1).

x0, y0: a point on the line (float objects).
x1, y1: another point on the line (float objects).
return: coefficients a, b for the line (y=a*x+b).

If the function line is in a file funcs.py, we may also run pydoc funcs.line in
a terminal window to look the documentation of the line function in terms of the
function signature and the doc string.

Doc strings often contain interactive sessions, copied from a Python shell, to
illustrate how the function is used. We can add such a session to the doc string in
the line function:

def line(x0, y0, x1, y1):
"""
Compute the coefficients a and b in the mathematical
expression for a straight line y = a*x + b that goes
through two points (x0,y0) and (x1,y1).

x0, y0: a point on the line (float).
x1, y1: another point on the line (float).
return: coefficients a, b (floats) for the line (y=a*x+b).

Example:
>>> a, b = line(1, -1, 4, 3)
>>> a
1.3333333333333333
>>> b
-2.333333333333333
"""
a = (y1 - y0)/float(x1 - x0)
b = y0 - a*x0
return a, b

A particularly nice feature is that all such interactive sessions in doc strings can
be automatically run, and new results are compared to the results found in the doc
strings. This makes it possible to use interactive sessions in doc strings both for
exemplifying how the code is used and for testing that the code works.

3 http://sphinx-doc.org/invocation.html#invocation-apidoc

http://sphinx-doc.org/invocation.html#invocation-apidoc
http://sphinx-doc.org/invocation.html#invocation-apidoc
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Function input and output

It is a convention in Python that function arguments represent the input data to
the function, while the returned objects represent the output data. We can sketch
a general Python function as

def somefunc(i1, i2, i3, io4, io5, i6=value1, io7=value2):
# modify io4, io5, io6; compute o1, o2, o3
return o1, o2, o3, io4, io5, io7

Here i1, i2, i3 are positional arguments representing input data; io4 and io5

are positional arguments representing input and output data; i6 and io7 are
keyword arguments representing input and input/output data, respectively; and
o1, o2, and o3 are computed objects in the function, representing output data
together with io4, io5, and io7. All examples later in the book will make use
of this convention.

3.1.12 Functions as Arguments to Functions

Programs doing calculus frequently need to have functions as arguments in func-
tions. For example, a mathematical function f .x/ is needed in Python functions
for

� numerical root finding: solve f .x/ D 0 approximately (Sects. 4.11.2 and A.1.10)
� numerical differentiation: compute f 0.x/ approximately (Sects. B.2 and 7.3.2)
� numerical integration: compute

R b

a
f .x/dx approximately (Sects. B.3 and 7.3.3)

� numerical solution of differential equations: dx
dt
D f .x/ (Appendix E)

In such Python functions we need to have the f .x/ function as an argument f. This
is straightforward in Python and hardly needs any explanation, but in most other
languages special constructions must be used for transferring a function to another
function as argument.

As an example, consider a function for computing the second-order derivative of
a function f .x/ numerically:

f 00.x/ � f .x � h/ � 2f .x/C f .x C h/

h2
; (3.3)

where h is a small number. The approximation (3.3) becomes exact in the limit
h! 0. A Python function for computing (3.3) can be implemented as follows:

def diff2nd(f, x, h=1E-6):
r = (f(x-h) - 2*f(x) + f(x+h))/float(h*h)
return r

The f argument is like any other argument, i.e., a name for an object, here a function
object that we can call as we normally call functions. An application of diff2nd
may be
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def g(t):
return t**(-6)

t = 1.2
d2g = diff2nd(g, t)
print "g’’(%f)=%f" % (t, d2g)

The behavior of the numerical derivative as h ! 0 From mathematics we know
that the approximation formula (3.3) becomes more accurate as h decreases. Let
us try to demonstrate this expected feature by making a table of the second-order
derivative of g.t/ D t�6 at t D 1 as h! 0:

for k in range(1,15):
h = 10**(-k)
d2g = diff2nd(g, 1, h)
print ’h=%.0e: %.5f’ % (h, d2g)

The output becomes

h=1e-01: 44.61504
h=1e-02: 42.02521
h=1e-03: 42.00025
h=1e-04: 42.00000
h=1e-05: 41.99999
h=1e-06: 42.00074
h=1e-07: 41.94423
h=1e-08: 47.73959
h=1e-09: -666.13381
h=1e-10: 0.00000
h=1e-11: 0.00000
h=1e-12: -666133814.77509
h=1e-13: 66613381477.50939
h=1e-14: 0.00000

With g.t/ D t�6, the exact answer is g00.1/ D 42, but for h < 10�8 the computa-
tions give totally wrong answers! The problem is that for small h on a computer,
rounding errors in the formula (3.3) blow up and destroy the accuracy. The math-
ematical result that (3.3) becomes an increasingly better approximation as h gets
smaller and smaller does not hold on a computer! Or more precisely, the result
holds until h in the present case reaches 10�4.

The reason for the inaccuracy is that the numerator in (3.3) for g.t/ D t�6 and
t D 1 contains subtraction of quantities that are almost equal. The result is a very
small and inaccurate number. The inaccuracy is magnified by h�2, a number that
becomes very large for small h.

Switching from the standard floating-point numbers (float) to numbers with
arbitrary high precision resolves the problem. Python has a module decimal that
can be used for this purpose. The SymPy package comes with an alternative module
mpmath, which also offers mathematical functions like sin and cos with arbitrary
precision. The file high_precision.py solves the current problem using arith-
metics also based on the decimal and mpmath modules. With 25 digits in x and h

http://tinyurl.com/pwyasaa/funcif/high_precision.py


3.1 Functions 109

inside the diff2nd function, we get accurate results for h � 10�13 with decimal,
while rounding errors show up for h � 1010 with the mpmath module.

Nevertheless, for most practical applications of (3.3), a moderately small h, say
10�3 � h � 10�4, gives sufficient accuracy and then rounding errors from float

calculations do not pose problems. Real-world science or engineering applications
usually have many parameters with uncertainty, making the end result also uncer-
tain, and formulas like (3.3) can then be computed with moderate accuracy without
affecting the overall uncertainty in the answers.

3.1.13 TheMain Program

In programs containing functions we often refer to a part of the program that is
called the main program. This is the collection of all the statements outside the
functions, plus the definition of all functions. Let us look at a complete program:

from math import * # in main

def f(x): # in main
e = exp(-0.1*x)
s = sin(6*pi*x)
return e*s

x = 2 # in main
y = f(x) # in main
print ’f(%g)=%g’ % (x, y) # in main

The main program here consists of the lines with a comment in main. The ex-
ecution always starts with the first line in the main program. When a function is
encountered, its statements are just used to define the function – nothing gets com-
puted inside the function before we explicitly call the function, either from the main
program or from another function. All variables initialized in the main program be-
come global variables (see Sect. 3.1.3).

The program flow in the program above goes as follows:

� Import functions from the math module,
� define a function f(x),
� define x,
� call f and execute the function body,
� define y as the value returned from f,
� print the string.

In point 4, we jump to the f function and execute the statement inside that function
for the first time. Then we jump back to the main program and assign the float

object returned from f to the y variable.
Readers who are uncertain about the program flow and the jumps between the

main program and functions should use a debugger or the Online Python Tutor as
explained in Sect. 3.1.2.
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3.1.14 Lambda Functions

There is a quick one-line construction of functions that is often convenient to make
Python code compact:

f = lambda x: x**2 + 4

This so-called lambda function is equivalent to writing

def f(x):
return x**2 + 4

In general,

def g(arg1, arg2, arg3, ...):
return expression

can be written as

g = lambda arg1, arg2, arg3, ...: expression

Lambda functions are usually used to quickly define a function as argument to
another function. Consider, as an example, the diff2nd function from Sect. 3.1.12.
In the example from that chapter we want to differentiate g.t/ D t�6 twice and first
make a Python function g(t) and then send this g to diff2nd as argument. We can
skip the step with defining the g(t) function and instead insert a lambda function
as the f argument in the call to diff2nd:

d2 = diff2nd(lambda t: t**(-6), 1, h=1E-4)

Because lambda functions saves quite some typing, at least for very small functions,
they are popular among many programmers.

Lambda functions may also take keyword arguments. For example,

d2 = diff2nd(lambda t, A=1, a=0.5: -a*2*t*A*exp(-a*t**2), 1.2)

3.2 Branching

The flow of computer programs often needs to branch. That is, if a condition is met,
we do one thing, and if not, we do another thing. A simple example is a function
defined as

f .x/ D
(

sin x; 0 � x � �

0; otherwise
(3.4)

In a Python implementation of this function we need to test on the value of x, which
can be done as displayed below:
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def f(x):
if 0 <= x <= pi:

value = sin(x)
else:

value = 0
return value

3.2.1 If-else Blocks

The general structure of an if-else test is

if condition:
<block of statements, executed if condition is True>

else:
<block of statements, executed if condition is False>

When condition evaluates to True, the program flow branches into the first block
of statements. If condition is False, the program flow jumps to the second block
of statements, after the else: line. As with while and for loops, the block of
statements are indented. Here is another example:

if C < -273.15:
print ’%g degrees Celsius is non-physical!’ % C
print ’The Fahrenheit temperature will not be computed.’

else:
F = 9.0/5*C + 32
print F

print ’end of program’

The two print statements in the if block are executed if and only if C < -273.15

evaluates to True. Otherwise, we jump over the first two print statements and
carry out the computation and printing of F. The printout of end of program will
be performed regardless of the outcome of the if test since this statement is not
indented and hence neither a part of the if block nor the else block.

The else part of an if test can be skipped, if desired:

if condition:
<block of statements>

<next statement>

For example,

if C < -273.15:
print ’%s degrees Celsius is non-physical!’ % C

F = 9.0/5*C + 32

In this case the computation of F will always be carried out, since the statement is
not indented and hence not a part of the if block.
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With the keyword elif, short for else if, we can have several mutually exclusive
if tests, which allows for multiple branching of the program flow:

if condition1:
<block of statements>

elif condition2:
<block of statements>

elif condition3:
<block of statements>

else:
<block of statements>

<next statement>

The last else part can be skipped if it is not needed. To illustrate multiple branch-
ing we will implement a hat function, which is widely used in advanced computer
simulations in science and industry. One example of a hat function is

N.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; x < 0

x; 0 � x < 1

2 � x; 1 � x < 2

0; x � 2

(3.5)

The solid line in Fig. 5.9 in Sect. 5.4.1 illustrates the shape of this function and why
it is called a hat function. The Python implementation associated with (3.5) needs
multiple if branches:

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0.0

This code corresponds directly to the mathematical specification, which is a sound
strategy that help reduce the amount of errors in programs. We could mention that
there is another way of constructing the if test that results in shorter code:

def N(x):
if 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
else:

return 0

As a part of learning to program, understanding this latter sample code is important,
but we recommend the former solution because of its direct similarity with the
mathematical definition of the function.
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A popular programming rule is to avoid multiple return statements in a function
– there should only be one return at the end. We can do that in the N function
by introducing a local variable, assigning values to this variable in the blocks and
returning the variable at the end. However, we do not think an extra variable and an
extra line make a great improvement in such a short function. Nevertheless, in long
and complicated functions the rule can be helpful.

3.2.2 Inline if Tests

A variable is often assigned a value that depends on a boolean expression. This can
be coded using a common if-else test:

if condition:
a = value1

else:
a = value2

Because this construction is often needed, Python provides a one-line syntax for the
four lines above:

a = (value1 if condition else value2)

The parentheses are not required, but recommended style. One example is

def f(x):
return (sin(x) if 0 <= x <= 2*pi else 0)

Since the inline if test is an expression with a value, it can be used in lambda
functions:

f = lambda x: sin(x) if 0 <= x <= 2*pi else 0

The traditional if-else construction with indented blocks cannot be used inside
lambda functions because it is not just an expression (lambda functions cannot have
statements inside them, only a single expression).

3.3 Mixing Loops, Branching, and Functions in Bioinformatics
Examples

Life is definitely digital. The genetic code of all living organisms are represented
by a long sequence of simple molecules called nucleotides, or bases, which makes
up the Deoxyribonucleic acid, better known as DNA. There are only four such nu-
cleotides, and the entire genetic code of a human can be seen as a simple, though
3 billion long, string of the letters A, C, G, and T. Analyzing DNA data to gain
increased biological understanding is much about searching in long strings for cer-
tain string patterns involving the letters A, C, G, and T. This is an integral part of
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bioinformatics, a scientific discipline addressing the use of computers to search for,
explore, and use information about genes, nucleic acids, and proteins.

The leading Python software for bioinformatics applications is BioPython4. The
examples in this book (below and Sects. 6.5, 8.3.4, and 9.5) are simple illustrations
of the type of problem settings and corresponding Python implementations that are
encountered in bioinformatics. For real-world problem solving one should rather
utilize BioPython, but the sections below act as an introduction to what is inside
packages like BioPython.

We start with some very simple examples on DNA analysis that bring together
basic building blocks in programming: loops, if tests, and functions.

3.3.1 Counting Letters in DNA Strings

Given some string dna containing the letters A, C, G, or T, representing the bases
that make up DNA, we ask the question: how many times does a certain base occur
in the DNA string? For example, if dna is ATGGCATTA and we ask how many
times the base A occur in this string, the answer is 3.

A general Python implementation answering this problem can be done in many
ways. Several possible solutions are presented below.

List iteration The most straightforward solution is to loop over the letters in the
string, test if the current letter equals the desired one, and if so, increase a counter.
Looping over the letters is obvious if the letters are stored in a list. This is easily
done by converting a string to a list:

>>> list(’ATGC’)
[’A’, ’T’, ’G’, ’C’]

Our first solution becomes

def count_v1(dna, base):
dna = list(dna) # convert string to list of letters
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

String iteration Python allows us to iterate directly over a string without convert-
ing it to a list:

>>> for c in ’ATGC’:
... print c
A
T
G
C

4 http://biopython.org

http://biopython.org
http://biopython.org
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In fact, all built-in objects in Python that contain a set of elements in a particular
sequence allow a for loop construction of the type for element in object.

A slight improvement of our solution is therefore to iterate directly over the
string:

def count_v2(dna, base):
i = 0 # counter
for c in dna:

if c == base:
i += 1

return i

dna = ’ATGCGGACCTAT’
base = ’C’
n = count_v2(dna, base)

# printf-style formatting
print ’%s appears %d times in %s’ % (base, n, dna)

# or (new) format string syntax
print ’{base} appears {n} times in {dna}’.format(

base=base, n=n, dna=dna)

We have here illustrated two alternative ways of writing out text where the value
of variables are to be inserted in “slots” in the string.

Index iteration Although it is natural in Python to iterate over the letters in a string
(or more generally over elements in a sequence), programmers with experience
from other languages (Fortran, C and Java are examples) are used to for loops with
an integer counter running over all indices in a string or array:

def count_v3(dna, base):
i = 0 # counter
for j in range(len(dna)):

if dna[j] == base:
i += 1

return i

Python indices always start at 0 so the legal indices for our string become 0,
1, . . . , len(dna)-1, where len(dna) is the number of letters in the string dna.
The range(x) function returns a list of integers 0, 1, . . . , x-1, implying that
range(len(dna)) generates all the legal indices for dna.

While loops The while loop equivalent to the last function reads

def count_v4(dna, base):
i = 0 # counter
j = 0 # string index
while j < len(dna):

if dna[j] == base:
i += 1

j += 1
return i
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Correct indentation is here crucial: a typical error is to fail indenting the j += 1

line correctly.

Summing a boolean list The idea now is to create a list m where m[i] is True if
dna[i] equals the letter we search for (base). The number of True values in m is
then the number of base letters in dna. We can use the sum function to find this
number because doing arithmetics with boolean lists automatically interprets True
as 1 and False as 0. That is, sum(m) returns the number of True elements in m.
A possible function doing this is

def count_v5(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

if c == base:
m.append(True)

else:
m.append(False)

return sum(m)

Inline if test Shorter, more compact code is often a goal if the compactness en-
hances readability. The four-line if test in the previous function can be con-
densed to one line using the inline if construction: if condition value1 else

value2.

def count_v6(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(True if c == base else False)
return sum(m)

Using boolean values directly The inline if test is in fact redundant in the previ-
ous function because the value of the condition c == base can be used directly: it
has the value True or False. This saves some typing and adds clarity, at least to
Python programmers with some experience:

def count_v7(dna, base):
m = [] # matches for base in dna: m[i]=True if dna[i]==base
for c in dna:

m.append(c == base)
return sum(m)

List comprehensions Building a list with the aid of a for loop can often be
condensed to a single line by using list comprehensions: [expr for e in

sequence], where expr is some expression normally involving the iteration
variable e. In our last example, we can introduce a list comprehension

def count_v8(dna, base):
m = [c == base for c in dna]
return sum(m)
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Here it is tempting to get rid of the m variable and reduce the function body to
a single line:

def count_v9(dna, base):
return sum([c == base for c in dna])

Using a sum iterator The DNA string is usually huge – 3 billion letters for the
human species. Making a boolean array with True and False values therefore
increases the memory usage by a factor of two in our sample functions count_v5 to
count_v9. Summing without actually storing an extra list is desirable. Fortunately,
sum([x for x in s]) can be replaced by sum(x for x in s), where the latter
sums the elements in s as x visits the elements of s one by one. Removing the
brackets therefore avoids first making a list before applying sum to that list. This is
a minor modification of the count_v9 function:

def count_v10(dna, base):
return sum(c == base for c in dna)

Below we shall measure the impact of the various program constructs on the
CPU time.

Extracting indices Instead of making a boolean list with elements expressing
whether a letter matches the given base or not, we may collect all the indices of the
matches. This can be done by adding an if test to the list comprehension:

def count_v11(dna, base):
return len([i for i in range(len(dna)) if dna[i] == base])

The Online Python Tutor5 is really helpful to reach an understanding of this
compact code. Alternatively, you may play with the constructions in an interactive
Python shell:

>>> dna = ’AATGCTTA’
>>> base = ’A’
>>> indices = [i for i in range(len(dna)) if dna[i] == base]
>>> indices
[0, 1, 7]
>>> print dna[0], dna[1], dna[7] # check
A A A

Observe that the element i in the list comprehension is only made for those i where
dna[i] == base.

Using Python’s library Very often when you set out to do a task in Python, there
is already functionality for the task in the object itself, in the Python libraries, or
in third-party libraries found on the Internet. Counting how many times a letter (or

5 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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substring) base appears in a string dna is obviously a very common task so Python
supports it by the syntax dna.count(base):

def count_v12(dna, base):
return dna.count(base)

def compare_efficiency():

3.3.2 Efficiency Assessment

Now we have 11 different versions of how to count the occurrences of a letter in
a string. Which one of these implementations is the fastest? To answer the question
we need some test data, which should be a huge string dna.

Generating random DNA strings The simplest way of generating a long string is
to repeat a character a large number of times:

N = 1000000
dna = ’A’*N

The resulting string is just ’AAA...A, of length N, which is fine for testing the effi-
ciency of Python functions. Nevertheless, it is more exciting to work with a DNA
string with letters from the whole alphabet A, C, G, and T. To make a DNA string
with a random composition of the letters we can first make a list of random letters
and then join all those letters to a string:

import random
alphabet = list(’ATGC’)
dna = [random.choice(alphabet) for i in range(N)]
dna = ’’.join(dna) # join the list elements to a string

The random.choice(x) function selects an element in the list x at random.
Note that N is very often a large number. In Python version 2.x, range(N) gen-

erates a list of N integers. We can avoid the list by using xrange which generates
an integer at a time and not the whole list. In Python version 3.x, the range func-
tion is actually the xrange function in version 2.x. Using xrange, combining the
statements, and wrapping the construction of a random DNA string in a function,
gives

import random

def generate_string(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

dna = generate_string(600000)

The call generate_string(10)may generate something like AATGGCAGAA.
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Measuring CPU time Our next goal is to see how much time the various
count_v* functions spend on counting letters in a huge string, which is to be
generated as shown above. Measuring the time spent in a program can be done by
the time module:

import time
...
t0 = time.clock()
# do stuff
t1 = time.clock()
cpu_time = t1 - t0

The time.clock() function returns the CPU time spent in the program since its
start. If the interest is in the total time, also including reading and writing files,
time.time() is the appropriate function to call.

Running through all our functions made so far and recording timings can be done
by

import time
functions = [count_v1, count_v2, count_v3, count_v4,

count_v5, count_v6, count_v7, count_v8,
count_v9, count_v10, count_v11, count_v12]

timings = [] # timings[i] holds CPU time for functions[i]

for function in functions:
t0 = time.clock()
function(dna, ’A’)
t1 = time.clock()
cpu_time = t1 - t0
timings.append(cpu_time)

In Python, functions are ordinary objects so making a list of functions is no more
special than making a list of strings or numbers.

We can now iterate over timings and functions simultaneously via zip to
make a nice printout of the results:

for cpu_time, function in zip(timings, functions):
print ’{f:<9s}: {cpu:.2f} s’.format(

f=function.func_name, cpu=cpu_time)

Timings on a MacBook Air 11 running Ubuntu show that the functions using
list.append require almost the double of the time of the functions that work with
list comprehensions. Even faster is the simple iteration over the string. However,
the built-in count functionality of strings (dna.count(base)) runs over 30 times
faster than the best of our handwritten Python functions! The reason is that the for
loop needed to count in dna.count(base) is actually implemented in C and runs
very much faster than loops in Python.

A clear lesson learned is: google around before you start out to implement what
seems to be a quite common task. Others have probably already done it for you, and
most likely is their solution much better than what you can (easily) come up with.
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3.3.3 Verifying the Implementations

We end this section with showing how to make tests that verify our 12 counting
functions. To this end, we make a new function that first computes a certainly
correct answer to a counting problem and then calls all the count_* functions,
stored in the list functions, to check that each call has the correct result:

def test_count_all():
dna = ’ATTTGCGGTCCAAA’
exact = dna.count(’A’)
for f in functions:

if f(dna, ’A’) != exact:
print f.__name__, ’failed’

Here, we believe in dna.count(’A’) as the correct answer.
We might take this test function one step further and adopt the conventions in

the pytest6 and nose7 testing frameworks for Python code. (See Sect. H.9 for more
information about pytest and nose.)

These conventions say that the test function should

� have a name starting with test_;
� have no arguments;
� let a boolean variable, say success, be True if a test passes and be False if the

test fails;
� create a message about what failed, stored in some string, say msg;
� use the construction assert success, msg, which will abort the program and

write out the error message msg if success is False.

The pytest and nose test frameworks can search for all Python files in a folder
tree, run all test_*() functions, and report how many of the tests that failed, if we
adopt the conventions above. Our revised test function becomes

def test_count_all():
dna = ’ATTTGCGGTCCAAA’
expected = dna.count(’A’)

functions = [count_v1, count_v2, count_v3, count_v4,
count_v5, count_v6, count_v7, count_v8,
count_v9, count_v10, count_v11, count_v12]

for f in functions:
success = f(dna, ’A’) == expected
msg = ’%s failed’ % f.__name__
assert success, msg

It is worth notifying that the name of a function f, as a string object, is given by
f.__name__, and we make use of this information to construct an informative mes-
sage in case a test fails.

6 http://pytest.org
7 https://nose.readthedocs.org

http://pytest.org
https://nose.readthedocs.org
http://pytest.org
https://nose.readthedocs.org
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It is a good habit to write such test functions since the execution of all tests in all
files can be fully automated. Every time you do a change in some file you can with
minimum effort rerun all tests.

The entire suite of functions presented above, including the timings and tests,
can be found in the file count.py.

3.4 Summary

3.4.1 Chapter Topics

User-defined functions Functions are useful (i) when a set of commands are to
be executed several times, or (ii) to partition the program into smaller pieces to
gain better overview. Function arguments are local variables inside the function
whose values are set when calling the function. Remember that when you write
the function, the values of the arguments are not known. Here is an example of
a function for polynomials of 2nd degree:

# function definition:
def quadratic_polynomial(x, a, b, c)

value = a*x*x + b*x + c
derivative = 2*a*x + b
return value, derivative

# function call:
x = 1
p, dp = quadratic_polynomial(x, 2, 0.5, 1)
p, dp = quadratic_polynomial(x=x, a=-4, b=0.5, c=0)

The sequence of the arguments is important, unless all arguments are given as
name=value.

Functions may have no arguments and/or no return value(s):

def print_date():
"""Print the current date in the format ’Jan 07, 2007’."""
import time
print time.strftime("%b %d, %Y")

# call:
print_date()

A common error is to forget the parentheses: print_date is the function object
itself, while print_date() is a call to the function.

Keyword arguments Function arguments with default values are called keyword
arguments, and they help to document the meaning of arguments in function calls.
They also make it possible to specify just a subset of the arguments in function calls.

http://tinyurl.com/pwyasaa/funcif/count.py
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from math import exp, sin, pi

def f(x, A=1, a=1, w=pi):
return A*exp(-a*x)*sin(w*x)

f1 = f(0)
x2 = 0.1
f2 = f(x2, w=2*pi)
f3 = f(x2, w=4*pi, A=10, a=0.1)
f4 = f(w=4*pi, A=10, a=0.1, x=x2)

The sequence of the keyword arguments can be arbitrary, and the keyword argu-
ments that are not listed in the call get their default values according to the function
definition. The non-keyword arguments are called positional arguments, which is
x in this example. Positional arguments must be listed before the keyword argu-
ments. However, also a positional argument can appear as name=value in the call
(see the last line above), and this syntax allows any positional argument to be listed
anywhere in the call.

If tests The if-elif-else tests are used to branch the flow of statements. That
is, different sets of statements are executed depending on whether some conditions
are True or False.

def f(x):
if x < 0:

value = -1
elif x >= 0 and x <= 1:

value = x
else:

value = 1
return value

Inline if tests Assigning a variable one value if a condition is True and another
value if False, is compactly done with an inline if test:

sign = -1 if a < 0 else 1

Terminology The important computer science terms in this chapter are

� function
� method
� return statement
� positional arguments
� keyword arguments
� local and global variables
� doc strings
� if tests with if, elif, and else (branching)
� the None object
� test functions (for verification)
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3.4.2 Example: Numerical Integration

Problem An integral
b
Z

a

f .x/dx

can be approximated by the so-called Simpson’s rule:

b � a

3n

0

@f .a/C f .b/C 4

n=2
X

iD1

f .a C .2i � 1/h/C 2

n=2�1
X

iD1

f .a C 2ih/

1

A : (3.6)

Here, h D .b � a/=n and n must be an even integer. The problem is to make
a function Simpson(f, a, b, n=500) that returns the right-hand side formula of
(3.6). To verify the implementation, one can make use of the fact that Simpson’s
rule is exact for all polynomials f .x/ of degree � 2. Apply the Simpson function
to the integral 3

2

R �

0
sin3 xdx, which has exact value 2, and investigate how the

approximation error varies with n.

Solution The evaluation of the formula (3.6) in a program is straightforward if we
know how to implement summation (

P

) and how to call f . A Python recipe for
calculating sums is given in Sect. 3.1.8. Basically,

PN
iDM q.i/, for some expression

q.i/ involving i , is coded with the aid of a for loop over i and an accumulation
variable s for building up the sum, one term at a time:

s = 0
for i in range(M, N+1):

s += q(i)

The Simpson function can then be coded as

def Simpson(f, a, b, n=500):
h = (b - a)/float(n)
sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

Note that Simpson can integrate any Python function f of one variable. Specifically,
we can implement

h.x/ D 3

2
sin3 xdx
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in a Python function

def h(x):
return (3./2)*sin(x)**3

and call Simpson to compute
R �

0
h.x/dx for various choices of n, as requested:

from math import sin, pi

def application():
print ’Integral of 1.5*sin^3 from 0 to pi:’
for n in 2, 6, 12, 100, 500:

approx = Simpson(h, 0, pi, n)
print ’n=%3d, approx=%18.15f, error=%9.2E’ % \

(n, approx, 2-approx)

(We have put the statements inside a function, here called application, mainly
to group them, and not because application will be called several times or with
different arguments.)

Verification Calling application() leads to the output

Integral of 1.5*sin^3 from 0 to pi:
n= 2, approx= 3.141592653589793, error=-1.14E+00
n= 6, approx= 1.989171700583579, error= 1.08E-02
n= 12, approx= 1.999489233010781, error= 5.11E-04
n=100, approx= 1.999999902476350, error= 9.75E-08
n=500, approx= 1.999999999844138, error= 1.56E-10

We clearly see that the approximation improves as n increases. However, every
computation will give an answer that deviates from the exact value 2. We cannot
from this test alone know if the errors above are those implied by the approximation
only, or if there are additional programming mistakes.

A much better way of verifying the implementation is therefore to look for test
cases where the numerical approximation formula is exact, such that we know ex-
actly what the result of the function should be. Since it is stated that the formula is
exact for polynomials up to second degree, we just test the Simpson function on an
“arbitrary” parabola, say

2
Z

3=2

�

3x2 � 7x C 2:5
	

dx :

This integral equals G.2/�G.3=2/, where G.x/ D x3 � 3:5x2C 2:5x.
A fundamental problem arises if we compare the computed integral value with

the exact result using ==, because rounding errors may lead to small differences and
hence a false equality test. Consider the simple problem
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>>> 0.1 + 0.2 == 0.3
False
>>> 0.1 + 0.2
0.30000000000000004

We see that 0.1 + 0.2 leads to a small error in the 17th decimal place. We must
therefore make comparisons with tolerances:

>>> tol = 1E-14
>>> abs(0.3 - (0.1 + 0.2)) < tol
True

In this particular example,

>>> abs(0.3 - (0.1 + 0.2))
5.551115123125783e-17

so a tolerance of 10�16 would work, but in algorithms with many more arithmetic
operations, rounding errors may accumulate so 10�15 or 10�14 are more appropriate
tolerances.

The following implementation of a test function applies a tolerance in the test
for equality:

def g(x):
return 3*x**2 - 7*x + 2.5

def G(x):
return x**3 - 3.5*x**2 + 2.5*x

def test_Simpson():
a = 1.5
b = 2.0
n = 8
expact = G(b) - G(a)
approx = Simpson(g, a, b, n)
success = abs(exact - approx) < 1E-14
if not success:

print ’Error: wrong integral of quadratic function’

The g and G functions are only of interest inside the test_Simpson function.
Many think the code becomes easier to read and understand if g and G are moved
inside test_Simpson, which is indeed possible in Python:

def test_Simpson():
def g(x):

# test function for exact integration by Simpson’s rule
return 3*x**2 - 7*x + 2.5

def G(x):
# integral of g(x)
return x**3 - 3.5*x**2 + 2.5*x
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a = 1.5
b = 2.0
n = 8
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
success = abs(exact - approx) < 1E-14
if not success:

print ’Error: cannot integrate a quadratic function exactly’

We shall make it a habit to write functions like test_Simpson for verifying
implementations.

Unit tests and test functions When testing software for correctness, it is consid-
ered good practice to break the software into units and test the behavior of each unit.
This is called unit testing. In scientific computing, one unit is often a numerical al-
gorithm, like Simpson’s method. The testing of a unit is performed with a dedicated
test function.

As was mentioned in Sect. 3.3.3, it can be wise to write test functions accord-
ing to the conventions needed for applying the pytest and nose testing frameworks
(Sect. H.9). Our pytest/nose-compatible test function then looks as follows:

def test_Simpson():
"""Test exact integration of quadratic polynomials."""
a = 1.5
b = 2.0
n = 8
g = lambda x: 3*x**2 - 7*x + 2.5 # test integrand
G = lambda x: x**3 - 3.5*x**2 + 2.5*x # integral of g
exact = G(b) - G(a)
approx = Simpson(g, a, b, n)
success = abs(exact - approx) < 1E-14
msg = ’Simpson: %g, exact: %g’ % (approx, exact)
assert success, msg

Here we have also made the test function more compact by utilizing lambda func-
tions for g and G (see Sect. 3.1.14).

Checking the validity of function arguments Another improvement is to increase
the robustness of the function. That is, to check that the input data, i.e., the argu-
ments, are acceptable. Here we may test if b > a and if n is an even integer. For the
latter test, we make use of the mod function: mod(n, d ) gives the remainder when
n is divided by d (both n and d are integers). Mathematically, if p is the largest
integer such that pd � n, then mod(n, d ) is n � pd . For example, mod(3, 2) is 1,
mod(3, 1) is 0, mod (3, 3) is 0, and mod(18, 8) is 2. The point is that n divided by
d is an integer when mod(n, d ) is zero. In Python, the percentage sign is used for
the mod function:

>>> 18 % 8
2
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To test if n is an odd integer, we see if it can be divided by 2 and yield an integer
without any reminder: n % 2 == 0.

The improved Simpson function with validity tests on the provided arguments,
as well as a doc string (Sect. 3.1.11), can look like this:

def Simpson(f, a, b, n=500):
"""
Return the approximation of the integral of f
from a to b using Simpson’s rule with n intervals.
"""
if a > b:

print ’Error: a=%g > b=%g’ % (a, b)
return None

# check that n is even:
if n % 2 != 0:

print ’Error: n=%d is not an even integer!’ % n
n = n+1 # make n even

h = (b - a)/float(n)
sum1 = 0
for i in range(1, n/2 + 1):

sum1 += f(a + (2*i-1)*h)

sum2 = 0
for i in range(1, n/2):

sum2 += f(a + 2*i*h)

integral = (b-a)/(3*n)*(f(a) + f(b) + 4*sum1 + 2*sum2)
return integral

The complete code is found in the file Simpson.py.
A very good exercise is to simulate the program flow by hand, starting with the

call to the application function. The Online Python Tutor8 or a debugger (see
Sect. F.1) are convenient tools for controlling that your thinking is correct.

3.5 Exercises

Exercise 3.1: Implement a simple mathematical function

Implement the mathematical function

g.t/ D e�t sin.�t/;

in a Python function g(t). Print out g.0/ and g.1/.
Filename: expsin.

Exercise 3.2: Implement a simple mathematical function with a parameter

Let us extend the function g.t/ in Exercise 3.1 to

h.t/ D e�at sin.�t/;

8 http://www.pythontutor.com/

http://tinyurl.com/pwyasaa/funcif/Simpson.py
http://www.pythontutor.com/
http://www.pythontutor.com/
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where a is a parameter. How can the corresponding Python function be imple-
mented in this case? Print out h.0/ and h.1/ for the case a D 10.
Filename: expsin_a.

Exercise 3.3: Explain how a program works

Explain how the following program works:

def add(A, B):
C = A + B
return C

a = 3
b = 2
print add(a, b)
print add(2*a, b+1)*3

Figure out what is being printed without running the program.
Filename: explain_func.

Exercise 3.4: Write a Fahrenheit-Celsius conversion functions

The formula for converting Fahrenheit degrees to Celsius reads

C D 5

9
.F � 32/ : (3.7)

Write a function C(F) that implements this formula. Also write the inverse function
F(C) for going from Celsius to Fahrenheit degrees. How can you test that the two
functions work?

Hint C(F(c)) should result in c and F(C(f)) should result in f.
Filename: f2c.

Exercise 3.5: Write a test function for Exercise 3.4

Write a test function test_F_C that checks the computation of C(F(c)) and
F(C(f)), involving the C(F) and F(C) functions in Exercise 3.4.

Hint Use a tolerance in the comparison. Let the test function follow the conven-
tions in the nose and pytest frameworks (see Sect. 3.3.3 for a first intro and Sect. H.9
for more overview).
Filename: test_f2c.

Exercise 3.6: Given a test function, write the function

Here is a test function:

def test_double():
assert double(2) == 4
assert abs(double(0.1) - 0.2) < 1E-15
assert double([1, 2]) == [1, 2, 1, 2]
assert double((1, 2)) == (1, 2, 1, 2)
assert double(3+4j) == 6+8j
assert double(’hello’) == ’hellohello’
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Write the associated function to be tested (double) and run test_double.
Filename: test_double.

Exercise 3.7: Evaluate a sum and write a test function

a) Write a Python function sum_1k(M) that returns the sum s D
PM

kD1
1
k

.
b) Compute s for the case M D 3 by hand and write another function test_sum_

1k() that calls sum_1k(3) and checks that the answer is correct.

Hint We recommend that test_sum_1k follows the conventions of the pytest and
nose testing frameworks as explained in Sects. 3.3.3 and 3.4.2 (see also Sect. H.9).
Filename: sum_func.

Exercise 3.8: Write a function for solving ax2 C bx C c D 0

a) Given a quadratic equation ax2 C bx C c D 0, write a function roots(a,

b, c) that returns the two roots of the equation. The returned roots should be
float-type objects when the roots are real, otherwise complex-type objects.

Hint You can test on the sign of the expression in the square root and return stan-
dard float or complex Python objects accordingly. Alternatively, you can simply
use sqrt from the numpy.lib.scimath library, see Chap. 1.6.3. This sqrt func-
tion returns an object of type numpy.complex128 in case of a negative argument
(and hence a complex square root) and an object of type numpy.float64 other-
wise.

b) Construct two test cases with known solutions, one with real roots and the
other with complex roots. Implement the two test cases in two test functions
test_roots_float and test_roots_complex, where you call the roots

function and check the value of the returned objects.

Filename: roots_quadratic.

Exercise 3.9: Implement the sum function

The standard Python function called sum takes a list as argument and computes the
sum of the elements in the list:

>>> sum([1,3,5,-5])
4
>>> sum([[1,2], [4,3], [8,1]])
[1, 2, 4, 3, 8, 1]
>>> sum([’Hello, ’, ’World!’])
’Hello, World!’

Implement your own version of sum.
Filename: mysum.
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Exercise 3.10: Compute a polynomial via a product

Given nC 1 roots r0; r1; : : : ; rn of a polynomial p.x/ of degree nC 1, p.x/ can be
computed by

p.x/ D
n
Y

iD0

.x � ri / D .x � r0/.x � r1/ � � � .x � rn�1/.x � rn/ : (3.8)

Write a function poly(x, roots) that takes x and a list roots of the roots as
arguments and returns p.x/. Construct a test case for verifying the implementation.
Filename: polyprod.

Exercise 3.11: Integrate a function by the Trapezoidal rule

a) An approximation to the integral of a function f .x/ over an interval Œa; b� can
be found by first approximating f .x/ by the straight line that goes through the
end points .a; f .a// and .b; f .b//, and then finding the area under the straight
line, which is the area of a trapezoid. The resulting formula becomes

b
Z

a

f .x/dx � b � a

2
.f .a/C f .b// : (3.9)

Write a function trapezint1(f, a, b) that returns this approximation to the
integral. The argument f is a Python implementation f(x) of the mathematical
function f .x/.

b) Use the approximation (3.9) to compute the following integrals:
R �

0
cos x dx,

R �

0
sin x dx, and

R �=2

0
sin x dx, In each case, write out the error, i.e., the dif-

ference between the exact integral and the approximation (3.9). Make rough
sketches of the trapezoid for each integral in order to understand how the method
behaves in the different cases.

c) We can easily improve the formula (3.9) by approximating the area under the
function f .x/ by two equal-sized trapezoids. Derive a formula for this ap-
proximation and implement it in a function trapezint2(f, a, b). Run the
examples from b) and see how much better the new formula is. Make sketches
of the two trapezoids in each case.

d) A further improvement of the approximate integration method from c) is to di-
vide the area under the f .x/ curve into n equal-sized trapezoids. Based on this
idea, derive the following formula for approximating the integral:

b
Z

a

f .x/dx �
n�1
X

iD1

1

2
h .f .xi /C f .xiC1// ; (3.10)

where h is the width of the trapezoids, h D .b � a/=n, and xi D a C ih,
i D 0; : : : ; n, are the coordinates of the sides of the trapezoids. The figure
below visualizes the idea of the Trapezoidal rule.
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Implement (3.10) in a Python function trapezint(f, a, b, n). Run the
examples from b) with n D 10.

e) Write a test function test_trapezint() for verifying the implementation of
the function trapezint in d).

Hint Obviously, the Trapezoidal method integrates linear functions exactly for
any n. Another more surprising result is that the method is also exact for, e.g.,
R 2�

0
cos x dx for any n. Use one of these cases for the test function test_trapezint.

Filename: trapezint.

Remarks Formula (3.10) is not the most common way of expressing the Trape-
zoidal integration rule. The reason is that f .xiC1/ is evaluated twice, first in term
i and then as f .xi / in term i C 1. The formula can be further developed to avoid
unnecessary evaluations of f .xiC1/, which results in the standard form

b
Z

a

f .x/dx � 1

2
h.f .a/C f .b//C h

n�1
X

iD1

f .xi / : (3.11)

Exercise 3.12: Derive the general Midpoint integration rule

The idea of the Midpoint rule for integration is to divide the area under the curve
f .x/ into n equal-sized rectangles (instead of trapezoids as in Exercise 3.11). The
height of the rectangle is determined by the value of f at the midpoint of the rect-
angle. The figure below illustrates the idea.
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Compute the area of each rectangle, sum them up, and arrive at the formula for
the Midpoint rule:

b
Z

a

f .x/dx � h

n�1
X

iD0

f .aC ihC 1

2
h/; (3.12)

where h D .b � a/=n is the width of each rectangle. Implement this formula in
a Python function midpointint(f, a, b, n) and test the function on the exam-
ples listed in Exercise 3.11b. How do the errors in the Midpoint rule compare with
those of the Trapezoidal rule for n D 1 and n D 10?
Filename: midpointint.

Exercise 3.13: Make an adaptive Trapezoidal rule

A problem with the Trapezoidal integration rule (3.10) in Exercise 3.11 is to decide
how many trapezoids (n) to use in order to achieve a desired accuracy. Let E be the
error in the Trapezoidal method, i.e., the difference between the exact integral and
that produced by (3.10). We would like to prescribe a (small) tolerance � and find
an n such that E � �.

Since the exact value
R b

a
f .x/dx is not available (that is why we use a numer-

ical method!), it is challenging to compute E. Nevertheless, it has been shown by
mathematicians that

E � 1

12
.b � a/h2 max

x2Œa;b�
jf 00.x/j : (3.13)

The maximum of jf 00.x/j can be computed (approximately) by evaluating f 00.x/

at a large number of points in Œa; b�, taking the absolute value jf 00.x/j, and finding
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the maximum value of these. The double derivative can be computed by a finite
difference formula:

f 00.x/ � f .x C h/ � 2f .x/C f .x � h/

h2
:

With the computed estimate of max jf 00.x/j we can find h from setting the right-
hand side in (3.13) equal to the desired tolerance:

1

12
.b � a/h2 max

x2Œa;b�
jf 00.x/j D � :

Solving with respect to h gives

h D
p

12�

�

.b � a/ max
x2Œa;b�

jf 00.x/j
��1=2

: (3.14)

With n D .b � a/=h we have the n that corresponds to the desired accuracy �.

a) Make a Python function adaptive_trapezint(f, a, b, eps=1E-5) for
computing the integral

R b

a
f .x/dx with an error less than or equal to � (eps).

Hint Compute the n corresponding to � as explained above and call trapezint(f,
a, b, n) from Exercise 3.11.

b) Apply the function to compute the integrals from Exercise 3.11b. Write out the
exact error and the estimated n for each case.

Filename: adaptive_trapezint.

Remarks A numerical method that applies an expression for the error to adapt the
choice of the discretization parameter to a desired error tolerance, is known as an
adaptive numerical method. The advantage of an adaptive method is that one can
control the approximation error, and there is no need for the user to determine an
appropriate number of intervals n.

Exercise 3.14: Simulate a program by hand

Simulate the following program by hand to explain what is printed.

def a(x):
q = 2
x = 3*x
return q + x

def b(x):
global q
q += x
return q + x

q = 0
x = 3
print a(x), b(x), a(x), b(x)
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Hint If you encounter problems with understanding function calls and local versus
global variables, paste the code into the Online Python Tutor9 and step through the
code to get a better explanation of what happens.
Filename: simulate_func.

Exercise 3.15: Debug a given test function

Given a Python function

def triple(x):
return x + x*2

we want to test it with a proper test function. The following function is written

def test_triple():
assert triple(3) == 9
assert triple(0.1) == 0.3
assert triple([1, 2]) == [1, 2, 1, 2, 1, 2]
assert triple(’hello ’) == ’hello hello 2’

What is wrong with the test function? Write a test function where all boolean
comparisons work well.
Filename: test_triple.

Exercise 3.16: Compute the area of an arbitrary triangle

An arbitrary triangle can be described by the coordinates of its three vertices:
.x1; y1/, .x2; y2/, .x3; y3/, numbered in a counterclockwise direction. The area of
the triangle is given by the formula

A D 1

2
jx2y3 � x3y2 � x1y3 C x3y1 C x1y2 � x2y1j : (3.15)

Write a function triangle_area(vertices) that returns the area of a triangle
whose vertices are specified by the argument vertices, which is a nested list of
the vertex coordinates. Make sure your implementation passes the following test
function, which also illustrates how the triangle_area function works:

def test_triangle_area():
"""
Verify the area of a triangle with vertex coordinates
(0,0), (1,0), and (0,2).
"""
v1 = (0,0); v2 = (1,0); v3 = (0,2)
vertices = [v1, v2, v3]
expected = 1
computed = triangle_area(vertices)
tol = 1E-14
success = diff(expected - computed) < tol
msg = ’computed area=%g != %g (expected)’ % \

(computed, expected)
assert success, msg

Filename: area_triangle.

9 http://www.pythontutor.com/visualize.html

http://www.pythontutor.com/visualize.html
http://www.pythontutor.com/visualize.html
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Exercise 3.17: Compute the length of a path

Some object is moving along a path in the plane. At nC 1 points of time we have
recorded the corresponding .x; y/ positions of the object: .x0; y0/, .x1; y2/, : : :,
.xn; yn/. The total length L of the path from .x0; y0/ to .xn; yn/ is the sum of all
the individual line segments (.xi�1; yi�1/ to .xi ; yi /, i D 1; : : : ; n):

L D
n
X

iD1

p

.xi � xi�1/2 C .yi � yi�1/2 : (3.16)

a) Make a Python function pathlength(x, y) for computing L according to the
formula. The arguments x and y hold all the x0; : : : ; xn and y0; : : : ; yn coordi-
nates, respectively.

b) Write a test function test_pathlength() where you check that pathlength
returns the correct length in a test problem.

Filename: pathlength.

Exercise 3.18: Approximate �

The value of � equals the circumference of a circle with radius 1=2. Suppose we
approximate the circumference by a polygon through n C 1 points on the circle.
The length of this polygon can be found using the pathlength function from Ex-
ercise 3.17. Compute nC 1 points .xi ; yi / along a circle with radius 1=2 according
to the formulas

xi D
1

2
cos.2�i=n/; yi D

1

2
sin.2�i=n/; i D 0; : : : ; n :

Call the pathlength function and write out the error in the approximation of � for
n D 2k , k D 2; 3; : : : ; 10.
Filename: pi_approx.

Exercise 3.19: Compute the area of a polygon

One of the most important mathematical problems through all times has been to
find the area of a polygon. For example, real estate areas often had the shape of
polygons, and the tax was proportional to the area. Suppose we have some poly-
gon with vertices (“corners”) specified by the coordinates .x1; y1/, .x2; y2/, : : :,
.xn; yn/, numbered either in a clockwise or counter clockwise fashion around the
polygon. The area A of the polygon can amazingly be computed by just knowing
the boundary coordinates:

A D 1

2
j.x1y2 C x2y3 C � � � C xn�1yn C xny1/�

.y1x2 C y2x3 C � � � C yn�1xn C ynx1/j : (3.17)

Write a function polygon_area(x, y) that takes two coordinate lists with the
vertices as arguments and returns the area.

Test the function on a triangle, a quadrilateral, and a pentagon where you can
calculate the area by alternative methods for comparison.
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Hint Since Python lists and arrays has 0 as their first index, it is wise to rewrite the
mathematical formula in terms of vertex coordinates numbered as x0; x1; : : : ; xn�1

and y0; y1; : : : ; yn�1 before you start programming.
Filename: polygon_area.

Exercise 3.20: Write functions

Three functions, hw1, hw2, and hw3, work as follows:

>>> print hw1()
Hello, World!
>>> hw2()
Hello, World!
>>> print hw3(’Hello, ’, ’World!’)
Hello, World!
>>> print hw3(’Python ’, ’function’)
Python function

Write the three functions.
Filename: hw_func.

Exercise 3.21: Approximate a function by a sum of sines

We consider the piecewise constant function

f .t/ D

8

ˆ

<

ˆ

:

1; 0 < t < T=2;

0; t D T=2;

�1; T=2 < t < T

(3.18)

Sketch this function on a piece of paper. One can approximate f .t/ by the sum

S.t In/ D 4

�

n
X

iD1

1

2i � 1
sin

�

2.2i � 1/�t

T

�

: (3.19)

It can be shown that S.t In/! f .t/ as n!1.

a) Write a Python function S(t, n, T) for returning the value of S.t In/.
b) Write a Python function f(t, T) for computing f .t/.
c) Write out tabular information showing how the error f .t/ � S.t In/ varies with

n and t for the cases where n D 1; 3; 5; 10; 30; 100 and t D ˛T , with T D 2� ,
and ˛ D 0:01; 0:25; 0:49. Use the table to comment on how the quality of the
approximation depends on ˛ and n.

Filename: sinesum1.

Remarks A sum of sine and/or cosine functions, as in (3.19), is called a Fourier

series. Approximating a function by a Fourier series is a very important technique
in science and technology. Exercise 5.41 asks for visualization of how well S.t In/

approximates f .t/ for some values of n.
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Exercise 3.22: Implement a Gaussian function

Make a Python function gauss(x, m=0, s=1) for computing the Gaussian func-
tion

f .x/ D 1p
2� s

exp
�

�1

2

�x �m

s

�2
�

:

Write out a nicely formatted table of x and f .x/ values for n uniformly spaced x

values in Œm� 5s; mC 5s�. (Choose m, s, and n as you like.)
Filename: gaussian2.

Exercise 3.23: Wrap a formula in a function

Implement the formula (1.9) from Exercise 1.12 in a Python function with three
arguments: egg(M, To=20, Ty=70). The parameters �, K, c, and Tw can be set
as local (constant) variables inside the function. Let t be returned from the function.
Compute t for a soft and hard boiled egg, of a small (M D 47 g) and large (M D 67

g) size, taken from the fridge (To D 4 C) and from a hot room (To D 25 C).
Filename: egg_func.

Exercise 3.24: Write a function for numerical differentiation

The formula

f 0.x/ � f .x C h/ � f .x � h/

2h
(3.20)

can be used to find an approximate derivative of a mathematical function f .x/ if h

is small.

a) Write a function diff(f, x, h=1E-5) that returns the approximation (3.20)
of the derivative of a mathematical function represented by a Python function
f(x).

b) Write a function test_diff() that verifies the implementation of the function
diff. As test case, one can use the fact that (3.20) is exact for quadratic func-
tions (at least for not so small h values that rounding errors in (3.20) become
significant – you have to experiment with finding a suitable tolerance and h).
Follow the conventions of the pytest and nose testing frameworks, as outlined in
Exercise 3.7 and Sects. 3.3.3, 3.4.2, and H.9.

c) Apply (3.20) to differentiate
� f .x/ D ex at x D 0,
� f .x/ D e�2x2

at x D 0,
� f .x/ D cos x at x D 2� ,
� f .x/ D ln x at x D 1.
Use h D 0:01. In each case, write out the error, i.e., the difference between
the exact derivative and the result of (3.20). Collect these four examples in
a function application().

Filename: centered_diff.

Exercise 3.25: Implement the factorial function

The factorial of n is written as nŠ and defined as

nŠ D n.n � 1/.n � 2/ � � �2 � 1; (3.21)
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with the special cases
1Š D 1; 0Š D 1 : (3.22)

For example, 4Š D 4 � 3 � 2 � 1 D 24, and 2Š D 2 � 1 D 2. Write a Python
function fact(n) that returns nŠ. (Do not simply call the ready-made function
math.factorial(n) – that is considered cheating in this context!)

Make sure your fact function passes the test in the following test function:

def test_fact():
# Check an arbitrary case
n = 4
expected = 4*3*2*1
computed = fact(n)
assert computed == expected
# Check the special cases
assert fact(0) == 1
assert fact(1) == 1

Hint Return 1 immediately if x is 1 or 0, otherwise use a loop to compute nŠ.
Filename: fact.

Exercise 3.26: Compute velocity and acceleration from 1D position data

Suppose we have recorded GPS coordinates x0; : : : ; xn at times t0; : : : ; tn while
running or driving along a straight road. We want to compute the velocity vi and
acceleration ai from these position coordinates. Using finite difference approxima-
tions, one can establish the formulas

vi �
xiC1 � xi�1

tiC1 � ti�1

; (3.23)

ai � 2.tiC1 � ti�1/�1

�

xiC1 � xi

tiC1 � ti
� xi � xi�1

ti � ti�1

�

; (3.24)

for i D 1; : : : ; n � 1 (vi and ai correspond to the velocity and acceleration at point
xi at time ti , respectively).

a) Write a Python function kinematics(i, x, t) for computing vi and ai ,
given the arrays x and t of position and time coordinates (x0; : : : ; xn and
t0; : : : ; tn).

b) Write a Python function test_kinematics() for testing the implementation
in the case of constant velocity V . Set t0 D 0, t1 D 0:5, t2 D 1:5, and t3 D 2:2,
and xi D V ti . Call the kinematics function for the legal i values.

Filename: kinematics1.

Exercise 3.27: Find the max and min values of a function

The maximum and minimum values of a mathematical function f .x/ on Œa; b� can
be found by computing f at a large number (n) of points and selecting the maxi-
mum and minimum values at these points. Write a Python function maxmin(f, a,

b, n=1000) that returns the maximum and minimum value of a function f(x).
Also write a test function for verifying the implementation for f .x/ D cos x,
x 2 Œ��=2; 2��.
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Hint The x points where the mathematical function is to be evaluated can be uni-
formly distributed: xi D a C ih, i D 0; : : : ; n � 1, h D .b � a/=.n � 1/. The
Python functions max(y) and min(y) return the maximum and minimum values in
the list y, respectively.
Filename: maxmin_f.

Exercise 3.28: Find the max and min elements in a list

Given a list a, the max function in Python’s standard library computes the largest
element in a: max(a). Similarly, min(a) returns the smallest element in a. Write
your own max and min functions.

Hint Initialize a variable max_elem by the first element in the list, then visit all the
remaining elements (a[1:]), compare each element to max_elem, and if greater, set
max_elem equal to that element. Use a similar technique to compute the minimum
element.
Filename: maxmin_list.

Exercise 3.29: Implement the Heaviside function

The following step function is known as the Heaviside function and is widely used
in mathematics:

H.x/ D
(

0; x < 0

1; x � 0
(3.25)

a) Implement H.x/ in a Python function H(x).
b) Make a Python function test_H() for testing the implementation of H(x).

Compute H.�10/, H.�10�15/, H.0/, H.10�15/, H.10/ and test that the an-
swers are correct.

Filename: Heaviside.

Exercise 3.30: Implement a smoothed Heaviside function

The Heaviside function (3.25) listed in Exercise 3.29 is discontinuous. It is in many
numerical applications advantageous to work with a smooth version of the Heavi-
side function where the function itself and its first derivative are continuous. One
such smoothed Heaviside function is

H�.x/ D

8

ˆ

<

ˆ

:

0; x < ��;
1
2
C x

2�
C 1

2�
sin
�

�x
�

	

; �� � x � �

1; x > �

(3.26)

a) Implement H�.x/ in a Python function H_eps(x, eps=0.01).
b) Make a Python function test_H_eps() for testing the implementation of

H_eps. Check the values of some x < ��, x D ��, x D 0, x D �, and some
x > �.

Filename: smoothed_Heaviside.
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Exercise 3.31: Implement an indicator function

In many applications there is need for an indicator function, which is 1 over some
interval and 0 elsewhere. More precisely, we define

I.xIL; R/ D
(

1; x 2 ŒL; R�;

0; elsewhere
(3.27)

a) Make two Python implementations of such an indicator function, one with a di-
rect test if x 2 ŒL; R� and one that expresses the indicator function in terms of
Heaviside functions (3.25):

I.xIL; R/ D H.x � L/H.R � x/ : (3.28)

b) Make a test function for verifying the implementation of the functions in a).
Check that correct values are returned for some x < L, x D L, x D .LCR/=2,
x D R, and some x > R.

Filename: indicator_func.

Exercise 3.32: Implement a piecewise constant function

Piecewise constant functions have a lot of important applications when modeling
physical phenomena by mathematics. A piecewise constant function can be defined
as

f .x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v0; x 2 Œx0; x1/;

v1; x 2 Œx1; x2/;
:::

vi x 2 Œxi ; xiC1/;
:::

vn x 2 Œxn; xnC1�

(3.29)

That is, we have a union of non-overlapping intervals covering the domain
Œx0; xnC1�, and f .x/ is constant in each interval. One example is the function
that is �1 on Œ0; 1�, 0 on Œ1; 1:5�, and 4 on Œ1:5; 2�, where we with the notation in
(3.29) have x0 D 0; x1 D 1; x2 D 1:5; x3 D 2 and v0 D �1; v1 D 0; v3 D 4.

a) Make a Python function piecewise(x, data) for evaluating a piecewise con-
stant mathematical function as in (3.29) at the point x. The data object is a list
of pairs .vi ; xi / for i D 0; : : : ; n. For example, data is [(0, -1), (1, 0),

(1.5, 4)] in the example listed above. Since xnC1 is not a part of the data

object, we have no means for detecting whether x is to the right of the last in-
terval Œxn; xnC1�, i.e., we must assume that the user of the piecewise function
sends in an x � xnC1.

b) Design suitable test cases for the function piecewise and implement them in
a test function test_piecewise().

Filename: piecewise_constant1.
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Exercise 3.33: Apply indicator functions

Implement piecewise constant functions, as defined in Exercise 3.32, by observing
that

f .x/ D
n
X

iD0

vi I.xIxi ; xiC1/; (3.30)

where I.xIxi ; xiC1/ is the indicator function from Exercise 3.31.
Filename: piecewise_constant2.

Exercise 3.34: Test your understanding of branching

Consider the following code:

def where1(x, y):
if x > 0:

print ’quadrant I or IV’
if y > 0:

print ’quadrant I or II’

def where2(x, y):
if x > 0:

print ’quadrant I or IV’
elif y > 0:

print ’quadrant II’

for x, y in (-1, 1), (1, 1):
where1(x,y)
where2(x,y)

What is printed?
Filename: simulate_branching.

Exercise 3.35: Simulate nested loops by hand

Go through the code below by hand, statement by statement, and calculate the num-
bers that will be printed.

n = 3
for i in range(-1, n):

if i != 0:
print i

for i in range(1, 13, 2*n):
for j in range(n):

print i, j

for i in range(1, n+1):
for j in range(i):

if j:
print i, j
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for i in range(1, 13, 2*n):
for j in range(0, i, 2):

for k in range(2, j, 1):
b = i > j > k
if b:

print i, j, k

You may use a debugger, see Sect. F.1, or the Online Python Tutor10, see Sect. 3.1.2,
to control what happens when you step through the code.
Filename: simulate_nested_loops.

Exercise 3.36: Rewrite a mathematical function

We consider the L.xIn/ sum as defined in Sect. 3.1.8 and the corresponding func-
tion L3(x, epsilon) function from Sect. 3.1.10. The sum L.xIn/ can be written
as

L.xIn/ D
n
X

iD1

ci ; ci D
1

i

�

x

1C x

�i

:

a) Derive a relation between ci and ci�1,

ci D aci�1;

where a is an expression involving i and x.
b) The relation ci D aci�1 means that we can start with term as c1, and then in

each pass of the loop implementing the sum
P

i ci we can compute the next
term ci in the sum as

term = a*term

Write a new version of the L3 function, called L3_ci(x, epsilon), that makes
use of this alternative computation of the terms in the sum.

c) Write a Python function test_L3_ci() that verifies the implementation of
L3_ci by comparing with the original L3 function.

Filename: L3_recursive.

Exercise 3.37: Make a table for approximations of cos x

The function cos.x/ can be approximated by the sum

C.xIn/ D
n
X

jD0

cj ; (3.31)

where

cj D �cj�1

x2

2j.2j � 1/
; j D 1; 2; : : : ; n;

and c0 D 1.

10 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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a) Make a Python function for computing C.xIn/.

Hint Represent cj by a variable term, make updates term = -term*... inside
a for loop, and accumulate the term variable in a variable for the sum.

b) Make a function for writing out a table of the errors in the approximation C.xIn/

of cos.x/ for some x and n values given as arguments to the function. Let the
x values run downward in the rows and the n values to the right in the columns.
For example, a table for x D 4�; 6�; 8�; 10� and n D 5; 25; 50; 100; 200 can
look like

x 5 25 50 100 200
12.5664 1.61e+04 1.87e-11 1.74e-12 1.74e-12 1.74e-12
18.8496 1.22e+06 2.28e-02 7.12e-11 7.12e-11 7.12e-11
25.1327 2.41e+07 6.58e+04 -4.87e-07 -4.87e-07 -4.87e-07
31.4159 2.36e+08 6.52e+09 1.65e-04 1.65e-04 1.65e-04

Observe how the error increases with x and decreases with n.

Filename: cos_sum.

Exercise 3.38: Use None in keyword arguments

Consider the functions L2(x, n) and L3(x, epsilon) from Sects. 3.1.8 and
3.1.10, whose program code is found in the file lnsum.py.

Make a more flexible function L4 where we can either specify a tolerance
epsilon or a number of terms n in the sum. Moreover, we can also choose
whether we want the sum to be returned or the sum and the number of terms:

value, n = L4(x, epsilon=1E-8, return_n=True)
value = L4(x, n=100)

Hint The starting point for all this flexibility is to have some keyword arguments
initialized to an “undefined” value, called None, which can be recognized inside the
function:

def L3(x, n=None, epsilon=None, return_n=False):
if n is not None:

...
if epsilon is not None:

...

One can also apply if n != None, but the is operator is most common.
Print error messages for incompatible values when n and epsilon are None or

both are given by the user.
Filename: L4.

Exercise 3.39: Write a sort function for a list of 4-tuples

Below is a list of the nearest stars and some of their properties. The list elements are
4-tuples containing the name of the star, the distance from the sun in light years, the

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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apparent brightness, and the luminosity. The apparent brightness is how bright the
stars look in our sky compared to the brightness of Sirius A. The luminosity, or the
true brightness, is how bright the stars would look if all were at the same distance
compared to the Sun. The list data are found in the file stars.txt11, which looks
as follows:

data = [
(’Alpha Centauri A’, 4.3, 0.26, 1.56),
(’Alpha Centauri B’, 4.3, 0.077, 0.45),
(’Alpha Centauri C’, 4.2, 0.00001, 0.00006),
("Barnard’s Star", 6.0, 0.00004, 0.0005),
(’Wolf 359’, 7.7, 0.000001, 0.00002),
(’BD +36 degrees 2147’, 8.2, 0.0003, 0.006),
(’Luyten 726-8 A’, 8.4, 0.000003, 0.00006),
(’Luyten 726-8 B’, 8.4, 0.000002, 0.00004),
(’Sirius A’, 8.6, 1.00, 23.6),
(’Sirius B’, 8.6, 0.001, 0.003),
(’Ross 154’, 9.4, 0.00002, 0.0005),
]

The purpose of this exercise is to sort this list with respect to distance, apparent
brightness, and luminosity. Write a program that initializes the data list as above
and writes out three sorted tables: star name versus distance, star name versus ap-
parent brightness, and star name versus luminosity.

Hint To sort a list data, one can call sorted(data), as in

for item in sorted(data):
...

However, in the present case each element is a 4-tuple, and the default sorting of
such 4-tuples results in a list with the stars appearing in alphabetic order. This is not
what you want. Instead, we need to sort with respect to the 2nd, 3rd, or 4th element
of each 4-tuple. If such a tailored sort mechanism is necessary, we can provide our
own sort function as an argument to sorted. There are two alternative ways of
doing this.

A comparison function A sort user-provided sort function mysort(a, b) must
take two arguments a and b and return �1 if a should become before b in the sorted
sequence, 1 if b should become before a, and 0 if they are equal. In the present
case, a and b are 4-tuples, so we need to make the comparison between the right
elements in a and b. For example, to sort with respect to luminosity we can write

def mysort(a, b):
if a[3] < b[3]:

return -1
elif a[3] > b[3]:

return 1
else:

return 0

11 http://tinyurl.com/pwyasaa/funcif/stars.txt

http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/funcif/stars.txt
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The relevant call using this tailored sort function is

sorted(data, cmp=mysort)

A key function A quicker construction is to provide a key argument to sorted for
filtering out the relevant part of an object to be sorted. Here, we want to sort 4-
tuples, but use only one of the elements, say the one with index 3, for comparison.
Writing

sorted(data, key=lambda obj: obj[3])

will send all objects (4-tuples) through the key function whose return value is used
for the sorting. A lambda construction (see Sect. 3.1.14) is used to write the filtering
function inline.
Filename: sorted_stars_data.

Exercise 3.40: Find prime numbers

The Sieve of Eratosthenes is an algorithm for finding all prime numbers less than or
equal to a number N . Read about this algorithm on Wikipedia and implement it in
a Python program.
Filename: find_primes.

Exercise 3.41: Find pairs of characters

Write a function count_pairs(dna, pair) that returns the number of occur-
rences of a pair of characters (pair) in a DNA string (dna). For example, calling
the function with dna as ’ACTGCTATCCATT’ and pair as ’AT’ will return 2.
Filename: count_pairs.

Exercise 3.42: Count substrings

This is an extension of Exercise 3.41: count how many times a certain string appears
in another string. For example, the function returns 3 when called with the DNA
string ’ACGTTACGGAACG’ and the substring ’ACG’.

Hint For each match of the first character of the substring in the main string, check
if the next n characters in the main string matches the substring, where n is the
length of the substring. Use slices like s[3:9] to pick out a substring of s.
Filename: count_substr.

Exercise 3.43: Resolve a problem with a function

Consider the following interactive session:

>>> def f(x):
... if 0 <= x <= 2:
... return x**2
... elif 2 < x <= 4:
... return 4
... elif x < 0:
... return 0
...
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>>> f(2)
4
>>> f(5)
>>> f(10)

Why do we not get any output when calling f(5) and f(10)?

Hint Save the f value in a variable r and do print r.
Filename: fix_branching.

Exercise 3.44: Determine the types of some objects

Consider the following calls to the makelist function from Sect. 3.1.6:

l1 = makelist(0, 100, 1)
l2 = makelist(0, 100, 1.0)
l3 = makelist(-1, 1, 0.1)
l4 = makelist(10, 20, 20)
l5 = makelist([1,2], [3,4], [5])
l6 = makelist((1,-1,1), (’myfile.dat’, ’yourfile.dat’))
l7 = makelist(’myfile.dat’, ’yourfile.dat’, ’herfile.dat’)

Simulate each call by hand to determine what type of objects that become elements
in the returned list and what the contents of value is after one pass in the loop.

Hint Note that some of the calls will lead to infinite loops if you really perform the
above makelist calls on a computer.

You can go to the Online Python Tutor12, paste in the makelist function and
the session above, and step through the program to see what actually happens.
Filename: find_object_type.

Remarks This exercise demonstrates that we can write a function and have in mind
certain types of arguments, here typically int and float objects. However, the
function can be used with other (originally unintended) arguments, such as lists and
strings in the present case, leading to strange and irrelevant behavior (the problem
here lies in the boolean expression value <= stop which is meaningless for some
of the arguments).

Exercise 3.45: Find an error in a program

For the formula
f .x/ D erx sin.mx/C esx sin.nx/

we have made the program

def f(x, m, n, r, s):
return expsin(x, r, m) + expsin(x, s, n)

x = 2.5
print f(x, 0.1, 0.2, 1, 1)

12 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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from math import exp, sin

def expsin(x, p, q):
return exp(p*x)*sin(q*x)

Running this code results in

NameError: global name ’expsin’ is not defined

What is the problem? Simulate the program flow by hand, use the debugger to step
from line to line, or use the Online Python Tutor. Correct the program.
Filename: find_error_undef.
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Consider a program for evaluating the formula x D A sin.wt/:

from math import sin
A = 0.1
w = 1
t = 0.6
x = A*sin(w*t)
print x

In this program, A, w, and t are input data in the sense that these parameters must be
known before the program can perform the calculation of x. The results produced
by the program, here x, constitute the output data.

Input data can be hardcoded in the program as we do above. That is, we explicitly
set variables to specific values: A=0.1, w=1, t=0.6. This programming style may
be suitable for small programs. In general, however, it is considered good practice
to let a user of the program provide input data when the program is running. There
is then no need to modify the program itself when a new set of input data is to be
explored. This is an important feature, because a golden rule of programming is
that modification of the source code always represents a danger of introducing new
errors by accident.

This chapter starts with describing four different ways of reading data into a pro-
gram:

1. let the user answer questions in a dialog in the terminal window (Sect. 4.1),
2. let the user provide input on the command line (Sect. 4.2),
3. let the user provide input data in a file (Sect. 4.5),
4. let the user write input data in a graphical interface (Sect. 4.8).

Even if your program works perfectly, wrong input data from the user may cause the
program to produce wrong answers or even crash. Checking that the input data are
correct is important, and Sect. 4.7 tells you how to do this with so-called exceptions.

The Python programming environment is organized as a big collection of mod-
ules. Organizing your own Python software in terms of modules is therefore a nat-
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ural and wise thing to do. Section 4.9 tells you how easy it is to make your own
modules.

All the program examples from the present chapter are available in files in the
src/input1 folder.

4.1 Asking Questions and Reading Answers

One of the simplest ways of getting data into a program is to ask the user a question,
let the user type in an answer, and then read the text in that answer into a variable
in the program. These tasks are done by calling a function with name raw_input

in Python 2 – the name is just input in Python 3.

4.1.1 Reading Keyboard Input

A simple problem involving the temperature conversion from Celsius to Fahrenheit
constitutes our main example: F D 9

5
C C 32. The associated program with setting

C explicitly in the program reads

C = 22
F = 9./5*C + 32
print F

We may ask the user a question C=? and wait for the user to enter a number. The
program can then read this number and store it in a variable C. These actions are
performed by the statement

C = raw_input(’C=? ’)

The raw_input function always returns the user input as a string object. That is,
the variable C above refers to a string object. If we want to compute with this C,
we must convert the string to a floating-point number: C = float(C). A complete
program for reading C and computing the corresponding degrees in Fahrenheit now
becomes

C = raw_input(’C=? ’)
C = float(C)
F = 9.0/5*C + 32
print F

In general, the raw_input function takes a string as argument, displays this
string in the terminal window, waits until the user presses the Return key, and then
returns a string object containing the sequence of characters that the user typed in.

1 http://tinyurl.com/pwyasaa/input

http://tinyurl.com/pwyasaa/input
http://tinyurl.com/pwyasaa/input


4.2 Reading from the Command Line 151

The program above is stored in a file called c2f_qa.py (the qa part of the name
reflects question and answer). We can run this program in several ways. The con-
vention in this book is to indicate the execution by writing the program name only,
but for a real execution you need to do more: write run before the program name in
an interactive IPython session, or write python before the program name in a ter-
minal session. Here is the execution of our sample program and the resulting dialog
with the user:

Terminal

c2f_qa.py
C=? 21
69.8

In this particular example, the raw_input function reads the characters 21 from
the keyboard and returns the string ’21’, which we refer to by the variable C. Then
we create a new float object by float(C) and let the name C refer to this float
object, with value 21.

You should now try out Exercises 4.1, 4.6, and 4.9 to make sure you understand
how raw_input behaves.

4.2 Reading from the Command Line

Programs running on Unix computers usually avoid asking the user questions. In-
stead, input data are very often fetched from the command line. This section
explains how we can access information on the command line in Python programs.

4.2.1 Providing Input on the Command Line

We look at the Celsius-Fahrenheit conversion program again. The idea now is to
provide the Celsius input temperature as a command-line argument right after the
program name. This means that we write the program name, here c2f_cml.py

(cml for command line), followed the Celsius temperature:

Terminal

c2f_cml.py 21
69.8

Inside the program we can fetch the text 21 as sys.argv[1]. The sys module has
a list argv containing all the command-line arguments to the program, i.e., all the
“words” appearing after the program name when we run the program. In the present
case there is only one argument and it is stored in sys.argv[1]. The first element
in the sys.argv list, sys.argv[0], is always the name of the program.

A command-line argument is treated as a text, so sys.argv[1] refers to a string
object, in this case ’21’. Since we interpret the command-line argument as a num-
ber and want to compute with it, it is necessary to explicitly convert the string to
a float object. In the program we therefore write

http://tinyurl.com/pwyasaa/input/c2f_qa.py
http://tinyurl.com/pwyasaa/c2f_cml.py
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import sys
C = float(sys.argv[1])
F = 9.0*C/5 + 32
print F

As another example, consider the program

v0 = 5
g = 9.81
t = 0.6
y = v0*t - 0.5*g*t**2
print y

for computing the formula y.t/ D v0t � 1
2
gt2. Instead of hardcoding the values of

v0 and t in the program we can read the two values from the command line:

Terminal

ball2_cml.py 0.6 5
1.2342

The two command-line arguments are now available as sys.argv[1] and sys.

argv[2]. The complete ball2_cml.py program thus takes the form

import sys
t = float(sys.argv[1])
v0 = float(sys.argv[2])
g = 9.81
y = v0*t - 0.5*g*t**2
print y

4.2.2 A Variable Number of Command-Line Arguments

Let us make a program addall.py that adds all its command-line arguments. That
is, we may run something like

Terminal

addall.py 1 3 5 -9.9
The sum of 1 3 5 -9.9 is -0.9

The command-line arguments are stored in the sublist sys.argv[1:]. Each ele-
ment is a string so we must perform a conversion to float before performing the
addition. There are many ways to write this program. Let us start with version 1,
addall_v1.py:

http://tinyurl.com/pwyasaa/input/ball2_cml.py
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import sys
s = 0
for arg in sys.argv[1:]:

number = float(arg)
s += number

print ’The sum of ’,
for arg in sys.argv[1:]:

print arg,
print ’is ’, s

The output is on one line, but built of several print statements with a comma at the
end to prevent the usual newline character that print otherwise adds to the text.
The command-line arguments must be converted to numbers in the first for loop
because we need to compute with them, but in the second loop we only need to print
them and then the string representation is appropriate.

The program above can be written more compactly if desired:

import sys
s = sum([float(x) for x in sys.argv[1:]])
print ’The sum of %s is %s’ % (’ ’.join(sys.argv[1:]), s)

Here, we convert the list sys.argv[1:] to a list of float objects and then pass this
list to Python’s sum function for adding the numbers. The construction S.join(L)

places all the elements in the list L after each other with the string S in between.
The result here is a string with all the elements in sys.argv[1:] and a space in
between, which is the text that originally appeared on the command line.

4.2.3 More on Command-Line Arguments

Unix commands make heavy use of command-line arguments. For example, when
you write ls -s -t to list the files in the current folder, you run the program ls

with two command-line arguments: -s and -t. The former specifies that ls is to
print the file name together with the size of the file, and the latter sorts the list of
files according to their dates of last modification. Similarly, cp -r my new for
copying a folder tree my to a new folder tree new invokes the cp program with three
command line arguments: -r (for recursive copying of files), my, and new. Most
programming languages have support for extracting the command-line arguments
given to a program.

An important rule is that command-line arguments are separated by blanks.
What if we want to provide a text containing blanks as command-line argument?
The text containing blanks must then appear inside single or double quotes. Let us
demonstrate this with a program that simply prints the command-line arguments:

import sys, pprint
pprint.pprint(sys.argv[1:])



154 4 User Input and Error Handling

Say this program is named print_cml.py. The execution

Terminal

print_cml.py 21 a string with blanks 31.3
[’21’, ’a’, ’string’, ’with’, ’blanks’, ’31.3’]

demonstrates that each word on the command line becomes an element in sys.argv.
Enclosing strings in quotes, as in

Terminal

print_cml.py 21 "a string with blanks" 31.3
[’21’, ’a string with blanks’, ’31.3’]

shows that the text inside the quotes becomes a single command line argument.

4.3 Turning User Text into Live Objects

It is possible to provide text with valid Python code as input to a program and then
turn the text into live objects as if the text were written directly into the program
beforehand. This is a very powerful tool for letting users specify function formulas,
for instance, as input to a program. The program code itself has no knowledge about
the kind of function the user wants to work with, yet at run time the user’s desired
formula enters the computations.

4.3.1 TheMagic Eval Function

The eval functions takes a string as argument and evaluates this string as a Python
expression. The result of an expression is an object. Consider

>>> r = eval(’1+2’)
>>> r
3
>>> type(r)
<type ’int’>

The result of r = eval(’1+2’) is the same as if we had written r = 1+2 directly:

>>> r = 1+2
>>> r
3
>>> type(r)
<type ’int’>

In general, any valid Python expression stored as text in a string s can be turned
into live Python code by eval(s).
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Here is an example where the string to be evaluated is ’2.5’, which causes
Python to see r = 2.5 and make a float object:

>>> r = eval(’2.5’)
>>> r
2.5
>>> type(r)
<type ’float’>

Let us proceed with some more examples. We can put the initialization of a list
inside quotes and use eval to make a list object:

>>> r = eval(’[1, 6, 7.5]’)
>>> r
[1, 6, 7.5]
>>> type(r)
<type ’list’>

Again, the assignment to r is equivalent to writing

>>> r = [1, 6, 7.5]

We can also make a tuple object by using tuple syntax (standard parentheses in-
stead of brackets):

>>> r = eval(’(-1, 1)’)
>>> r
(-1, 1)
>>> type(r)
<type ’tuple’>

Another example reads

>>> from math import sqrt
>>> r = eval(’sqrt(2)’)
>>> r
1.4142135623730951
>>> type(r)
<type ’float’>

At the time we run eval(’sqrt(2)’), this is the same as if we had written

>>> r = sqrt(2)

directly, and this is valid syntax only if the sqrt function is defined. Therefore, the
import of sqrt prior to running eval is important in this example.

Applying eval to strings If we put a string, enclosed in quotes, inside the expres-
sion string, the result is a string object:
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>>>
>>> r = eval(’"math programming"’)
>>> r
’math programming’
>>> type(r)
<type ’str’>

Note that we must use two types of quotes: first double quotes to mark math

programming as a string object and then another set of quotes, here single quotes
(but we could also have used triple single quotes), to embed the text "math

programming" inside a string. It does not matter if we have single or double
quotes as inner or outer quotes, i.e., ’"..."’ is the same as "’...’", because ’

and " are interchangeable as long as a pair of either type is used consistently.
Writing just

>>> r = eval(’math programming’)

is the same as writing

>>> r = math programming

which is an invalid expression. Python will in this case think that math and
programming are two (undefined) variables, and setting two variables next to each
other with a space in between is invalid Python syntax. However,

>>> r = ’math programming’

is valid syntax, as this is how we initialize a string r in Python. To repeat, if we put
the valid syntax ’math programming’ inside a string,

s = "’math programming’"

eval(s) will evaluate the text inside the double quotes as ’math programm-

ing’, which yields a string.

Applying eval to user input So, why is the eval function so useful? When we
get input via raw_input or sys.argv, it is always in the form of a string object,
which often must be converted to another type of object, usually an int or float.
Sometimes we want to avoid specifying one particular type. The eval function can
then be of help: we feed the string object from the input to the eval function and
let the it interpret the string and convert it to the right object.

An example may clarify the point. Consider a small program where we read in
two values and add them. The values could be strings, floats, integers, lists, and so
forth, as long as we can apply a + operator to the values. Since we do not know if
the user supplies a string, float, integer, or something else, we just convert the input
by eval, which means that the user’s syntax will determine the type. The program
goes as follows (add_input.py):

http://tinyurl.com/pwyasaa/input/add_input.py
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i1 = eval(raw_input(’Give input: ’))
i2 = eval(raw_input(’Give input: ’))
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Observe that we write out the two supplied values, together with the types of the
values (obtained by eval), and the sum. Let us run the program with an integer and
a real number as input:

Terminal

add_input.py
Give input: 4
Give input: 3.1
<type ’int’> + <type ’float’> becomes <type ’float’>
with value 7.1

The string ’4’, returned by the first call to raw_input, is interpreted as an int by
eval, while ’3.1’ gives rise to a float object.

Supplying two lists also works fine:

Terminal

add_input.py
Give input: [-1, 3.2]
Give input: [9,-2,0,0]
<type ’list’> + <type ’list’> becomes <type ’list’>
with value [-1, 3.2000000000000002, 9, -2, 0, 0]

If we want to use the program to add two strings, the strings must be enclosed in
quotes for eval to recognize the texts as string objects (without the quotes, eval
aborts with an error):

Terminal

add_input.py
Give input: ’one string’
Give input: " and another string"
<type ’str’> + <type ’str’> becomes <type ’str’>
with value one string and another string

Not all objects are meaningful to add:

Terminal

add_input.py
Give input: 3.2
Give input: [-1,10]
Traceback (most recent call last):

File "add_input.py", line 3, in <module>
r = i1 + i2

TypeError: unsupported operand type(s) for +: ’float’ and ’list’
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A similar program adding two arbitrary command-line arguments reads (add_
input.py):

import sys
i1 = eval(sys.argv[1])
i2 = eval(sys.argv[2])
r = i1 + i2
print ’%s + %s becomes %s\nwith value %s’ % \

(type(i1), type(i2), type(r), r)

Another important example on the usefulness of eval is to turn formulas, given
as input, into mathematics in the program. Consider the program

from math import * # make all math functions available
import sys
formula = sys.argv[1]
x = eval(sys.argv[2])
result = eval(formula)
print ’%s for x=%g yields %g’ % (formula, x, result)

Two command-line arguments are expected: a formula and a number. Say the
formula given is 2*sin(x)+1 and the number is 3.14. This information is read
from the command line as strings. Doing x = eval(sys.argv[2]) means x =

eval(’3.14’), which is equivalent to x = 3.14, and x refers to a float ob-
ject. The eval(formula) expression means eval(’2*sin(x)+1’), and the cor-
responding statement result = eval(formula is therefore effectively result =

2*sin(x)+1, which requires sin and x to be defined objects. The result is a float
(approximately 1.003). Providing cos(x) as the first command-line argument cre-
ates a need to have cos defined, so that is why we import all functions from the
math module. Let us try to run the program:

Terminal

eval_formula.py "2*sin(x)+1" 3.14
2*sin(x)+1 for x=3.14 yields 1.00319

The very nice thing with using eval in x = eval(sys.argv[2]) is that we
can provide mathematical expressions like pi/2 or even tanh(2*pi), as the latter
just effectively results in the statement x = tanh(2*pi), and this works fine as
long has we have imported tanh and pi.

4.3.2 TheMagic Exec Function

Having presented eval for turning strings into Python code, we take the opportunity
to also describe the related exec function to execute a string containing arbitrary
Python code, not only an expression.

Suppose the user can write a formula as input to the program, available to us in
the form of a string object. We would then like to turn this formula into a callable

http://tinyurl.com/pwyasaa/input/add_input.py
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Python function. For example, writing sin(x)*cos(3*x) + x**2 as the formula,
we would make the function

def f(x):
return sin(x)*cos(3*x) + x**2

This is easy with exec: just construct the right Python syntax for defining f(x) in
a string and apply exec to the string,

formula = sys.argv[1]
code = """
def f(x):

return %s
""" % formula
from math import * # make sure we have sin, cos, exp, etc.
exec(code)

As an example, think of "sin(x)*cos(3*x) + x**2" as the first command-line
argument. Then formula will hold this text, which is inserted into the code string
such that it becomes

"""
def f(x):

return sin(x)*cos(3*x) + x**2
"""

Thereafter, exec(code) executes the code as if we had written the contents of the
code string directly into the program by hand. With this technique, we can turn any
user-given formula into a Python function!

Let us now use this technique in a useful application. Suppose we have made
a function for computing the integral

R b

a
f .x/dx by the Midpoint rule with n inter-

vals:

def midpoint_integration(f, a, b, n=100):
h = (b - a)/float(n)
I = 0
for i in range(n):

I += f(a + i*h + 0.5*h)
return h*I

We now want to read a, b, and n from the command line as well as the formula that
makes up the f .x/ function:

from math import *
import sys
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
if len(sys.argv) >= 5:

n = int(sys.argv[4])
else:

n = 200
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Note that we import everything from math and use eval when reading the input for
a and b as this will allow the user to provide values like 2*cos(pi/3).

The next step is to convert the f_formula for f .x/ into a Python function g(x):

code = """
def g(x):

return %s
""" % f_formula
exec(code)

Now we have an ordinary Python function g(x) that we can ask the integration
function to integrate:

I = midpoint_integration(g, a, b, n)
print ’Integral of %s on [%g, %g] with n=%d: %g’ % \

(f_formula, a, b, n, I)

The complete code is found in integrate.py. A sample run for
R �=2

0
sin.x/dx

goes like

Terminal

integrate.py "sin(x)" 0 pi/2
integral of sin(x) on [0, 1.5708] with n=200: 1

(The quotes in "sin(x)" are needed because of the parenthesis will otherwise
be interpreted by the shell.)

4.3.3 Turning String Expressions into Functions

The examples in the previous section indicate that it can be handy to ask the user for
a formula and turn that formula into a Python function. Since this operation is so
useful, we have made a special tool that hides the technicalities. The tool is named
StringFunction and works as follows:

>>> from scitools.StringFunction import StringFunction
>>> formula = ’exp(x)*sin(x)’
>>> f = StringFunction(formula) # turn formula into f(x) func.

The f object now behaves as an ordinary Python function of x:

>>> f(0)
0.0
>>> f(pi)
2.8338239229952166e-15
>>> f(log(1))
0.0

Expressions involving other independent variables than x are also possible. Here is
an example with the function g.t/ D Ae�at sin.!x/:

http://tinyurl.com/pwyasaa/input/integrate.py
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g = StringFunction(’A*exp(-a*t)*sin(omega*x)’,
independent_variable=’t’,
A=1, a=0.1, omega=pi, x=0.5)

The first argument is the function formula, as before, but now we need to specify
the name of the independent variable (’x’ is default). The other parameters in
the function (A, a, !, and x) must be specified with values, and we use keyword
arguments, consistent with the names in the function formula, for this purpose. Any
of the parameters A, a, omega, and x can be changed later by calls like

g.set_parameters(omega=0.1)
g.set_parameters(omega=0.1, A=5, x=0)

Calling g(t) works as if g were a plain Python function of t, which also stores all
the parameters A, a, omega, and x, and their values. You can use pydoc to bring up
more documentation on the possibilities with StringFunction. Just run

pydoc scitools.StringFunction.StringFunction

A final important point is that StringFunction objects are as computationally
efficient as hand-written Python functions. (This property is quite remarkable, as
a string formula will in most other programming languages be much slower to eval-
uate than if the formula were hardcoded inside a plain function.)

4.4 Option-Value Pairs on the Command Line

The examples on using command-line arguments so far require the user of the pro-
gram to type all arguments in their right sequence, just as when calling a function
with positional arguments in the right order. It would be very convenient to assign
command-line arguments in the same way as we use keyword arguments. That is,
arguments are associated with a name, their sequence can be arbitrary, and only the
arguments where the default value is not appropriate need to be given. Such type of
command-line arguments may have –option value pairs, where option is some
name of the argument.

As usual, we shall use an example to illustrate how to work with –option

value pairs. Consider the physics formula for the location s.t/ of an object at
time t , given that the object started at s D s0 at t D 0 with a velocity v0, and
thereafter was subject to a constant acceleration a:

s.t/ D s0 C v0t C 1

2
at2 : (4.1)

This formula requires four input variables: s0, v0, a, and t . We can make a program
location.py that takes four options, –s0, –v0, –a, and –t, on the command line.
The program is typically run like this:

Terminal

location.py --t 3 --s0 1 --v0 1 --a 0.5
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The sequence of –option value pairs is arbitrary. All options have a default value
such that one does not have to specify all options on the command line.

All input variables should have sensible default values such that we can leave out
the options for which the default value is suitable. For example, if s0 D 0, v0 D 0,
a D 1, and t D 1 by default, and we only want to change t , we can run

Terminal

location.py --t 3

4.4.1 Basic Usage of the Argparse Module

Python has a flexible and powerful module argparse for reading (parsing)
–option value pairs on the command line. Using argparse consists of three
steps. First, a parser object must be created:

import argparse
parser = argparse.ArgumentParser()

Second, we need to define the various command-line options,

parser.add_argument(’--v0’, ’--initial_velocity’, type=float,
default=0.0, help=’initial velocity’,
metavar=’v’)

parser.add_argument(’--s0’, ’--initial_position’, type=float,
default=0.0, help=’initial position’,
metavar=’s’)

parser.add_argument(’--a’, ’--acceleration’, type=float,
default=1., help=’acceleration’, metavar=’a’)

parser.add_argument(’--t’, ’--time’, type=float,
default=1.0, help=’time’, metavar=’t’)

The first arguments to parser.add_argument is the set of options that we want to
associate with an input parameter. Optional arguments are the type, a default value,
a help string, and a name for the value of the argument (metavar) in a usage string.
The argparse module will automatically allow an option -h or –help that prints
a usage string for all the registered options. By default, the type is str, the default
value is None, the help string is empty, and metavar is the option in upper case
without initial dashes.

Third, we must read the command line arguments and interpret them:

args = parser.parse_args()

Through the args object we can extract the values of the various registered param-
eters: args.v0, args.s0, args.a, and args.t. The name of the parameter is
determined by the first option to parser.add_argument, so writing

parser.add_argument(’--initial_velocity’, ’--v0’, type=float,
default=0.0, help=’initial velocity’)
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will make the initial velocity value appear as args.initial_velocity. We can
add the dest keyword to explicitly specify the name where the value is stored:

parser.add_argument(’--initial_velocity’, ’--v0’, dest=’V0’,
type=float, default=0.0,
help=’initial velocity’)

Now, args.V0 will retrieve the value of the initial velocity. In case we do not
provide any default value, the value will be None.

Our example is completed either by evaluating s as

s = args.s0 + args.v0*t + 0.5*args.a*args.t**2

or by introducing new variables so that the formula aligns better with the mathe-
matical notation:

s0 = args.s0; v0 = args.v0; a = args.a; t = args.t
s = s0 + v0*t + 0.5*a*t**2

A complete program for the example above is found in the file location.py.
Try to run it with the -h option to see an automatically generated explanation of
legal command-line options.

4.4.2 Mathematical Expressions as Values

Values on the command line involving mathematical symbols and functions, say
–v0 ’pi/2’, pose a problem with the code example above. The argparsemodule
will in that case try to do float(’pi/2’)which does not work well since pi is an
undefined name. Changing type=float to type=eval is required to interpret the
expression pi/2, but even eval(’pi/2’) fails since pi is not defined inside the
argparse module. There are various remedies for this problem.

One can write a tailored function for converting a string value given on the com-
mand line to the desired object. For example,

def evalcmlarg(text):
return eval(text)

parser.add_argument(’--s0’, ’--initial_position’, type=evalcmlarg,
default=0.0, help=’initial position’)

The file location_v2.py demonstrates such explicit type conversion through
a user-provided conversion function. Note that eval is now taken in the program-
mer’s namespace where (hopefully) pi or other symbols are imported.

More sophisticated conversions are possible. Say s0 is specified in terms of
a function of some parameter p, like s0 D .1 � p2/. We could then use a string for
–s0 and the StringFunction tool from Sect. 4.3.3 to turn the string into a func-
tion:

http://tinyurl.com/pwyasaa/input/location.py
http://tinyurl.com/pwyasaa/input/location_v2.py
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def toStringFunction4s0(text):
from scitools.std import StringFunction
return StringFunction(text, independent_variable=’p’)

parser.add_argument(’--s0’, ’--initial_position’,
type=toStringFunction4s0,
default=’0.0’, help=’initial position’)

Giving a command-line argument –s0 ’exp(-1.5) + 10(1-p**2) results in
args.s0 being a StringFunction object, which we must evaluate for a p value:

s0 = args.s0
p = 0.05
...
s = s0(p) + v0*t + 0.5*a*t**2

The file location_v3.py contains the complete code for this example.
Another alternative is to perform the correct conversion of values in our own

code after the parser object has read the values. To this end, we treat argu-
ment types as strings in the parser.add_argument calls, meaning that we replace
type=float by set type=str (which is also the default choice of type). Recall
that this approach requires specification of default values as strings too, say ’0’:

parser.add_argument(’--s0’, ’--initial_position’, type=str,
default=’0’, help=’initial position’)

...
from math import *
args.v0 = eval(args.v0)
# or
v0 = eval(args.v0)

s0 = StringFunction(args.s0, independent_variable=’p’)
p = 0.5
...
s = s0(p) + v0*t + 0.5*a*t**2

Such code is found in the file location_v4.py. You can try out that program with
the command-line arguments –s0 ’pi/2 + sqrt(p)’ –v0 pi/4’.

The final alternative is to write an Action class to handle the conversion from
string to the right type. This is the preferred way to perform conversions and well
described in the argparse documentation. We shall exemplify it here, but the
technicalities involved require understanding of classes (Chap. 7) and inheritance
(Chap. 9). For the conversion from string to any object via eval we write

import argparse
from math import *

class ActionEval(argparse.Action):
def __call__(self, parser, namespace, values,

option_string=None):
setattr(namespace, self.dest, eval(values))

http://tinyurl.com/pwyasaa/input/location_v3.py
http://tinyurl.com/pwyasaa/input/location_v4.py
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The command-line arguments supposed to be run through eval must then have an
action parameter:

parser.add_argument(’--v0’, ’--initial_velocity’,
default=0.0, help=’initial velocity’,
action=ActionEval)

From string to function via StringFunction for the –s0 argument we write

from scitools.std import StringFunction

class ActionStringFunction4s0(argparse.Action):
def __call__(self, parser, namespace, values,

option_string=None):
setattr(namespace, self.dest,

StringFunction(values, independent_variable=’p’))

A complete code appears in the file location_v5.py.

4.5 Reading Data from File

Getting input data into a program from the command line, or from questions and
answers in the terminal window, works for small amounts of data. Otherwise, input
data must be available in files. Anyone with some computer experience is used to
save and load data files in programs. The task now is to understand how Python
programs can read and write files. The basic recipes are quite simple and illustrated
through examples.

Suppose we have recorded some measurement data in the file src/input/data.
txt2. The goal of our first example of reading files is to read the measurement val-
ues in data.txt, find the average value, and print it out in the terminal window.

Before trying to let a program read a file, we must know the file format, i.e.,
what the contents of the file looks like, because the structure of the text in the file
greatly influences the set of statements needed to read the file. We therefore start
with viewing the contents of the file data.txt. To this end, load the file into a text
editor or viewer (one can use emacs, vim, more, or less on Unix and Mac, while on
Windows, WordPad is appropriate, or the type command in a DOS or PowerShell
window, and even Word processors such as LibreOffice or Microsoft Word can also
be used on Windows). What we see is a column with numbers:

21.8
18.1
19
23
26
17.8

2 http://tinyurl.com/pwyasaa/input/data.txt

http://tinyurl.com/pwyasaa/input/location_v5.py
http://tinyurl.com/pwyasaa/input/data.txt
http://tinyurl.com/pwyasaa/input/data.txt
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Our task is to read this column of numbers into a list in the program and compute
the average of the list items.

4.5.1 Reading a File Line by Line

To read a file, we first need to open the file. This action creates a file object, here
stored in the variable infile:

infile = open(’data.txt’, ’r’)

The second argument to the open function, the string ’r’, tells that we want to
open the file for reading. We shall later see that a file can be opened for writing
instead, by providing ’w’ as the second argument. After the file is read, one should
close the file object with infile.close().

The basic technique for reading the file line by line applies a for loop like this:

for line in infile:
# do something with line

The line variable is a string holding the current line in the file. The for loop over
lines in a file has the same syntax as when we go through a list. Just think of the
file object infile as a collection of elements, here lines in a file, and the for loop
visits these elements in sequence such that the line variable refers to one line at
a time. If something seemingly goes wrong in such a loop over lines in a file, it is
useful to do a print line inside the loop.

Instead of reading one line at a time, we can load all lines into a list of strings
(lines) by

lines = infile.readlines()

This statement is equivalent to

lines = []
for line in infile:

lines.append(line)

or the list comprehension:

lines = [line for line in infile]

In the present example, we load the file into the list lines. The next task is to
compute the average of the numbers in the file. Trying a straightforward sum of all
numbers on all lines,

mean = 0
for number in lines:

mean = mean + number
mean = mean/len(lines)
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gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a float or int
that we can add to other numbers. A fix is to convert each line to a float:

mean = 0
for line in lines:

number = float(line)
mean = mean + number

mean = mean/len(lines)

This code snippet works fine. The complete code can be found in the file mean1.py.
Summing up a list of numbers is often done in numerical programs, so Python

has a special function sum for performing this task. However, sum must in the
present case operate on a list of floats, not strings. We can use a list comprehension
to turn all elements in lines into corresponding float objects:

mean = sum([float(line) for line in lines])/len(lines)

An alternative implementation is to load the lines into a list of float objects di-
rectly. Using this strategy, the complete program (found in file mean2.py) takes the
form

infile = open(’data.txt’, ’r’)
numbers = [float(line) for line in infile.readlines()]
infile.close()
mean = sum(numbers)/len(numbers)
print mean

4.5.2 AlternativeWays of Reading a File

A newcomer to programming might find it confusing to see that one problem is
solved by many alternative sets of statements, but this is the very nature of program-
ming. A clever programmer will judge several alternative solutions to a program-
ming task and choose one that is either particularly compact, easy to understand,
and/or easy to extend later. We therefore present more examples on how to read the
data.txt file and compute with the data.

The modern with statement Modern Python code applies the with statement to
deal with files:

with open(’data.txt’, ’r’) as infile:
for line in infile:

# process line

http://tinyurl.com/pwyasaa/input/mean1.py
http://tinyurl.com/pwyasaa/input/mean2.py
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This snippet is equivalent to

infile = open(’data.txt’, ’r’)
for line in infile:

# process line
infile.close()

Note that there is no need to close the file when using the with statement. The
advantage of the with construction is shorter code and better handling of errors if
something goes wrong with opening or working with the file. A downside is that
the syntax differs from the very classical open-close pattern that one finds in most
other programming languages. Remembering to close a file is key in programming,
and to train that task, we mostly apply the open-close construction in this book.

The old while construction The call infile.readline() returns a string con-
taining the text at the current line. A new infile.readline() will read the next
line. When infile.readline() returns an empty string, the end of the file is
reached and we must stop further reading. The following while loop reads the file
line by line using infile.readline():

while True:
line = infile.readline()
if not line:

break
# process line

This is perhaps a somewhat strange loop, but it is a well-established way of
reading a file in Python, especially in older code. The shown while loop runs
forever since the condition is always True. However, inside the loop we test if
line is False, and it is False when we reach the end of the file, because line

then becomes an empty string, which in Python evaluates to False. When line is
False, the break statement breaks the loop and makes the program flow jump to
the first statement after the while block.

Computing the average of the numbers in the data.txt file can now be done in
yet another way:

infile = open(’data.txt’, ’r’)
mean = 0
n = 0
while True:

line = infile.readline()
if not line:

break
mean += float(line)
n += 1

mean = mean/float(n)

Reading a file into a string The call infile.read() reads the whole file and
returns the text as a string object. The following interactive session illustrates the
use and result of infile.read():
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>>> infile = open(’data.txt’, ’r’)
>>> filestr = infile.read()
>>> filestr
’21.8\n18.1\n19\n23\n26\n17.8\n’
>>> print filestr
21.8
18.1
19
23
26
17.8

Note the difference between just writing filestr and writing print filestr.
The former dumps the string with newlines as backslash n characters, while the
latter is a pretty print where the string is written out without quotes and with the
newline characters as visible line shifts.

Having the numbers inside a string instead of inside a file does not look like
a major step forward. However, string objects have many useful functions for ex-
tracting information. A very useful feature is split: filestr.split() will split
the string into words (separated by blanks or any other sequence of characters you
have defined). The “words” in this file are the numbers:

>>> words = filestr.split()
>>> words
[’21.8’, ’18.1’, ’19’, ’23’, ’26’, ’17.8’]
>>> numbers = [float(w) for w in words]
>>> mean = sum(numbers)/len(numbers)
>>> print mean
20.95

A more compact program looks as follows (mean3.py):

infile = open(’data.txt’, ’r’)
numbers = [float(w) for w in infile.read().split()]
mean = sum(numbers)/len(numbers)

The next section tells you more about splitting strings.

4.5.3 Reading aMixture of Text and Numbers

The data.txt file has a very simple structure since it contains numbers only.
Many data files contain a mix of text and numbers. The file rainfall.dat from
www.worldclimate.com3 provides an example:

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970
Jan 81.2
Feb 63.2
Mar 70.3

3 http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1

http://tinyurl.com/pwyasaa/input/mean3.py
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1
http://www.worldclimate.com/cgi-bin/data.pl?ref=N41E012+2100+1623501G1
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Apr 55.7
May 53.0
Jun 36.4
Jul 17.5
Aug 27.5
Sep 60.9
Oct 117.7
Nov 111.0
Dec 97.9
Year 792.9

How can we read the rainfall data in this file and store the information in lists
suitable for further analysis? The most straightforward solution is to read the file
line by line, and for each line split the line into words, store the first word (the
month) in one list and the second word (the average rainfall) in another list. The
elements in this latter list needs to be float objects if we want to compute with
them.

The complete code, wrapped in a function, may look like this (file rainfall1.
py):

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
months = []
rainfall = []
for line in infile:

words = line.split()
# words[0]: month, words[1]: rainfall
months.append(words[0])
rainfall.append(float(words[1]))

infile.close()
months = months[:-1] # Drop the "Year" entry
annual_avg = rainfall[-1] # Store the annual average
rainfall = rainfall[:-1] # Redefine to contain monthly data
return months, rainfall, annual_avg

months, values, avg = extract_data(’rainfall.dat’)
print ’The average rainfall for the months:’
for month, value in zip(months, values):

print month, value
print ’The average rainfall for the year:’, avg

Note that the first line in the file is just a comment line and of no interest to us. We
therefore read this line by infile.readline() and do not store the content in any
object. The for loop over the lines in the file will then start from the next (second)
line.

We store all the data into 13 elements in the months and rainfall lists. There-
after, we manipulate these lists a bit since we want months to contain the name of
the 12 months only. The rainfall list should correspond to this month list. The
annual average is taken out of rainfall and stored in a separate variable. Recall
that the -1 index corresponds to the last element of a list, and the slice :-1 picks
out all elements from the start up to, but not including, the last element.

http://tinyurl.com/pwyasaa/input/rainfall1.py
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We could, alternatively, have written a shorter code where the name of the
months and the rainfall numbers are stored in a nested list:

def extract_data(filename):
infile = open(filename, ’r’)
infile.readline() # skip the first line
data = [line.split() for line in infile]
annual_avg = data[-1][1]
data = [(m, float(r)) for m, r in data[:-1]]
infile.close()
return data, annual_avg

This is more advanced code, but understanding what is going on is a good test on
the understanding of nested lists indexing and list comprehensions. An executable
program is found in the file rainfall2.py.

Is it more to file reading? With the example code in this section, you have the very
basic tools for reading files with a simple structure: columns of text or numbers.
Many files used in scientific computations have such a format, but many files are
more complicated too. Then you need the techniques of string processing. This is
explained in detail in Chap. 6.

4.6 Writing Data to File

Writing data to file is easy. There is basically one function to pay attention to:
outfile.write(s), which writes a string s to a file handled by the file object
outfile. Unlike print, outfile.write(s)does not append a newline character
to the written string. It will therefore often be necessary to add a newline character,

outfile.write(s + ’\n’)

if the string s is meant to appear on a single line in the file and s does not already
contain a trailing newline character. File writing is then a matter of constructing
strings containing the text we want to have in the file and for each such string call
outfile.write.

Writing to a file demands the file object f to be opened for writing:

# write to new file, or overwrite file:
outfile = open(filename, ’w’)

# append to the end of an existing file:
outfile = open(filename, ’a’)

4.6.1 Example: Writing a Table to File

Problem As a worked example of file writing, we shall write out a nested list with
tabular data to file. A sample list may look as

http://tinyurl.com/pwyasaa/input/rainfall2.py
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[[ 0.75, 0.29619813, -0.29619813, -0.75 ],
[ 0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75 ]]

Solution We iterate through the rows (first index) in the list, and for each row, we
iterate through the column values (second index) and write each value to the file. At
the end of each row, we must insert a newline character in the file to get a linebreak.
The code resides in the file write1.py:

data = [[ 0.75, 0.29619813, -0.29619813, -0.75 ],
[ 0.29619813, 0.11697778, -0.11697778, -0.29619813],
[-0.29619813, -0.11697778, 0.11697778, 0.29619813],
[-0.75, -0.29619813, 0.29619813, 0.75 ]]

outfile = open(’tmp_table.dat’, ’w’)
for row in data:

for column in row:
outfile.write(’%14.8f’ % column)

outfile.write(’\n’)
outfile.close()

The resulting data file becomes

0.75000000 0.29619813 -0.29619813 -0.75000000
0.29619813 0.11697778 -0.11697778 -0.29619813

-0.29619813 -0.11697778 0.11697778 0.29619813
-0.75000000 -0.29619813 0.29619813 0.75000000

An extension of this program consists in adding column and row headings:

column 1 column 2 column 3 column 4
row 1 0.75000000 0.29619813 -0.29619813 -0.75000000
row 2 0.29619813 0.11697778 -0.11697778 -0.29619813
row 3 -0.29619813 -0.11697778 0.11697778 0.29619813
row 4 -0.75000000 -0.29619813 0.29619813 0.75000000

To obtain this end result, we need to the add some statements to the program
write1.py. For the column headings we must know the number of columns, i.e.,
the length of the rows, and loop from 1 to this length:

ncolumns = len(data[0])
outfile.write(’ ’)
for i in range(1, ncolumns+1):

outfile.write(’%10s ’ % (’column %2d’ % i))
outfile.write(’\n’)

Note the use of a nested printf construction: the text we want to insert is itself
a printf string. We could also have written the text as ’column ’ + str(i), but
then the length of the resulting string would depend on the number of digits in

http://tinyurl.com/pwyasaa/input/write1.py
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i. It is recommended to always use printf constructions for a tabular output format,
because this gives automatic padding of blanks so that the width of the output strings
remains the same. The tuning of the widths is commonly done in a trial-and-error
process.

To add the row headings, we need a counter over the row numbers:

row_counter = 1
for row in data:

outfile.write(’row %2d’ % row_counter)
for column in row:

outfile.write(’%14.8f’ % column)
outfile.write(’\n’)
row_counter += 1

The complete code is found in the file write2.py. We could, alternatively, iterate
over the indices in the list:

for i in range(len(data)):
outfile.write(’row %2d’ % (i+1))
for j in range(len(data[i])):

outfile.write(’%14.8f’ % data[i][j])
outfile.write(’\n’)

4.6.2 Standard Input and Output as File Objects

Reading user input from the keyboard applies the function raw_input as explained
in Sect. 4.1. The keyboard is a medium that the computer in fact treats as a file,
referred to as standard input.

The print command prints text in the terminal window. This medium is also
viewed as a file from the computer’s point of view and called standard output.
All general-purpose programming languages allow reading from standard input
and writing to standard output. This reading and writing can be done with two
types of tools, either file-like objects or special tools like raw_input and print in
Python. We will here describe the file-line objects: sys.stdin for standard input
and sys.stdout for standard output. These objects behave as file objects, except
that they do not need to be opened or closed. The statement

s = raw_input(’Give s:’)

is equivalent to

print ’Give s: ’,
s = sys.stdin.readline()

Recall that the trailing comma in the print statement avoids the newline that print
by default adds to the output string. Similarly,

s = eval(raw_input(’Give s:’))

http://tinyurl.com/pwyasaa/input/write2.py
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is equivalent to

print ’Give s: ’,
s = eval(sys.stdin.readline())

For output to the terminal window, the statement

print s

is equivalent to

sys.stdout.write(s + ’\n’)

Why it is handy to have access to standard input and output as file objects can be
illustrated by an example. Suppose you have a function that reads data from a file
object infile and writes data to a file object outfile. A sample function may
take the form

def x2f(infile, outfile, f):
for line in infile:

x = float(line)
y = f(x)
outfile.write(’%g\n’ % y)

This function works with all types of files, including web pages as infile (see
Sect. 6.3). With sys.stdin as infile and/or sys.stdout as outfile, the
x2f function also works with standard input and/or standard output. With-
out sys.stdin and sys.stdout, we would need different code, employing
raw_input and print, to deal with standard input and output. Now we can
write a single function that deals with all file media in a unified way.

There is also something called standard error. Usually this is the terminal win-
dow, just as standard output, but programs can distinguish between writing ordinary
output to standard output and error messages to standard error, and these output
media can be redirected to, e.g., files such that one can separate error messages
from ordinary output. In Python, standard error is the file-like object sys.stderr.
A typical application of sys.stderr is to report errors:

if x < 0:
sys.stderr.write(’Illegal value of x’); sys.exit(1)

This message to sys.stderr is an alternative to print or raising an exception.

Redirecting standard input, output, and error Standard output from a program
prog can be redirected to a file output instead of the screen, by using the greater
than sign:

Terminal

Terminal> prog > output
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Here, prog can be any program, including a Python program run as python

myprog.py. Similarly, output to the medium called standard error can be redi-
rected by

Terminal

Terminal> prog &> output

For example, error messages are normally written to standard error, which is exem-
plified in this little terminal session on a Unix machine:

Terminal

Terminal> ls bla-bla1 bla-bla2
ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory
Terminal> ls bla-bla1 bla-bla2 &> errors
Terminal> cat errors # print the file errors
ls: cannot access bla-bla1: No such file or directory
ls: cannot access bla-bla2: No such file or directory

When the program reads from standard input (the keyboard), we can equally well
redirect standard input from a file, say with name input, such that the program
reads from this file rather than from the keyboard:

Terminal

Terminal> prog < input

Combinations are also possible:

Terminal

Terminal> prog < input > output

Note The redirection of standard output, input, and error does not work for Python
programs executed with the run command inside IPython, only when executed di-
rectly in the operating system in a terminal window, or with the same command
prefixed with an exclamation mark in IPython.

Inside a Python program we can also let standard input, output, and error work
with ordinary files instead. Here is the technique:

sys_stdout_orig = sys.stdout
sys.stdout = open(’output’, ’w’)
sys_stdin_orig = sys.stdin
sys.stdin = open(’input’, ’r’)

Now, any print statement will write to the output file, and any raw_input call
will read from the input file. (Without storing the original sys.stdout and
sys.stdin objects in new variables, these objects would get lost in the redefini-
tion above and we would never be able to reach the common standard input and
output in the program.)
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4.6.3 What is a File, Really?

This section is not mandatory for understanding the rest of the book. Nevertheless,
the information here is fundamental for understanding what files are about.

A file is simply a sequence of characters. In addition to the sequence of charac-
ters, a file has some data associated with it, typically the name of the file, its location
on the disk, and the file size. These data are stored somewhere by the operating sys-
tem. Without this extra information beyond the pure file contents as a sequence of
characters, the operating system cannot find a file with a given name on the disk.

Each character in the file is represented as a byte, consisting of eight bits. Each
bit is either 0 or 1. The zeros and ones in a byte can be combined in 28 D 256

ways. This means that there are 256 different types of characters. Some of these
characters can be recognized from the keyboard, but there are also characters that
do not have a familiar symbol. Such characters looks cryptic when printed.

Pure text files To see that a file is really just a sequence of characters, invoke an
editor for plain text, typically the editor you use to write Python programs. Write the
four characters ABCD into the editor, do not press the Return key, and save the text
to a file test1.txt. Use your favorite tool for file and folder overview and move
to the folder containing the test1.txt file. This tool may be Windows Explorer,
My Computer, or a DOS window on Windows; a terminal window, Konqueror, or
Nautilus on Linux; or a terminal window or Finder on Mac. If you choose a terminal
window, use the cd (change directory) command to move to the proper folder and
write dir (Windows) or ls -l (Linux/Mac) to list the files and their sizes. In
a graphical program like Windows Explorer, Konqueror, Nautilus, or Finder, select
a view that shows the size of each file (choose view as details in Windows Explorer,
View as List in Nautilus, the list view icon in Finder, or you just point at a file icon
in Konqueror and watch the pop-up text). You will see that the test1.txt file has
a size of 4 bytes (if you use ls -l, the size measured in bytes is found in column
5, right before the date). The 4 bytes are exactly the 4 characters ABCD in the file.
Physically, the file is just a sequence of 4 bytes on your hard disk.

Go back to the editor again and add a newline by pressing the Return key. Save
this new version of the file as test2.txt. When you now check the size of the
file it has grown to five bytes. The reason is that we added a newline character
(symbolically known as backslash n: \n).

Instead of examining files via editors and folder viewers we may use Python
interactively:

>>> file1 = open(’test1.txt’, ’r’).read() # read file into string
>>> file1
’ABCD’
>>> len(file1) # length of string in bytes/characters
4
>>> file2 = open(’test2.txt’, ’r’).read()
>>> file2
’ABCD\n’
>>> len(file2)
5
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Python has in fact a function that returns the size of a file directly:

>>> import os
>>> size = os.path.getsize(’test1.txt’)
>>> size
4

Word processor files Most computer users write text in a word processing pro-
gram, such as Microsoft Word or LibreOffice. Let us investigate what happens with
our four characters ABCD in such a program. Start the word processor, open a new
document, and type in the four characters ABCD only. Save the document as a .docx
file (Microsoft Word) or an .odt file (LibreOffice). Load this file into an editor for
pure text and look at the contents. You will see that there are numerous strange
characters that you did not write (!). This additional “text” contains information on
what type of document this is, the font you used, etc. The LibreOffice version of
this file has 8858 bytes and the Microsoft Word version contains over 26 Kb! How-
ever, if you save the file as a pure text file, with extension .txt, the size is down to
8 bytes in LibreOffice and five in Microsoft Word.

Instead of loading the LibreOffice file into an editor we can again read the file
contents into a string in Python and examine this string:

>>> infile = open(’test3.odt’, ’r’) # open LibreOffice file
>>> s = infile.read()
>>> len(s) # file size
8858
>>> s
’PK\x03\x04\x14\x00\x00\x08\x00\x00sKWD^\xc62\x0c\’\x00...
\x00meta.xml<?xml version="1.0" encoding="UTF-8"?>\n<office:...
" xmlns:meta="urn:oasis:names:tc:opendocument:xmlns:meta:1.0"

Each backslash followed by x and a number is a code for a special character not
found on the keyboard (recall that there are 256 characters and only a subset is
associated with keyboard symbols). Although we show just a small portion of all
the characters in this file in the above output (otherwise, the output would have
occupied several pages in this book with thousands symbols like \x04...), we can
guarantee that you cannot find the pure sequence of characters ABCD. However, the
computer program that generated the file, LibreOffice in this example, can easily
interpret the meaning of all the characters in the file and translate the information
into nice, readable text on the screen where you can recognize the text ABCD.

Your are now in a position to look into Exercise 4.8 to see what happens if one
attempts to use LibreOffice to write Python programs.

Image files A digital image – captured by a digital camera or a mobile phone –
is a file. And since it is a file, the image is just a sequence of characters. Loading
some JPEG file into a pure text editor, reveals all the strange characters in there. On
the first line you will (normally) find some recognizable text in between the strange
characters. This text reflects the type of camera used to capture the image and the
date and time when the picture was taken. The next lines contain more information
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about the image. Thereafter, the file contains a set of numbers representing the
image. The basic representation of an image is a set of m � n pixels, where each
pixel has a color represented as a combination of 256 values of red, green, and
blue, which can be stored as three bytes (resulting in 2563 color values). A 6-
megapixel camera will then need to store 3 � 6 � 106 D 18 megabytes for one
picture. The JPEG file contains only a couple of megabytes. The reason is that
JPEG is a compressed file format, produced by applying a smart technique that can
throw away pixel information in the original picture such that the human eye hardly
can detect the inferior quality.

A video is just a sequence of images, and therefore a video is also a stream of
bytes. If the change from one video frame (image) to the next is small, one can
use smart methods to compress the image information in time. Such compression
is particularly important for videos since the file sizes soon get too large for being
transferred over the Internet. A small video file occasionally has bad visual quality,
caused by too much compression.

Music files An MP3 file is much like a JPEG file: first, there is some information
about the music (artist, title, album, etc.), and then comes the music itself as a stream
of bytes. A typical MP3 file has a size of something like five million bytes or five
megabytes (5 Mb). The exact size depends on the complexity of the music, the
length of the track, and the MP3 resolution. On a 16 Gb MP3 player you can then
store roughly 16;000;000;000=5;000;000 D 3200 MP3 files. MP3 is, like JPEG,
a compressed format. The complete data of a song on a CD (the WAV file) contains
about ten times as many bytes. As for pictures, the idea is that one can throw
away a lot of bytes in an intelligent way, such that the human ear hardly detects the
difference between a compressed and uncompressed version of the music file.

PDF files Looking at a PDF file in a pure text editor shows that the file contains
some readable text mixed with some unreadable characters. It is not possible for
a human to look at the stream of bytes and deduce the text in the document (well,
from the assumption that there are always some strange people doing strange things,
there might be somebody out there who, with a lot of training, can interpret the pure
PDF code with the eyes). A PDF file reader can easily interpret the contents of the
file and display the text in a human-readable form on the screen.

Remarks We have repeated many times that a file is just a stream of bytes. A hu-
man can interpret (read) the stream of bytes if it makes sense in a human language
– or a computer language (provided the human is a programmer). When the series
of bytes does not make sense to any human, a computer program must be used to
interpret the sequence of characters.

Think of a report. When you write the report as pure text in a text editor, the
resulting file contains just the characters you typed in from the keyboard. On the
other hand, if you applied a word processor like Microsoft Word or LibreOffice,
the report file contains a large number of extra bytes describing properties of the
formatting of the text. This stream of extra bytes does not make sense to a human,
and a computer program is required to interpret the file content and display it in
a form that a human can understand. Behind the sequence of bytes in the file there
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are strict rules telling what the series of bytes means. These rules reflect the file

format. When the rules or file format is publicly documented, a programmer can
use this documentation to make her own program for interpreting the file contents
(however, interpreting such files is much more complicated than our examples on
reading human-readable files in this book). It happens, though, that secret file for-
mats are used, which require certain programs from certain companies to interpret
the files.

4.7 Handling Errors

Suppose we forget to provide a command-line argument to the c2f_cml.py pro-
gram from Sect. 4.2.1:

Terminal

c2f_cml.py
Traceback (most recent call last):

File "c2f_cml.py", line 2, in ?
C = float(sys.argv[1])

IndexError: list index out of range

Python aborts the program and shows an error message containing the line where
the error occurred, the type of the error (IndexError), and a quick explanation of
what the error is. From this information we deduce that the index 1 is out of range.
Because there are no command-line arguments in this case, sys.argv has only one
element, namely the program name. The only valid index is then 0.

For an experienced Python programmer this error message will normally be clear
enough to indicate what is wrong. For others it would be very helpful if wrong usage
could be detected by our program and a description of correct operation could be
printed. The question is how to detect the error inside the program.

The problem in our sample execution is that sys.argv does not contain two
elements (the program name, as always, plus one command-line argument). We can
therefore test on the length of sys.argv to detect wrong usage: if len(sys.argv)
is less than 2, the user failed to provide information on the C value. The new version
of the program, c2f_cml_if.py, starts with this if test:

if len(sys.argv) < 2:
print ’You failed to provide Celsius degrees as input ’\

’on the command line!’
sys.exit(1) # abort because of error

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

We use the sys.exit function to abort the program. Any argument different from
zero signifies that the program was aborted due to an error, but the precise value of
the argument does not matter so here we simply choose it to be 1. If no errors are
found, but we still want to abort the program, sys.exit(0) is used.
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A more modern and flexible way of handling potential errors in a program is
to try to execute some statements, and if something goes wrong, the program can
detect this and jump to a set of statements that handle the erroneous situation as
desired. The relevant program construction reads

try:
<statements>

except:
<statements>

If something goes wrong when executing the statements in the try block, Python
raises what is known as an exception. The execution jumps directly to the except

block whose statements can provide a remedy for the error. The next section ex-
plains the try-except construction in more detail through examples.

4.7.1 Exception Handling

To clarify the idea of exception handling, let us use a try-except block to han-
dle the potential problem arising when our Celsius-Fahrenheit conversion program
lacks a command-line argument:

import sys
try:

C = float(sys.argv[1])
except:

print ’You failed to provide Celsius degrees as input ’\
’on the command line!’

sys.exit(1) # abort
F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

The program is stored in the file c2f_cml_except1.py. If the command-line ar-
gument is missing, the indexing sys.argv[1], which has an invalid index 1, raises

an exception. This means that the program jumps directly to the except block, im-
plying that float is not called, and C is not initialized with a value. In the except
block, the programmer can retrieve information about the exception and perform
statements to recover from the error. In our example, we know what the error can
be, and therefore we just print a message and abort the program.

Suppose the user provides a command-line argument. Now, the try block is
executed successfully, and the program neglects the except block and continues
with the Fahrenheit conversion. We can try out the last program in two cases:

Terminal

c2f_cml_except1.py
You failed to provide Celsius degrees as input on the command line!

c2f_cml_except1.py 21
21C is 69.8F

http://tinyurl.com/pwyasaa/input/c2f_cml_except1.py
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In the first case, the illegal index in sys.argv[1] causes an exception to be raised,
and we perform the steps in the except block. In the second case, the try block
executes successfully, so we jump over the except block and continue with the
computations and the printout of results.

For a user of the program, it does not matter if the programmer applies an if

test or exception handling to recover from a missing command-line argument. Nev-
ertheless, exception handling is considered a better programming solution because
it allows more advanced ways to abort or continue the execution. Therefore, we
adopt exception handling as our standard way of dealing with errors in the rest of
this book.

Testing for a specific exception Consider the assignment

C = float(sys.argv[1])

There are two typical errors associated with this statement: i) sys.argv[1] is ille-
gal indexing because no command-line arguments are provided, and ii) the content
in the string sys.argv[1] is not a pure number that can be converted to a float

object. Python detects both these errors and raises an IndexError exception in the
first case and a ValueError in the second. In the program above, we jump to the
except block and issue the same message regardless of what went wrong in the
try block. For example, when we indeed provide a command-line argument, but
write it on an illegal form (21C), the program jumps to the except block and prints
a misleading message:

Terminal

c2f_cml_except1.py 21C
You failed to provide Celsius degrees as input on the command line!

The solution to this problem is to branch into different except blocks de-
pending on what type of exception that was raised in the try block (program
c2f_cml_except2.py):

import sys
try:

C = float(sys.argv[1])
except IndexError:

print ’Celsius degrees must be supplied on the command line’
sys.exit(1) # abort execution

except ValueError:
print ’Celsius degrees must be a pure number, ’\

’not "%s"’ % sys.argv[1]
sys.exit(1)

F = 9.0*C/5 + 32
print ’%gC is %.1fF’ % (C, F)

Now, if we fail to provide a command-line argument, an IndexError occurs
and we tell the user to write the C value on the command line. On the other hand, if

http://tinyurl.com/pwyasaa/input/c2f_cml_except2.py
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the float conversion fails, because the command-line argument has wrong syntax,
a ValueError exception is raised and we branch into the second except block and
explain that the form of the given number is wrong:

Terminal

c2f_cml_except1.py 21C
Celsius degrees must be a pure number, not "21C"

Examples on exception types List indices out of range lead to IndexError ex-
ceptions:

>>> data = [1.0/i for i in range(1,10)]
>>> data[9]
...
IndexError: list index out of range

Some programming languages (Fortran, C, C++, and Perl are examples) allow list
indices outside the legal index values, and such unnoticed errors can be hard to find.
Python always stops a program when an invalid index is encountered, unless you
handle the exception explicitly as a programmer.

Converting a string to float is unsuccessful and gives a ValueError if the
string is not a pure integer or real number:

>>> C = float(’21 C’)
...
ValueError: invalid literal for float(): 21 C

Trying to use a variable that is not initialized gives a NameError exception:

>>> print a
...
NameError: name ’a’ is not defined

Division by zero raises a ZeroDivisionError exception:

>>> 3.0/0
...
ZeroDivisionError: float division

Writing a Python keyword illegally or performing a Python grammar error leads to
a SyntaxError exception:

>>> forr d in data:
...

forr d in data:
^

SyntaxError: invalid syntax

What if we try to multiply a string by a number?
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>>> ’a string’*3.14
...
TypeError: can’t multiply sequence by non-int of type ’float’

The TypeError exception is raised because the object types involved in the multi-
plication are wrong (str and float).

Digression It might come as a surprise, but multiplication of a string and a number
is legal if the number is an integer. The multiplication means that the string should
be repeated the specified number of times. The same rule also applies to lists:

>>> ’--’*10 # ten double dashes = 20 dashes
’--------------------’
>>> n = 4
>>> [1, 2, 3]*n
[1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> [0]*n
[0, 0, 0, 0]

The latter construction is handy when we want to create a list of n elements and
later assign specific values to each element in a for loop.

4.7.2 Raising Exceptions

When an error occurs in your program, you may either print a message and use
sys.exit(1) to abort the program, or you may raise an exception. The latter task
is easy. You just write raise E(message), where E can be a known exception type
in Python and message is a string explaining what is wrong. Most often E means
ValueError if the value of some variable is illegal, or TypeError if the type of
a variable is wrong. You can also define your own exception types. An exception
can be raised from any location in a program.

Example In the program c2f_cml_except2.py from Sect. 4.7.1 we show how
we can test for different exceptions and abort the program. Sometimes we see that
an exception may happen, but if it happens, we want a more precise error message
to help the user. This can be done by raising a new exception in an except block
and provide the desired exception type and message.

Another application of raising exceptions with tailored error messages arises
when input data are invalid. The code below illustrates how to raise exceptions in
various cases.

We collect the reading of C and handling of errors a separate function:

def read_C():
try:

C = float(sys.argv[1])
except IndexError:

raise IndexError\
(’Celsius degrees must be supplied on the command line’)
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except ValueError:
raise ValueError\
(’Celsius degrees must be a pure number, ’\
’not "%s"’ % sys.argv[1])

# C is read correctly as a number, but can have wrong value:
if C < -273.15:

raise ValueError(’C=%g is a non-physical value!’ % C)
return C

There are two ways of using the read_C function. The simplest is to call the func-
tion,

C = read_C()

Wrong input will now lead to a raw dump of exceptions, e.g.,

Terminal

c2f_cml_v5.py
Traceback (most recent call last):

File "c2f_cml4.py", line 5, in ?
raise IndexError\

IndexError: Celsius degrees must be supplied on the command line

New users of this program may become uncertain when getting raw output from
exceptions, because words like Traceback, raise, and IndexError do not make
much sense unless you have some experience with Python. A more user-friendly
output can be obtained by calling the read_C function inside a try-except block,
check for any exception (or better: check for IndexError or ValueError), and
write out the exception message in a more nicely formatted form. In this way, the
programmer takes complete control of how the program behaves when errors are
encountered:

try:
C = read_C()

except Exception as e:
print e # exception message
sys.exit(1) # terminate execution

Exception is the parent name of all exceptions, and e is an exception object.
Nice printout of the exception message follows from a straight print e. Instead of
Exception we can write (ValueError, IndexError) to test more specifically
for two exception types we can expect from the read_C function:

try:
C = read_C()

except (ValueError, IndexError) as e:
print e # exception message
sys.exit(1) # terminate execution
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After the try-except block above, we can continue with computing F = 9*C/5

+ 32 and print out F. The complete program is found in the file c2f_cml.py. We
may now test the program’s behavior when the input is wrong and right:

Terminal

c2f_cml.py
Celsius degrees must be supplied on the command line

c2f_cml.py 21C
Celsius degrees must be a pure number, not "21C"

c2f_cml.py -500
C=-500 is a non-physical value!

c2f_cml.py 21
21C is 69.8F

This program deals with wrong input, writes an informative message, and termi-
nates the execution without annoying behavior.

Scattered if tests with sys.exit calls are considered a bad programming style
compared to the use of nested exception handling as illustrated above. You should
abort execution in the main program only, not inside functions. The reason is that
the functions can be re-used in other occasions where the error can be dealt with
differently. For instance, one may avoid abortion by using some suitable default
data.

The programming style illustrated above is considered the best way of dealing
with errors, so we suggest that you hereafter apply exceptions for handling potential
errors in the programs you make, simply because this is what experienced program-
mers expect from your codes.

4.8 A Glimpse of Graphical User Interfaces

Maybe you find it somewhat strange that the usage of the programs we have made
so far in this book – and the programs we will make in the rest of the book –
are less graphical and intuitive than the computer programs you are used to from
school or entertainment. Those programs are operated through some self-explaining
graphics, and most of the things you want to do involve pointing with the mouse,
clicking on graphical elements on the screen, and maybe filling in some text fields.
The programs in this book, on the other hand, are run from the command line in
a terminal window or inside IPython, and input is also given here in form of plain
text.

The reason why we do not equip the programs in this book with graphical inter-
faces for providing input, is that such graphics is both complicated and tedious to
write. If the aim is to solve problems from mathematics and science, we think it
is better to focus on this part rather than large amounts of code that merely offers
some “expected” graphical cosmetics for putting data into the program. Textual
input from the command line is also quicker to provide. Also remember that the
computational functionality of a program is obviously independent from the type of
user interface, textual or graphic.

http://tinyurl.com/pwyasaa/input/c2f_cml.py
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Fig. 4.1 Screen dump of the graphical interface for a Celsius to Fahrenheit conversion program.
The user can type in the temperature in Celsius degrees, and when clicking on the is button, the
corresponding Fahrenheit value is displayed

As an illustration, we shall now show a Celsius to Fahrenheit conversion program
with a graphical user interface (often called a GUI). The GUI is shown in Fig. 4.1.
We encourage you to try out the graphical interface – the name of the program is
c2f_gui.py. The complete program text is listed below.

from Tkinter import *
root = Tk()
C_entry = Entry(root, width=4)
C_entry.pack(side=’left’)
Cunit_label = Label(root, text=’Celsius’)
Cunit_label.pack(side=’left’)

def compute():
C = float(C_entry.get())
F = (9./5)*C + 32
F_label.configure(text=’%g’ % F)

compute = Button(root, text=’ is ’, command=compute)
compute.pack(side=’left’, padx=4)

F_label = Label(root, width=4)
F_label.pack(side=’left’)
Funit_label = Label(root, text=’Fahrenheit’)
Funit_label.pack(side=’left’)

root.mainloop()

The goal of the forthcoming dissection of this program is to give a taste of how
graphical user interfaces are coded. The aim is not to equip you with knowledge on
how you can make such programs on your own.

A GUI is built of many small graphical elements, called widgets. The graphical
window generated by the program above and shown in Fig. 4.1 has five such wid-
gets. To the left there is an entry widget where the user can write in text. To the right
of this entry widget is a label widget, which just displays some text, here “Celsius”.
Then we have a button widget, which when being clicked leads to computations in
the program. The result of these computations is displayed as text in a label widget
to the right of the button widget. Finally, to the right of this result text we have
another label widget displaying the text “Fahrenheit”. The program must construct
each widget and pack it correctly into the complete window. In the present case, all
widgets are packed from left to right.

The first statement in the program imports functionality from the GUI toolkit
Tkinter to construct widgets. First, we need to make a root widget that holds the
complete window with all the other widgets. This root widget is of type Tk. The

http://tinyurl.com/pwyasaa/input/c2f_gui.py
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first entry widget is then made and referred to by a variable C_entry. This widget is
an object of type Entry, provided by the Tkinter module. Widgets constructions
follow the syntax

variable_name = Widget_type(parent_widget, option1, option2, ...)
variable_name.pack(side=’left’)

When creating a widget, we must bind it to a parent widget, which is the graphical
element in which this new widget is to be packed. Our widgets in the present
program have the root widget as parent widget. Various widgets have different
types of options that we can set. For example, the Entry widget has a possibility
for setting the width of the text field, here width=4 means that the text field is 4
characters wide. The pack statement is important to remember – without it, the
widget remains invisible.

The other widgets are constructed in similar ways. The next fundamental feature
of our program is how computations are tied to the event of clicking the button is.
The Button widget has naturally a text, but more important, it binds the button to
a function compute through the command=compute option. This means that when
the user clicks the button is, the function compute is called. Inside the compute

function we first fetch the Celsius value from the C_entry widget, using this wid-
get’s get function, then we transform this string (everything typed in by the user
is interpreted as text and stored in strings) to a float before we compute the cor-
responding Fahrenheit value. Finally, we can update (configure) the text in the
Label widget F_label with a new text, namely the computed degrees in Fahren-
heit.

A program with a GUI behaves differently from the programs we construct in
this book. First, all the statements are executed from top to bottom, as in all our
other programs, but these statements just construct the GUI and define functions.
No computations are performed. Then the program enters a so-called event loop:
root.mainloop(). This is an infinite loop that “listens” to user events, such as
moving the mouse, clicking the mouse, typing characters on the keyboard, etc.
When an event is recorded, the program starts performing associated actions. In
the present case, the program waits for only one event: clicking the button is. As
soon as we click on the button, the compute function is called and the program
starts doing mathematical work. The GUI will appear on the screen until we de-
stroy the window by click on the X up in the corner of the window decoration.
More complicated GUIs will normally have a special Quit button to terminate the
event loop.

In all GUI programs, we must first create a hierarchy of widgets to build up all
elements of the user interface. Then the program enters an event loop and waits for
user events. Lots of such events are registered as actions in the program when cre-
ating the widgets, so when the user clicks on buttons, move the mouse into certain
areas, etc., functions in the program are called and “things happen”.

Many books explain how to make GUIs in Python programs, see for instance
[5, 7, 13, 16].
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4.9 MakingModules

Sometimes you want to reuse a function from an old program in a new program.
The simplest way to do this is to copy and paste the old source code into the new
program. However, this is not good programming practice, because you then over
time end up with multiple identical versions of the same function. When you want
to improve the function or correct a bug, you need to remember to do the same
update in all files with a copy of the function, and in real life most programmers fail
to do so. You easily end up with a mess of different versions with different quality
of basically the same code. Therefore, a golden rule of programming is to have one
and only one version of a piece of code. All programs that want to use this piece
of code must access one and only one place where the source code is kept. This
principle is easy to implement if we create a module containing the code we want
to reuse later in different programs.

When reading this, you probably know how to use a ready-made module. For
example, if you want to compute the factorial kŠ D k.k � 1/.k � 2/ � � � 1, there is
a function factorial in Python’s math module that can be help us out. The usage
goes with the math prefix,

import math
value = math.factorial(5)

or without,

from math import factorial
# or: from math import *
value = factorial(5)

Now you shall learn how to make your own Python modules. There is hardly
anything to learn, because you just collect all the functions that constitute the mod-
ule in one file, say with name mymodule.py. This file is automatically a module,
with name mymodule, and you can import functions from this module in the stan-
dard way. Let us make everything clear in detail by looking at an example.

4.9.1 Example: Interest on Bank Deposits

The classical formula for the growth of money in a bank reads

A D A0

�

1C p

360 � 100

�n

; (4.2)

where A0 is the initial amount of money, and A is the present amount after n days
with p percent annual interest rate. (The formula applies the convention that the
rate per day is computed as p=360, while n counts the actual number of days the
money is in the bank, see the Wikipedia entry Day count convention4 for explana-
tion. There is a handy Python module datetime for computing the number of days
between two dates.)

4 http://en.wikipedia.org/wiki/Day_count_convention

http://en.wikipedia.org/wiki/Day_count_convention
http://en.wikipedia.org/wiki/Day_count_convention
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Equation (4.2) involves four parameters: A, A0, p, and n. We may solve for any
of these, given the other three:

A0 D A
�

1C p

360 � 100

��n

; (4.3)

n D
ln A

A0

ln
�

1C p

360�100

	 ; (4.4)

p D 360 � 100

 

�

A

A0

�1=n

� 1

!

: (4.5)

Suppose we have implemented (4.2)–(4.5) in four functions:

from math import log as ln

def present_amount(A0, p, n):
return A0*(1 + p/(360.0*100))**n

def initial_amount(A, p, n):
return A*(1 + p/(360.0*100))**(-n)

def days(A0, A, p):
return ln(A/A0)/ln(1 + p/(360.0*100))

def annual_rate(A0, A, n):
return 360*100*((A/A0)**(1.0/n) - 1)

We want to make these functions available in a module, say with name
interest, so that we can import functions and compute with them in a program.
For example,

from interest import days
A0 = 1; A = 2; p = 5
n = days(A0, 2, p)
years = n/365.0
print ’Money has doubled after %.1f years’ % years

How to make the interest module is described next.

4.9.2 Collecting Functions in a Module File

To make a module of the four functions present_amount, initial_amount,
days, and annual_rate, we simply open an empty file in a text editor and copy
the program code for all the four functions over to this file. This file is then auto-
matically a Python module provided we save the file under any valid filename. The
extension must be .py, but the module name is only the base part of the filename.
In our case, the filename interest.py implies a module name interest. To use
the annual_rate function in another program we simply write, in that program



190 4 User Input and Error Handling

file,

from interest import annual_rate

or we can write

from interest import *

to import all four functions, or we can write

import interest

and access individual functions as interest.annual_rate and so forth.

4.9.3 Test Block

It is recommended to only have functions and not any statements outside functions
in a module. The reason is that the module file is executed from top to bottom
during the import. With function definitions only in the module file, and no main
program, there will be no calculations or output from the import, just definitions of
functions. This is the desirable behavior. However, it is often convenient to have
test or demonstrations in the module file, and then there is need for a main program.
Python allows a very fortunate construction to let the file act both as a module with
function definitions only (and no main program) and as an ordinary program we
can run, with functions and a main program.

This two-fold “magic” is realized by putting the main program after an if test
of the form

if __name__ == ’__main__’:
<block of statements>

The __name__ variable is automatically defined in any module and equals the mod-
ule name if the module file is imported in another program, or __name__ equals the
string ’__main__’ if the module file is run as a program. This implies that the
<block of statements> part is executed if and only if we run the module file
as a program. We shall refer to <block of statements> as the test block of
a module.

Example on a test block in a minimalistic module A very simple example will
illustrate how this works. Consider a file mymod.py with the content

def add1(x):
return x + 1

if __name__ == ’__main__’:
print ’run as program’
import sys
print add1(float(sys.argv[1]))
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We can import mymod as a module and make use of the add1 function:

>>> import mymod
>>> print mymod.add1(4)
5

During the import, the if test is false, and the only the function definition is exe-
cuted. However, if we run mymod.py as a program,

Terminal

mymod.py 5
run as program
6

the if test becomes true, and the print statements are executed.

Tip on easy creation of a module

If you have some functions and a main program in some program file, just move
the main program to the test block. Then the file can act as a module, giving
access to all the functions in other files, or the file can be executed from the
command line, in the same way as the original program.

A test block in the interest module Let us write a little main program for
demonstrating the interest module in a test block. We read p from the com-
mand line and write out how many years it takes to double an amount with that
interest rate:

if __name__ == ’__main__’:
import sys
p = float(sys.argv[1])
years = days(1, 2, p)/365.0
print ’With p=%.2f it takes %.1 years to double’ % (p, years)

Running the module file as a program gives this output:

Terminal

interest.py 2.45
With p=2.45 it takes 27.9 years to double

To test that the interest.py file also works as a module, invoke a Python shell
and try to import a function and compute with it:

>>> from interest import present_amount
>>> present_amount(2, 5, 730)
2.2133983053266699

We have hence demonstrated that the file interest.py works both as a program
and as a module.
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Recommended practice in a test block

It is a good programming habit to let the test block do one or more of three
things:

� provide information on how the module or program is used,
� test if the module functions work properly,
� offer interaction with users such that the module file can be applied as a useful

program.

Instead of having a lot of statements in the test block, it is better to collect the
statements in separate functions, which then are called from the test block.

4.9.4 Verification of theModule Code

Functions that verify the implementation in a module should

� have names starting with test_,
� express the success or failure of a test through a boolean variable, say success,
� run assert success, msg to raise an AssertionErrorwith an optional mes-

sage msg in case the test fails.

Adopting this style makes it trivial to let the tools pytest or nose automatically run
through all our test_*() functions in all files in a folder tree. A very brief intro-
duction to test functions compatible with pytest and nose is provided in Sect. 3.4.2,
while Sect. H.9 contains a more thorough introduction to the pytest and nose testing
frameworks for beginners.

Test functions are used for unit testing. This means that we identify some units
of our software and write a dedicated test function for testing the behavior of each
unit. A unit in the present example can be the interest module, but we could also
think of the individual Python functions in interest as units. From a practical
point of view, the unit is often defined as what we find appropriate to verify in a test
function. For now it is convenient to test all functions in the interest.py file in
the same test function, so the module becomes the unit.

A proper test function for verifying the functionality of the interest module,
written in a way that is compatible with the pytest and nose testing frameworks,
looks as follows:

def test_all_functions():
# Compatible values
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
# Given three of these, compute the remaining one
# and compare with the correct value (in parenthesis)
A_computed = present_amount(A0, p, n)
A0_computed = initial_amount(A, p, n)
n_computed = days(A0, A, p)
p_computed = annual_rate(A0, A, n)



4.9 Making Modules 193

def float_eq(a, b, tolerance=1E-12):
"""Return True if a == b within the tolerance."""
return abs(a - b) < tolerance

success = float_eq(A_computed, A) and \
float_eq(A0_computed, A0) and \
float_eq(p_computed, p) and \
float_eq(n_computed, n)

msg = """Computations failed (correct answers in parenthesis):
A=%g (%g)
A0=%g (%.1f)
n=%d (%d)
p=%g (%.1f)""" % (A_computed, A, A0_computed, A0,

n_computed, n, p_computed, p)
assert success, msg

We may require a single command-line argument test to run the verification.
The test block can then be expressed as

if __name__ == ’__main__’:
if len(sys.argv) == 2 and sys.argv[1] == ’test’:

test_all_functions()

4.9.5 Getting Input Data

To make a useful program, we should allow setting three parameters on the com-
mand line and let the program compute the remaining parameter. For example,
running the program as

Terminal

interest.py A0=1 A=2 n=1095

will lead to a computation of p, in this case for seeing the size of the annual interest
rate if the amount is to be doubled after three years.

How can we achieve the desired functionality? Since variables are already intro-
duced and “initialized” on the command line, we could grab this text and execute
it as Python code, either as three different lines or with semicolon between each
assignment. This is easy:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
exec(init_code)

(We remark that an experienced Python programmer would have created
init_code by ’\n’.join(sys.argv[1:]).) For the sample run above with
A0=1 A=2 n=1095 on the command line, init_code becomes the string



194 4 User Input and Error Handling

A0=1
A=2
n=1095

Note that one cannot have spaces around the equal signs on the command line as this
will break an assignment like A0 = 1 into three command-line arguments, which
will give rise to a SyntaxError in exec(init_code). To tell the user about such
errors, we execute init_code inside a try-except block:

try:
exec(init_code)

except SyntaxError as e:
print e
print init_code
sys.exit(1)

At this stage, our program has hopefully initialized three parameters in a suc-
cessful way, and it remains to detect the remaining parameter to be computed. The
following code does the work:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)

elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

It may happen that the user of the program assigns value to a parameter with wrong
name or forget a parameter. In those cases we call one of our four functions with
uninitialized arguments, and Python raises an exception. Therefore, we should em-
bed the code above in a try-except block. An uninitialized variable will lead to
a NameError exception, while another frequent error is illegal values in the com-
putations, leading to a ValueError exception. It is also a good habit to collect
all the code related to computing the remaining, fourth parameter in a function for
separating this piece of code from other parts of the module file:

def compute_missing_parameter(init_code):
try:

exec(init_code)
except SyntaxError as e:

print e
print init_code
sys.exit(1)

# Find missing parameter
try:

if ’A=’ not in init_code:
print ’A =’, present_amount(A0, p, n)

elif ’A0=’ not in init_code:
print ’A0 =’, initial_amount(A, p, n)
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elif ’n=’ not in init_code:
print ’n =’, days(A0, A , p)

elif ’p=’ not in init_code:
print ’p =’, annual_rate(A0, A, n)

except NameError as e:
print e
sys.exit(1)

except ValueError:
print ’Illegal values in input:’, init_code
sys.exit(1)

If the user of the program fails to give any command-line arguments, we print
a usage statement. Otherwise, we run a verification if the first command-line argu-
ment is test, and else we run the missing parameter computation (i.e., the useful
main program):

_filename = sys.argv[0]
_usage = """
Usage: %s A=10 p=5 n=730
Program computes and prints the 4th parameter’
(A, A0, p, or n)""" % _filename

if __name__ == ’__main__’:
if len(sys.argv) == 1:

print _usage
elif len(sys.argv) == 2 and sys.argv[1] == ’test’:

test_all_functions()
else:

init_code = ’’
for statement in sys.argv[1:]:

init_code += statement + ’\n’
compute_missing_parameter(init_code)

Executing user input can be dangerous

Some purists would never demonstrate exec the way we do above. The reason
is that our program tries to execute whatever the user writes. Consider

Terminal

input.py ’import shutil; shutil.rmtree("/")’

This evil use of the program leads to an attempt to remove all files on the com-
puter system (the same as writing rm -rf / in the terminal window!). However,
for small private programs helping the program writer out with mathematical cal-
culations, this potential dangerous misuse is not so much of a concern (the user
just does harm to his own computer anyway).

4.9.6 Doc Strings in Modules

It is also a good habit to include a doc string in the beginning of the module file.
This doc string explains the purpose and use of the module:
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"""
Module for computing with interest rates.
Symbols: A is present amount, A0 is initial amount,
n counts days, and p is the interest rate per year.

Given three of these parameters, the fourth can be
computed as follows:

A = present_amount(A0, p, n)
A0 = initial_amount(A, p, n)
n = days(A0, A, p)
p = annual_rate(A0, A, n)

"""

You can run the pydoc program to see a documentation of the new module, contain-
ing the doc string above and a list of the functions in the module: just write pydoc

interest in a terminal window.
Now the reader is recommended to take a look at the actual file interest.py to

see all elements of a good module file at once: doc strings, a set of functions, a test
function, a function with the main program, a usage string, and a test block.

4.9.7 UsingModules

Let us further demonstrate how to use the interest.py module in programs. For
illustration purposes, we make a separate program file, say with name doubling.py,
containing some computations:

from interest import days

# How many days does it take to double an amount when the
# interest rate is p=1,2,3,...14?
for p in range(1, 15):

years = days(1, 2, p)/365.0
print ’p=%d%% implies %.1f years to double the amount’ %\
(p, years)

What gets imported by various import statements? There are different ways to
import functions in a module, and let us explore these in an interactive session. The
function call dir() will list all names we have defined, including imported names
of variables and functions. Calling dir(m) will print the names defined inside
a module with name m. First we start an interactive shell and call dir()

>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’]

These variables are always defined. Running the IPython shell will introduce sev-
eral other standard variables too. Doing

http://tinyurl.com/pwyasaa/input/interest.py
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>>> from interest import *
>>> dir()
[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’,
’annual_rate’, ’compute_missing_parameter’, ’days’,
’initial_amount’, ’ln’, ’present_amount’, ’sys’,
’test_all_functions’]

shows that we get our four functions imported, along with ln and sys. The latter
two are needed in the interest module, but not necessarily in our new program
doubling.py.

The alternative import interest actually gives us access to more names in the
module, namely also all variables and functions that start with an underscore:

>>> import interest
>>> dir(interest)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’_filename’, ’_usage’, ’annual_rate’,
’compute_missing_parameter’, ’days’, ’initial_amount’,
’ln’, ’present_amount’, ’sys’, ’test_all_functions’]

It is a habit to use an underscore for all variables that are not to be included in
a from interest import * statement. These variables can, however, be reached
through interest._filename and interest._usage in the present example.

It would be best that a statement from interest import * just imported the
four functions doing the computations of general interest in other programs. This
can be archived by deleting all unwanted names (among those without an initial
underscore) at the very end of the module:

del sys, ln, compute_missing_parameter, test_all_functions

Instead of deleting variables and using initial underscores in names, it is in gen-
eral better to specify the special variable __all__, which is used by Python to select
functions to be imported in from interest import * statements. Here we can
define __all__ to contain the four function of main interest:

__all__ = [’annual_rate’, ’days’, ’initial_amount’, ’present_amount’]

Now we get

>>> from interest import *
[’__builtins__’, ’__doc__’, ’__name__’, ’__package__’,
’annual_rate’, ’days’, ’initial_amount’, ’present_amount’]

How to make Python find a module file The doubling.py program works well
as long as it is located in the same folder as the interest.py module. However, if
we move doubling.py to another folder and run it, we get an error:
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Terminal

doubling.py
Traceback (most recent call last):

File "doubling.py", line 1, in <module>
from interest import days

ImportError: No module named interest

Unless the module file resides in the same folder, we need to tell Python where
to find our module. Python looks for modules in the folders contained in the list
sys.path. A little program

import sys, pprint
pprint.pprint(sys.path)

prints out all these predefined module folders. You can now do one of two things:

1. Place the module file in one of the folders in sys.path.
2. Include the folder containing the module file in sys.path.

There are two ways of doing the latter task. Alternative 1 is to explicitly insert a new
folder name in sys.path in the program that uses the module:

modulefolder = ’../../pymodules’
sys.path.insert(0, modulefolder)

(In this sample path, the slashes are Unix specific. On Windows you must
use backslashes and a raw string. A better solution is to express the path as
os.path.join(os.pardir, os.pardir, ’mymodules’). This will work on
all platforms.)

Python searches the folders in the sequence they appear in the sys.path list so
by inserting the folder name as the first list element we ensure that our module is
found quickly, and in case there are other modules with the same name in other
folders in sys.path, the one in modulefolder gets imported.

Alternative 2 is to specify the folder name in the PYTHONPATH environment
variable. All folder names listed in PYTHONPATH are automatically included in
sys.path when a Python program starts. On Mac and Linux systems, environ-
ment variables like PYTHONPATH are set in the .bashrc file in the home folder,
typically as

export PYTHONPATH=$HOME/software/lib/pymodules:$PYTHONPATH

if §HOME/software/lib/pymodules is the folder containing Python modules. On
Windows, you launch Computer – Properties – Advanced System Settings – Envi-

ronment Variables, click under System Variable, write in PYTHONPATH as variable
name and the relevant folder(s) as value.
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How to make Python run the module file The description above concerns im-
porting the module in a program located anywhere on the system. If we want to
run the module file as a program, anywhere on the system, the operating system
searches the PATH environment variable for the program name interst.py. It is
therefore necessary to update PATH with the folder where interest.py resides.

On Mac and Linux system this is done in .bashrc in the same way as for
PYTHONPATH:

export PATH=$HOME/software/lib/pymodules:$PATH

On Windows, launch the dialog for setting environment variables as described
above and find the PATH variable. It already has much content, so you add your
new folder value either at the beginning or end, using a semicolon to separate the
new value from the existing ones.

4.9.8 DistributingModules

Modules are usually useful pieces of software that others can take advantage of.
Even though our simple interest module is of less interest to the world, we can
illustrate how such a module is most effectively distributed to other users. The
standard in Python is to distribute the module file together with a program called
setup.py such that any user can just do

Terminal

Terminal> sudo python setup.py install

to install the module in one of the directories in sys.path so that the module is
immediately accessible anywhere, both for import in a Python program and for
execution as a stand-alone program.

The setup.py file is in the case of one module file very short:

from distutils.core import setup
setup(name=’interest’,

version=’1.0’,
py_modules=[’interest’],
scripts=[’interest.py’],
)

The scripts= keyword argument can be dropped if the module is just to be
imported and not run as a program as well. More module files can trivially be
added to the list.

A user who runs setup.py install on an Ubuntu machine will see from
the output that interest.py is copied to the system folders /usr/local/lib/
python2.7/dist-packages and /usr/local/bin. The former folder is for
module files, the latter for executable programs.

http://tinyurl.com/pwyasaa/input/setup.py
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Remark

Distributing a single module file can be done as shown, but if you have two or
more module files that belong together, you should definitely create a package

[25].

4.9.9 Making Software Available on the Internet

Distributing software today means making it available on one of the major project
hosting sites such as GitHub or Bitbucket. You will develop and maintain the project
files on your own computer(s), but frequently push the software out in the cloud
such that others also get your updates. The mentioned sites have very strong support
for collaborative software development.

Sign up for a GitHub account if you do not already have one. Go to your account
settings and provide an SSH key (typically the file ~/.ssh/id_rsa.pub) such that
you can communicate with GitHub without being prompted for your password.

To create a new project, click on New repository on the main page and fill out
a project name. Click on the check button Initialize this repository with a README,
and click on Create repository. The next step is to clone (copy) the GitHub repo
(short for repository) to your own computer(s) and fill it with files. The typical
clone command is

Terminal

Terminal> git clone git://github.com:username/projname.git

where username is your GitHub username and projname is the name of the repo
(project). The result of git clone is a directory projname. Go to this folder and
add files. That is, copy setup.py and interst.py to the folder. It is good to also
write a short README file explaining what the project is about. Run

Terminal

Terminal> git add .
Terminal> git commit -am ’First registration of project files’
Terminal> git push origin master

The above git commands look cryptic, but these commands plus 2–3 more are
the essence of how programmers today work on software projects, small or big.
I strongly encourage you to learn more about version control systems and project
hosting sites [12]. The tools are in nature like Dropbox and Google Drive, just much
more powerful when you collaborate with others.

Your project files are now stored in the cloud at https://github.com/username/
projname. Anyone can get the software by the listed git clone command you
used above, or by clicking on the links for zip and tar files.

Every time you update the project files, you need to register the update at GitHub
by

https://github.com/username/projname
https://github.com/username/projname
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Terminal

Terminal> git commit -am ’Description of the changes you made...’
Terminal> git push origin master

The files at GitHub are now synchronized with your local ones.
There is a bit more to be said here to make you up and going with this style of

professional work [12], but the information above gives you at least a glimpse of
how to put your software project in the cloud and opening it up for others. The
GitHub address for the particular interest module described above is https://
github.com/hplgit/interest-primer.

4.10 Making Code for Python 2 and 3

This book applies Python version 2.7, but there is a newer version of Python called
Python 3 (the current version is 3.5). Unfortunately, Python 2 programs do not work
with Python 3 and vice versa. Newcomers to Python are normally guided to pick
up version 3 rather than version 2, since the former has many improvements and
represents the future of the language. However, for scientific computing, version 3
still lacks many useful libraries, and that is the reason why this book applies Python
version 2.7.

4.10.1 Basic Differences Between Python 2 and 3

So, what are the major differences between version 2 and 3? We cover only the
three differences that involve statements we have seen so far in the book.

The print statement has changed Here are some examples on print statements in
Python 2:

a = 1
print a
print ’The value of a is’, a
print ’The value of a is’, a, # comma prevents newline
b = 2
print ’and b=%g’ % b

The print statement is not a statement anymore, but a function in Python 3. The
above code needs to be written as

a = 1
print(a)
print(’The value of a is’, a)
print(’The value of a is’, a, end=’ ’) # end=’’ prevents newline
b = 2
print(’and b=%g’ % b)

https://github.com/hplgit/interest-primer
https://github.com/hplgit/interest-primer
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Integer division is not an issue in Python 3 The expression 1/10 is 0 in Python
2, while in Python 3 it equals 0.1. Nevertheless, there are so many computer lan-
guages and tools that interpret as 1/10 integer division, so rather than relying on
a language’s interpretation of integer divided by integer as float division, the pro-
grammer is strongly encouraged to turn one of the operands explicitly to float, as in
1.0/10.

The raw_input function is named input in Python 3 The Python 2 code

a = float(raw_input(’Give a: ’))

reads

a = float(input(’Give a: ’))

in Python 3.
Note that in Python 2 there is an input function which equals eval applied to

raw_input:

a = input(’Give a: ’) # Python 2!
# Equivalent to
a = eval(raw_input(’Give a: ’))

4.10.2 Turning Python 2 Code into Python 3 Code

Suppose you have written some Python 2 code according to this book and want it
to run under Python 3. We strongly recommend to create a common version of your
program such that it works under both Python 2 and 3. This is quite easy if you use
the future5 package (it is easily installed by pip install future).

The future package has a program futurize that can rewrite a .py file such
that it works under Python 2 and 3. Let us grab a file c2f_qa.py,

C = raw_input(’C=? ’)
C = float(C)
F = 9.0/5*C + 32
print F

and convert it by

Terminal

Terminal> futurize -w c2f_qa.py

5 http://python-future.org/

http://python-future.org/
http://python-future.org/
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Now c2f_qa.py has the content

from __future__ import print_function
from builtins import input
C = input(’C=? ’)
C = float(C)
F = 9.0/5*C + 32
print(F)

We notice that the raw_input call has been changed to input and that the print
statement is a call to the print function. A simple test shows that the new file runs
on both versions of Python:

Terminal

Terminal> python2 c2f_qa.py
C=? 21
69.8
Terminal> python3 py3/c2f_qa.py
C=? 21
69.80000000000001

(This test requires that you have Python 3 installed.)
Note that if we change the division 9.0/5 in the file to 9/5, futurize will not

make a float division out of that expression (i.e., the Python 2 meaning of the syntax
is not changed). If we want all syntax to be interpreted the Python 3 way, add the
–all-imports option:

Terminal

Terminal> futurize -w --all-imports c2f_qa.py

The result is

from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
from future import standard_library
standard_library.install_aliases()
from builtins import input
from builtins import *
C = input(’C=? ’)
C = float(C)
F = 9/5*C + 32
print(F)

Now, 9/5 represents float division, and the program runs under both versions of
Python.

Usually, you do not want futurize to overwrite your original Python 2 pro-
gram, but it is easy to let it generate the new version in a subfolder instead:
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Terminal

Terminal> futurize -w -n -o py23 c2f_qa.py

The generated new version of c2f_qa.py is now in py23/c2f_qa.py.
Most of the programs in this book apply the command line for input, and the pro-

grammer should fix all issues about integer division, so running futurize on the
programs you have seen so far will just change the print statement. There are more
challenging differences between Python 2 and 3 when one applies more advanced
objects and modules. Section 6.6 contains further information.

4.11 Summary

4.11.1 Chapter Topics

Question and answer input Prompting the user and reading the answer back into
a variable is done by

var = raw_input(’Give value: ’)

The raw_input function returns a string containing the characters that the user
wrote on the keyboard before pressing the Return key. It is necessary to convert
var to an appropriate object (int or float, for instance) if we want to perform
mathematical operations with var. Sometimes

var = eval(raw_input(’Give value: ’))

is a flexible and easy way of transforming the string to the right type of object
(integer, real number, list, tuple, and so on). This last statement will not work,
however, for strings unless the text is surrounded by quotes when written on the
keyboard. A general conversion function that turns any text without quotes into the
right object is scitools.misc.str2obj:

from scitools.misc import str2obj
var = str2obj(raw_input(’Give value: ’))

Typing, for example, 3 makes var refer to an int object, 3.14 results in a float

object, [-1,1] results in a list, (1,3,5,7) in a tuple, and some text in the
string (str) object ’some text’ (run the program str2obj_demo.py to see this
functionality demonstrated).

Getting command-line arguments The sys.argv[1:] list contains all the
command-line arguments given to a program (sys.argv[0] contains the program
name). All elements in sys.argv are strings. A typical usage is

parameter1 = float(sys.argv[1])
parameter2 = int(sys.argv[2])
parameter3 = sys.argv[3] # parameter3 can be string

http://tinyurl.com/pwyasaa/input/str2obj_demo.py
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Using option-value pairs The argparse module is recommended for interpret-
ing command-line arguments of the form –option value. A simple recipe with
argparse reads

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--p1’, ’--parameter_1’, type=float,

default=0.0, help=’1st parameter’)
parser.add_argument(’--p2’, type=float,

default=0.0, help=’2nd parameter’)

args = parser.parse_args()
p1 = args.p1
p2 = args.p2

On the command line we can provide any or all of these options:

--parameter_1 --p1 --p2

where each option must be succeeded by a suitable value. However, argparse is
very flexible can easily handle options without values or command-line arguments
without any option specifications.

Generating code on the fly Calling eval(s) turns a string s, containing a Python
expression, into code as if the contents of the string were written directly into the
program code. The result of the following eval call is a float object holding the
number 21.1:

>>> x = 20
>>> r = eval(’x + 1.1’)
>>> r
21.1
>>> type(r)
<type ’float’>

The exec function takes a string with arbitrary Python code as argument and exe-
cutes the code. For example, writing

exec("""
def f(x):

return %s
""" % sys.argv[1])

is the same as if we had hardcoded the (for the programmer unknown) contents of
sys.argv[1] into a function definition in the program.

Turning string formulas into Python functions Given a mathematical formula
as a string, s, we can turn this formula into a callable Python function f(x) by
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from scitools.std import StringFunction

f = StringFunction(s)

The string formula can contain parameters and an independent variable with another
name than x:

Q_formula = ’amplitude*sin(w*t-phaseshift)’
Q = StringFunction(Q_formula, independent_variable=’t’,

amplitude=1.5, w=pi, phaseshift=0)
values1 = [Q(i*0.1) for t in range(10)]
Q.set_parameters(phaseshift=pi/4, amplitude=1)
values2 = [Q(i*0.1) for t in range(10)]

Functions of several independent variables are also supported:

f = StringFunction(’x+y**2+A’, independent_variables=(’x’, ’y’),
A=0.2)

x = 1; y = 0.5
print f(x, y)

File operations Reading from or writing to a file first requires that the file is
opened, either for reading, writing, or appending:

infile = open(filename, ’r’) # read
outfile = open(filename, ’w’) # write
outfile = open(filename, ’a’) # append

or using with:

with open(filename, ’r’) as infile: # read
with open(filename, ’w’) as outfile: # write
with open(filename, ’a’) as outfile: # append

There are four basic reading commands:

line = infile.readline() # read the next line
filestr = infile.read() # read rest of file into string
lines = infile.readlines() # read rest of file into list
for line in infile: # read rest of file line by line

File writing is usually about repeatedly using the command

outfile.write(s)

where s is a string. Contrary to print s, no newline is added to s in outfile.

write(s).
After reading or writing is finished, the file must be closed:

somefile.close()
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However, closing the file is not necessary if we employ the with statement for
reading or writing files:

with open(filename, ’w’) as outfile:
for var1, var2 in data:

outfile.write(’%5.2f %g\n’ % (var1, var2))
# outfile is closed

Handling exceptions Testing for potential errors is done with try-except

blocks:

try:
<statements>

except ExceptionType1:
<provide a remedy for ExceptionType1 errors>

except ExceptionType2, ExceptionType3, ExceptionType4:
<provide a remedy for three other types of errors>

except:
<provide a remedy for any other errors>

...

The most common exception types are NameError for an undefined variable,
TypeError for an illegal value in an operation, and IndexError for a list index
out of bounds.

Raising exceptions When some error is encountered in a program, the program-
mer can raise an exception:

if z < 0:
raise ValueError(’z=%s is negative - cannot do log(z)’ % z)

r = log(z)

Modules A module is created by putting a set of functions in a file. The filename
(minus the required extension .py) is the name of the module. Other programs
can import the module only if it resides in the same folder or in a folder contained
in the sys.path list (see Sect. 4.9.7 for how to deal with this potential problem).
Optionally, the module file can have a special if construct at the end, called test
block, which tests the module or demonstrates its usage. The test block does not get
executed when the module is imported in another program, only when the module
file is run as a program.

Terminology The important computer science topics and Python tools in this chap-
ter are

� command line
� sys.argv

� raw_input

� eval and exec

� file reading and writing
� handling and raising exceptions
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� module
� test block

4.11.2 Example: Bisection Root Finding

Problem The summarizing example of this chapter concerns the implementation
of the Bisection method for solving nonlinear equations of the form f .x/ D 0 with
respect to x. For example, the equation

x D 1C sin x

can be cast in the form f .x/ D 0 if we move all terms to the left-hand side and
define f .x/ D x � 1 � sin x. We say that x is a root of the equation f .x/ D 0 if
x is a solution of this equation. Nonlinear equations f .x/ D 0 can have zero, one,
several, or infinitely many roots.

Numerical methods for computing roots normally lead to approximate results
only, i.e., f .x/ is not made exactly zero, but very close to zero. More precisely,
an approximate root x fulfills jf .x/j � �, where � is a small number. Methods for
finding roots are of an iterative nature: we start with a rough approximation to a root
and perform a repetitive set of steps that aim to improve the approximation. Our
particular method for computing roots, the Bisection method, guarantees to find an
approximate root, while other methods, such as the widely used Newton’s method
(see Sect. A.1.10), can fail to find roots.

The idea of the Bisection method is to start with an interval Œa; b� that contains
a root of f .x/. The interval is halved at m D .a C b/=2, and if f .x/ changes
sign in the left half interval Œa; m�, one continues with that interval, otherwise one
continues with the right half interval Œm; b�. This procedure is repeated, say n times,
and the root is then guaranteed to be inside an interval of length 2�n.b � a/. The
task is to write a program that implements the Bisection method and verify the
implementation.

Solution To implement the Bisection method, we need to translate the description
in the previous paragraph to a precise algorithm that can be almost directly trans-
lated to computer code. Since the halving of the interval is repeated many times, it
is natural to do this inside a loop. We start with the interval Œa; b�, and adjust a to
m if the root must be in the right half of the interval, or we adjust b to m if the root
must be in the left half. In a language close to computer code we can express the
algorithm precisely as follows:

for i in range(0, n+1):
m = (a + b)/2
if f(a)*f(m) <= 0:

b = m # root is in left half
else:

a = m # root is in right half

# f(x) has a root in [a,b]
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Fig. 4.2 Illustration of the first four iterations of the Bisection algorithm for solving cos.�x/ D 0.
The vertical lines correspond to the current value of a and b

Figure 4.2 displays graphically the first four steps of this algorithm for solv-
ing the equation cos.�x/ D 0, starting with the interval Œ0; 0:82�. The graphs are
automatically produced by the program bisection_movie.py, which was run as
follows for this particular example:

Terminal

bisection_movie.py ’cos(pi*x)’ 0 0.82

The first command-line argument is the formula for f .x/, the next is a, and the
final is b.

In the algorithm listed above, we recompute f .a/ in each if-test, but this is
not necessary if a has not changed since the last f .a/ computations. It is a good
habit in numerical programming to avoid redundant work. On modern computers
the Bisection algorithm normally runs so fast that we can afford to do more work
than necessary. However, if f .x/ is not a simple formula, but computed by compre-
hensive calculations in a program, the evaluation of f might take minutes or even
hours, and reducing the number of evaluations in the Bisection algorithm is then
very important. We will therefore introduce extra variables in the algorithm above
to save an f .m/ evaluation in each iteration in the for loop:

f_a = f(a)
for i in range(0, n+1):

m = (a + b)/2
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f_m = f(m)
if f_a*f_m <= 0:

b = m # root is in left half
else:

a = m # root is in right half
f_a = f_m

# f(x) has a root in [a,b]

To execute the algorithm above, we need to specify n. Say we want to be sure
that the root lies in an interval of maximum extent �. After n iterations the length of
our current interval is 2�n.b�a/, if Œa; b� is the initial interval. The current interval
is sufficiently small if

2�n.b � a/ D �;

which implies

n D � ln � � ln.b � a/

ln 2
: (4.6)

Instead of calculating this n, we may simply stop the iterations when the length
of the current interval is less than �. The loop is then naturally implemented as
a while loop testing on whether b�a � �. To make the algorithm more foolproof,
we also insert a test to ensure that f .x/ really changes sign in the initial interval.
This guarantees a root in Œa; b�. (However, f .a/f .b/ < 0 is not a necessary condi-
tion if there is an even number of roots in the initial interval.)

Our final version of the Bisection algorithm now becomes

f_a=f(a)
if f_a*f(b) > 0:

# error: f does not change sign in [a,b]

i = 0
while b-a > epsilon:

i = i + 1
m = (a + b)/2
f_m = f(m)
if f_a*f_m <= 0:

b = m # root is in left half
else:

a = m # root is in right half
f_a = f_m

# if x is the real root, |x-m| < epsilon

This is the algorithm we aim to implement in a Python program.
A direct translation of the previous algorithm to a valid Python program is a mat-

ter of some minor edits:

eps = 1E-5
a, b = 0, 10

fa = f(a)
if fa*f(b) > 0:
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print ’f(x) does not change sign in [%g,%g].’ % (a, b)
sys.exit(1)

i = 0 # iteration counter
while b-a > eps:

i += 1
m = (a + b)/2.0
fm = f(m)
if fa*fm <= 0:

b = m # root is in left half of [a,b]
else:

a = m # root is in right half of [a,b]
fa = fm

print ’Iteration %d: interval=[%g, %g]’ % (i, a, b)

x = m # this is the approximate root
print ’The root is’, x, ’found in’, i, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

This program is found in the file bisection_v1.py.

Verification To verify the implementation in bisection_v1.pywe choose a very
simple f .x/ where we know the exact root. One suitable example is a linear func-
tion, f .x/ D 2x � 3 such that x D 3=2 is the root of f . As can be seen from the
source code above, we have inserted a print statement inside the while loop to
control that the program really does the right things. Running the program yields
the output

Iteration 1: interval=[0, 5]
Iteration 2: interval=[0, 2.5]
Iteration 3: interval=[1.25, 2.5]
Iteration 4: interval=[1.25, 1.875]
...
Iteration 19: interval=[1.5, 1.50002]
Iteration 20: interval=[1.5, 1.50001]
The root is 1.50000572205 found in 20 iterations
f(1.50001)=1.14441e-05

It seems that the implementation works. Further checks should include hand cal-
culations for the first (say) three iterations and comparison of the results with the
program.

Making a function The previous implementation of the bisection algorithm is fine
for many purposes. To solve a new problem f .x/ D 0 it is just necessary to change
the f(x) function in the program. However, if we encounter solving f .x/ D 0

in another program in another context, we must put the bisection algorithm into
that program in the right place. This is simple in practice, but it requires some
careful work, and it is easy to make errors. The task of solving f .x/ D 0 by the
bisection algorithm is much simpler and safer if we have that algorithm available
as a function in a module. Then we can just import the function and call it. This
requires a minimum of writing in later programs.

http://tinyurl.com/pwyasaa/input/bisection_v1.py
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When you have a “flat” program as shown above, without basic steps in the
program collected in functions, you should always consider dividing the code into
functions. The reason is that parts of the program will be much easier to reuse
in other programs. You save coding, and that is a good rule! A program with
functions is also easier to understand, because statements are collected into logical,
separate units, which is another good rule! In a mathematical context, functions
are particularly important since they naturally split the code into general algorithms
(like the bisection algorithm) and a problem-specific part (like a special choice of
f .x/).

Shuffling statements in a program around to form a new and better designed ver-
sion of the program is called refactoring. We shall now refactor the bisection_v1.
py program by putting the statements in the bisection algorithm in a function
bisection. This function naturally takes f .x/, a, b, and � as parameters and
returns the found root, perhaps together with the number of iterations required:

def bisection(f, a, b, eps):
fa = f(a)
if fa*f(b) > 0:

return None, 0

i = 0 # iteration counter
while b-a > eps:

i += 1
m = (a + b)/2.0
fm = f(m)
if fa*fm <= 0:

b = m # root is in left half of [a,b]
else:

a = m # root is in right half of [a,b]
fa = fm

return m, i

After this function we can have a test program:

def f(x):
return 2*x - 3 # one root x=1.5

x, iter = bisection(f, a=0, b=10, eps=1E-5)
if x is None:

print ’f(x) does not change sign in [%g,%g].’ % (a, b)
else:

print ’The root is’, x, ’found in’, iter, ’iterations’
print ’f(%g)=%g’ % (x, f(x))

The complete code is found in file bisection_v2.py.

Making a test function Rather than having a main program as above for verifying
the implementation, we should make a test function test_bisection as described
in Sect. 4.9.4. To this end, we move the statements above inside a function, drop
the output, but instead make a boolean variable success that is True if the test
is passed and False otherwise. Then we do assert success, msg, which will
abort the program if the test fails. The msg variable is a string with more explanation

http://tinyurl.com/pwyasaa/input/bisection_v2.py
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of what went wrong the test fails. A test function with this structure is easy to
integrate into the widely used testing frameworks nose and pytest, and there are no
good reasons for not adopting this structure. The code checking that the root is
within a distance � to the exact root becomes

def test_bisection():
def f(x):

return 2*x - 3 # one root x=1.5

eps = 1E-5
x_expected = 1.5
x, iter = bisection(f, a=0, b=10, eps=eps)
success = abs(x - x_expected) < eps # test within eps tolerance
assert success, ’found x=%g != 1.5’ % x

Making a module A motivating factor for implementing the bisection algorithm as
a function bisection was that we could import this function in other programs to
solve f .x/ D 0 equations. We therefore need to make a module file bisection.py
such that we can do, e.g.,

from bisection import bisection
x, iter = bisection(lambda x: x**3 + 2*x -1, -10, 10, 1E-5)

A module file should not execute a main program, but just define functions, import
modules, and define global variables. Any execution of a main program must take
place in the test block, otherwise the import statement will start executing the main
program, resulting in very disturbing statements for another program that wants to
solve a different f .x/ D 0 equation.

The bisection_v2.py file had a main program that was just a simple test for
checking that the bisection algorithm works for a linear function. We took this
main program and wrapped in a test function test_bisection above. To run the
test, we make the call to this function from the test block:

if __name__ == ’__main__’:
test_bisection()

This is all that is demanded to turn the file bisection_v2.py into a proper module
file bisection.py.

Defining a user interface It is nice to have our bisection module do more than
just test itself: there should be a user interface such that we can solve real prob-
lems f .x/ D 0, where f .x/, a, b, and � are defined on the command line by the
user. A dedicated function can read from the command line and return the data
as Python object. For reading the function f .x/ we can either apply eval on the
command-line argument, or use the more sophisticated StringFunction tool from
Sect. 4.3.3. With eval we need to import functions from the math module in case
the user have such functions in the expression for f .x/. With StringFunction

this is not necessary.
A get_input() for getting input from the command line can be implemented

as



214 4 User Input and Error Handling

def get_input():
"""Get f, a, b, eps from the command line."""
from scitools.std import StringFunction
try:

f = StringFunction(sys.argv[1])
a = float(sys.argv[2])
b = float(sys.argv[3])
eps = float(sys.argv[4])

except IndexError:
print ’Usage %s: f a b eps’ % sys.argv[0]
sys.exit(1)

return f, a, b, eps

To solve the corresponding f .x/ D 0 problem, we simply add a branch in the if

test in the test block:

if __name__ == ’__main__’:
import sys
if len(sys.argv) >= 2 and sys.argv[1] == ’test’:

test_bisection()
else:

f, a, b, eps = get_input()
x, iter = bisection(f, a, b, eps)
print ’Found root x=%g in %d iterations’ % (x, iter)

Desired properties of a module

Our bisection.py code is a complete module file with the following generally
desired features of Python modules:

� other programs can import the bisection function,
� the module can test itself (with a pytest/nose-compatible test function),
� the module file can be run as a program with a user interface where a general

rooting finding problem can be specified in terms of a formula for f .x/ along
with the parameters a, b, and �.

Using the module Suppose you want to solve x=.x � 1/ D sin x using the
bisection module. What do you have to do? First, you must reformulate the
equation as f .x/ D 0, i.e., x=.x � 1/ � sin x D 0, or maybe multiply by x � 1 to
get f .x/ D x � .x � 1/ sin x.

It is required to identify an interval for the root. By evaluating f .x/ for some
points x one can be trial and error locate an interval. A more convenient approach
is to plot the function f .x/ and visually inspect where a root is. Chapter 5 describes
the techniques, but here we simply state the recipe. We start ipython –pylab and
write

In [1]: x = linspace(-3, 3, 50) # generate 50 coordinates in [-3,3]

In [2]: y = x - (x-1)*sin(x)

In [3]: plot(x, y)

http://tinyurl.com/pwyasaa/input/bisection.py
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Fig. 4.3 Plot of f .x/ D x � sin.x/

Figure 4.3 shows f .x/ and we clearly see that, e.g., Œ�2; 1� is an appropriate inter-
val.

The next step is to run the Bisection algorithm. There are two possibilities:

� make a program where you code f .x/ and run the bisection function, or
� run the bisection.py program directly.

The latter approach is the simplest:

Terminal

bisection.py "x - (x-1)*sin(x)" -2 1 1E-5
Found root x=-1.90735e-06 in 19 iterations

The alternative approach is to make a program:

from bisection import bisection
from math import sin

def f(x):
return x - (x-1)*sin(x)

x, iter = bisection(f, a=-2, b=1, eps=1E-5)
print x, iter

Potential problems with the software Let us solve

� x D tanh x with start interval Œ�10; 10� and � D 10�6,
� x5 D tanh.x5/ with start interval Œ�10; 10� and � D 10�6.

Both equations have one root x D 0.
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Terminal

bisection.py "x-tanh(x)" -10 10
Found root x=-5.96046e-07 in 25 iterations

bisection.py "x**5-tanh(x**5)" -10 10
Found root x=-0.0266892 in 25 iterations

These results look strange. In both cases we halve the start interval Œ�10; 10� 25
times, but in the second case we end up with a much less accurate root although the
value of � is the same. A closer inspection of what goes on in the bisection algorithm
reveals that the inaccuracy is caused by rounding errors. As a; b; m ! 0, raising
a small number to the fifth power in the expression for f .x/ yields a much smaller
result. Subtracting a very small number tanh x5 from another very small number
x5 may result in a small number with wrong sign, and the sign of f is essential
in the bisection algorithm. We encourage the reader to graphically inspect this
behavior by running these two examples with the bisection_plot.py program
using a smaller interval Œ�1; 1� to better see what is going on. The command-
line arguments for the bisection_plot.py program are ’x-tanh(x)’ -1 1 and
’x**5-tanh(x**5)’ -1 1. The very flat area, in the latter case, where f .x/ � 0

for x 2 Œ�1=2; 1=2� illustrates well that it is difficult to locate an exact root.

Distributing the bisection module to others The Python standard for installing
software is to run a setup.py program,

Terminal

Terminal> sudo python setup.py install

to install the system. The relevant setup.py for the bisection module arises
from substituting the name interest by bisection in the setup.py file listed in
Sect. 4.9.8. You can then distribute bisection.py and setup.py together.

4.12 Exercises

Exercise 4.1: Make an interactive program

Make a program that asks the user for a temperature in Fahrenheit degrees and reads
the number; computes the corresponding temperature in Celsius degrees; and prints
out the temperature in the Celsius scale.
Filename: f2c_qa.

Exercise 4.2: Read a number from the command line

Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from the command line.
Filename: f2c_cml.

Exercise 4.3: Read a number from a file

Modify the program from Exercise 4.1 such that the Fahrenheit temperature is read
from a file with the following content:

http://tinyurl.com/pwyasaa/input/bisection_plot.py
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Temperature data
----------------

Fahrenheit degrees: 67.2

Hint Create a sample file manually. In the program, skip the first three lines, split
the fourth line into words and grab the third word.
Filename: f2c_file_read.

Exercise 4.4: Read and write several numbers from and to file

This is a variant of Exercise 4.3 where we have several Fahrenheit degrees in a file
and want to read all of them into a list and convert the numbers to Celsius degrees.
Thereafter, we want to write out a file with two columns, the left with the Fahrenheit
degrees and the right with the Celsius degrees.

An example on the input file format looks like

Temperature data
----------------

Fahrenheit degrees: 67.2
Fahrenheit degrees: 66.0
Fahrenheit degrees: 78.9
Fahrenheit degrees: 102.1
Fahrenheit degrees: 32.0
Fahrenheit degrees: 87.8

A sample file is Fdeg.dat6.
Filename: f2c_file_read_write.

Exercise 4.5: Use exceptions to handle wrong input

Extend the program from Exercise 4.2 with a try-except block to handle the
potential error that the Fahrenheit temperature is missing on the command line.
Filename: f2c_cml_exc.

Exercise 4.6: Read input from the keyboard

Make a program that asks for input from the user, applies eval to this input, and
prints out the type of the resulting object and its value. Test the program by pro-
viding five types of input: an integer, a real number, a complex number, a list, and
a tuple.
Filename: objects_qa.

Exercise 4.7: Read input from the command line

a) Let a program store the result of applying the eval function to the first
command-line argument. Print out the resulting object and its type.

b) Run the program with different input: an integer, a real number, a list, and
a tuple.

6 http://tinyurl.com/pwyasaa/input/Fdeg.dat

http://tinyurl.com/pwyasaa/input/Fdeg.dat
http://tinyurl.com/pwyasaa/input/Fdeg.dat
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Hint On Unix systems you need to surround the tuple expressions in quotes on the
command line to avoid error message from the Unix shell.

c) Try the string "this is a string" as a command-line argument. Why does
this string cause problems and what is the remedy?

Filename: objects_cml.

Exercise 4.8: Try MSWord or LibreOffice to write a program

The purpose of this exercise is to tell you how hard it may be to write Python
programs in the standard programs that most people use for writing text.

a) Type the following one-line program in either MSWord or LibreOffice:

print "Hello, World!"

Both Word and LibreOffice are so “smart” that they automatically edit “print”
to “Print” since a sentence should always start with a capital. This is just an
example that word processors are made for writing documents, not computer
programs.

b) Save the program as a .docx (Word) or .odt (LibreOffice) file. Now try to run
this file as a Python program. What kind of error message do you get? Can you
explain why?

c) Save the program as a .txt file in Word or LibreOffice and run the file as
a Python program. What happened now? Try to find out what the problem
is.

Exercise 4.9: Prompt the user for input to a formula

Consider the simplest program for evaluating the formula y.t/ D v0t � 1
2
gt2:

v0 = 3; g = 9.81; t = 0.6
y = v0*t - 0.5*g*t**2
print y

Modify this code so that the program asks the user questions t=? and v0=?, and
then gets t and v0 from the user’s input through the keyboard.
Filename: ball_qa.

Exercise 4.10: Read parameters in a formula from the command line

Modify the program listed in Exercise 4.9 such that v0 and t are read from the
command line.
Filename: ball_cml.

Exercise 4.11: Use exceptions to handle wrong input

The program from Exercise 4.10 reads input from the command line. Extend that
program with exception handling such that missing command-line arguments are
detected. In the except IndexError block, use the raw_input function to ask
the user for missing input data.
Filename: ball_cml_qa.
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Exercise 4.12: Test validity of input data

Test if the t value read in the program from Exercise 4.10 lies between 0 and 2v0=g.
If not, print a message and abort the execution.
Filename: ball_cml_tcheck.

Exercise 4.13: Raise an exception in case of wrong input

Instead of printing an error message and aborting the program explicitly, raise
a ValueError exception in the if test on legal t values in the program from Exer-
cise 4.12. Notify the user about the legal interval for t in the exception message.
Filename: ball_cml_ValueError.

Exercise 4.14: Evaluate a formula for data in a file

We consider the formula y.t/ D v0t � 0:5gt2 and want to evaluate y for a range of
t values found in a file with format

v0: 3.00
t:
0.15592 0.28075 0.36807889 0.35 0.57681501876
0.21342619 0.0519085 0.042 0.27 0.50620017 0.528
0.2094294 0.1117 0.53012 0.3729850 0.39325246
0.21385894 0.3464815 0.57982969 0.10262264
0.29584013 0.17383923

More precisely, the first two lines are always present, while the next lines contain
an arbitrary number of t values on each line, separated by one or more spaces.

a) Write a function that reads the input file and returns v0 and a list with the t

values. A sample file is ball.dat7

b) Make a test function that generates an input file, calls the function in a) for
reading the file, and checks that the returned data objects are correct.

c) Write a function that creates a file with two nicely formatted columns containing
the t values to the left and the corresponding y values to the right. Let the t

values appear in increasing order (note that the input file does not necessarily
have the t values sorted).

Filename: ball_file_read_write.

Exercise 4.15: Write a function given its test function

A common software development technique in the IT industry is to write the test
function before writing the function itself.

a) We want to write a function halve(x) that returns the half of its argument x.
The test function is

def test_halve():
assert halve(5.0) == 2.5 # Real number division
assert halve(5) == 2 # Integer division

7 http://tinyurl.com/pwyasaa/input/ball.dat

http://tinyurl.com/pwyasaa/input/ball.dat
http://tinyurl.com/pwyasaa/input/ball.dat
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Write the associated function halve. Call test_halve (or run pytest or nose)
to verify that halve works.

b) We want to write a function add(a, b) that returns the sum of its arguments a
and b. The test function reads

def test_add():
# Test integers
assert add(1, 2) == 3

# Test floating-point numbers with rounding error
tol = 1E-14
a = 0.1; b = 0.2
computed = add(a, b)
expected = 0.3
assert abs(expected - computed) < tol

# Test lists
assert add([1,4], [4,7]) == [1,4,4,7]

# Test strings
assert add(’Hello, ’, ’World!’) == ’Hello, World!’

Write the associated function add. Call test_add (or run pytest or nose) to
verify that add works.

c) We want to write a function equal(a, b) for determining if two strings a and
b are equal. If equal, the function returns True and the string a. If not equal,
the function returns False and a string displaying the differences. This latter
string contains the characters common in a and b, but for every difference, the
character from a and b are written with a pipe symbol ’|’ in between. In case a

and b are of unequal length, pad the string displaying differences with a * where
one of the strings lacks content. For example, equal(’abc’, ’aBc’) would
return False, ’ab|Bc’, while equal(’abc’, ’aBcd’)would return False,
’ab|Bc*|d’. Here is the test function:

def test_equal():
assert equal(’abc’, ’abc’) == (True, ’abc’)
assert equal(’abc’, ’aBc’) == (False, ’ab|Bc’)
assert equal(’abc’, ’aBcd’) == (False, ’ab|Bc*|d’)
assert equal(’Hello, World!’, ’hello world’) == \

(False, ’H|hello,| |wW|oo|rr|ll|dd|*!|*’)

Write the equal function (which is handy to detect very small differences be-
tween texts).

Filename: testfunc2func.

Exercise 4.16: Compute the distance it takes to stop a car

A car driver, driving at velocity v0, suddenly puts on the brake. What braking
distance d is needed to stop the car? One can derive, using Newton’s second law of
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motion or a corresponding energy equation, that

d D 1

2

v2
0

�g
: (4.7)

Make a program for computing d in (4.7) when the initial car velocity v0 and
the friction coefficient � are given on the command line. Run the program for two
cases: v0 D 120 and v0 D 50 km/h, both with � D 0:3 (� is dimensionless).

Hint Remember to convert the velocity from km/h to m/s before inserting the value
in the formula.
Filename: stopping_length.

Exercise 4.17: Look up calendar functionality

The purpose of this exercise is to make a program that takes a date, consisting of
year (4 digits), month (2 digits), and day (1–31) on the command line and prints the
corresponding name of the weekday (Monday, Tuesday, etc.). Python has a module
calendar, which makes it easy to solve the exercise, but the task is to find out how
to use this module.
Filename: weekday.

Exercise 4.18: Use the StringFunction tool

Make the program integrate.py from Sect. 4.3.2 shorter by using the convenient
StringFunction tool from Sect. 4.3.3. Write a test function for verifying this new
implementation.
Filename: integrate2.

Exercise 4.19: Why we test for specific exception types

The simplest way of writing a try-except block is to test for any exception, for
example,

try:
C = float(sys.arg[1])

except:
print ’C must be provided as command-line argument’
sys.exit(1)

Write the above statements in a program and test the program. What is the problem?
The fact that a user can forget to supply a command-line argument when running

the program was the original reason for using a try block. Find out what kind of
exception that is relevant for this error and test for this specific exception and re-run
the program. What is the problem now? Correct the program.
Filename: unnamed_exception.

Exercise 4.20: Make a complete module

a) Make six conversion functions between temperatures in Celsius, Kelvin, and
Fahrenheit: C2F, F2C, C2K, K2C, F2K, and K2F.
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b) Collect these functions in a module convert_temp.
c) Import the module in an interactive Python shell and demonstrate some sample

calls on temperature conversions.
d) Insert the session from c) in a triple quoted string at the top of the module file as

a doc string for demonstrating the usage.
e) Write a function test_conversion() that verifies the implementation. Call

this function from the test block if the first command-line argument is verify.

Hint Check that C2F(F2C(f)) is f, K2C(C2K(c)) is c, and K2F(F2K(f)) is f –
with tolerance. Follow the conventions for test functions outlined in Sects. 4.9.4
and 4.11.2 with a boolean variable that is False if a test failed, and True if all test
are passed, and then an assert statement to abort the program when any test fails.

f) Add a user interface to the module such that the user can write a temperature as
the first command-line argument and the corresponding temperature scale as the
second command-line argument, and then get the temperature in the two other
scales as output. For example, 21.3 C on the command line results in the output
70.3 F 294.4 K. Encapsulate the user interface in a function, which is called
from the test block.

Filename: convert_temp.

Exercise 4.21: Organize a previous program as a module

Collect the f and S functions in the program from Exercise 3.21 in a sep-
arate file such that this file becomes a module. Put the statements making
the table (i.e., the main program from Exercise 3.21) in a separate function
table(n_values, alpha_values, T). Make a test block in the module to
read T and a series of n and ˛ values as positional command-line arguments and
make a corresponding call to table.
Filename: sinesum2.

Exercise 4.22: Read options and values from the command line

Let the input to the program in Exercise 4.21 be option-value pairs with the options
–n, –alpha, and –T. Provide sensible default values in the module file.

Hint Apply the argparse module to read the command-line arguments. Do not
copy code from the sinesum2 module, but make a new file for reading option-
value pairs from the command and import the table function from the sinesum2

module.
Filename: sinesum3.

Exercise 4.23: Check if mathematical identities hold

Because of rounding errors, it could happen that a mathematical rule like .ab/3 D
a3b3 does not hold exactly on a computer. The idea of testing this potential problem
is to check such identities for a large number of random numbers. We can make
random numbers using the random module in Python:

import random
a = random.uniform(A, B)
b = random.uniform(A, B)
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Here, a and b will be random numbers, which are always larger than or equal to A

and smaller than B.

a) Make a function power3_identity(A=-100, B=100, n=1000) that tests the
identity (a*b)**3 == a**3*b**3 a large number of times, n. Return the frac-
tion of failures.

Hint Inside the loop over n, draw random numbers a and b as described above and
count the number of times the test is True.

b) We shall now parameterize the expressions to be tested. Make a function

equal(expr1, expr2, A=-100, B=100, n=500)

where expr1 and expr2 are strings containing the two mathematical expres-
sions to be tested. More precisely, the function draws random numbers a and
b between A and B and tests if eval(expr1) == eval(expr2). Return the
fraction of failures.
Test the function on the identities .ab/3 D a3b3, eaCb D eaeb , and ln ab D
b ln a.

Hint Make the equal function robust enough to handle illegal a and b values in
the mathematical expressions (e.g., a � 0 in ln a).

c) We want to test the validity of the following set of identities on a computer:
� a � b and �.b � a/

� a=b and 1=.b=a/

� .ab/4 and a4b4

� .aC b/2 and a2 C 2ab C b2

� .aC b/.a � b/ and a2 � b2

� eaCb and eaeb

� ln ab and b ln a

� ln ab and ln aC ln b

� ab and eln aCln b

� 1=.1=aC 1=b/ and ab=.aC b/

� a.sin2 b C cos2 b/ and a

� sinh.aC b/ and .eaeb � e�ae�b/=2

� tan.aC b/ and sin.aC b/= cos.aC b/

� sin.aC b/ and sin a cos b C sin b cos a

Store all the expressions in a list of 2-tuples, where each 2-tuple contains two
mathematically equivalent expressions as strings, which can be sent to the
equal function. Make a nicely formatted table with a pair of equivalent expres-
sions at each line followed by the failure rate. Write this table to a file. Try out
A=1 and B=2 as well as A=1 and B=100. Does the failure rate seem to depend on
the magnitude of the numbers a and b?

Filename: math_identities_failures.
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Exercise 4.24: Compute probabilities with the binomial distribution

Consider an uncertain event where there are two outcomes only, typically success
or failure. Flipping a coin is an example: the outcome is uncertain and of two types,
either head (can be considered as success) or tail (failure). Throwing a die can be
another example, if (e.g.) getting a six is considered success and all other outcomes
represent failure. Such experiments are called Bernoulli trials.

Let the probability of success be p and that of failure 1 � p. If we perform
n experiments, where the outcome of each experiment does not depend on the
outcome of previous experiments, the probability of getting success x times, and
consequently failure n � x times, is given by

B.x; n; p/ D nŠ

xŠ.n � x/Š
px.1 � p/n�x : (4.8)

This formula (4.8) is called the binomial distribution. The expression xŠ is the facto-
rial of x: xŠ D x.x�1/.x�2/ � � �1 and math.factorial can do this computation.

a) Implement (4.8) in a function binomial(x, n, p).
b) What is the probability of getting two heads when flipping a coin five times?

This probability corresponds to n D 5 events, where the success of an event
means getting head, which has probability p D 1=2, and we look for x D 2

successes.
c) What is the probability of getting four ones in a row when throwing a die?

This probability corresponds to n D 4 events, success is getting one and has
probability p D 1=6, and we look for x D 4 successful events.

d) Suppose cross country skiers typically experience one ski break in one out of
120 competitions. Hence, the probability of breaking a ski can be set to p D
1=120. What is the probability b that a skier will experience a ski break during
five competitions in a world championship?

Hint This question is a bit more demanding than the other two. We are looking for
the probability of 1, 2, 3, 4 or 5 ski breaks, so it is simpler to ask for the probability
c of not breaking a ski, and then compute b D 1 � c. Define success as breaking
a ski. We then look for x D 0 successes out of n D 5 trials, with p D 1=120 for
each trial. Compute b.
Filename: Bernoulli_trials.

Exercise 4.25: Compute probabilities with the Poisson distribution

Suppose that over a period of tm time units, a particular uncertain event happens (on
average) �tm times. The probability that there will be x such events in a time period
t is approximately given by the formula

P.x; t; �/ D .�t/x

xŠ
e��t : (4.9)

This formula is known as the Poisson distribution. (It can be shown that (4.9) arises
from (4.8) when the probability p of experiencing the event in a small time interval
t=n is p D �t=n and we let n!1.) An important assumption is that all events are
independent of each other and that the probability of experiencing an event does not
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change significantly over time. This is known as a Poisson process in probability
theory.

a) Implement (4.9) in a function Poisson(x, t, nu), and make a program
that reads x, t , and � from the command line and writes out the probability
P.x; t; �/. Use this program to solve the problems below.

b) Suppose you are waiting for a taxi in a certain street at night. On average, 5
taxis pass this street every hour at this time of the night. What is the probability
of not getting a taxi after having waited 30 minutes? Since we have 5 events in
a time period of tm D 1 hour, �tm D � D 5. The sought probability is then
P.0; 1=2; 5/. Compute this number. What is the probability of having to wait
two hours for a taxi? If 8 people need two taxis, that is the probability that two
taxis arrive in a period of 20 minutes?

c) In a certain location, 10 earthquakes have been recorded during the last 50 years.
What is the probability of experiencing exactly three earthquakes over a period
of 10 years in this area? What is the probability that a visitor for one week
does not experience any earthquake? With 10 events over 50 years we have
�tm D � � 50 years D 10 events, which implies � D 1=5 event per year. The
answer to the first question of having x D 3 events in a period of t D 10 years
is given directly by (4.9). The second question asks for x D 0 events in a time
period of 1 week, i.e., t D 1=52 years, so the answer is P.0; 1=52; 1=5/.

d) Suppose that you count the number of misprints in the first versions of the re-
ports you write and that this number shows an average of six misprints per page.
What is the probability that a reader of a first draft of one of your reports reads
six pages without hitting a misprint? Assuming that the Poisson distribution can
be applied to this problem, we have “time” tm as 1 page and � � 1 D 6, i.e.,
� D 6 events (misprints) per page. The probability of no events in a “period” of
six pages is P.0; 6; 6/.

Filename: Poisson_processes.
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A list object is handy for storing tabular data, such as a sequence of objects or a table
of objects. An array is very similar to a list, but less flexible and computationally
much more efficient. When using the computer to perform mathematical calcula-
tions, we often end up with a huge amount of numbers and associated arithmetic
operations. Storing numbers in lists may in such contexts lead to slow programs,
while arrays can make the programs run much faster. This is crucial for many
advanced applications of mathematics in industry and science, where computer pro-
grams may run for hours and days, or even weeks. Any clever idea that reduces the
execution time by some factor is therefore paramount.

However, one can argue that programmers of mathematical software have tradi-
tionally paid too much attention to efficiency and “clever” program constructs. The
resulting software often becomes very hard to maintain and extend. In this book
we advocate a focus on clear, well-designed, and easy-to-understand programs that
work correctly. Thereafter, one can start thinking about optimization for speed.
Fortunately, arrays contribute to clear code, correctness and speed – all at once.

This chapter gives an introduction to arrays: how they are created and what they
can be used for. Array computing usually ends up with a lot of numbers. It may be
very hard to understand what these numbers mean by just looking at them. Since
the human is a visual animal, a good way to understand numbers is to visualize
them. In this chapter we concentrate on visualizing curves that reflect functions of
one variable; i.e., curves of the form y D f .x/. A synonym for curve is graph,
and the image of curves on the screen is often called a plot. We will use arrays to
store the information about points along the curve. In a nutshell, array computing
demands visualization and visualization demands arrays.

All program examples in this chapter can be found as files in the folder
src/plot1.

1 http://tinyurl.com/pwyasaa/plot
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5.1 Vectors

This section gives a brief introduction to the vector concept, assuming that you
have heard about vectors in the plane and maybe vectors in space before. This
background will be valuable when we start to work with arrays and curve plotting.

5.1.1 The Vector Concept

Some mathematical quantities are associated with a set of numbers. One example is
a point in the plane, where we need two coordinates (real numbers) to describe the
point mathematically. Naming the two coordinates of a particular point as x and y,
it is common to use the notation .x; y/ for the point. That is, we group the numbers
inside parentheses. Instead of symbols we might use the numbers directly: .0; 0/

and .1:5;�2:35/ are also examples of coordinates in the plane.
A point in three-dimensional space has three coordinates, which we may name

x1, x2, and x3. The common notation groups the numbers inside parentheses:
.x1; x2; x3/. Alternatively, we may use the symbols x, y, and z, and write the
point as .x; y; z/, or numbers can be used instead of symbols.

From high school you may have a memory of solving two equations with
two unknowns. At the university you will soon meet problems that are formu-
lated as n equations with n unknowns. The solution of such problems contains
n numbers that we can collect inside parentheses and number from 1 to n:
.x1; x2; x3; : : : ; xn�1; xn/.

Quantities such as .x; y/, .x; y; z/, or .x1; : : : ; xn/ are known as vectors in math-
ematics. A visual representation of a vector is an arrow that goes from the origin to
a point. For example, the vector .x; y/ is an arrow that goes from .0; 0/ to the point
with coordinates .x; y/ in the plane. Similarly, .x; y; z/ is an arrow from .0; 0; 0/

to the point .x; y; z/ in three-dimensional space.
Mathematicians found it convenient to introduce spaces with higher dimension

than three, because when we have a solution of n equations collected in a vector
.x1; : : : ; xn/, we may think of this vector as a point in a space with dimension n, or
equivalently, an arrow that goes from the origin .0; : : : ; 0/ in n-dimensional space
to the point .x1; : : : ; xn/. Figure 5.1 illustrates a vector as an arrow, either starting
at the origin, or at any other point. Two arrows/vectors that have the same direction
and the same length are mathematically equivalent.

We say that .x1; : : : ; xn/ is an n-vector or a vector with n components. Each
of the numbers x1, x2, : : : is a component or an element. We refer to the first
component (or element), the second component (or element), and so forth.

A Python program may use a list or tuple to represent a vector:

v1 = [x, y] # list of variables
v2 = (-1, 2) # tuple of numbers
v3 = (x1, x2, x3) # tuple of variables
from math import exp
v4 = [exp(-i*0.1) for i in range(150)]
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Fig. 5.1 A vector .2; 3/ visualized in the standard way as an arrow from the origin to the point
.2; 3/, and mathematically equivalently, as an arrow from .1; 1

2
/ (or any point .a; b/) to .3; 3 1

2
/ (or

.a C 2; b C 3/)

While v1 and v2 are vectors in the plane and v3 is a vector in three-dimensional
space, v4 is a vector in a 150-dimensional space, consisting of 150 values of the
exponential function. Since Python lists and tuples have 0 as the first index, we
may also in mathematics write the vector .x1; x2/ as .x0; x1/. This is not at all
common in mathematics, but makes the distance from a mathematical description
of a problem to its solution in Python shorter.

It is impossible to visually demonstrate how a space with 150 dimensions looks
like. Going from the plane to three-dimensional space gives a rough feeling of what
it means to add a dimension, but if we forget about the idea of a visual perception
of space, the mathematics is very simple: going from a 4-dimensional vector to
a 5-dimensional vector is just as easy as adding an element to a list of symbols or
numbers.

5.1.2 Mathematical Operations on Vectors

Since vectors can be viewed as arrows having a length and a direction, vectors are
extremely useful in geometry and physics. The velocity of a car has a magnitude
and a direction, so has the acceleration, and the position of a point in the car is also
a vector. An edge of a triangle can be viewed as a line (arrow) with a direction and
length.

In geometric and physical applications of vectors, mathematical operations on
vectors are important. We shall exemplify some of the most important operations
on vectors below. The goal is not to teach computations with vectors, but more
to illustrate that such computations are defined by mathematical rules. Given two
vectors, .u1; u2/ and .v1; v2/, we can add these vectors according to the rule:

.u1; u2/C .v1; v2/ D .u1 C v1; u2 C v2/ : (5.1)
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We can also subtract two vectors using a similar rule:

.u1; u2/ � .v1; v2/ D .u1 � v1; u2 � v2/ : (5.2)

A vector can be multiplied by a number. This number, called a below, is usually
denoted as a scalar:

a � .v1; v2/ D .av1; av2/ : (5.3)

The inner product, also called dot product, or scalar product, of two vectors is
a number:

.u1; u2/ � .v1; v2/ D u1v1 C u2v2 : (5.4)

(From high school mathematics and physics you might recall that the inner or dot
product also can be expressed as the product of the lengths of the two vectors mul-
tiplied by the cosine of the angle between them, but we will not make use of that
formula. There is also a cross product defined for 2-vectors or 3-vectors, but we do
not list the cross product formula here.)

The length of a vector is defined by

jj.v1; v2/jj D
p

.v1; v2/ � .v1; v2/ D
q

v2
1 C v2

2 : (5.5)

The same mathematical operations apply to n-dimensional vectors as well. In-
stead of counting indices from 1, as we usually do in mathematics, we now count
from 0, as in Python. The addition and subtraction of two vectors with n compo-
nents (or elements) read

.u0; : : : ; un�1/C .v0; : : : ; vn�1/ D .u0 C v0; : : : ; un�1 C vn�1/; (5.6)

.u0; : : : ; un�1/ � .v0; : : : ; vn�1/ D .u0 � v0; : : : ; un�1 � vn�1/ : (5.7)

Multiplication of a scalar a and a vector .v0; : : : ; vn�1/ equals

.av0; : : : ; avn�1/ : (5.8)

The inner or dot product of two n-vectors is defined as

.u0; : : : ; un�1/ � .v0; : : : ; vn�1/ D u0v0 C � � � C un�1vn�1 D
n�1
X

jD0

uj vj : (5.9)

Finally, the length jjvjj of an n-vector v D .v0; : : : ; vn�1/ is

p

.v0; : : : ; vn�1/ � .v0; : : : ; vn�1/ D
�

v2
0 C v2

1 C � � � C v2
n�1

	
1
2

D

0

@

n�1
X

jD0

v2
j

1

A

1
2

: (5.10)
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5.1.3 Vector Arithmetics and Vector Functions

In addition to the operations on vectors in Sect. 5.1.2, which you might recall from
high school mathematics, we can define other operations on vectors. This is very
useful for speeding up programs. Unfortunately, the forthcoming vector operations
are hardly treated in textbooks on mathematics, yet these operations play a signif-
icant role in mathematical software, especially in computing environment such as
MATLAB, Octave, Python, and R.

Applying a mathematical function of one variable, f .x/, to a vector is defined
as a vector where f is applied to each element. Let v D .v0; : : : ; vn�1/ be a vector.
Then

f .v/ D .f .v0/; : : : ; f .vn�1// :

For example, the sine of v is

sin.v/ D .sin.v0/; : : : ; sin.vn�1// :

It follows that squaring a vector, or the more general operation of raising the vector
to a power, can be defined as applying the operation to each element:

vb D .vb
0 ; : : : ; vb

n�1/ :

Another operation between two vectors that arises in computer programming of
mathematics is the “asterisk” multiplication, defined as

u � v D .u0v0; u1v1; : : : ; un�1vn�1/ : (5.11)

Adding a scalar to a vector or array can be defined as adding the scalar to each
component. If a is a scalar and v a vector, we have

aC v D .aC v0; : : : ; a C vn�1/ :

A compound vector expression may look like

v2 � cos.v/ � ev C 2 : (5.12)

How do we calculate this expression? We use the normal rules of mathematics,
working our way, term by term, from left to right, paying attention to the fact that
powers are evaluated before multiplications and divisions, which are evaluated prior
to addition and subtraction. First we calculate v2, which results in a vector we may
call u. Then we calculate cos.v/ and call the result p. Then we multiply u � p to
get a vector which we may call w. The next step is to evaluate ev , call the result q,
followed by the multiplication w�q, whose result is stored as r . Then we add rC2

to get the final result. It might be more convenient to list these operations after each
other:

� u D v2

� p D cos.v/

� w D u � p
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� q D ev

� r D w � q

� s D r C 2

Writing out the vectors u, w, p, q, and r in terms of a general vector v D
.v0; : : : ; vn�1/ (do it!) shows that the result of the expression (5.12) is the vector

.v2
0 cos.v0/ev0 C 2; : : : ; v2

n�1 cos.vn�1/e
vn�1 C 2/ :

That is, component no. i in the result vector equals the number arising from apply-
ing the formula (5.12) to vi , where the * multiplication is ordinary multiplication
between two numbers.

We can, alternatively, introduce the function

f .x/ D x2 cos.x/ex C 2

and use the result that f .v/ means applying f to each element in v. The result is
the same as in the vector expression (5.12).

In Python programming it is important for speed (and convenience too) that
we can apply functions of one variable, like f .x/, to vectors. What this means
mathematically is something we have tried to explain in this subsection. Doing Ex-
ercises 5.5 and 5.6 may help to grasp the ideas of vector computing, and with more
programming experience you will hopefully discover that vector computing is very
useful. It is not necessary to have a thorough understanding of vector computing in
order to proceed with the next sections.

Arrays are used to represent vectors in a program, but one can do more with
arrays than with vectors. Until Sect. 5.8 it suffices to think of arrays as the same as
vectors in a program.

5.2 Arrays in Python Programs

This section introduces array programming in Python, but first we create some lists
and show how arrays differ from lists.

5.2.1 Using Lists for Collecting Function Data

Suppose we have a function f .x/ and want to evaluate this function at a number of
x points x0; x1; : : : ; xn�1. We could collect the n pairs .xi ; f .xi // in a list, or we
could collect all the xi values, for i D 0; : : : ; n � 1, in a list and all the associated
f .xi / values in another list. The following interactive session demonstrates how to
create these three types of lists:

>>> def f(x):
... return x**3 # sample function
...
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>>> n = 5 # no of points along the x axis
>>> dx = 1.0/(n-1) # spacing between x points in [0,1]
>>> xlist = [i*dx for i in range(n)]
>>> ylist = [f(x) for x in xlist]
>>> pairs = [[x, y] for x, y in zip(xlist, ylist)]

Here we have used list comprehensions for achieving compact code. Make sure that
you understand what is going on in these list comprehensions (if not, try to write
the same code using standard for loops and appending new list elements in each
pass of the loops).

The list elements consist of objects of the same type: any element in pairs is
a list of two float objects, while any element in xlist or ylist is a float. Lists
are more flexible than that, because an element can be an object of any type, e.g.,

mylist = [2, 6.0, ’tmp.pdf’, [0,1]]

Here mylist holds an int, a float, a string, and a list. This combination of di-
verse object types makes up what is known as heterogeneous lists. We can also
easily remove elements from a list or add new elements anywhere in the list. This
flexibility of lists is in general convenient to have as a programmer, but in cases
where the elements are of the same type and the number of elements is fixed, arrays
can be used instead. The benefits of arrays are faster computations, less memory
demands, and extensive support for mathematical operations on the data. Because
of greater efficiency and mathematical convenience, arrays will be used to a large
extent in this book. The great use of arrays is also prominent in other program-
ming environments such as MATLAB, Octave, and R, for instance. Lists will be
our choice instead of arrays when we need the flexibility of adding or removing
elements or when the elements may be of different object types.

5.2.2 Basics of Numerical Python Arrays

An array object can be viewed as a variant of a list, but with the following assump-
tions and features:

� All elements must be of the same type, preferably integer, real, or complex num-
bers, for efficient numerical computing and storage.

� The number of elements must be known when the array is created.
� Arrays are not part of standard Python – one needs an additional package called

Numerical Python, often abbreviated as NumPy. The Python name of the pack-
age, to be used in import statements, is numpy.

� With numpy, a wide range of mathematical operations can be done directly on
complete arrays, thereby removing the need for loops over array elements. This
is commonly called vectorization

� Arrays with one index are often called vectors. Arrays with two indices are used
as an efficient data structure for tables, instead of lists of lists. Arrays can also
have three or more indices.
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We have two remarks to the above list. First, there is actually an object type called
array in standard Python, but this data type is not so efficient for mathematical
computations, and we will not use it in this book. Second, the number of elements
in an array can be changed, but at a substantial computational cost.

The following text lists some important functionality of NumPy arrays. A more
comprehensive treatment is found in the excellent NumPy Tutorial, NumPy User

Guide, NumPy Reference, Guide to NumPy, and NumPy for MATLAB Users, all
accessible at scipy.org2.

The standard import statement for Numerical Python reads

import numpy as np

To convert a list r to an array, we use the array function from numpy:

a = np.array(r)

To create a new array of length n, filled with zeros, we write

a = np.zeros(n)

The array elements are of a type that corresponds to Python’s float type. A sec-
ond argument to np.zeros can be used to specify other element types, e.g., int.
A similar function,

a = np.zeros_like(c)

generates an array of zeros where the length is that of the array c and the element
type is the same as those in c. Arrays with more than one index are treated in
Sect. 5.8.

Often one wants an array to have n elements with uniformly distributed values
in an interval Œp; q�. The numpy function linspace creates such arrays:

a = np.linspace(p, q, n)

Array elements are accessed by square brackets as for lists: a[i]. Slices also
work as for lists, for example, a[1:-1] picks out all elements except the first and
the last, but contrary to lists, a[1:-1] is not a copy of the data in a. Hence,

b = a[1:-1]
b[2] = 0.1

will also change a[3] to 0.1. A slice a[i:j:s] picks out the elements starting
with index i and stepping s indices at the time up to, but not including, j. Omitting
i implies i=0, and omitting j implies j=n if n is the number of elements in the array.
For example, a[0:-1:2] picks out every two elements up to, but not including, the
last element, while a[::4] picks out every four elements in the whole array.

2 http://scipy.org

http://scipy.org
http://scipy.org
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Remarks on importing NumPy

The statement

import numpy as np

with subsequent prefixing of all NumPy functions and variables by np, has
evolved as a standard syntax in the Python scientific computing community.
However, to make Python programs look closer to MATLAB and ease the tran-
sition to and from that language, one can do

from numpy import *

to get rid of the prefix (this is evolved as the standard in interactive Python
shells). This author prefers mathematical functions from numpy to be written
without the prefix to make the formulas as close as possible to the mathematics.
So, f .x/ D sinh.x � 1/ sin.wt/ would be coded as

from numpy import sinh, sin

def f(x):
return sinh(x-1)*sin(w*t)

or one may take the less recommended lazy approach from numpy import *

and fill up the program with a lot of functions and variables from numpy.

5.2.3 Computing Coordinates and Function Values

With these basic operations at hand, we can continue the session from the previous
section and make arrays out of the lists xlist and ylist:

>>> import numpy as np
>>> x2 = np.array(xlist) # turn list xlist into array x2
>>> y2 = np.array(ylist)
>>> x2
array([ 0. , 0.25, 0.5 , 0.75, 1. ])
>>> y2
array([ 0. , 0.015625, 0.125 , 0.421875, 1. ])

Instead of first making a list and then converting the list to an array, we can compute
the arrays directly. The equally spaced coordinates in x2 are naturally computed by
the np.linspace function. The y2 array can be created by np.zeros, to ensure
that y2 has the right length len(x2), and then we can run a for loop to fill in all
elements in y2 with f values:

>>> n = len(xlist)
>>> x2 = np.linspace(0, 1, n)
>>> y2 = np.zeros(n)
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>>> for i in xrange(n):
... y2[i] = f(x2[i])
...
>>> y2
array([ 0. , 0.015625, 0.125 , 0.421875, 1. ])

Note that we here in the for loop have used xrange instead of range. The former
is faster for long loops because it avoids generating and storing a list of integers,
it just generates the values one by one. Hence, we prefer xrange over range for
loops over long arrays. In Python version 3.x, range is the same as xrange.

Creating an array of a given length is frequently referred to as allocating the
array. It simply means that a part of the computer’s memory is marked for being
occupied by this array. Mathematical computations will often fill up most of the
computer’s memory by allocating long arrays.

We can shorten the previous code by creating the y2 data in a list comprehension,
but list comprehensions produce lists, not arrays, so we need to transform the list
object to an array object:

>>> x2 = np.linspace(0, 1, n)
>>> y2 = np.array([f(xi) for xi in x2])

Nevertheless, there is a much faster way of computing y2 as the next paragraph
explains.

5.2.4 Vectorization

Loops over very long arrays may run slowly. A great advantage with arrays is that
we can get rid of the loops and apply f directly to the whole array:

>>> y2 = f(x2)
>>> y2
array([ 0. , 0.015625, 0.125 , 0.421875, 1. ])

The magic that makes f(x2) work builds on the vector computing concepts from
Sect. 5.1.3. Instead of calling f(x2) we can equivalently write the function formula
x2**3 directly.

The point is that numpy implements vector arithmetics for arrays of any dimen-
sion. Moreover, numpy provides its own versions of mathematical functions like
cos, sin, exp, log, etc., which work for array arguments and apply the mathemat-
ical function to each element. The following code, computes each array element
separately:

from math import sin, cos, exp
import numpy as np
x = np.linspace(0, 2, 201)
r = np.zeros(len(x))
for i in xrange(len(x)):

r[i] = sin(np.pi*x[i])*cos(x[i])*exp(-x[i]**2) + 2 + x[i]**2
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while here is a corresponding code that operates on arrays directly:

r = np.sin(np.pi*x)*np.cos(x)*np.exp(-x**2) + 2 + x**2

Many will prefer to see such formulas without the np prefix:

from numpy import sin, cos, exp, pi
r = sin(pi*x)*cos(x)*exp(-x**2) + 2 + x**2

An important thing to understand is that sin from the mathmodule is different from
the sin function provided by numpy. The former does not allow array arguments,
while the latter accepts both real numbers and arrays.

Replacing a loop like the one above, for computing r[i], by a vector/array ex-
pression like sin(x)*cos(x)*exp(-x**2) + 2 + x**2, is called vectorization.
The loop version is often referred to as scalar code. For example,

import numpy as np
import math
x = np.zeros(N); y = np.zeros(N)
dx = 2.0/(N-1) # spacing of x coordinates
for i in range(N):

x[i] = -1 + dx*i
y[i] = math.exp(-x[i])*x[i]

is scalar code, while the corresponding vectorized version reads

x = np.linspace(-1, 1, N)
y = np.exp(-x)*x

We remark that list comprehensions,

x = array([-1 + dx*i for i in range(N)])
y = array([np.exp(-xi)*xi for xi in x])

result in scalar code because we still have explicit, slow Python for loops operating
on scalar quantities. The requirement of vectorized code is that there are no explicit
Python for loops. The loops required to compute each array element are performed
in fast C or Fortran code in the numpy package.

Most Python functions intended for a scalar argument x, like

def f(x):
return x**4*exp(-x)

automatically work for an array argument x:

x = np.linspace(-3, 3, 101)
y = f(x)
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provided that the exp function in the definition of f accepts an array argument. This
means that exp must have been imported as from numpy import * or explicitly
as from numpy import exp. One can, of course, prefix exp as in np.exp, at the
loss of a less attractive mathematical syntax in the formula.

When a Python function f(x) works for an array argument x, we say that the
function f is vectorized. Provided that the mathematical expressions in f involve
arithmetic operations and basic mathematical functions from the math module, f
will be automatically vectorized by just importing the functions from numpy instead
of math. However, if the expressions inside f involve if tests, the code needs
a rewrite to work with arrays. Section 5.4.1 presents examples where we have to do
special actions in order to vectorize functions.

Vectorization is very important for speeding up Python programs that perform
heavy computations with arrays. Moreover, vectorization gives more compact code
that is easier to read. Vectorization is particularly important for statistical simula-
tions, as demonstrated in Chap. 8.

5.3 Curve Plotting

Visualizing a function f .x/ is done by drawing the curve y D f .x/ in an xy

coordinate system. When we use a computer to do this task, we say that we plot the
curve. Technically, we plot a curve by drawing straight lines between n points on
the curve. The more points we use, the smoother the curve appears.

Suppose we want to plot the function f .x/ for a � x � b. First we pick out n x

coordinates in the interval Œa; b�, say we name these x0; x1; : : : ; xn�1. Then we eval-
uate yi D f .xi / for i D 0; 1; : : : ; n � 1. The points .xi ; yi /, i D 0; 1; : : : ; n � 1,
now lie on the curve y D f .x/. Normally, we choose the xi coordinates to be
equally spaced, i.e.,

xi D aC ih; h D b � a

n � 1
:

If we store the xi and yi values in two arrays x and y, we can plot the curve by
a command like plot(x,y).

Sometimes the names of the independent variable and the function differ from x

and f , but the plotting procedure is the same. Our first example of curve plotting
demonstrates this fact by involving a function of t .

5.3.1 MATLAB-Style PlottingwithMatplotlib

The standard package for curve plotting in Python is Matplotlib. We first exemplify
a usage of this package that is very similar with how you plot in MATLAB as many
readers will have MATLAB knowledge of will need to operate MATLAB at some
point.

A basic plot Let us plot the curve y D t2 exp.�t2/ for t values between 0 and
3. First we generate equally spaced coordinates for t , say 51 values (50 intervals).
Then we compute the corresponding y values at these points, before we call the
plot(t,y) command to make the curve plot. Here is the complete program:
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from numpy import *
from matplotlib.pyplot import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 51) # 51 points between 0 and 3
y = zeros(len(t)) # allocate y with float elements
for i in xrange(len(t)):

y[i] = f(t[i])

plot(t, y)
show()

In this program we pre-allocate the y array and fill it with values, element by ele-
ment, in a Python loop. Alternatively, we may operate on the whole t array at once,
which yields faster and shorter code:

y = f(t)

To include the plot in electronic documents, we need a hardcopy of the figure in
PDF, PNG, or another image format. The savefig function saves the plot to files
in various image formats:

savefig(’tmp1.pdf’) # produce PDF
savefig(’tmp1.png’) # produce PNG

The filename extension determines the format: .pdf for PDF and .png for PNG.
Figure 5.2 displays the resulting plot.

Fig. 5.2 A simple plot in PDF format (Matplotlib)
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Fig. 5.3 A single curve with label, title, and axis adjusted (Matplotlib)

Decorating the plot The x and y axes in curve plots should have labels, here t

and y, respectively. Also, the curve should be identified with a label, or legend as it
is often called. A title above the plot is also common. In addition, we may want to
control the extent of the axes (although most plotting programs will automatically
adjust the axes to the range of the data). All such things are easily added after the
plot command:

plot(t, y)
xlabel(’t’)
ylabel(’y’)
legend([’t^2*exp(-t^2)’])
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Matplotlib Demo’)
savefig(’tmp2.pdf’)
show()

Removing the show() call prevents the plot from being shown on the screen, which
is advantageous if the program’s purpose is to make a large number of plots in PDF
or PNG format (you do not want all the plot windows to appear on the screen and
then kill all of them manually). This decorated plot is displayed in Fig. 5.3.

Plotting multiple curves A common plotting task is to compare two or more
curves, which requires multiple curves to be drawn in the same plot. Suppose we
want to plot the two functions f1.t/ D t2 exp.�t2/ and f2.t/ D t4 exp.�t2/. We
can then just issue two plot commands, one for each function. To make the syntax
resemble MATLAB, we call hold(’on’) after the first plot command to indicate
that subsequent plot commands are to draw the curves in the first plot.

def f1(t):
return t**2*exp(-t**2)
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Fig. 5.4 Two curves in the same plot (Matplotlib)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’bo’)
xlabel(’t’)
ylabel(’y’)
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
title(’Plotting two curves in the same plot’)
show()

In these plot commands, we have also specified the line type: r- means red (r)
line (-), while bo means a blue (b) circle (o) at each data point. Figure 5.4 shows the
result. The legends for each curve is specified in a list where the sequence of strings
correspond to the sequence of plot commands. Doing a hold(’off’) makes the
next plot command create a new plot.

Placing several plots in one figure We may also put plots together in a figure with
r rows and c columns of plots. The subplot(r,c,a) does this, where a is a row-
wise counter for the individual plots. Here is an example with two rows of plots,
and one plot in each row, (see Fig. 5.5):

figure() # make separate figure
subplot(2, 1, 1)
t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)
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Fig. 5.5 Example on two plots in one figure (Matplotlib)

plot(t, y1, ’r-’, t, y2, ’bo’)
xlabel(’t’)
ylabel(’y’)
axis([t[0], t[-1], min(y2)-0.05, max(y2)+0.5])
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
title(’Top figure’)

subplot(2, 1, 2)
t3 = t[::4]
y3 = f2(t3)

plot(t, y1, ’b-’, t3, y3, ’ys’)
xlabel(’t’)
ylabel(’y’)
axis([0, 4, -0.2, 0.6])
legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
savefig(’tmp4.pdf’)
show()

The figure() call creates a new plot window on the screen.
All of the examples above on plotting with Matplotlib are collected in the file

mpl_pylab_examples.py.

http://tinyurl.com/pwyasaa/plot/mpl_pylab_examples.py
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5.3.2 Matplotlib; Pyplot Prefix

The Matplotlib developers do not promote the plotting style we exemplified above.
Instead, they recommend to prefix plotting commands by the matplotlib.pyplot
module and also prefix array computing commands to demonstrate that they come
from Numerical Python:

import numpy as np
import matplotlib.pyplot as plt

The plot in Fig. 5.3 can typically be obtained by prefixing the previously shown
plotting commands with plt:

plt.plot(t, y)
plt.legend([’t^2*exp(-t^2)’])
plt.xlabel(’t’)
plt.ylabel(’y’)
plt.axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
plt.title(’My First Matplotlib Demo’)
plt.show()
plt.savefig(’tmp2.pdf’) # produce PDF

Instead of giving plot data and legends separately, it is more common to write

plt.plot(t, y, label=’t^2*exp(-t^2)’)

However, in this book we shall stick to the legend command since this makes the
transition to/from MATLAB easier.

Figure 5.4 can be produced by

def f1(t):
return t**2*np.exp(-t**2)

def f2(t):
return t**2*f1(t)

t = np.linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plt.plot(t, y1, ’r-’)
plt.plot(t, y2, ’bo’)
plt.xlabel(’t’)
plt.ylabel(’y’)
plt.legend([’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’])
plt.title(’Plotting two curves in the same plot’)
plt.savefig(’tmp3.pdf’)
plt.show()

Putting multiple plots in a figure follows the same set-up with subplot as previ-
ously shown, except that commands are prefixed by plt. The complete example,
along with the codes listed above, are found in the file mpl_pyplot_examples.py.

http://tinyurl.com/pwyasaa/input/mpl_pyplot_examples.py
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Once you have created a basic plot, there are numerous possibilities for fine-
tuning the figure, i.e., adjusting tick marks on the axis, inserting text, etc. The
Matplotlib website is full of instructive examples on what you can do with this
excellent package.

5.3.3 SciTools and Easyviz

Matplotlib has become the de facto standard for curve plotting in Python, but there
are several other alternative packages, especially if we also consider plotting of
2D/3D scalar and vector fields. Python has interfaces to many leading visualiza-
tion packages: MATLAB, Gnuplot, Grace, OpenDX, and VTK. Even basic plotting
with these packages has very different syntax, and deciding what package and syn-
tax to go with was and still is a challenge. As a response to this challenge, Easyviz
was created to provide a common uniform interface to all the mentioned visualiza-
tion packages (including Matplotlib). The syntax of this interface was made very
close to that of MATLAB, since most scientists and engineers have experience with
MATLAB or most probably will be using it in some context. (In general, the Python
syntax used in the examples in this book is constructed to ease the transition to and
from MATLAB.)

Easyviz is part of the SciTools package, which consists of a set of Python tools
building on Numerical Python, ScientificPython, the comprehensive SciPy environ-
ment, and other packages for scientific computing with Python. SciTools contains
in particular software related to the book [13] and the present text. Installation is
straightforward as described on the web page https://github.com/hplgit/scitools.

Importing SciTools and Easyviz A standard import of SciTools is

from scitools.std import *

The advantage of this statement is that it, with a minimum of typing, imports a lot
of useful modules for numerical Python programming: Easyviz for MATLAB-
style plotting, all of numpy (from numpy import *), all of scipy (from scipy

import *) if available, the StringFunction tool (see Sect. 4.3.3), many mathe-
matical functions and tools in SciTools, plus commonly applied modules such as
sys, os, and math. The imported standard mathematical functions (sqrt, sin,
asin, exp, etc.) are from numpy.lib.scimath and deal transparently with real
and complex input/output (as the corresponding MATLAB functions):

>>> from scitools.std import *
>>> a = array([-4., 4])
>>> sqrt(a) # need complex output
array([ 0.+2.j, 2.+0.j])
>>> a = array([16., 4])
>>> sqrt(a) # can reduce to real output
array([ 4., 2.])

The inverse trigonometric functions have different names in math and numpy,
a fact that prevents an expression written for scalars, using math names, to be

https://github.com/hplgit/scitools
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immediately valid for arrays. Therefore, the from scitools.std import * ac-
tion also imports the names asin, acos, and atan for the numpy or scipy names
arcsin, arccos, and arctan functions, to ease vectorization of mathematical ex-
pressions involving inverse trigonometric functions.

The downside of the “star import” from scitools.std is twofold. First, it fills
up your program or interactive session with the names of several hundred functions.
Second, when using a particular function, you do not know the package it comes
from. Both problems are solved by doing an import of the type used in Sect. 5.3.2:

import scitools.std as st
import numpy as np

All of the SciTools and Easyviz functions must then be prefixed by st. Although
the numpy functions are available through the st prefix, we recommend using the
np prefix to clearly see where functionality comes from.

Since the Easyviz syntax for plotting is very close to that of MATLAB, it is also
very close to the syntax of Matplotlib shown earlier. This will be demonstrated in
the forthcoming examples. The advantage of using Easyviz is that the underlying
plotting package, used to create the graphics and known as a backend, can trivially
be replaced by another package. If users of your Python software have not installed
a particular visualization package, the software can still be used with another al-
ternative (which might be considerably easier to install). By default, Easyviz now
employs Matplotlib for plotting. Other popular alternatives are Gnuplot and MAT-
LAB. For 2D/3D scalar and vector fields, VTK is a popular backend for Easyviz.

We shall next redo the curve plotting examples from Sect. 5.3.1 using Easyviz
syntax.

A basic plot Plotting the curve y D t2 exp.�t2/ for t 2 Œ0; 3�, using 31 equally
spaced points (30 intervals) is performed by like this:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 31)
y = f(t)
plot(t, y, ’-’)

To save the plot in a file, we use the savefig function, which takes the filename as
argument:

savefig(’tmp1.pdf’) # produce PDF
savefig(’tmp1.eps’) # produce PostScript
savefig(’tmp1.png’) # produce PNG

The filename extension determines the format: .pdf for PDF, .ps or .eps for
PostScript, and .png for PNG. A synonym for the savefig function is hardcopy.
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What if the plot window quickly disappears?

On some platforms, some backends may result in a plot that is shown in just
a fraction of a second on the screen before the plot window disappears (the Gnu-
plot backend on Windows machines and the Matplotlib backend constitute two
examples). To make the window stay on the screen, add

raw_input(’Press the Return key to quit: ’)

at the end of the program. The plot window is killed when the program termi-
nates, and this statement postpones the termination until the user hits the Return
key.

Decorating the plot Let us plot the same curve, but now with a legend, a plot title,
labels on the axes, and specified ranges of the axes:

from scitools.std import *

def f(t):
return t**2*exp(-t**2)

t = linspace(0, 3, 31)
y = f(t)
plot(t, y, ’-’)
xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’)
axis([0, 3, -0.05, 0.6]) # [tmin, tmax, ymin, ymax]
title(’My First Easyviz Demo’)

Easyviz has also introduced a more Pythonic plot command where all the plot
properties can be set at once through keyword arguments:

plot(t, y, ’-’,
xlabel=’t’,
ylabel=’y’,
legend=’t^2*exp(-t^2)’,
axis=[0, 3, -0.05, 0.6],
title=’My First Easyviz Demo’,
savefig=’tmp1.pdf’,
show=True)

With show=False one can avoid the plot window on the screen and just make
the plot file.

Note that we in the curve legend write t square as t^2 (LATEX style) rather than
t**2 (program style). Whichever form you choose is up to you, but the LATEX form
sometimes looks better in some plotting programs (Matplotlib and Gnuplot are two
examples).

Plotting multiple curves Next we want to compare the two functions f1.t/ D
t2 exp.�t2/ and f2.t/ D t4 exp.�t2/. Writing two plot commands after each other
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makes two separate plots. To make the second curve appear together with the first
one, we need to issue a hold(’on’) call after the first plot command. All subse-
quent plot commands will then draw curves in the same plot, until hold(’off’)
is called.

from scitools.std import *

def f1(t):
return t**2*exp(-t**2)

def f2(t):
return t**2*f1(t)

t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)

plot(t, y1, ’r-’)
hold(’on’)
plot(t, y2, ’b-’)

xlabel(’t’)
ylabel(’y’)
legend(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’)
title(’Plotting two curves in the same plot’)
savefig(’tmp3.pdf’)

The sequence of the multiple legends is such that the first legend corresponds to the
first curve, the second legend to the second curve, and so forth.

Instead of separate calls to plot and the use of hold(’on’), we can do every-
thing at once and just send several curves to plot:

plot(t, y1, ’r-’, t, y2, ’b-’, xlabel=’t’, ylabel=’y’,
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
title=’Plotting two curves in the same plot’,
savefig=’tmp3.pdf’)

Throughout this book, we very often make use of this type of compact plot

command, which also only requires an import of the form from scitools.std

import plot.

Changing backend Easyviz applies Matplotlib for plotting by default, so the re-
sulting figures so far will be similar to those of Fig. 5.2–5.4.

However, we can use other backends (plotting packages) for creating the graph-
ics. The specification of what package to use is defined in a configuration file (see
the heading Setting Parameters in the Configuration File in the Easyviz documen-
tation), or on the command line:

Terminal

Terminal> python myprog.py --SCITOOLS_easyviz_backend gnuplot
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Fig. 5.6 Two curves in the same plot (Gnuplot)

Now, the plotting commands in myprog.py will make use of Gnuplot to create the
graphics, with a slightly different result than that created by Matplotlib (compare
Figs. 5.4 and 5.6). A nice feature of Gnuplot is that the line types are automatically
changed if we save a figure to file, such that the lines are easily distinguishable in
a black-and-white plot. With Matplotlib one has to carefully set the line types to
make them effective on a grayscale.

Placing several plots in one figure Finally, we redo the example from Sect. 5.3.1
where two plots are combined into one figure, using the subplot command:

figure()
subplot(2, 1, 1)
t = linspace(0, 3, 51)
y1 = f1(t)
y2 = f2(t)
plot(t, y1, ’r-’, t, y2, ’bo’, xlabel=’t’, ylabel=’y’,

legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’),
axis=[t[0], t[-1], min(y2)-0.05, max(y2)+0.5],
title=’Top figure’)

subplot(2, 1, 2)
t3 = t[::4]
y3 = f2(t3)

plot(t, y1, ’b-’, t3, y3, ’ys’,
xlabel=’t’, ylabel=’y’,
axis=[0, 4, -0.2, 0.6],
legend=(’t^2*exp(-t^2)’, ’t^4*exp(-t^2)’))

savefig(’tmp4.pdf’)

Note that figure() must be used if you want a program to make different plot
windows on the screen: each figure() call creates a new, separate plot.

All of the Easyviz examples above are found in the file easyviz_examples.py.
We remark that Easyviz is just a thin layer of code providing access to the most

http://tinyurl.com/pwyasaa/input/easyviz_examples.py
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common plotting functionality for curves as well as 2D/3D scalar and vector fields.
Fine-tuning of plots, e.g., specifying tick marks on the axes, is not supported, simply
because most of the curve plots in the daily work can be made without such func-
tionality. For fine-tuning the plot with special commands, you need to grab an object
in Easyviz that communicates directly with the underlying plotting package used to
create the graphics. With this object you can issue package-specific commands and
do whatever the underlying package allows you do. This is explained in the Easyviz
manual3, which also comes up by running pydoc scitools.easyviz. As soon as
you have digested the very basics of plotting, you are strongly recommend to read
through the curve plotting part of the Easyviz manual.

5.3.4 Making Animations

A sequence of plots can be combined into an animation on the screen and stored in
a video file. The standard procedure is to generate a series of individual plots and
to show them in sequence to obtain an animation effect. Plots store in files can be
combined to a video file.

Example The function

f .xIm; s/ D .2�/�1=2s�1 exp
�

�1

2

�x �m

s

�2
�

is known as the Gaussian function or the probability density function of the normal
(or Gaussian) distribution. This bell-shaped function is wide for large s and peak-
formed for small s, see Fig. 5.7. The function is symmetric around x D m (m D 0

in the figure). Our goal is to make an animation where we see how this function
evolves as s is decreased. In Python we implement the formula above as a function
f(x, m, s).
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Fig. 5.7 Different shapes of a Gaussian function

3 https://scitools.googlecode.com/hg/doc/easyviz/easyviz.html

https://scitools.googlecode.com/hg/doc/easyviz/easyviz.html
https://scitools.googlecode.com/hg/doc/easyviz/easyviz.html
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The animation is created by varying s in a loop and for each s issue a plot

command. A moving curve is then visible on the screen. One can also make a video
that can be played as any other computer movie using a standard movie player. To
this end, each plot is saved to a file, and all the files are combined together using
some suitable tool to be explained later. Before going into programming detail there
is one key point to emphasize.

Keep the extent of axes fixed during animations!

The underlying plotting program will normally adjust the axis to the maximum
and minimum values of the curve if we do not specify the axis ranges explicitly.
For an animation such automatic axis adjustment is misleading – any axis range
must be fixed to avoid a jumping axis.

The relevant values for the y axis range in the present example is the minimum
and maximum value of f . The minimum value is zero, while the maximum value
appears for x D m and increases with decreasing s. The range of the y axis must
therefore be Œ0; f .mIm; min s/�.

The function f is defined for all �1 < x < 1, but the function value is very
small already 3s away from x D m. We may therefore limit the x coordinates to
Œm � 3s; mC 3s�.

Animation in Easyviz We start with using Easyviz for animation since this is
almost identical to making standard static plots, and you can choose the plotting
engine you want to use, say Gunplot or Matplotlib. The Easyviz recipe for animat-
ing the Gaussian function as s goes from 2 to 0.2 looks as follows.

from scitools.std import sqrt, pi, exp, linspace, plot, movie
import time

def f(x, m, s):
return (1.0/(sqrt(2*pi)*s))*exp(-0.5*((x-m)/s)**2)

m = 0
s_min = 0.2
s_max = 2
x = linspace(m -3*s_max, m + 3*s_max, 1000)
s_values = linspace(s_max, s_min, 30)
# f is max for x=m; smaller s gives larger max value
max_f = f(m, m, s_min)

# Show the movie on the screen
# and make hardcopies of frames simultaneously.

counter = 0
for s in s_values:

y = f(x, m, s)
plot(x, y, ’-’, axis=[x[0], x[-1], -0.1, max_f],

xlabel=’x’, ylabel=’f’, legend=’s=%4.2f’ % s,
savefig=’tmp%04d.png’ % counter)

counter += 1
#time.sleep(0.2) # can insert a pause to control movie speed
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Note that the s values are decreasing (linspace handles this automatically if
the start value is greater than the stop value). Also note that we, simply because
we think it is visually more attractive, let the y axis go from �0.1 although the
f function is always greater than zero. The complete code is found in the file
movie1.py.

Notice

It is crucial to use the single, compound plot command shown above, where
axis, labels, legends, etc., are set in the same call. Splitting up in individual calls
to plot, axis, and so forth, results in jumping curves and axis. Also, when
visualizing more than one animated curve at a time, make sure you send all data
to a single plot command.

Remark on naming plot files

For each frame (plot) in the movie we store the plot in a file, with the purpose of
combining all the files to an ordinary video file. The different files need different
names such that various methods for listing the files will list them in the correct
order. To this end, we recommend using filenames of the form tmp0001.png,
tmp0002.png, tmp0003.png, etc. The printf format 04d pads the integers with
zeros such that 1 becomes 0001, 13 becomes 0013 and so on. The expression
tmp*.png will now expand (by an alphabetic sort) to a list of all files in proper
order.

Without the padding with zeros, i.e., names of the form tmp1.png, tmp2.png,
. . . , tmp12.png, etc., the alphabetic order will give a wrong sequence of frames
in the movie. For instance, tmp12.png will appear before tmp2.png.

Basic animation in Matplotlib Animation is Matplotib requires more than a loop
over a parameter and making a plot inside the loop. The set-up that is closest to
standard static plots is shown first, while the newer and more widely used tool
FuncAnimation is explained afterwards.

The first part of the program, where we define f, x, s_values, and so forth, is
the same regardless of the animation technique. Therefore, we concentrate on the
graphics part here:

import matplotlib.pyplot as plt
...
# Make a first plot
plt.ion()
y = f(x, m, s_max)
lines = plt.plot(x, y)
plt.axis([x[0], x[-1], -0.1, max_f])
plt.xlabel(’x’)
plt.ylabel(’f’)

# Show the movie, and make hardcopies of frames simulatenously
counter = 0
for s in s_values:

y = f(x, m, s)
lines[0].set_ydata(y)

http://tinyurl.com/pwyasaa/plot/movie1.py
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plt.legend([’s=%4.2f’ % s])
plt.draw()
plt.savefig(’tmp_%04d.png’ % counter)
counter += 1

The plt.ion() call is important, so is the first plot, where we grab the result of the
plot command, which is a list of Matplotlib’s Line2D objects. The idea is then to
update the data via lines[0].set_ydata and show the plot via plt.draw() for
each frame. For multiple curves we must update the y data for each curve, e.g.,

lines = plot(x, y1, x, y2, x, y3)

for parameter in parameters:
y1 = ...
y2 = ...
y3 = ...
for line, y in zip(lines, [y1, y2, y3]):

line.set_ydata(y)
plt.draw()

The file movie1_mpl1.py contains the complete program for doing animation with
native Matplotlib syntax.

Using FuncAnimation in Matplotlib The recommended approach to animation
in Matplotlib is to use the FuncAnimation tool:

import matplotlib.pyplot as plt
from matplotlib.animation import animation

anim = animation.FuncAnimation(
fig, frame, all_args, interval=150, init_func=init, blit=True)

Here, fig is the plt.figure() object for the current figure, frame is a user-
defined function for plotting each frame, all_args is a list of arguments for frame,
interval is the delay in ms between each frame, init_func is a function called
for defining the background plot in the animation, and blit=True speeds up the
animation. For frame number i, FuncAnimationwill call frame(all_args[i]).
Hence, the user’s task is mostly to write the frame function and construct the
all_args arguments.

After having defined m, s_max, s_min, s_values, and max_f as shown earlier,
we have to make a first plot:

fig = plt.figure()
plt.axis([x[0], x[-1], -0.1, max_f])
lines = plt.plot([], [])
plt.xlabel(’x’)
plt.ylabel(’f’)

Notice that we save the return value of plt.plot in lines such that we can con-
veniently update the data for the curve(s) in each frame.

http://tinyurl.com/pwyasaa/plot/movie1_mpl1.py
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The function for defining a background plot draws an empty plot in this example:

def init():
lines[0].set_data([], []) # empty plot
return lines

The function that defines the individual plots in the animation basically computes
y from f and updates the data of the curve:

def frame(args):
frame_no, s, x, lines = args
y = f(x, m, s)
lines[0].set_data(x, y)
return lines

Multiple curves can be updated as shown earlier.
We are now ready to call animation.FuncAnimation:

anim = animation.FuncAnimation(
fig, frame, all_args, interval=150, init_func=init, blit=True)

A common next action is to make a video file, here in the MP4 format with 5
frames per second:

anim.save(’movie1.mp4’, fps=5) # movie in MP4 format

Finally, we must plt.show() as always to watch any plots on the screen.
The video making requires additional software on the computer, such as ffmpeg,

and can fail. One gets more control over the potentially fragile movie making pro-
cess by explicitly saving plots to file and explicitly running movie making programs
like ffmeg later. Such programs are explained in Sect. 5.3.5.

The complete code showing the basic use of FuncAnimation is available in
movie1_FuncAnimation.py. There is also a MATLAB Animation Tutorial4 with
more basic information, plus a set of animation examples on http://matplotlib.org/
examples.

Remove old plot files!

We strongly recommend removing previously generated plot files before a new
set of files is made. Otherwise, the movie may get old and new files mixed up.
The following Python code removes all files of the form tmp*.png:

import glob, os
for filename in glob.glob(’tmp*.png’):

os.remove(filename)

These code lines should be inserted at the beginning of programs or functions
performing animations.

4 http://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/

http://tinyurl.com/pwyasaa/plot/movie1_FuncAnimation.py
http://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/
http://matplotlib.org/examples
http://matplotlib.org/examples
http://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/
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Instead of deleting the individual plotfiles, one may store all plot files in a sub-
folder and later delete the subfolder. Here is a suitable code segment:

import shutil, os
subdir = ’temp’ # subfolder name for plot files
if os.path.isdir(subdir): # does the subfolder already exist?

shutil.rmtree(subdir) # delete the whole folder
os.mkdir(subdir) # make new subfolder
os.chdir(subdir) # move to subfolder
# ... perform all the plotting, make movie ...
os.chdir(os.pardir) # optional: move up to parent folder

Note that Python and many other languages use the word directory instead of folder.
Consequently, the name of functions dealing with folders have a name containing
dir for directory.

5.3.5 Making Videos

Suppose we have a set of frames in an animation, saved as plot files tmp_*.png.
The filenames are generated by the printf syntax ’tmp_%04d.png’ % i, using
a frame counter i that goes from 0 to some value. The corresponding files are
then tmp_0000.png, tmp_0001.png, tmp_0002.png, and so on. Several tools
can be used to create videos in common formats from the individual frames in the
plot files.

Animated GIF file The ImageMagick5 software suite contains a program convert

for making animated GIF files:

Terminal

Terminal> convert -delay 50 tmp_*.png movie.gif

The delay between frames, here 50, is measured in units of 1/100 s. The resulting
animated GIF file movie.gif can be viewed by another program in the ImageMag-
ick suite: animate movie.gif, but the most common way of displaying animated
GIF files is to include them in web pages. Writing the HTML code

<img src="movie.gif">

in some file with extension .html and loading this file into a web browser will play
the movie repeatedly. You may try this out online6.

MP4, Ogg, WebM, and Flash videos The modern video formats that are best
suited for being displayed in web browsers are MP4, Ogg, WebM, and Flash. The
program ffmpeg, or the almost equivalent avconv, is a common tool to create such
movies. Creating a flash video is done by

5 http://www.imagemagick.org/
6 http://hplgit.github.io/scipro-primer/video/gaussian.html

http://www.imagemagick.org/
http://hplgit.github.io/scipro-primer/video/gaussian.html
http://www.imagemagick.org/
http://hplgit.github.io/scipro-primer/video/gaussian.html
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Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 5 -vcodec flv movie.flv

The -i option specifies the printf string that was used to make the names of the
individual plot files, -r specifies the number of frames per second, here 5, -vcodec
is the video codec for Flash, which is called flv, and the final argument is the name
of the video file. On Debian Linux systems, such as Ubuntu, you use the avconv

program instead of ffmpeg.
Other formats are created in the same way, but we need to specify the codec and

use the right extension in the video file:

Format Codec and filename
Flash -vcodec flv movie.flv

MP4 -vcodec libx264 movie.mp4

Webm -vcodec libvpx movie.webm

Ogg -vcodec libtheora movie.ogg

Video files are normally trivial to play in graphical file browser: double lick the
filename or right-click and choose a player. On Linux systems there are several
players that can be run from the command line, e.g., vlc, mplayer, gxine, and
totem.

It is easy to create the video file from a Python program since we can run any
operating system command in (e.g.) os.system:

cmd = ’convert -delay 50 tmp_*.png movie.gif’
os.system(cmd)

It might happen that your downloaded and installed version of ffmpeg fails to
generate videos in some of the mentioned formats. The reason is that ffmpeg de-
pends on many other packages that may be missing on your system. Getting ffmpeg
to work with the libx264 codec for making MP4 files is often challenging. On
Debian-based Linux systems, such as Ubuntu, the installation procedure at the time
of this writing goes like

Terminal

Terminal> sudo apt-get install lib-avtools libavcodec-extra-53 \
libx264-dev

5.3.6 Curve Plots in Pure Text

Sometimes it can be desirable to show a graph in pure ASCII text, e.g., as part
of a trial run of a program included in the program itself, or a graph that can be
illustrative in a doc string. For such purposes we have slightly extended a module
by Imri Goldberg (aplotter.py) and included it as a module in SciTools. Running
pydoc on scitools.aplotter describes the capabilities of this type of primitive
plotting. Here we just give an example of what it can do:
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>>> import numpy as np
>>> x = np.linspace(-2, 2, 81)
>>> y = np.exp(-0.5*x**2)*np.cos(np.pi*x)
>>> from scitools.aplotter import plot
>>> plot(x, y)
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/ | \

/ | \
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/ | \
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5.4 Plotting Difficulties

The previous examples on plotting functions demonstrate how easy it is to make
graphs. Nevertheless, the shown techniques might easily fail to plot some functions
correctly unless we are careful. Next we address two types of difficult functions:
piecewisely defined functions and rapidly varying functions.

5.4.1 Piecewisely Defined Functions

A piecewisely defined function has different function definitions in different in-
tervals along the x axis. The resulting function, made up of pieces, may have
discontinuities in the function value or in derivatives. We have to be very care-
ful when plotting such functions, as the next two examples will show. The problem
is that the plotting mechanism draws straight lines between coordinates on the func-
tion’s curve, and these straight lines may not yield a satisfactory visualization of the
function. The first example has a discontinuity in the function itself at one point,
while the other example has a discontinuity in the derivative at three points.

Example: The Heaviside function Let us plot the Heaviside function

H.x/ D
(

0; x < 0

1; x � 0
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The most natural way to proceed is first to define the function as

def H(x):
return (0 if x < 0 else 1)

The standard plotting procedure where we define a coordinate array x and call y =

H(x) will not work for array arguments x, of reasons to be explained in Sect. 5.5.2.
However, we may use techniques from that chapter to create a function Hv(x) that
works for array arguments. Even with such a function we face difficulties with
plotting it.

Since the Heaviside function consists of two flat lines, one may think that we do
not need many points along the x axis to describe the curve. Let us try with nine
points:

x = np.linspace(-10, 10, 9)
from scitools.std import plot
plot(x, Hv(x), axis=[x[0], x[-1], -0.1, 1.1])

However, so few x points are not able to describe the jump from 0 to 1 at x D 0, as
shown by the solid line in Fig. 5.8 (left). Using more points, say 50 between �10

and 10,

x2 = np.linspace(-10, 10, 50)
plot(x, Hv(x), ’r’, x2, Hv(x2), ’b’,

legend=(’5 points’, ’50 points’),
axis=[x[0], x[-1], -0.1, 1.1])

makes the curve look better. However, the step is still not strictly vertical. More
points will improve the situation. Nevertheless, the best is to draw two flat lines
directly: from .�10; 0/ to .0; 0/, then to .0; 1/ and then to .10; 1/:

plot([-10, 0, 0, 10], [0, 0, 1, 1],
axis=[x[0], x[-1], -0.1, 1.1])

The result is shown in Fig. 5.8 (right).
Some will argue that the plot of H.x/ should not contain the vertical line from

.0; 0/ to .0; 1/, but only two horizontal lines. To make such a plot, we must draw
two distinct curves, one for each horizontal line:

plot([-10,0], [0,0], ’r-’, [0,10], [1,1], ’r-’,
axis=[x[0], x[-1], -0.1, 1.1])

Observe that we must specify the same line style for both lines (curves), otherwise
they would by default get different colors on the screen or different line types in
a hardcopy of the plot. We remark, however, that discontinuous functions like H.x/

are often visualized with vertical lines at the jumps, as we do in Fig. 5.8b.
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Fig. 5.8 Plot of the Heaviside function using 9 equally spaced x points (left) and with a double
point at x D 0 (right)

Example: A hat function Let us plot the hat function N.x/, shown as the solid
line in Fig. 5.9. This function is a piecewise linear function. The implementation of
N.x/ must use if tests to locate where we are along the x axis and then evaluate
the right linear piece of N.x/. A straightforward implementation with plain if

tests does not work with array arguments x, but Sect. 5.5.3 explains how to make
a vectorized version Nv(x) that works for array arguments as well. Anyway, both
the scalar and the vectorized versions face challenges when it comes to plotting.

A first approach to plotting could be

x = np.linspace(-2, 4, 6)
plot(x, Nv(x), ’r’, axis=[x[0], x[-1], -0.1, 1.1])
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Fig. 5.9 Plot of a hat function. The solid line shows the exact function, while the dashed line
arises from using inappropriate points along the x axis
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This results in the dashed line in Fig. 5.9. What is the problem? The problem lies in
the computation of the x vector, which does not contain the points x D 1 and x D 2

where the function makes significant changes. The result is that the hat is flattened.
Making an x vector with all critical points in the function definitions, x D 0; 1; 2,
provides the necessary remedy, either

x = np.linspace(-2, 4, 7)

or the simple

x = [-2, 0, 1, 2, 4]

Any of these x alternatives and a plot(x, Nv(x)) will result in the solid line in
Fig. 5.9, which is the correct visualization of the N.x/ function.

As in the case of the Heaviside function, it is perhaps best to drop using vec-
torized evaluations and just draw straight lines between the critical points of the
function (since the function is linear):

x = [-2, 0, 1, 2, 4]
y = [N(xi) for xi in x]
plot(x, y, ’r’, axis=[x[0], x[-1], -0.1, 1.1])

5.4.2 Rapidly Varying Functions

Let us now visualize the function f .x/ D sin.1=x/, using 10 and 1000 points:

def f(x):
return sin(1.0/x)

from scitools.std import linspace, plot
x1 = linspace(-1, 1, 10)
x2 = linspace(-1, 1, 1000)
plot(x1, f(x1), label=’%d points’ % len(x))
plot(x2, f(x2), label=’%d points’ % len(x))

The two plots are shown in Fig. 5.10. Using only 10 points gives a completely
wrong picture of this function, because the function oscillates faster and faster as we
approach the origin. With 1000 points we get an impression of these oscillations,
but the accuracy of the plot in the vicinity of the origin is still poor. A plot with
100000 points has better accuracy, in principle, but the extremely fast oscillations
near the origin just drowns in black ink (you can try it out yourself).

Another problem with the f .x/ D sin.1=x/ function is that it is easy to define
an x vector containing x D 0, such that we get division by zero. Mathematically,
the f .x/ function has a singularity at x D 0: it is difficult to define f .0/, so
one should exclude this point from the function definition and work with a domain
x 2 Œ�1;��� [ Œ�; 1�, with � chosen small.

The lesson learned from these examples is clear. You must investigate the func-
tion to be visualized and make sure that you use an appropriate set of x coordinates
along the curve. A relevant first step is to double the number of x coordinates
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Fig. 5.10 Plot of the function sin.1=x/ with 10 points (left) and 1000 points (right)

and check if this changes the plot. If not, you probably have an adequate set of x

coordinates.

5.5 More Advanced Vectorization of Functions

So far we have seen that vectorization of a Python function f(x) implementing
some mathematical function f .x/ seems trivial: f(x) works right away with an
array argument x and, in that case, returns an array where f is applied to each
element in x. When the expression for f .x/ is given in terms of a string and the
StringFunction tool is used to generate the corresponding Python function f(x),
one extra step must be performed to vectorize the Python function. This step is
explained in Sect. 5.5.1.

The described vectorization works well as long as the expression f .x/ is a math-
ematical formula without any if test. As soon as we have if tests (conditional
mathematical expressions) the vectorization becomes more challenging. Some use-
ful techniques are explained through two examples in Sects. 5.5.2 and 5.5.3. The
described techniques are considered advanced material and only necessary when
the time spent on evaluating a function at a very large set of points needs to be
significantly decreased.

5.5.1 Vectorization of StringFunction Objects

The StringFunctionobject from scitools.std can convert a formula, available
as a string, to a callable Python function (see Sect. 4.3.3). However, the function
cannot work with array arguments unless we explicitly tell the StringFunction

object to do so. The recipe is very simple. Say f is some StringFunction object.
To allow array arguments we are required to call f.vectorize(globals())once:

from numpy import *
x = linspace(0, 1, 30)
# f(x) will in general not work

f.vectorize(globals())
values = f(x) # f works with array arguments
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It is important that you import everything from numpy (or scitools.std) before

calling f.vectorize, exactly as shown.
You may take the f.vectorize call as a magic recipe. Still, some readers

want to know what problem f.vectorize solves. Inside the StringFunction

module we need to have access to mathematical functions for expressions like
sin(x)*exp(x) to be evaluated. These mathematical functions are by default
taken from the math module and hence they do not work with array arguments.
If the user, in the main program, has imported mathematical functions that work
with array arguments, these functions are registered in a dictionary returned from
globals(). By the f.vectorize call we supply the StringFunction module
with the user’s global namespace so that the evaluation of the string expression can
make use of the mathematical functions for arrays from the user’s program. Un-
less you use np.sin(x)*np.cos(x) etc. in the string formulas, make sure you
do a from numpy import * so that the function names are defined without any
prefix.

Even after calling f.vectorize(globals()), a StringFunction object may
face problems with vectorization. One example is a piecewise constant function
as specified by a string expression ’1 if x > 2 else 0’. Section 5.5.2 explains
why if tests fail for arrays and what the remedies are.

5.5.2 Vectorization of the Heaviside Function

We consider the widely used Heaviside function defined by

H.x/ D
(

0; x < 0

1; x � 0

The most compact way if implementing this function is

def H(x):
return (0 if x < 0 else 1)

Trying to call H(x) with an array argument x fails:

>>> def H(x): return (0 if x < 0 else 1)
...
>>> import numpy as np
>>> x = np.linspace(-10, 10, 5)
>>> x
array([-10., -5., 0., 5., 10.])
>>> H(x)
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()

The problem is related to the test x < 0, which results in an array of boolean values,
while the if test needs a single boolean value (essentially taking bool(x < 0)):
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>>> b = x < 0
>>> b
array([ True, True, False, False, False], dtype=bool)
>>> bool(b) # evaluate b in a boolean context
...
ValueError: The truth value of an array with more than
one element is ambiguous. Use a.any() or a.all()
>>> b.any() # True if any element in b is True
True
>>> b.all() # True if all elements in b are True
False

The any and all calls do not help us since we want to take actions element by
element depending on whether x[i] < 0 or not.

There are four ways to find a remedy to our problems with the if x < 0 test:
(i) we can write an explicit loop for computing the elements, (ii) we can use a tool
for automatically vectorize H(x), (iii) we can mix boolean and floating-point calcu-
lations, or (iv) we can manually vectorize the H(x) function. All four methods will
be illustrated next.

Loop The following function works well for arrays if we insert a simple loop over
the array elements (such that H(x) operates on scalars only):

def H_loop(x):
r = np.zeros(len(x))
for i in xrange(len(x)):

r[i] = H(x[i])
return r

# Example:
x = np.linspace(-5, 5, 6)
y = H_loop(x)

Automatic vectorization Numerical Python contains a method for automatically
vectorizing a Python function H(x) that works with scalars (pure numbers) as x

argument:

import numpy as np
H_vec = np.vectorize(H)

The H_vec(x) function will now work with vector/array arguments x. Unfortu-
nately, such automatically vectorized functions runs at a fairly slow speed compared
to the implementations below (see the end of Sect. 5.5.3 for specific timings).

Mixing boolean and floating-point calculations It appears that a very simple so-
lution to vectorizing the H(x) function is to implement it as

def H(x):
return x >= 0
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The return value is now a bool object, not an int or float as we would math-
ematically expect to be the proper type of the result. However, the bool object
works well in both scalar and vectorized operations as long as we involve the re-
turned H(x) in some arithmetic expression. The True and False values are then
interpreted as 1 and 0. Here is a demonstration:

>>> x = np.linspace(-1, 1, 5)
>>> H(x)
array([False, False, True, True, True], dtype=bool)
>>> 1*H(x)
array([0, 0, 1, 1, 1])
>>> H(x) - 2
array([-2, -2, -1, -1, -1])
>>>
>>> x = 0.2 # test scalar argument
>>> H(x)
True
>>> 1*H(x)
1
>>> H(x) - 2
-1

If returning a boolean value is considered undesirable, we can turn the bool object
into the proper type by

def H(x):
r = x >= 0
if isinstance(x, (int,float)):

return int(r)
elif isinstance(x, np.ndarray):

return np.asarray(r, dtype=np.int)

Manual vectorization By manual vectorization we normally mean translating the
algorithm into a set of calls to functions in the numpy package such that no loops are
visible in the Python code. The last version of the H(x) is a manual vectorization,
but now we shall look at a more general technique when the result is not necessarily
0 or 1. In general, manual vectorization is non-trivial and requires knowledge of and
experience with the underlying library for array computations. Fortunately, there is
a simple numpy recipe for turning functions of the form

def f(x):
if condition:

r = <expression1>
else:

r = <expression2>
return r

into vectorized form:

def f_vectorized(x):
x1 = <expression1>
x2 = <expression2>
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r = np.where(condition, x1, x2)
return r

The np.where function returns an array of the same length as condition, whose
element no. i equals x1[i] if condition[i] is True, and x2[i] otherwise. With
Python loops we can express this principle as

def my_where(condition, x1, x2):
r = np.zeros(len(condition)) # result
for i in xrange(condition):

r[i] = x1[i] if condition[i] else x2[i]
return r

The x1 and x2 variables can be pure numbers too in the call to np.where.
In our case we can use the np.where function as follows:

def Hv(x):
return np.where(x < 0, 0.0, 1.0)

Instead of using np.where we can apply boolean indexing. The idea is that an
array a allows to be indexed by an array b of boolean values: a[b]. The result a[b]
is a new array with all the elements a[i] where b[i] is True:

>>> a
array([ 0. , 2.5, 5. , 7.5, 10. ])
>>> b = a > 5
>>> b
array([False, False, False, True, True], dtype=bool)
>>> a[b]
array([ 7.5, 10. ])

We can assign new values to the elements in a where b is True:

>>> a[b]
array([ 7.5, 10. ])
>>> a[b] = np.array([-10, -20], dtype=np.float)
>>> a
array([ 0. , 2.5, 5. , -10. , -20. ])
>>> a[b] = -4
>>> a
array([ 0. , 2.5, 5. , -4. , -4. ])

To implement the Heaviside function, we start with an array of zeros and then
assign 1 to the elements where x >= 0:

def Hv(x):
r = np.zeros(len(x), dtype=np.int)
r[x >= 0] = 1
return r
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5.5.3 Vectorization of a Hat Function

We now turn the attention to the hat function N.x/ defined by

N.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

0; x < 0

x; 0 � x < 1

2 � x; 1 � x < 2

0; x � 2

The corresponding Python implementation N(x) is

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0.0

Unfortunately, this N(x) function does not work with array arguments x, because
the boolean expressions, like x < 0, are arrays and they cannot yield a single True
or False value for the if tests, as explained in Sect. 5.5.2.

The simplest remedy is to use np.vectorize from Sect. 5.5.2:

N_vec = np.vectorize(N)

It is then important that N(x) returns float and not int values, otherwise the
vectorized version will produce int values and hence be incorrect.

A manual rewrite, yielding a faster vectorized function, is more demanding than
for the Heaviside function because we now have multiple branches in the if test.
One sketch is to replace

if condition1:
r = <expression1>

elif condition2:
r = <expression2>

elif condition3:
r = <expression3>

else:
r = <expression4>

by

x1 = <expression1>
x2 = <expression2>
x3 = <expression3>
x4 = <expression4>
r = np.where(condition1, x1, x4) # initialize with "else" expr.
r = np.where(condition2, x2, r)
r = np.where(condition3, x3, r)
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Alternatively, we can use boolean indexing. Assuming that <expressionX> is
some expression involving an array x and coded as a Python function fX(x) (X is
1, 2, 3, or 4), we can write

r = f4(x)
r[condition1] = f1(x[condition1])
r[condition2] = f2(x[condition2])
r[condition3] = f2(x[condition3])

Specifically, when the function for scalar arguments x reads

def N(x):
if x < 0:

return 0.0
elif 0 <= x < 1:

return x
elif 1 <= x < 2:

return 2 - x
elif x >= 2:

return 0.0

a vectorized attempt would be

def Nv(x):
r = np.where(x < 0, 0.0, 0.0)
r = np.where(0 <= x < 1, x, r)
r = np.where(1 <= x < 2, 2-x, r)
r = np.where(x >= 2, 0.0, r)
return r

The first and last line are not strictly necessary as we could just start with a zero
vector (making the insertion of zeros for the first and last condition a redundant
operation).

However, any condition like 0 <= x < 1, which is equivalent to 0 <= x and

x < 1, does not work because the and operator does not work with array ar-
guments. Fortunately, there is a simple solution to this problem: the function
logical_and in numpy. A working Nv function must apply logical_and instead
in each condition:

def Nv1(x):
condition1 = x < 0
condition2 = np.logical_and(0 <= x, x < 1)
condition3 = np.logical_and(1 <= x, x < 2)
condition4 = x >= 2

r = np.where(condition1, 0.0, 0.0)
r = np.where(condition2, x, r)
r = np.where(condition3, 2-x, r)
r = np.where(condition4, 0.0, r)
return r

With boolean indexing we get the alternative form
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def Nv2(x):
condition1 = x < 0
condition2 = np.logical_and(0 <= x, x < 1)
condition3 = np.logical_and(1 <= x, x < 2)
condition4 = x >= 2

r = np.zeros(len(x))
r[condition1] = 0.0
r[condition2] = x[condition2]
r[condition3] = 2-x[condition3]
r[condition4] = 0.0
return r

Again, the first and last assignment to r can be omitted in this special case where
we start with a zero vector.

The file hat.py implements four vectorized versions of the N(x) function:
N_loop, which is a plain loop calling up N(x) for each x[i] element in the array
x; N_vec, which is the result of automatic vectorization via np.vectorize; the
Nv1 function shown above, which uses the np.where constructions; and the Nv2

function, which uses boolean indexing. With a length of x of 1,000,000, the results
on my computer (MacBook Air 11”, 2 1.6GHz Intel CPU, running Ubuntu 12.04
in a VMWare virtual machine) became 4.8 s for N_loop, 1 s N_vec, 0.3 s for Nv1,
and 0.08 s for Nv2. Boolean indexing is clearly the fastest method.

5.6 More on Numerical Python Arrays

This section lists some more advanced but useful operations with Numerical Python
arrays.

5.6.1 Copying Arrays

Let x be an array. The statement a = x makes a refer to the same array as x.
Changing a will then also affect x:

>>> import numpy as np
>>> x = np.array([1, 2, 3.5])
>>> a = x
>>> a[-1] = 3 # this changes x[-1] too!
>>> x
array([ 1., 2., 3.])

Changing a without changing x requires a to be a copy of x:

>>> a = x.copy()
>>> a[-1] = 9
>>> a
array([ 1., 2., 9.])
>>> x
array([ 1., 2., 3.])

http://tinyurl.com/pwyasaa/plot/hat.py
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5.6.2 In-Place Arithmetics

Let a and b be two arrays of the same shape. The expression a += b means a = a

+ b, but this is not the complete story. In the statement a = a + b, the sum a +

b is first computed, yielding a new array, and then the name a is bound to this new
array. The old array a is lost unless there are other names assigned to this array. In
the statement a += b, elements of b are added directly into the elements of a (in
memory). There is no hidden intermediate array as in a = a + b. This implies
that a += b is more efficient than a = a + b since Python avoids making an extra
array. We say that the operators +=, *=, and so on, perform in-place arithmetics in
arrays.

Consider the compound array expression

a = (3*x**4 + 2*x + 4)/(x + 1)

The computation actually goes as follows with seven hidden arrays for storing in-
termediate results:

� r1 = x**4

� r2 = 3*r1

� r3 = 2*x

� r4 = r2 + r3

� r5 = r4 + 4

� r6 = x + 1

� r7 = r5/r6

� a = r7

With in-place arithmetics we can get away with creating three new arrays, at a cost
of a significantly less readable code:

a = x.copy()
a **= 4
a *= 3
a += 2*x
a += 4
a /= x + 1

The three extra arrays in this series of statement arise from copying x, and comput-
ing the right-hand sides 2*x and x+1.

Quite often in computational science and engineering, a huge number of arith-
metics is performed on very large arrays, and then saving memory and array allo-
cation time by doing in-place arithmetics is important.

The mix of assignment and in-place arithmetics makes it easy to make unin-
tended changes of more than one array. For example, this code changes x:

a = x
a += y

since a refers to the same array as x and the change of a is done in-place.
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5.6.3 Allocating Arrays

We have already seen that the np.zeros function is handy for making a new array
a of a given size. Very often the size and the type of array elements have to match
another existing array x. We can then either copy the original array, e.g.,

a = x.copy()

and fill elements in a with the right new values, or we can say

a = np.zeros(x.shape, x.dtype)

The attribute x.dtype holds the array element type (dtype for data type), and
x.shape is a tuple with the array dimensions. The variable a.ndim holds the num-
ber of dimensions.

Sometimes we may want to ensure that an object is an array, and if not, turn it
into an array. The np.asarray function is useful in such cases:

a = np.asarray(a)

Nothing is copied if a already is an array, but if a is a list or tuple, a new array with
a copy of the data is created.

5.6.4 Generalized Indexing

Section 5.2.2 shows how slices can be used to extract and manipulate subarrays.
The slice f:t:i corresponds to the index set f, f+i, f+2*i, ... up to, but not
including, t. Such an index set can be given explicitly too: a[range(f,t,i)].
That is, the integer list from range can be used as a set of indices. In fact, any
integer list or integer array can be used as index:

>>> a = np.linspace(1, 8, 8)
>>> a
array([ 1., 2., 3., 4., 5., 6., 7., 8.])
>>> a[[1,6,7]] = 10
>>> a
array([ 1., 10., 3., 4., 5., 6., 10., 10.])
>>> a[range(2,8,3)] = -2 # same as a[2:8:3] = -2
>>> a
array([ 1., 10., -2., 4., 5., -2., 10., 10.])

We can also use boolean arrays to generate an index set. The indices in the set
will correspond to the indices for which the boolean array has True values. This
functionality allows expressions like a[x<m]. Here are two examples, continuing
the previous interactive session:
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>>> a[a < 0] # pick out the negative elements of a
array([-2., -2.])
>>> a[a < 0] = a.max()
>>> a
array([ 1., 10., 10., 4., 5., 10., 10., 10.])
>>> # Replace elements where a is 10 by the first
>>> # elements from another array/list:
>>> a[a == 10] = [10, 20, 30, 40, 50, 60, 70]
>>> a
array([ 1., 10., 20., 4., 5., 30., 40., 50.])

Generalized indexing using integer arrays or lists is important for vectorized
initialization of array elements. The syntax for generalized indexing of higher-
dimensional arrays is slightly different, see Sect. 5.8.2.

5.6.5 Testing for the Array Type

Inside an interactive Python shell you can easily check an object’s type using the
type function (see Sect. 1.5.2). In case of a Numerical Python array, the type name
is ndarray:

>>> a = np.linspace(-1, 1, 3)
>>> a
array([-1., 0., 1.])
>>> type(a)
<type ’numpy.ndarray’>

Sometimes you need to test if a variable is an ndarray or a float or int. The
isinstance function can be used this purpose:

>>> isinstance(a, np.ndarray)
True
>>> isinstance(a, (float,int)) # float or int?
False

A typical use of isinstance and type to check on object’s type is shown next.

Example: Vectorizing a constant function Suppose we have a constant function,

def f(x):
return 2

This function accepts an array argument x, but will return a float while a vector-
ized version of the function should return an array of the same shape as x where
each element has the value 2. The vectorized version can be realized as

def fv(x):
return np.zeros(x.shape, x.dtype) + 2



5.6 More on Numerical Python Arrays 271

The optimal vectorized function would be one that works for both a scalar and an
array argument. We must then test on the argument type:

def f(x):
if isinstance(x, (float, int)):

return 2
elif isinstance(x, np.ndarray):

return np.zeros(x.shape, x.dtype) + 2
else:

raise TypeError\
(’x must be int, float or ndarray, not %s’ % type(x))

5.6.6 Compact Syntax for Array Generation

There is a special compact syntax r_[f:t:s] for the linspace function:

>>> a = r_[-5:5:11j] # same as linspace(-5, 5, 11)
>>> print a
[-5. -4. -3. -2. -1. 0. 1. 2. 3. 4. 5.]

Here, 11j means 11 coordinates (between �5 and 5, including the upper limit 5).
That is, the number of elements in the array is given with the imaginary number
syntax.

5.6.7 Shape Manipulation

The shape attribute in array objects holds the shape, i.e., the size of each dimension.
A function size returns the total number of elements in an array. Here are a few
equivalent ways of changing the shape of an array:

>>> a = np.linspace(-1, 1, 6)
>>> print a
[-1. -0.6 -0.2 0.2 0.6 1. ]
>>> a.shape
(6,)
>>> a.size
6
>>> a.shape = (2, 3)
>>> a = a.reshape(2, 3) # alternative
>>> a.shape
(2, 3)
>>> print a
[[-1. -0.6 -0.2]
[ 0.2 0.6 1. ]]

>>> a.size # total no of elements
6
>>> len(a) # no of rows
2
>>> a.shape = (a.size,) # reset shape

Note that len(a) always returns the length of the first dimension of an array.
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5.7 High-Performance Computing with Arrays

Programs with lots of array calculations may soon consume much time and memory,
so it may quickly become crucial to speed up calculations and use as little memory
as possible. The main technique for speeding up array calculations is vectorization,
i.e., avoiding explicit loops in Python over array elements. To save memory usage,
one needs to understand when arrays get allocated and avoid this by in-place ar-
ray arithmetics. You should review Sect. 5.6.2 about array allocation and in-place
arithmetics before reading on.

Example: axpy Our computational case study concerns the famous “axpy” opera-
tion: r D axCy, where a is a number and x and y are arrays. All implementations
and the associated experimentation are found in the file hpc_axpy.py.

5.7.1 Scalar Implementation

A naive loop implementation of the “axpy” operation ax C y reads

def axpy_loop_newr(a, x, y):
r = np.zeros_like(x)
for i in range(r.size):

r[i] = a*x[i] + y[i]
return r

Classical implementations overwrite y by ax C y: y  ax C y, but we shall
make implementations where we either can overwrite y or place axC y in another
array. The function above creates a new array for the result.

Rather than allocating the array inside the function, we can put that burden on
the user and provide a result array r as input:

def axpy_loop(a, x, y, r):
for i in range(r.size):

r[i] = a*x[i] + y[i]
return r

The advantage of this version is that we can either overwrite y by ax C y or store
ax C y in a separate array:

# Classical axpy
y = axpy_loop(a, x, y, y)

# Store axpy result in separate array
r = np.zeros_like(x)
r = axpy_loop(a, x, y, r)

Python functions return output data

The call

r = axpy_loop(a, x, y, r)

http://tinyurl.com/pwyasaa/plot/hpc_axpy.py


5.7 High-Performance Computing with Arrays 273

can equally well be written

axpy_loop(a, x, y, r)

This is the typical coding style in Fortran, C, or C++ (where r is then transferred
as a reference or pointer to the array data). In Python, there is no need for the
function axpy_loop to return r, because the assignment to r[i] inside the loop
changes all elements of the r. The array r will therefore be modified after calling
axpy_loop(a, x, y, r) anyway. However, it is a good convention in Python
that all input data to a function are arguments and all output data are returned.
With

r = axpy_loop(a, x, y, r)

we clearly see that r is both input and output.

5.7.2 Vectorized Implementation

The vectorized implementation of the “axpy” operation reads

def axpy1(a, x, y):
r = a*x + y
return r

Note that the result is placed in a new array arrising from the operation a*x+y.
The speed up of vectorization is significant, see Fig. 5.11 (made by the function
effect_of_vec in the file hpc_axpy.py).

Temporary arrays are needed in the vectorized implementation. One would ex-
pect that a*x must be calculated and stored in a temporary array, call it r1, and
then r1 + y must be evaluated and stored in another allocated array r, which is
returned. It appears that a*x + y only needs the allocation of one array, the one
to be returned (we have investigated the memory consumption in detail using the
memory_profiler module). Anyway, repeated calls to axpy1 with large arrays
lead to an allocation of a new large array in each call.

5.7.3 Memory-Saving Implementation

Applications with large arrays should avoid unnecessary allocation of temporary ar-
rays and instead reuse pre-allocated arrays. Suppose we have allocated an array for
the result r = ax + y once and for all. We can pass the r array to the computing
function as in the axpy_loop function above and use the memory in r for interme-
diate calculation. In vectorized code, this requires use of in-place array arithmetics
(see Sect. 5.6.2)

In-place arithmetics for doing r = a*x + y in a pre-allocated array r will first
copy all elements of x into r, then perform elementwise multiplication by a, and
finally elementwise addition of y:

http://tinyurl.com/pwyasaa/plot/hpc_axpy.py
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Fig. 5.11 Improved efficiency of vectorizing the “axpy” operation as function of array length

def axpy2(a, x, y, r):
r[:] = x
r *= a
r += y
return r

Note that r[:] = x inserts the elements of x into r. A mathematically equivalent
construction, r = x.copy(), allocates a new object and fills it with the values of
x before the name r refers to this object. The array r supplied as argument to the
function is then lost, and the returned array is another object.

We can perform repeated calls to the axpy2 function without any extra memory
allocation. This can be proved by a small code snippet where we use id(r) to see
the unique identity of the r array. If this identity remains constant through calls, we
always reuse the pre-allocated r array:

r = np.zeros_like(x)
print id(r)
for i in range(10):

r = axpy2(a, x, y, r)
print id(r)

The output prints the same number, proving that it is physically the same object we
feed as r to axpy2 that is also returned.

We can equally well drop returning r and utilize that the changes made by in-
place arithmetics is always reflected in the r array we allocate outside the function:
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def axpy3(a, x, y, r):
r[:] = x
r *= a
r += y

The call can now just be

axpy3(a, x, y, r)

However, as emphasized in Sect. 5.7.1, in Python we usually return the output data
(because this is no extra cost, only references to objects are physically transferred
back to the calling code).

5.7.4 Analysis of Memory Usage

The module memory_profiler is very useful for analyzing the memory usage of
every statement in a program. The module is installed by

Terminal

Terminal> sudo pip install memory_profiler

Each function we want to analyze must have (the decorator) @profile at the line
above, e.g.,

@profile
def axpy1(a, x, y:

r = a*x + y
return r

We can then run a program with name axpy.py by

Terminal

Terminal> python -m memory_profiler axpy.py

The arrays must be quite large to see a significant increase in memory usage. With
10,000,000 elements in each array we get output like

Line # Mem usage Increment Line Contents
================================================

1 251.977 MiB 0.000 MiB @profile
2 def axpy1(a, x, y:
3 328.273 MiB 76.297 MiB r = a*x + y
4 328.273 MiB 0.000 MiB return r
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Line # Mem usage Increment Line Contents
================================================

6 251.977 MiB 0.000 MiB @profile
7 def axpy2(a, x, y, r):
8 251.977 MiB 0.000 MiB r[:] = x
9 251.977 MiB 0.000 MiB r *= a

10 251.977 MiB 0.000 MiB r += y
11 251.977 MiB 0.000 MiB return r

This demonstrates the larger memory consumption of axpy1 compared with axpy2.

5.7.5 Analysis of the CPU Time

The module line_profiler can time each line of a program. Installation is easily
done by sudo pip install line_profiler. As for module_profiler de-
scribed in the previous section, also line_profiler requires each function to be
analyzed to have (the decorator) @profile at the line above the function. The
module is installed together with an analysis script kernprof that we use to run the
program:

Terminal

Terminal> kernprof -l -v axpy.py

With an array length of 500,000 we get output like

Total time: 0.014291 s
Function: axpy1 at line 1

Line # Hits Time Per Hit % Time Line Contents
==============================================================
1 @profile
2 def axpy1(a, x, y):
3 3 14283 4761.0 99.9 r = a*x + y
4 3 8 2.7 0.1 return r

Total time: 0.004382 s
Function: axpy2 at line 6

Line # Hits Time Per Hit % Time Line Contents
==============================================================
6 @profile
7 def axpy2(a, x, y, r):
8 3 1981 660.3 45.2 r[:] = x
9 3 1258 419.3 28.7 r *= a

10 3 1138 379.3 26.0 r += y
11 3 5 1.7 0.1 return r

Total time: 1.38674 s
Function: axpy_loop at line 26
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Line # Hits Time Per Hit % Time Line Contents
==============================================================
26 @profile
27 def axpy_loop(a, x, y, r):
28 1500006 449747 0.3 32.4 for i in range(r.size):
29 1500003 936985 0.6 67.6 r[i] = a*x[i] + y[i]
30 3 10 3.3 0.0 return r

We see that the administration of the for loop takes 1/3 of the total cost of the loop.
Both line_profiler and memory_profiler are very useful tools for spotting

inefficient constructions in a code.

5.8 Higher-Dimensional Arrays

5.8.1 Matrices and Arrays

Vectors appeared when mathematicians needed to calculate with a list of numbers.
When they needed a table (or a list of lists in Python terminology), they invented
the concept of matrix (singular) and matrices (plural). A table of numbers has the
numbers ordered into rows and columns. One example is

2

6

4

0 12 �1 5

�1 �1 �1 0

11 5 5 �2

3

7

5

This table with three rows and four columns is called a 3�4 matrix (mathematicians
may not like this sentence, but it suffices for our purposes). If the symbol A is
associated with this matrix, Ai;j denotes the number in row number i and column
number j . Counting rows and columns from 0, we have, for instance, A0;0 D 0 and
A2;3 D �2. We can write a general m � n matrix A as

2

6

6

4

A0;0 � � � A0;n�1

:::
: : :

:::

Am�1;0 � � � Am�1;n�1

3

7

7

5

Matrices can be added and subtracted. They can also be multiplied by a scalar
(a number), and there is a concept of length or size. The formulas are quite similar
to those presented for vectors, but the exact form is not important here.

We can generalize the concept of table and matrix to array, which holds quanti-
ties with in general d indices. Equivalently we say that the array has rank d . For
d D 3, an array A has elements with three indices: Ap;q;r . If p goes from 0 to np�1,
q from 0 to nq � 1, and r from 0 to nr � 1, the A array has np � nq � nr elements in
total. We may speak about the shape of the array, which is a d -vector holding the
number of elements in each “array direction”, i.e., the number of elements for each
index. For the mentioned A array, the shape is .np; nq ; nr /.

The special case of d D 1 is a vector, and d D 2 corresponds to a matrix. When
we program we may skip thinking about vectors and matrices (if you are not so
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familiar with these concepts from a mathematical point of view) and instead just
work with arrays. The number of indices corresponds to what is convenient in the
programming problem we try to solve.

5.8.2 Two-Dimensional Numerical Python Arrays

Consider a nested list table of two-pairs [C, F] (see Sect. 2.4) constructed by

>>> Cdegrees = [-30 + i*10 for i in range(3)]
>>> Fdegrees = [9./5*C + 32 for C in Cdegrees]
>>> table = [[C, F] for C, F in zip(Cdegrees, Fdegrees)]
>>> print table
[[-30, -22.0], [-20, -4.0], [-10, 14.0]]

This nested list can be turned into an array,

>>> table2 = np.array(table)
>>> print table2
[[-30. -22.]
[-20. -4.]
[-10. 14.]]

>>> type(table2)
<type ’numpy.ndarray’>

We say that table2 is a two-dimensional array, or an array of rank 2.
The table list and the table2 array are stored very differently in memory. The

table variable refers to a list object containing three elements. Each of these ele-
ments is a reference to a separate list object with two elements, where each element
refers to a separate float object. The table2 variable is a reference to a single ar-
ray object that again refers to a consecutive sequence of bytes in memory where the
six floating-point numbers are stored. The data associated with table2 are found
in one chunk in the computer’s memory, while the data associated with table are
scattered around in memory. On today’s machines, it is much more expensive to
find data in memory than to compute with the data. Arrays make the data fetching
more efficient, and this is major reason for using arrays. However, this efficiency
gain is only present for very large arrays, not for a 3 � 2 array.

Indexing a nested list is done in two steps, first the outer list is indexed, giving
access to an element that is another list, and then this latter list is indexed:

>>> table[1][0] # table[1] is [-20,4], whose index 0 holds -20
-20

This syntax works for two-dimensional arrays too:

>>> table2[1][0]
-20.0

but there is another syntax that is more common for arrays:
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>>> table2[1,0]
-20.0

A two-dimensional array reflects a table and has a certain number of rows and
columns. We refer to rows as the first dimension of the array and columns as the
second dimension. These two dimensions are available as table2.shape:

>>> table2.shape
(3, 2)

Here, 3 is the number of rows and 2 is the number of columns.
A loop over all the elements in a two-dimensional array is usually expressed as

two nested for loops, one for each index:

>>> for i in range(table2.shape[0]):
... for j in range(table2.shape[1]):
... print ’table2[%d,%d] = %g’ % (i, j, table2[i,j])
...
table2[0,0] = -30
table2[0,1] = -22
table2[1,0] = -20
table2[1,1] = -4
table2[2,0] = -10
table2[2,1] = 14

An alternative (but less efficient) way of visiting each element in an array with any
number of dimensions makes use of a single for loop:

>>> for index_tuple, value in np.ndenumerate(table2):
... print ’index %s has value %g’ % \
... (index_tuple, table2[index_tuple])
...
index (0,0) has value -30
index (0,1) has value -22
index (1,0) has value -20
index (1,1) has value -4
index (2,0) has value -10
index (2,1) has value 14

In the same way as we can extract sublists of lists, we can extract subarrays of
arrays using slices.

table2[0:table2.shape[0], 1] # 2nd column (index 1)
array([-22., -4., 14.])

>>> table2[0:, 1] # same
array([-22., -4., 14.])

>>> table2[:, 1] # same
array([-22., -4., 14.])

To illustrate array slicing further, we create a bigger array:
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>>> t = np.linspace(1, 30, 30).reshape(5, 6)
>>> t
array([[ 1., 2., 3., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12.],
[ 13., 14., 15., 16., 17., 18.],
[ 19., 20., 21., 22., 23., 24.],
[ 25., 26., 27., 28., 29., 30.]])

>>> t[1:-1:2, 2:]
array([[ 9., 10., 11., 12.],

[ 21., 22., 23., 24.]])

To understand the slice, look at the original t array and pick out the two rows
corresponding to the first slice 1:-1:2,

[ 7., 8., 9., 10., 11., 12.]
[ 19., 20., 21., 22., 23., 24.]

Among the rows, pick the columns corresponding to the second slice 2:,

[ 9., 10., 11., 12.]
[ 21., 22., 23., 24.]

Another example is

>>> t[:-2, :-1:2]
array([[ 1., 3., 5.],

[ 7., 9., 11.],
[ 13., 15., 17.]])

Generalized indexing as described for one-dimensional arrays in Sect. 5.6.4 requires
a more comprehensive syntax for higher-dimensional arrays. Say we want to extract
a subarray of t that consists of the rows with indices 0 and 3 and the columns with
indices 1 and 2:

>>> t[np.ix_([0,3], [1,2])]
array([[ 2., 3.],

[ 20., 21.]])
>>> t[np.ix_([0,3], [1,2])] = 0
>>> t
array([[ 1., 0., 0., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12.],
[ 13., 14., 15., 16., 17., 18.],
[ 19., 0., 0., 22., 23., 24.],
[ 25., 26., 27., 28., 29., 30.]])

Recall that slices only gives a view to the array, not a copy of the values:

>>> a = t[1:-1:2, 1:-1]
>>> a
array([[ 8., 9., 10., 11.],

[ 0., 0., 22., 23.]])
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>>> a[:,:] = -99
>>> a
array([[-99., -99., -99., -99.],

[-99., -99., -99., -99.]])
>>> t # is t changed to? yes!
array([[ 1., 0., 0., 4., 5., 6.],

[ 7., -99., -99., -99., -99., 12.],
[ 13., 14., 15., 16., 17., 18.],
[ 19., -99., -99., -99., -99., 24.],
[ 25., 26., 27., 28., 29., 30.]])

5.8.3 Array Computing

The operations on vectors in Sect. 5.1.3 can quite straightforwardly be extended to
arrays of any dimension. Consider the definition of applying a function f .v/ to
a vector v: we apply the function to each element vi in v. For a two-dimensional
array A with elements Ai;j , i D 0; : : : ; m, j D 0; : : : ; n, the same definition yields

f .A/ D .f .A0;0/; : : : ; f .Am�1;0/; f .A1;0/; : : : ; f .Am�1;n�1// :

For an array B with any rank, f .B/ means applying f to each array entry.
The asterisk operation from Sect. 5.1.3 is also naturally extended to arrays: A�B

means multiplying an element in A by the corresponding element in B , i.e., element
.i; j / in A � B is Ai;j Bi;j . This definition naturally extends to arrays of any rank,
provided the two arrays have the same shape.

Adding a scalar to an array implies adding the scalar to each element in the
array. Compound expressions involving arrays, e.g., exp.�A2/ � A C 1, work as
for vectors. One can in fact just imagine that all the array elements are stored after
each other in a long vector (this is actually the way the array elements are stored
in the computer’s memory), and the array operations can then easily be defined in
terms of the vector operations from Sect. 5.1.3.

Remark Readers with knowledge of matrix computations may get confused by
the meaning of A2 in matrix computing and A2 in array computing. The former is
a matrix-matrix product, while the latter means squaring all elements of A. Which
rule to apply, depends on the context, i.e., whether we are doing linear algebra
or vectorized arithmetics. In mathematical typesetting, A2 can be written as AA,
while the array computing expression A2 can be alternatively written as A � A. In
a program, A*A and A**2 are identical computations, meaning squaring all elements
(array arithmetics). With NumPy arrays the matrix-matrix product is obtained by
dot(A, A). The matrix-vector product Ax, where x is a vector, is computed by
dot(A, x). However, with matrix objects (see Sect. 5.8.4) A*A implies the mathe-
matical matrix multiplication AA.

We shall leave this subject of notational confusion between array computing and
linear algebra here since this book will not further understanding and the confusion
is seldom serious in program code if one has a good overview of the mathematics
that is to be carried out.
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5.8.4 Matrix Objects

This section only makes sense if you are familiar with basic linear algebra and the
matrix concept. The arrays created so far have been of type ndarray. NumPy
also has a matrix type called matrix or mat for one- and two-dimensional arrays.
One-dimensional arrays are then extended with one extra dimension such that they
become matrices, i.e., either a row vector or a column vector:

>>> import numpy as np
>>> x1 = np.array([1, 2, 3], float)
>>> x2 = np.matrix(x1) # or mat(x1)
>>> x2 # row vector
matrix([[ 1., 2., 3.]])
>>> x3 = mat(x1).T # transpose = column vector
>>> x3
matrix([[ 1.],

[ 2.],
[ 3.]])

>>> type(x3)
<class ’numpy.matrixlib.defmatrix.matrix’>
>>> isinstance(x3, np.matrix)
True

A special feature of matrix objects is that the multiplication operator represents
the matrix-matrix, vector-matrix, or matrix-vector product as we know from linear
algebra:

>>> A = np.eye(3) # identity matrix
>>> A
array([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> A = mat(A)
>>> A
matrix([[ 1., 0., 0.],

[ 0., 1., 0.],
[ 0., 0., 1.]])

>>> y2 = x2*A # vector-matrix product
>>> y2
matrix([[ 1., 2., 3.]])
>>> y3 = A*x3 # matrix-vector product
>>> y3
matrix([[ 1.],

[ 2.],
[ 3.]])

One should note here that the multiplication operator between standard ndarray

objects is quite different!
Readers who are familiar with MATLAB, or intend to use Python and MATLAB

together, should seriously think about programming with matrix objects instead
of ndarray objects, because the matrix type behaves quite similar to matrices
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and vectors in MATLAB. Nevertheless, matrix cannot be used for arrays of larger
dimension than two.

5.9 Some Common Linear Algebra Operations

Python has strong support for numerical linear algebra, much like the functional-
ity found in MATLAB. Some of the most widely used operations are exemplified
below.

5.9.1 Inverse, Determinant, and Eigenvalues

We start with showing how to find the inverse and the determinant of a matrix, and
how to compute the eigenvalues and eigenvectors:

>>> import numpy as np
>>> A = np.array([[2, 0], [0, 5]], dtype=float)

>>> np.linalg.inv(A) # inverse matrix
array([[ 0.5, 0. ],

[ 0. , 0.2]])

>>> np.linalg.det(A) # determinant
9.9999999999999982

>>> eig_values, eig_vectors = np.linalg.eig(A)
>>> eig_values
array([ 2., 5.])
>>> eig_vectors
array([[ 1., 0.],

[ 0., 1.]])

The eigenvectors are normalized to have unit lengths.

5.9.2 Products

The np.dot function is used for scalar or dot product as well as matrix-vector and
matrix-matrix products between array objects:

>>> a = np.array([4, 0])
>>> b = np.array([0, 1])
>>> np.dot(A, a) # matrix vector product
array([ 8., 0.])
>>> np.dot(a, b) # dot product between vectors
0
>>>
>>> B = np.ones((2, 2)) # 2x2 matrix with 1’s
>>> np.dot(A, B) # matrix-matrix product
array([[ 2., 2.],

[ 5., 5.]])
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Note that using the matrix class instead of plain arrays (see Sect. 5.8.4) allows
* to be used as operator for matrix-vector and matrix-matrix products.

The cross product a � b, between vectors a and b of length 3, is computed by

>>> np.cross([1, 1, 1], [0, 0, 1])
array([ 1, -1, 0])

Finding the angle between vectors a and b,

� D cos�1

�

a � b
jjajj jjbjj

�

;

goes like

>>> np.arccos(np.dot(a, b)/(np.linalg.norm(a)*np.linalg.norm(b)))
1.5707963267948966

5.9.3 Norms

Various norms of matrices and vectors are well supported by NumPy. Some com-
mon examples are

>>> np.linalg.norm(A) # Frobenius norm for matrices
5.3851648071345037
>>> np.sqrt(np.sum(A**2)) # Frobenius norm: direct formula
5.3851648071345037
>>> np.linalg.norm(a) # l2 norm for vectors
4.0

See pydoc numpy.linalg.norm for information on other norms.

5.9.4 Sum and Extreme Values

The sum of all elements or of the elements in a particular row or column is computed
by np.sum:

>>> np.sum(B) # sum of all elements
2.0
>>> B.sum() # sum of all elements; alternative syntax
2.0
>>> np.sum(B, axis=0) # sum over index 0 (rows)
array([ 4., -2.])
>>> np.sum(B, axis=1) # sum over index 1 (columns)
array([ 3., -1.])

The maximum or minimum value of an array is also often needed:
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>>> np.max(B) # max over all elements
3.0
>>> B.max() # max over all elements, alt. syntax
3.0
>>> np.min(B) # min over all elements
-4.0
>>> np.abs(B).min() # min absolute value
1.0

A very frequent application of computing the minimum absolute value occurs in
test functions where we want to verify a result, e.g., that AA�1 D I , where I is the
identity matrix. We then want to check the smallest absolute value in AA�1 � I :

>>> I = np.eye(2) # identity matrix of size 2
>>> I
array([[ 1., 0.],

[ 0., 1.]])
>>> np.abs(np.dot(A, np.linalg.inv(A)) - I).max()
0.0

Never use ==when testing real numbers!

It could be tempting to test AA�1 D I using the syntax

>>> np.dot(A, np.linalg.inv(A)) == np.eye(2)
array([[ True, True],

[ True, True]], dtype=bool)

but there are two major problems with this test:

1. the result is a boolean matrix, not suitable for an if test
2. using == for matrices with float elements may fail because of rounding errors

The second problem must be solved by computing differences and comparing
them against small tolerances, as we did above. Here is an example where ==

fails:

>>> A = np.array([[4, 0], [0, 49]], dtype=float)
>>> np.dot(A, np.linalg.inv(A)) == np.eye(2)
array([[ True, True],

[ True, False]], dtype=bool)

(1.0/49*49 is not exactly 1 because of rounding errors.)
The first problem is solved by using the C.all(), which returns one boolean

variable True if all elements in the boolean array C are True, otherwise it returns
False, as in the case above:

>>> (np.dot(A, np.linalg.inv(A)) == np.eye(2)).all()
False
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5.9.5 Indexing

Indexing an element is done by A[i,j]. A row or column is extracted as

>>> A[0,:] # first row
array([ 2., 0.])
>>> A[:,1] # second column
array([ 0., 5.])

NumPy also supports multiple values for the indices via the np.ix_ function. Here
is an example where we grab row 0 and 2, then column 1:

>>> C = np.array([[1,2,3],[4,5,6],[7,8,9]])
>>> C[np.ix_([0,2], [1])] # row 0 and 2, then column 1
array([[2],

[8]])

You can also use the colon notation to pick out other parts of a matrix. If C is
a 3 � 5-matrix,

C[1:3, 0:4]

gives a sub-matrix consisting of the two rows of C after the first, and the first four
columns of C (recall that the upper limits, here 3 and 4, are not included).

Readers familiar with MATLAB should note that the indexing may be a bit un-
expected when referring to parts of a matrix: writing C[[0, 2], [0, 2]] one
would expect entries residing in rows/columns 0 and 2, but that behavior requires
in Python the np.ix_ command:

>>> C = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> C[np.ix_([0, 2], [0, 2])]
[[1 3]
[7 9]]

>>> # Grab row 0, 2, then column 0 from row 0 and column 2 from row 2
>>> C[[0, 2], [0, 2]]
[1 9]

5.9.6 Transpose and Upper/Lower Triangular Parts

The transpose of a matrix B is obtained by B.T:

>>> B = np.array([[1, 2], [3, -4]], dtype=float)
>>> B.T # the transpose
array([[ 1., 3.],

[ 2., -4.]])

NumPy has rich functionality for doing operations on array objects. For exam-
ple, one can strip down a matrix to its upper or lower triangular parts:
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>>> np.triu(B) # upper triangular part of B
array([[ 1., 2.],

[ 0., -4.]])
>>> np.tril(B) # lower triangular part of B
array([[ 1., 0.],

[ 3., -4.]])

5.9.7 Solving Linear Systems

The perhaps most frequent operation in linear algebra is the solution of sys-
tems of linear algebraic equations: Ax D b, where A is a coefficient matrix,
b is a given right-hand side vector, and x is the solution vector. The function
np.linalg.solve(A, b) does the job:

>>> A = np.array([[1, 2], [-2, 2.5]])
>>> x = np.array([-1, 1], dtype=float) # pick a solution
>>> b = np.dot(A, x) # find right-hand side

>>> np.linalg.solve(A, b) # will this compute x?
array([-1., 1.])

5.9.8 Matrix Row and ColumnOperations

Implementing Gaussian elimination constitutes a good pedagogical example on
how to perform row and column operations on a matrix. Some needed function-
ality is

A[[i, j]] = A[[j, i]] # swap rows i and j
A[i] *= k # multiply row i by a constant k
A[j] += k*A[i] # add row i, multiplied by k, to row j

With these operations, Gaussian elimination is programmed as follows.

m, n = shape(A)
for j in range(n - 1):

for i in range(j + 1, m):
A[i,j:] -= (A[i,j]/A[j,j])*A[j,j:]

Note the special syntax j:, which refers to indices from j and up to the end of the
array. More generally, when referring to an array a with length n, the following are
equivalent:

a[0:n]
a[:n]
a[0:]
a[:]
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In the code for Gaussian elimination, we first eliminate the entries below the diago-
nal in the first column, by adding a scaled version of the first row to the other rows.
Then the same procedure is applied for the second row, and so on. The result is an
upper triangular matrix. The code can fail if some of the entries A[j,j] become
zero along the way. To avoid this, we can swap rows when the problem arises. The
following code implements the idea and will not fail, even if some of the columns
are zero.

def Gaussian_elimination(A):
rank = 0
m, n = np.shape(A)
i = 0
for j in range(n):

p = np.argmax(abs(A[i:m,j]))
if p > 0: # swap rows

A[[i,p+i]] = A[[p+i, i]]
if A[i,j] != 0:

# j is a pivot column
rank += 1
for r in range(i+1, m):

A[r,j:] -= (A[r,j]/A[i,j])*A[i,j:]
i += 1

if i > m:
break

return A, rank

Note that we stick to the habit of returning all results from a function, here the
modified matrix A and its rank.

5.9.9 Computing the Rank of a Matrix

The rank of a matrix equals the number of pivot columns after Gaussian elimination.
The variable rank counts these in the code above.

Due to rounding errors, the computed rank may be higher than the actual rank:
the rounding errors may imply that A[i,j] != 0 is true, even if Gaussian elim-
ination performed in exact arithmetics gives exactly zero. Such situations can be
avoided by replacing if A[i,j] !=0: with if abs(A[i,j]) > tol:, where
tol is some small tolerance.

A more reliable way to compute the rank is to compute the singular value de-
composition of A, and check how many of the singular values that are larger than
a threshold epsilon:

>>> A = np.array([[1, 2.01], [2.01, 4.0401]])
>>> U, s, V = np.linalg.svd(A) # s are the singular values of A
# abs(s) > tol gives an array with True and False values
# s.nonzero() lists indices k so that s[k] != 0
>>> shape((abs(s) > tol).nonzero())[1] # rank
1
>>> A, rank = Gaussian_elimination(A)
>>> rank
2
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If you use a tolerance check on the form if abs(A[i,j]) > 1E-10: in the func-
tion Gaussian_elimination, the code will say that the rank is 1, which is the
correct value also found by using the singular value decomposition.

It is known that the determinant is nonzero if and only if the rank equals the
number of rows/columns. For the matrix A we used above, the determinant should
thus be 0, but also here roundoff errors come into play:

>>> A = np.array([[1, 2.01], [2.01, 4.0401]])
>>> A[0, 0]*A[1, 1] - A[0, 1]*A[1, 0]
8.881784197e-16
>>> np.linalg.det(A)
8.92619311799e-16

Using our own Gaussian elimination function for computing the rank is less
efficient than calling NumPy’s singular value decomposition. Here are timings for
a random 100 � 100-matrix:

>>> A = np.random.uniform(0, 1, (100, 100))
>>> %timeit U, s, V = np.linalg.svd(A)
100 loops, best of 3: 3.7 ms per loop
>>> %timeit A, rank = Gaussian_elimination(A)
100 loops, best of 3: 22.3 ms per loop

5.9.10 Symbolic Linear Algebra

SymPy supports symbolic computations also for linear algebra operations. We may
create a matrix and find its inverse and determinant:

>>> import sympy as sym
>>> A = sym.Matrix([[2, 0], [0, 5]])

>>> A**-1 # the inverse
Matrix([
[1/2, 0],
[ 0, 1/5]])

>>> A.inv() # the inverse
Matrix([
[1/2, 0],
[ 0, 1/5]])

>>> A.det() # the determinant
10

Note that the entries in the inverse matrix are rational numbers (sym.Rational
objects to be precise).

Eigenvalues can also be computed exactly:

>>> A.eigenvals()
{2: 1, 5: 1}



290 5 Array Computing and Curve Plotting

The output is a dictionary meaning here that 2 is an eigenvalue with multiplicity
1 and 5 is an eigenvalue with multiplicity 1. It is more convenient to have the
eigenvalues in a list:

>>> e = list(A.eigenvals().keys())
>>> e
[2, 5]

Eigenvector computations have a somewhat complicated output:

>>> A.eigenvects()
[(2, 1, [Matrix([
[1],
[0]])]), (5, 1, [Matrix([
[0],
[1]])])]

The output is a list of three-tuples, one for each eigenvalue and eigenvector.
The three-tuple contains the eigenvalue, its multiplicity, and the eigenvector as
a sym.Matrix object. To isolate the first eigenvector, we can index the list and
tuple:

>>> v1 = A.eigenvects()[0][2]
>>> v1
Matrix([
[1],
[0]])

The vector is a sym.Matrix object with two indices. To extract the vector elements
in a plain list, we can do this:

>>> v1 = [v1[i,0] for i in range(v1.shape[0])]
>>> v1
[1, 0]

The following code extracts all eigenvectors as a list of 2-lists, which may be a con-
venient data structure for the eigenvectors:

>>> v = [[t[2][0][i,0] for i in range(t[2][0].shape[0])]
for t in A.eigenvects()]

>>> v
[[1, 0], [0, 1]]

The norm of a matrix or vector is an exact expression:

>>> A.norm()
sqrt(29)
>>> a = sym.Matrix([1, 2]) # vector [1, 2]
>>> a
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Matrix([
[1],
[2]])
>>> a.norm()
sqrt(5)

The matrix-vector product and the dot product between vectors are done like
this:

>>> A*a # matrix*vector
Matrix([
[ 2],
[10]])
>>> b = sym.Matrix([2, -1]) # vector [2, -1]
>>> a.dot(b)
0

Solving linear systems exactly is also possible:

>>> x = sym.Matrix([-1, 1])/2
>>> x
Matrix([
[-1/2],
[ 1/2]])
>>> b = A*x
>>> x = A.LUsolve(b) # does it compute x?
>>> x # x is a matrix object
Matrix([
[-1/2],
[ 1/2]])

Sometimes one wants to convert x to a plain numpy array with float values:

>>> x = np.array([float(x[i,0].evalf())
for i in range(x.shape[0])])

>>> x
array([-0.5, 0.5])

Exact row operations can be done as exemplified here:

>>> A[1,:] + 2*A[0,:] # [0,5] + 2*[2,0]
Matrix([[4, 5]])

We refer to the online SymPy linear algebra tutorial7 for more information.

7 http://docs.sympy.org/dev/tutorial/matrices.html

http://docs.sympy.org/dev/tutorial/matrices.html
http://docs.sympy.org/dev/tutorial/matrices.html
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5.10 Plotting of Scalar and Vector Fields

Visualization of scalar and vector fields in Python is commonly done using Mat-
plotlib or Mayavi. Both packages support basic visualization of 2D scalar and
vector fields, but Mayavi offers more advanced three-dimensional visualization
techniques, especially for 3D scalar and vector fields.

One can also use SciTools for visualizing 2D scalar and vector fields, using either
Matplotlib, Gnuplot, or VTK as plotting engines, but this topic is omitted from the
present book. However, for fast visualization of large 2D scalar fields, Gnuplot is
a viable tool, and the SciTools interface offers a convenient MATLAB-style set of
commands to operate Gnuplot.

To exemplify visualization of scalar and vector fields with Matplotlib and
Mayavi, we use a common set of examples. A scalar function of x and y is vi-
sualized either as a flat two-dimensional plot with contour lines of the field, or
as a three-dimensional surface where the height of the surface corresponds to the
function value of the field. In the latter case we also add a three-dimensional
parameterized curve to the plot.

To illustrate plotting of vector fields, we simply plot the gradient of the scalar
field, together with the scalar field. Our convention for variable names goes as
follows:

� x, y for one-dimensional coordinates along each axis direction.
� xv, yv for the corresponding vectorized coordinates in a 2D.
� u, v for the components of a vector field at points corresponding to xv, yv.

The following sections contain more mathematical details on the various scalar and
vector fields we aim to plot.

5.10.1 Installation

Previously in the book we have explained how to obtain Matplotlib for various
platforms. To obtain Mayavi on Ubuntu platforms you can write

Terminal

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain Mayavi
for Anaconda you can write

Terminal

conda install mayavi
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5.10.2 Surface Plots

We consider the 2D scalar field defined by

h.x; y/ D h0

1C x2Cy2

R2

: (5.13)

h.x; y/ may model the height of an isolated circular mountain, h being the height
above sea level, while x and y are Cartesian coordinates on the earth’s surface, h0

the height of the mountain, and R the radius of the mountain. Since mountains
are actually quite flat (or more precisely, their heights are small compared to the
horizontal extent), we use meter as length unit for vertical distances (z direction)
and km as length unit for horizontal distances (x and y coordinates). Prior to all
code below we have initialized h0 and R with the following values: h0 D 2277 m
and R D 4 km.

Grid for 2D scalar fields Before we can plot h.x; y/, we need to create a rectan-
gular grid in the xy plane with all the points used for plotting. Regardless of which
plotting package we will use later on, the grid can be made as follows:

x = y = np.linspace(-10., 10., 41)
xv, yv = np.meshgrid(x, y, indexing=’ij’, sparse=False)

hv = h0/(1 + (xv**2+yv**2)/(R**2))

The grid is based on equally spaced coordinates x and y in the interval Œ�10; 10�

km. Note the mysterious extra parameters to meshgrid here, which are needed
in order for the coordinates to have the right order such that the arithmetics in the
expression for hv becomes correct. The expression computes the surface value at
the 41 � 41 grid points in one vectorized operation.

A surface plot of a 2D scalar field h.x; y/ is a visualization of the surface z D
h.x; y/ in three-dimensional space. Most plotting packages have functions which
can be used to create surface plots of 2D scalar fields. These can be either wireframe

plots, where only lines connecting the grid points are drawn, or plots where the faces
of the surface are colored. In Fig. 5.12 we have shown two such plots of the surface
h.x; y/. Section 5.11.1 presents the code which generates these plots.

5.10.3 Parameterized Curve

To illustrate the plotting of three-dimensional parameterized curves, we consider
a trajectory that represents a circular climb to the top of the mountain:

r.t/ D
�

10

�

1 � t

2�

�

cos.t/
�

i C
�

10

�

1 � t

2�

�

sin.t/

�

j

C h0

1C 100.1�t=.2�//2

R2

k: (5.14)
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Fig. 5.12 Two different plots of a mountain. The right plot also shows a trajectory to the top of
the mountain

Here i , j , and k denote the unit vectors in the x-, y-, and z-directions, respectively.
The coordinates of r.t/ can be produced by

s = np.linspace(0, 2*np.pi, 100)
curve_x = 10*(1 - s/(2*np.pi))*np.cos(s)
curve_y = 10*(1 - s/(2*np.pi))*np.sin(s)
curve_z = h0/(1 + 100*(1 - s/(2*np.pi))**2/(R**2))

The parameterized curve is shown together with the surface h.x; y/ in the right plot
in Fig. 5.12.

5.10.4 Contour Lines

Contour lines are lines defined by the implicit equation h.x; y/ D C , where C is
some constant representing the contour level. Normally, we let C run over some
equally spaced values, and very often, the plotting program computes the C values.
To distinguish contours, one often associates each contour level C with its own
color.

Figure 5.13 shows different ways contour lines can be used to visualize the
surface h.x; y/. The first and last plot are visualizations utilizing two spatial dimen-
sions. The first draws a small set of contour lines only, while the last one displays
the surface as an image, whose colors reflect the values of the field, or equivalently,
the height of the surface. The third plot actually combines three different types of
contours, each type corresponding to keeping a coordinate constant and projecting
the contours on a “wall”. The code used to generate these plots is presented in
Sect. 5.11.2.

5.10.5 The Gradient Vector Field

The gradient vector field rh of a 2D scalar field h.x; y/ is defined by

rh D @h

@x
i C @h

@y
j : (5.15)
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Fig. 5.13 Different types of contour plots of a 2D scalar field in two and three dimensions

One learns in vector calculus that the gradient points in the direction where h in-
creases most, and that the gradients are orthogonal to the contour lines. This is
something we can easily illustrate by creating 2D plots of the contours and the gra-
dient field. A challenge in making such plots is to get the right arrow lengths so
that the arrows are well visible, but they do not collide and make a cluttered visual
impression. Since the arrows are drawn at each point in a 2D grid, one way of
controlling the number of arrows is to control the resolution of the grid.

So, let us create a grid with 20 instead of 40 intervals in the horizontal directions:

x2 = y2 = np.linspace(-10.,10.,11)
x2v, y2v = np.meshgrid(x2, y2, indexing=’ij’, sparse=False)
h2v = h0/(1 + (x2v**2 + y2v**2)/(R**2)) # h on coarse grid

The gradient vector field of h.x; y/ can now be computed using the function
np.gradient:

dhdx, dhdy = np.gradient(h2v) # dh/dx, dh/dy

The gradient field (5.15) together with the contours appear in Fig. 5.14, from which
the orthogonality can be easily seen. Section 5.11.3 explains the code needed to
make this plot.
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Fig. 5.14 Gradient field with contour plot

5.11 Matplotlib

We import any visualization package under the name plt, so for Matplotlib the
import is done by

import matplotlib.pyplot as plt

When creating two-dimensional plots of scalar and vector fields, we shall make use
of a Matplotlib Axes object, named ax and made by

fig = plt.figure(1) # Get current figure
ax = fig.gca() # Get current axes

For three-dimensional visualization, we need the following alternative lines:

from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(1)
ax = fig.gca(projection=’3d’)

5.11.1 Surface Plots

The Matplotlib functions for producing surface plots of 2D scalar fields are
ax.plot_wireframe and ax.plot_surface. The first one produces a wire-
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frame plot, and the second one colors the surface. The following code uses the
functions to produce the plots shown in Fig. 5.12, once the grid has been defined as
in Sect. 5.10.2, and the coordinates of the parameterized curve have been computed
as in Sect. 5.10.3.

fig = plt.figure(1)
ax = fig.gca(projection=’3d’)
ax.plot_wireframe(xv, yv, hv, rstride=2, cstride=2)

# Simple plot of mountain and parametric curve
fig = plt.figure(2)
ax = fig.gca(projection=’3d’)
from matplotlib import cm
ax.plot_surface(xv, yv, hv, cmap=cm.coolwarm,

rstride=1, cstride=1)

# add the parametric curve. linewidth controls the width of the curve
ax.plot(curve_x, curve_y, curve_z, linewidth=5)

Recall that a final plt.show() command is necessary to force Matplotlib to show
a plot on the screen.

Note that the second plot in this figure is drawn using a finer grid. This is con-
trolled with the rstride and cstride parameters, which sets the number of grid
lines in each direction. Setting one of these to 1 means that a grid line is drawn for
every value in the grid in the corresponding direction, and setting to 2 means that
a grid line will be drawn for every two values in the grid. You will normally need
to experiment with such parameters to get a visually attractive plot.

A surface with colors reflecting the height of the surface needs specification of
a color map, which is a mapping between function values and colors. Above we
applied the common coolwarm scheme which goes from blue (“cool” color for
minimum values) to red (“warm” color for maximum values). There are lots of
colormaps to choose from, and you have to experiment to find appropriate choices
according to your taste and to the problem at hand.

To the latter plot we also added the parameterized curve r.t/, defined by (5.14),
using the command plot. The attribute linewidth is increased here in order to
make the curve thicker and more visible. By default, Matplotlib adds plots to each
other without any need for plt.hold(’on’), although such a command can indeed
be used.

5.11.2 Contour Plots

The following code exemplifies different types of contour plots. The first two
plots (default two-dimensional and three-dimensional contour plots) are shown in
Fig. 5.13. The next four plots appear in Fig. 5.15. Note that, when we asked Mat-
plotlib to plot 10 contours, the response was, surprisingly, 9 contour lines, where
one of the contours was incomplete. This kind of behavior may also be found in
other plotting packages (such as MATLAB): the package will do its best to plot
the requested number of complete contour lines, but there is no guarantee that this
number is achieved exactly.
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Fig. 5.15 Some other contour plots with Matplotlib: 10 contour lines (upper left), 10 black contour
lines (upper right), specified contour levels (lower left), and labeled levels (lower right)

# Default two-dimensional contour plot with 7 colored lines
fig = plt.figure(3)
ax = fig.gca()
ax.contour(xv, yv, hv)
plt.axis(’equal’)

# Default three-dimensional contour plot
fig = plt.figure(4)
ax = fig.gca(projection=’3d’)
ax.contour(xv, yv, hv)

# Plot of mountain and contour lines projected on the
# coordinate planes
fig = plt.figure(5)
ax = fig.gca(projection=’3d’)
ax.plot_surface(xv, yv, hv, cmap=cm.coolwarm,

rstride=1, cstride=1)
# zdir is the projection axis
# offset is the offset of the projection plane
ax.contour(xv, yv, hv, zdir=’z’, offset=-1000, cmap=cm.coolwarm)
ax.contour(xv, yv, hv, zdir=’x’, offset=-10, cmap=cm.coolwarm)
ax.contour(xv, yv, hv, zdir=’y’, offset=10, cmap=cm.coolwarm)

# View the contours by displaying as an image
fig = plt.figure(6)
ax = fig.gca()
ax.imshow(hv)
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# 10 contour lines (equally spaced contour levels)
fig = plt.figure(7)
ax = fig.gca()
ax.contour(xv, yv, hv, 10)
plt.axis(’equal’)

# 10 black (’k’) contour lines
fig = plt.figure(8)
ax = fig.gca()
ax.contour(xv, yv, hv, 10, colors=’k’)
plt.axis(’equal’)

# Specify the contour levels explicitly as a list
fig = plt.figure(9)
ax = fig.gca()
levels = [500., 1000., 1500., 2000.]
ax.contour(xv, yv, hv, levels=levels)
plt.axis(’equal’)

# Add labels with the contour level for each contour line
fig = plt.figure(10)
ax = fig.gca()
cs = ax.contour(xv, yv, hv)
plt.clabel(cs)
plt.axis(’equal’)

5.11.3 Vector Field Plots

The code for plotting the gradient field (5.15) together with contours goes as ex-
plained below, once the grid has been defined as in Sect. 5.10.5. The corresponding
plot is shown in Fig. 5.14.

fig = plt.figure(11)
ax = fig.gca()
ax.quiver(x2v, y2v, dhdx, dhdy, color=’r’,

angles=’xy’, scale_units=’xy’)
ax.contour(xv, yv, hv)
plt.axis(’equal’)

5.12 Mayavi

Mayavi is an advanced, free, easy to use, scientific data visualizer, with an emphasis
on three-dimensional visualization techniques. The package is written in Python,
and uses the Visualization Toolkit (VTK) in C++ for rendering graphics. Since
VTK can be configured with different backends, so can Mayavi. Mayavi is cross
platform and runs on most platforms, including Mac OS X, Windows, and Linux.

The web page http://docs.enthought.com/mayavi/mayavi/ collects pointers to all
relevant documentation of Mayavi. We shall primarily deal with the mayavi.mlab
module, which provides a simple interface to plotting of 2D scalar and vector fields
with commands that mimic those of MATLAB. Let us import this module under
our usual name plt for a plotting package:

import mayavi.mlab as plt

http://docs.enthought.com/mayavi/mayavi/
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The official documentation of the mlab module is provided in two places, one for
the basic functionality8 and one for further functionality9. Basic figure handling10 is
very similar to the one we know from Matplotlib. Just as for Matplotlib, all plotting
commands you do in mlab will go into the same figure, until you manually change
to a new figure.

5.12.1 Surface Plots

Mayavi has the functions mesh and surf for producing surface plots. These are
similar, but surf assumes an orthogonal grid, and uses this assumption to make
efficient data structures, while mesh makes no such assumptions on the grid. Here
we only use orthogonal grids and hence apply surf. The following code plots the
surface h.x; y/ in (5.13), as well as the parameterized curve r.t/ in (5.14). The
resulting graphics appears in Fig. 5.16.

# Create a figure with white background and black foreground
plt.figure(1, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
# ’representation’ sets type of plot, here a wireframe plot
plt.surf(xv, yv, hv, extent=(0,1,0,1,0,1),

representation=’wireframe’)
# Decorate axes (nb_labels is the number of labels used
# in each direction)
plt.axes(xlabel=’x’, ylabel=’y’, zlabel=’z’, nb_labels=5,

color=(0., 0., 0.))
# Decorate the plot with a title
plt.title(’h(x,y)’, size=0.4)

# Simple plot of mountain and parametric curve.
plt.figure(2, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
# Here, representation has default: colored surface elements
plt.surf(xv, yv, hv, extent=(0,1,0,1,0,1))
# Add the parametric curve. tube_radius is the width of the
# curve (use ’extent’ for auto-scaling)
plt.plot3d(curve_x, curve_y, curve_z, tube_radius=0.2,

extent=(0,1,0,1,0,1))

plt.figure(3, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
# Use ’warp_scale’ for vertical scaling
plt.surf(xv, yv, hv, warp_scale=0.01, color=(.5, .5, .5))
plt.plot3d(curve_x, curve_y, 0.01*curve_z, tube_radius=0.2)

surf can produce wireframe plots, as well as plots where the faces of the surface
are colored. The parameter representation controls this, as exemplified in the
first two plots. The first plot was also decorated with axes and a title.

The calls to plt.figure() take three parameters: First the usual index for the
plot, then two tuples of numbers , representing the RGB-values to be used for the
foreground (fgcolor) and the background (bgcolor). White and black are (1,1,1)

8 http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
9 http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
10 http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html

http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
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Fig. 5.16 Surface plots produced with the surf function of Mayavi: The curve r.t/ is also shown
in the two last plots

and (0,0,0), respectively. The foreground color is used for text and labels included
in the plot. The color attribute in plt.surf adjusts the surface so that it is colored
with small variations from the provided base color, here (.5, .5, .5).

The command plot3d is used to plot the curve r.t/. We have here increased the
attribute tube_radius to make the curve thicker and more visible.

Mayavi does no auto-scaling of the axes by default (contrary to Matplotlib), so
if the magnitudes in the vertical and horizontal directions are very different, as they
are for h.x; y/, the plots may be very concentrated in one direction. We therefore
need to apply some auto-scaling procedure. In Fig. 5.16 two such procedures are
exemplified. In the first two plots the parameter extent is used. It tells Mayavi
to auto-scale the surface and curve to fit the contents described by the six listed
values (we will return to what these values mean when we have a more illustrating
example). Since the curve and the surface span different areas in space, we see
that they are auto-scaled differently in the second plot, with the undesired effect
that r.t/ is not drawn on the surface. The last plot has avoided this problem by
using the warp_scale parameter for scaling the vertical direction. Not all Mayavi
functions accept this parameter. A remedy for this is to scale the z-coordinates
manually, as here exemplified in the last plot3d-call. As is seen, the curve is
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drawn correctly with respect to the surface in the last plot. In the following we will
use the warp_scale parameter to avoid such auto-scaling problems.

Subplots The two plots in Fig. 5.16 were created as separate figures. One can also
create them as subplots within one figure:

plt.figure(4, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.mesh(xv, yv, hv, extent=(0, 0.25, 0, 0.25, 0, 0.25),

colormap=’cool’)
plt.outline(plt.mesh(

xv, yv, hv,
extent=(0.375, 0.625, 0, 0.25, 0, 0.25),
colormap=’Accent’))

plt.outline(plt.mesh(
xv, yv, hv, extent=(0.75, 1, 0, 0.25, 0, 0.25),
colormap=’prism’), color=(.5, .5, .5))

The result is shown in Fig. 5.17. Three separate mesh commands are run, each
producing a new plot in the current figure. The commands use different values for
the colormap attribute to color the surface in different ways. When this attribute
is not provided, as in the code producing the two first plots in Fig. 5.16, a default
colormap is used.

The plt.outline command is used to create a frame around the subplots, and
as seen, we exemplify this possibility for the last two subplots, but not the first one.
We see that one of the two frames has a different color, obtained by setting the
color attribute of the plt.outline command.

From the computer code it is hopefully clear that the six values listed in extent

represent fractions of the cube (0,1,0,1,0,1), where the corresponding plots are
placed. The extents for the three plots are here defined such that they do not overlap.

Fig. 5.17 A plot with three subplots created with Mayavi
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5.12.2 Contour Plots

The following code exemplifies how one can produce contour plots with Mayavi.
The code is very similar to that of Matplotlib, but one difference is that the attribute
contours now can represent the number of levels, as well as the levels themselves.
The plots are shown in Fig. 5.18.

# Default contour plot plotted together with surf.
plt.figure(5, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels).
plt.figure(6, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=10, warp_scale=0.01)

# 10 contour lines (equally spaced contour levels) together
# with surf. Black color for contour lines.
plt.figure(7, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.surf(xv, yv, hv, warp_scale=0.01)
plt.contour_surf(xv, yv, hv, contours=10, color=(0., 0., 0.),

warp_scale=0.01)

# Specify the contour levels explicitly as a list.
plt.figure(8, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
levels = [500., 1000., 1500., 2000.]
plt.contour_surf(xv, yv, hv, contours=levels, warp_scale=0.01)

# View the contours by displaying as an image.
plt.figure(9, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.imshow(hv)

Note that there is no function in Mayavi which labels the contours.
Contour plots in Mayavi are shown in three-dimensional space, but you can ro-

tate and look at them from above if you want a two-dimensional plot. Their visual
appearance may be enhanced by also including the surface plot itself. We have
done this for the top and middle left plots in Fig. 5.18. There is a clear difference
in visual impression between these two plots: in the first one, default surface- and
contour coloring is used, resulting in less visible contours, but in the middle left
plot (plt.figure 6), we set black contours to make them better stand out.

5.12.3 Vector Field Plots

Mayavi supports only vector fields in three-dimensional space. We will therefore
visualize the two-dimensional gradient field (5.15) by adding a third component of
zero. The following code plots this gradient field together with the contours of h.

plt.figure(11, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
plt.contour_surf(xv, yv, hv, contours=20, warp_scale=0.01)
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Fig. 5.18 Some contour plots with Mayavi

# mode controls the style how vectors are drawn
# color controls the colors of the vectors
# scale_mode=’none’ ensures that vectors are drawn with the same length
plt.quiver3d(x2v, y2v, 0.01*h2v, dhdx, dhdy, np.zeros_like(dhdx),

mode=’arrow’, color=(1,0,0), scale_mode=’none’)

This will produce a 3D view, which we again can rotate to obtain a 2D view. The
result is shown in Fig. 5.19, which is similar to Fig. 5.14.

5.12.4 A 3D Scalar Field and Its Gradient Field

Mayavi has functionality for drawing contour surfaces of 3D scalar fields. Let us
consider the 3D scalar field

g.x; y; z/ D z � h.x; y/: (5.16)

A three-dimensional grid for g can be computed as follows.

x = y = np.linspace(-10.,10.,41)
z = np.linspace(0, 50, 41)
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Fig. 5.19 Gradient field with contour plot

xv, yv, zv = np.meshgrid(x, y, z,
sparse=False, indexing=’ij’)

hv = 0.01*h0/(1 + (xv**2+yv**2)/(R**2))
gv = zv - hv

The contours are now surfaces defined by the implicit equation g.x; y; z/ D C ,
corresponding to vertical shifts of the surface h.x; y/.

A corresponding vector field can be calculated:

rg D @g

@x
i C @g

@y
j C @g

@z
k: (5.17)

numpy’s gradient function can be used to compute a gradient vector field in 3D as
well, but you need a three-dimensional grid for the field as input. For the field
(5.16), the gradient field is computed as follows.

x2 = y2 = np.linspace(-10.,10.,5)
z2 = np.linspace(0, 50, 5)
x2v, y2v, z2v = np.meshgrid(x2, y2, z2,

indexing=’ij’, sparse=False)
h2v = 0.01*h0/(1 + (x2v**2 + y2v**2)/(R**2))
g2v = z2v - h2v
dhdx, dhdy, dhdz = np.gradient(g2v)

Again we have used a coarser grid for the vector field.
To visualize the field (5.16) and its gradient field together, we draw enough con-

tours, as we did in the 2D case in Fig. 5.14. The following code can be used.

plt.figure(12, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
# opacity controls how contours are visible through each other
plt.contour3d(xv, yv, zv, gv, contours=7, opacity=0.5)
# scale_mode=’none’: vectors should not be scaled
plt.quiver3d(x2v, y2v, z2v, dhdx, dhdy, dhdz, mode=’arrow’,

scale_mode=’none’, opacity=0.5)

The result is shown in Fig. 5.20.
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Fig. 5.20 The 3D scalar field (5.16) and its gradient field

This example demonstrates some of the challenges in plotting three-dimensional
vector fields. The vectors must not be too dense, and not too long. It is inevitable
that contours shadow one another. Fortunately, Mayavi supports an opacity setting,
which controls how contours are visible through each other. Visualizing a 3D scalar
field is clearly challenging, and we have only touched the subject.

5.12.5 Animations

It is straightforward to create animations with Mayavi. In the following code the
function h.x; y/ is scaled vertically, for different scaling constants between 0 and 1,
and each plot is saved in its own file. The files can then be combined to a standard
video file.

plt.figure(13, fgcolor=(.0, .0, .0), bgcolor=(1.0, 1.0, 1.0))
s = plt.surf(xv, yv, hv, warp_scale=0.01)

for i in range(10):
# s.mlab_source.scalars is a handle for the values of the surface,
# and is updated here
s.mlab_source.scalars = hv*0.1*(i+1)
plt.savefig(’tmp_%04d.png’ % i)
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5.13 Summary

5.13.1 Chapter Topics

This chapter has introduced computing with arrays and plotting curve data stored in
arrays. The Numerical Python package contains lots of functions for array comput-
ing, including the ones listed in the table below. Plotting has been done with tools
that closely resemble the syntax of MATLAB.

Construction Meaning
array(ld) copy list data ld to a numpy array
asarray(d) make array of data d (no data copy if already array)
zeros(n) make a float vector/array of length n, with zeros
zeros(n, int) make an int vector/array of length n with zeros
zeros((m,n)) make a two-dimensional float array with shape (m,‘n‘)
zeros_like(x) make array of same shape and element type as x
linspace(a,b,m) uniform sequence of m numbers in Œa; b�

a.shape tuple containing a’s shape
a.size total no of elements in a
len(a) length of a one-dim. array a (same as a.shape[0])
a.dtype the type of elements in a
a.reshape(3,2) return a reshaped as 3 � 2 array
a[i] vector indexing
a[i,j] two-dim. array indexing
a[1:k] slice: reference data with indices 1,2,...,k-1
a[1:10:3] slice: reference data with indices 1,4,7
b = a.copy() copy an array
sin(a), exp(a), ... numpy functions applicable to arrays
c = concatenate((a, b)) c contains a with b appended
c = where(cond, a1, a2) c[i] = a1[i] if cond[i], else c[i] = a2[i]

isinstance(a, ndarray) is True if a is an array

Array computing When we apply a Python function f(x) to a Numerical Python
array x, the result is the same as if we apply f to each element in x separately.
However, when f contains if statements, these are in general invalid if an array
x enters the boolean expression. We then have to rewrite the function, often by
applying the where function from Numerical Python.

Plotting curves Sections 5.3.1 and 5.3.2 provide a quick overview of how to plot
curves with the aid of Matplotlib. The same examples coded with the Easyviz
plotting interface appear in Sect. 5.3.3.

Making movies Each frame in a movie must be a hardcopy of a plot in PNG
format. These plot files should have names containing a counter padded with lead-
ing zeros. One example may be tmp_0000.png, tmp_0001.png, tmp_0002.png.
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Having the plot files with names on this form, we can make an animated GIF movie
in the file movie.gif, with two frames per second, by

os.system(’convert -delay 50 tmp_*.png movie.gif’)

Alternatively, we may combine the plot files to a Flash video:

os.system(’ffmpeg -r 5 -i tmp_%04d.png -vcodec flv movie.flv’)

Other formats can be made using other codecs, see Sect. 5.3.5.

Terminology The important topics in this chapter are

� array computing
� vectorization
� plotting
� animations

5.13.2 Example: Animating a Function

Problem In this chapter’s summarizing example we shall visualize how the tem-
perature varies downward in the earth as the surface temperature oscillates between
high day and low night values. One question may be: What is the temperature
change 10 m down in the ground if the surface temperature varies between 2 C in
the night and 15 C in the day?

Let the z axis point downwards, towards the center of the earth, and let z D 0

correspond to the earth’s surface. The temperature at some depth z in the ground
at time t is denoted by T .z; t/. If the surface temperature has a periodic variation
around some mean value T0, according to

T .0; t/ D T0 C A cos.!t/;

one can find, from a mathematical model for heat conduction, that the temperature
at an arbitrary depth is

T .z; t/ D T0 C Ae�az cos.!t � az/; a D
r

!

2k
: (5.18)

The parameter k reflects the ground’s ability to conduct heat (k is called the thermal

diffusivity or the heat conduction coefficient).
The task is to make an animation of how the temperature profile in the ground,

i.e., T as a function of z, varies in time. Let ! correspond to a time period of 24
hours. The mean temperature T0 is taken as 10 C, and the maximum variation A

is assumed to be 10 C. The heat conduction coefficient k may be set as 1 mm2=s
(which is 10�6 m2=s in proper SI units).
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Solution To animate T .z; t/ in time, we need to make a loop over points in time,
and in each pass in the loop we must save a plot of T , as a function of z, to file. The
plot files can then be combined to a movie. The algorithm becomes

� for ti D i�t , i D 0; 1; 2 : : : ; n:
– plot the curve y.z/ D T .z; ti /

– store the plot in a file
� combine all the plot files into a movie

It can be wise to make a general animate function where we just feed in some
f .x; t/ function and make all the plot files. If animate has arguments for setting
the labels on the axis and the extent of the y axis, we can easily use animate also
for a function T .z; t/ (we just use z as the name for the x axis and T as the name
for the y axis in the plot). Recall that it is important to fix the extent of the y

axis in a plot when we make animations, otherwise most plotting programs will
automatically fit the extent of the axis to the current data, and the tick marks on
the y axis will jump up and down during the movie. The result is a wrong visual
impression of the function.

The names of the plot files must have a common stem appended with some frame
number, and the frame number should have a fixed number of digits, such as 0001,
0002, etc. (if not, the sequence of the plot files will not be correct when we specify
the collection of files with an asterisk for the frame numbers, e.g., as in tmp*.png).
We therefore include an argument to animate for setting the name stem of the
plot files. By default, the stem is tmp_, resulting in the filenames tmp_0000.png,
tmp_0001.png, tmp_0002.png, and so forth. Other convenient arguments for the
animate function are the initial time in the plot, the time lag �t between the plot
frames, and the coordinates along the x axis. The animate function then takes the
form

def animate(tmax, dt, x, function, ymin, ymax, t0=0,
xlabel=’x’, ylabel=’y’, filename=’tmp_’):

t = t0
counter = 0
while t <= tmax:

y = function(x, t)
plot(x, y, ’-’,

axis=[x[0], x[-1], ymin, ymax],
title=’time=%2d h’ % (t/3600.0),
xlabel=xlabel, ylabel=ylabel,
savefig=filename + ’%04d.png’ % counter)

savefig(’tmp_%04d.pdf’ % counter)
t += dt
counter += 1

The T .z; t/ function is easy to implement, but we need to decide whether the
parameters A, !, T0, and k shall be arguments to the Python implementation of
T .z; t/ or if they shall be global variables. Since the animate function expects
that the function to be plotted has only two arguments, we must implement T .z; t/

as T(z,t) in Python and let the other parameters be global variables (Sects. 7.1.1
and 7.1.2 explain this problem in more detail and present a better implementation).
The T(z,t) implementation then reads
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def T(z, t):
# T0, A, k, and omega are global variables
a = sqrt(omega/(2*k))
return T0 + A*exp(-a*z)*cos(omega*t - a*z)

Suppose we plot T .z; t/ at n points for z 2 Œ0; D�. We make such plots for
t 2 Œ0; tmax� with a time lag �t between the them. The frames in the movie are now
made by

# set T0, A, k, omega, D, n, tmax, dt
z = linspace(0, D, n)
animate(tmax, dt, z, T, T0-A, T0+A, 0, ’z’, ’T’)

We have here set the extent of the y axis in the plot as ŒT0 �A; T0CA�, which is in
accordance with the T .z; t/ function.

The call to animate above creates a set of files with names of the form
tmp_*.png. Out of these files we can create an animated GIF movie or a video
in, e.g., Flash format by running operating systems commands with convert and
avconv (or ffmpeg):

os.system(’convert -delay 50 tmp_*.png movie.gif’)
os.system(’avconv -i tmp_%04d.png -r 5 -vcodec flv movie.flv’)

See Sect. 5.3.5 for how to create videos in other formats.
It now remains to assign proper values to all the global variables in the pro-

gram: n, D, T0, A, omega, dt, tmax, and k. The oscillation period is 24 hours,
and ! is related to the period P of the cosine function by ! D 2�=P (realize
that cos.t2�=P / has period P ). We then express P D 24 h as 24 � 60 � 60 s and
compute ! as 2�=P � 7 � 10�5 s�1. The total simulation time can be 3 periods,
i.e., tmax D 3P . The T .z; t/ function decreases exponentially with the depth z so
there is no point in having the maximum depth D larger than the depth where T is
visually zero, say 0.001. We have that e�aD D 0:001 when D D �a�1 ln 0:001, so
we can use this estimate in the program. The proper initialization of all parameters
can then be expressed as follows:

k = 1E-6 # thermal diffusivity (in m*m/s)
P = 24*60*60. # oscillation period of 24 h (in seconds)
omega = 2*pi/P
dt = P/24 # time lag: 1 h
tmax = 3*P # 3 day/night simulation
T0 = 10 # mean surface temperature in Celsius
A = 10 # amplitude of the temperature variations in Celsius
a = sqrt(omega/(2*k))
D = -(1/a)*log(0.001) # max depth
n = 501 # no of points in the z direction

Note that it is very important to use consistent units. Here we express all units in
terms of meter, second, and Kelvin or Celsius.
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We encourage you to run the program heatwave.py to see the movie. The
hardcopy of the movie is in the file movie.gif. Figure 5.21 displays two snapshots
in time of the T .z; t/ function.

Fig. 5.21 Plot of the temperature T .z; t/ in the ground for two different t values

Scaling In this example, as in many other scientific problems, it was easier to
write the code than to assign proper physical values to the input parameters in the
program. To learn about the physical process, here how heat propagates from the
surface and down in the ground, it is often advantageous to scale the variables in
the problem so that we work with dimensionless variables. Through the scaling
procedure we normally end up with much fewer physical parameters that must be
assigned values. Let us show how we can take advantage of scaling the present
problem.

Consider a variable x in a problem with some dimension. The idea of scaling
is to introduce a new variable Nx D x=xc , where xc is a characteristic size of x.
Since x and xc have the same dimension, the dimension cancels in Nx such that Nx
is dimensionless. Choosing xc to be the expected maximum value of x, ensures
that Nx � 1, which is usually considered a good idea. That is, we try to have all
dimensionless variables varying between zero and one. For example, we can intro-
duce a dimensionless z coordinate: Nz D z=D, and now Nz 2 Œ0; 1�. Doing a proper
scaling of a problem is challenging so for now it is sufficient to just follow the steps
below – and not worry why we choose a certain scaling.

In the present problem we introduce these dimensionless variables:

Nz D z=D

NT D T � T0

A
Nt D !t

We now insert z D NzD and t D Nt=! in the expression for T .z; t/ and get

T D T0 C Ae�b Nz cos.Nt � b Nz/; b D aD

or
NT .Nz; Nt/ D T � T0

A
D e�b Nz cos.Nt � b Nz/ :

http://tinyurl.com/pwyasaa/plot/heatwave.py


312 5 Array Computing and Curve Plotting

We see that NT depends on only one dimensionless parameter b in addition to the
independent dimensionless variables Nz and Nt . It is common practice at this stage of
the scaling to just drop the bars and write

T .z; t/ D e�bz cos.t � bz/ : (5.19)

This function is much simpler to plot than the one with lots of physical parameters,
because now we know that T varies between �1 and 1, t varies between 0 and 2�

for one period, and z varies between 0 and 1. The scaled temperature has only one
parameter b in addition to the independent variable. That is, the shape of the graph
is completely determined by b.

In our previous movie example, we used specific values for D, !, and k, which
then implies a certain b D D

p

!=.2k/ (� 6:9). However, we can now run different
b values and see the effect on the heat propagation. Different b values will in
our problems imply different periods of the surface temperature variation and/or
different heat conduction values in the ground’s composition of rocks. Note that
doubling ! and k leaves the same b – it is only the fraction !=k that influences the
value of b.

We can reuse the animate function also in the scaled case, but we need to make
a new T .z; t/ function and, e.g., a main program where b can be read from the
command line:

def T(z, t):
return exp(-b*z)*cos(t - b*z) # b is global

b = float(sys.argv[1])
n = 401
z = linspace(0, 1, n)
animate(3*2*pi, 0.05*2*pi, z, T, -1.2, 1.2, 0, ’z’, ’T’)
movie(’tmp_*.png’, encoder=’convert’, fps=2,

output_file=’tmp_heatwave.gif’)
os.system(’convert -delay 50 tmp_*.png movie.gif’)

Running the program, found as the file heatwave_scaled.py, for different b

values shows that b governs how deep the temperature variations on the surface
z D 0 penetrate. A large b makes the temperature changes confined to a thin layer
close to the surface, while a small b leads to temperature variations also deep down
in the ground. You are encouraged to run the program with b D 2 and b D 20 to
experience the major difference, or just view the ready-made animations11.

We can understand the results from a physical perspective. Think of increasing
!, which means reducing the oscillation period so we get a more rapid temperature
variation. To preserve the value of b we must increase k by the same factor. Since
a large k means that heat quickly spreads down in the ground, and a small k implies
the opposite, we see that more rapid variations at the surface requires a larger k to
more quickly conduct the variations down in the ground. Similarly, slow tempera-
ture variations on the surface can penetrate deep in the ground even if the ground’s
ability to conduct (k) is low.

11 http://hplgit.github.io/scipro-primer/video/heatwave.html

http://tinyurl.com/pwyasaa/plot/heatwave_scaled.py
http://hplgit.github.io/scipro-primer/video/heatwave.html
http://hplgit.github.io/scipro-primer/video/heatwave.html
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5.14 Exercises

Exercise 5.1: Fill lists with function values

Define

h.x/ D 1p
2�

e�
1
2 x2

: (5.20)

Fill lists xlist and hlist with x and h.x/ values for 41 uniformly spaced x coor-
dinates in Œ�4; 4�.

Hint You may adapt the example in Sect. 5.2.1.
Filename: fill_lists.

Exercise 5.2: Fill arrays; loop version

The aim is to fill two arrays x and y with x and h.x/ values, respectively, where
h.x/ is defined in (5.20). Let the x values be as in Exercise 5.1. Create empty x and
y arrays and compute each element in x and y with a for loop.
Filename: fill_arrays_loop.

Exercise 5.3: Fill arrays; vectorized version

Vectorize the code in Exercise 5.2 by creating the x values using the linspace

function from the numpy package and by evaluating h.x/ for an array argument.
Filename: fill_arrays_vectorized.

Exercise 5.4: Plot a function

Make a plot of the function in Exercise 5.1 for x 2 Œ�4; 4�.
Filename: plot_Gaussian.

Exercise 5.5: Apply a function to a vector

Given a vector v D .2; 3;�1/ and a function f .x/ D x3 C xex C 1, apply f to
each element in v. Then calculate by hand f .v/ as the NumPy expression v**3 +

v*exp(v) + 1 using vector computing rules. Demonstrate that the two results are
equal.
Filename: apply_vecfunc.

Exercise 5.6: Simulate by hand a vectorized expression

Suppose x and t are two arrays of the same length, entering a vectorized expression

y = cos(sin(x)) + exp(1/t)

If x holds two elements, 0 and 2, and t holds the elements 1 and 1.5, calculate
by hand (using a calculator) the y array. Thereafter, write a program that mimics
the series of computations you did by hand (typically a sequence of operations of
the kind we listed in Sect. 5.1.3 – use explicit loops, but at the end you can use
Numerical Python functionality to check the results).
Filename: simulate_vector_computing.
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Exercise 5.7: Demonstrate array slicing

Create an array w with values 0; 0:1; 0:2; : : : ; 3. Write out w[:], w[:-2], w[::5],
w[2:-2:6]. Convince yourself in each case that you understand which elements of
the array that are printed.
Filename: slicing.

Exercise 5.8: Replace list operations by array computing

The data analysis problem in Sect. 2.6.2 is solved by list operations. Convert the
list to a two-dimensional array and perform the computations using array operations
(i.e., no explicit loops, but you need a loop to make the printout).
Filename: sun_data_vec.

Exercise 5.9: Plot a formula

Make a plot of the function y.t/ D v0t � 1
2
gt2 for v0 D 10, g D 9:81, and

t 2 Œ0; 2v0=g�. Set the axes labels as time (s) and height (m).
Filename: plot_ball1.

Exercise 5.10: Plot a formula for several parameters

Make a program that reads a set of v0 values from the command line and plots the
corresponding curves y.t/ D v0t � 1

2
gt2 in the same figure, with t 2 Œ0; 2v0=g� for

each curve. Set g D 9:81.

Hint You need a different vector of t coordinates for each curve.
Filename: plot_ball2.

Exercise 5.11: Specify the extent of the axes in a plot

Extend the program from Exercises 5.10 such that the minimum and maximum t

and y values are computed, and use the extreme values to specify the extent of the
axes. Add some space above the highest curve to make the plot look better.
Filename: plot_ball3.

Exercise 5.12: Plot exact and inexact Fahrenheit-Celsius conversion formulas

A simple rule to quickly compute the Celsius temperature from the Fahrenheit de-
grees is to subtract 30 and then divide by 2: C D .F � 30/=2. Compare this curve
against the exact curve C D .F � 32/5=9 in a plot. Let F vary between �20 and
120.
Filename: f2c_shortcut_plot.

Exercise 5.13: Plot the trajectory of a ball

The formula for the trajectory of a ball is given by

f .x/ D x tan � � 1

2v2
0

gx2

cos2 �
C y0; (5.21)

where x is a coordinate along the ground, g is the acceleration of gravity, v0 is the
size of the initial velocity, which makes an angle � with the x axis, and .0; y0/ is
the initial position of the ball.



5.14 Exercises 315

In a program, first read the input data y0, � , and v0 from the command line. Then
plot the trajectory y D f .x/ for y � 0.
Filename: plot_trajectory.

Exercise 5.14: Plot data in a two-column file

The file src/plot/xy.dat12 contains two columns of numbers, corresponding to
x and y coordinates on a curve. The start of the file looks as this:

-1.0000 -0.0000
-0.9933 -0.0087
-0.9867 -0.0179
-0.9800 -0.0274
-0.9733 -0.0374

Make a program that reads the first column into a list x and the second column into
a list y. Plot the curve. Print out the mean y value as well as the maximum and
minimum y values.

Hint Read the file line by line, split each line into words, convert to float, and
append to x and y. The computations with y are simpler if the list is converted to
an array.
Filename: read_2columns.

Remarks The function loadtxt in numpy can read files with tabular data (any
number of columns) and return the data in a two-dimensional array:

import numpy as np
# Read table of floats
data = np.loadtxt(’xy.dat’, dtype=np.float)
# Extract one-dim arrays from two-dim data
x = data[:,0] # column with index 0
y = data[:,1] # column with index 1

The present exercise asks you to implement a simplified version of loadtxt, but for
later loading of a file with tabular data into an array you will certainly use loadtxt.

Exercise 5.15: Write function data to file

We want to dump x and f .x/ values to a file, where the x values appear in the
first column and the f .x/ values appear in the second. Choose n equally spaced x

values in the interval Œa; b�. Provide f , a, b, n, and the filename as input data on
the command line.

Hint You may use the StringFunction tool (see Sects. 4.3.3 and 5.5.1) to turn
the textual expression for f into a Python function. (Note that the program from
Exercise 5.14 can be used to read the file generated in the present exercise into
arrays again for visualization of the curve y D f .x/.)
Filename: write_cml_function.

12 http://tinyurl.com/pwyasaa/plot/xy.dat

http://tinyurl.com/pwyasaa/plot/xy.dat
http://tinyurl.com/pwyasaa/plot/xy.dat
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Exercise 5.16: Plot data from a file

The files density_water.dat and density_air.dat files in the folder src/

plot13 contain data about the density of water and air (respectively) for differ-
ent temperatures. The data files have some comment lines starting with # and some
lines are blank. The rest of the lines contain density data: the temperature in the
first column and the corresponding density in the second column. The goal of this
exercise is to read the data in such a file and plot the density versus the temperature
as distinct (small) circles for each data point. Let the program take the name of the
data file as command-line argument. Apply the program to both files.
Filename: read_density_data.

Exercise 5.17: Write table to file

Given a function of two parameters x and y, we want to create a file with a table
of function values. The left column of the table contains y values in decreasing
order as we go down the rows, and the last row contains the x values in increasing
order. That is, the first column and the last row act like numbers on an x and y

axis in a coordinate system. The rest of the table cells contains function values
corresponding to the x and y values for the respective rows and columns. For
example, if the function formula is xC 2y, x runs from 0 to 2 in steps of 0.5, and y

run from �1 to 2 in steps of 1, the table looks as follows:

2 4 4.5 5 5.5 6
1 2 2.5 3 3.5 4
0 0 0.5 1 1.5 2

-1 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2

The task is to write a function

def write_table_to_file(f, xmin, xmax, nx, ymin, ymax, ny,
width=10, decimals=None,
filename=’table.dat’):

where f is the formula, given as a Python function; xmin, xmax, ymin, and ymax are
the minimum and maximum x and y values; nx is the number of intervals in the x

coordinates (the number of steps in x direction is then (xmax-xmin)/nx); ny is the
number of intervals in the y coordinates; width is the width of each column in the
table (a positive integer); decimals is the number of decimals used when writing
out the numbers (None means no decimal specification), and filename is the name
of the output file. For example, width=10 and decimals=1 gives the output format
%10.1g, while width=5 and decimals=None implies %5g.

13 http://tinyurl.com/pwyasaa/plot

http://tinyurl.com/pwyasaa/plot
http://tinyurl.com/pwyasaa/plot
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Here is a test function which you should use to verify the implementation:

def test_write_table_to_file():
filename = ’tmp.dat’
write_table_to_file(f=lambda x, y: x + 2*y,

xmin=0, xmax=2, nx=4,
ymin=-1, ymax=2, ny=3,
width=5, decimals=None,
filename=filename)

# Load text in file and compare with expected results
with open(filename, ’r’) as infile:

computed = infile.read()
expected = """\
2 4 4.5 5 5.5 6
1 2 2.5 3 3.5 4
0 0 0.5 1 1.5 2

-1 -2 -1.5 -1 -0.5 0

0 0.5 1 1.5 2"""
assert computed == expected

Filename: write_table_to_file.

Exercise 5.18: Fit a polynomial to data points

The purpose of this exercise is to find a simple mathematical formula for how the
density of water or air depends on the temperature. The idea is to load density
and temperature data from file as explained in Exercise 5.16 and then apply some
NumPy utilities that can find a polynomial that approximates the density as a func-
tion of the temperature.

NumPy has a function polyfit(x, y, deg) for finding a best fit of a poly-
nomial of degree deg to a set of data points given by the array arguments x and
y. The polyfit function returns a list of the coefficients in the fitted polynomial,
where the first element is the coefficient for the term with the highest degree, and
the last element corresponds to the constant term. For example, given points in x

and y, polyfit(x, y, 1) returns the coefficients a, b in a polynomial a*x + b

that fits the data in the best way. (More precisely, a line y D ax C b is a best fit
to the data points .xi ; yi /, i D 0; : : : ; n � 1 if a and b are chosen to make the sum
of squared errors R D

Pn�1
jD0.yj � .axj C b//2 as small as possible. This approach

is known as least squares approximation to data and proves to be extremely useful
throughout science and technology.)

NumPy also has a utility poly1d, which can take the tuple or list of coefficients
calculated by, e.g., polyfit and return the polynomial as a Python function that
can be evaluated. The following code snippet demonstrates the use of polyfit and
poly1d:

coeff = polyfit(x, y, deg)
p = poly1d(coeff)
print p # prints the polynomial expression
y_fitted = p(x) # computes the polynomial at the x points
# Use red circles for data points and a blue line for the polyn.
plot(x, y, ’ro’, x, y_fitted, ’b-’,

legend=(’data’, ’fitted polynomial of degree %d’ % deg))
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a) Write a function fit(x, y, deg) that creates a plot of data in x and y arrays
along with polynomial approximations of degrees collected in the list deg as
explained above.

b) We want to call fit to make a plot of the density of water versus temperature
and another plot of the density of air versus temperature. In both calls, use
deg=[1,2] such that we can compare linear and quadratic approximations to
the data.

c) From a visual inspection of the plots, can you suggest simple mathematical for-
mulas that relate the density of air to temperature and the density of water to
temperature?

Filename: fit_density_data.

Exercise 5.19: Fit a polynomial to experimental data

Suppose we have measured the oscillation period T of a simple pendulum with
a mass m at the end of a massless rod of length L. We have varied L and
recorded the corresponding T value. The measurements are found in a file
src/plot/pendulum.dat14. The first column in the file contains L values and
the second column has the corresponding T values.

a) Plot L versus T using circles for the data points.
b) We shall assume that L as a function of T is a polynomial. Use the NumPy

utilities polyfit and poly1d, as explained in Exercise 5.18, to fit polynomials
of degree 1, 2, and 3 to the L and T data. Visualize the polynomial curves
together with the experimental data. Which polynomial fits the measured data
best?

Filename: fit_pendulum_data.

Exercise 5.20: Read acceleration data and find velocities

A file src/plot/acc.dat15 contains measurements a0; a1; : : : ; an�1 of the accel-
eration of an object moving along a straight line. The measurement ak is taken at
time point tk D k�t , where �t is the time spacing between the measurements. The
purpose of the exercise is to load the acceleration data into a program and compute
the velocity v.t/ of the object at some time t .

In general, the acceleration a.t/ is related to the velocity v.t/ through v0.t/ D
a.t/. This means that

v.t/ D v.0/C
t
Z

0

a.�/d� : (5.22)

If a.t/ is only known at some discrete, equally spaced points in time, a0; : : : ; an�1

(which is the case in this exercise), we must compute the integral in (5.22) numeri-
cally, for example by the Trapezoidal rule:

v.tk/ � �t

 

1

2
a0 C

1

2
ak C

k�1
X

iD1

ai

!

; 1 � k � n � 1 : (5.23)

We assume v.0/ D 0 so that also v0 D 0.

14 http://tinyurl.com/pwyasaa/plot/pendulum.dat
15 http://tinyurl.com/pwyasaa/plot/acc.dat

http://tinyurl.com/pwyasaa/plot/pendulum.dat
http://tinyurl.com/pwyasaa/plot/acc.dat
http://tinyurl.com/pwyasaa/plot/pendulum.dat
http://tinyurl.com/pwyasaa/plot/acc.dat
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Read the values a0; : : : ; an�1 from file into an array, plot the acceleration versus
time, and use (5.23) to compute one v.tk/ value, where �t and k � 1 are specified
on the command line.
Filename: acc2vel_v1.

Exercise 5.21: Read acceleration data and plot velocities

The task in this exercise is the same as in Exercise 5.20, except that we now want to
compute v.tk/ for all time points tk D k�t and plot the velocity versus time. Now
only �t is given on the command line, and the a0; : : : ; an�1 values must be read
from file as in Exercise 5.20.

Hint Repeated use of (5.23) for all k values is very inefficient. A more efficient
formula arises if we add the area of a new trapezoid to the previous integral (see
also Sect. A.1.7):

v.tk/ D v.tk�1/C
tk
Z

tk�1

a.�/d� � v.tk�1/C�t
1

2
.ak�1 C ak/; (5.24)

for k D 1; 2; : : : ; n � 1, while v0 D 0. Use this formula to fill an array v with
velocity values.
Filename: acc2vel.

Exercise 5.22: Plot a trip’s path and velocity from GPS coordinates

A GPS device measures your position at every s seconds. Imagine that the po-
sitions corresponding to a specific trip are stored as .x; y/ coordinates in a file
src/plot/pos.dat16 with an x and y number on each line, except for the first
line, which contains the value of s.

a) Plot the two-dimensional curve of corresponding to the data in the file.

Hint Load s into a float variable and then the x and y numbers into two arrays.
Draw a straight line between the points, i.e., plot the y coordinates versus the x

coordinates.

b) Plot the velocity in x direction versus time in one plot and the velocity in y

direction versus time in another plot.

Hint If x.t/ and y.t/ are the coordinates of the positions as a function of time,
we have that the velocity in x direction is vx.t/ D dx=dt , and the velocity in y

direction is vy D dy=dt . Since x and y are only known for some discrete times,
tk D ks, k D 0; : : : ; n � 1, we must use numerical differentiation. A simple
(forward) formula is

vx.tk/ � x.tkC1/ � x.tk/

s
; vy.tk/ � y.tkC1/ � y.tk/

s
; k D 0; : : : ; n � 2 :

16 http://tinyurl.com/pwyasaa/plot/pos.dat

http://tinyurl.com/pwyasaa/plot/pos.dat
http://tinyurl.com/pwyasaa/plot/pos.dat
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Compute arrays vx and vy with velocities based on the formulas above for vx.tk/

and vy.tk/, k D 0; : : : ; n � 2.
Filename: position2velocity.

Exercise 5.23: Vectorize the Midpoint rule for integration

The Midpoint rule for approximating an integral can be expressed as

b
Z

a

f .x/dx � h

n
X

iD1

f .a � 1

2
hC ih/; (5.25)

where h D .b � a/=n.

a) Write a function midpointint(f, a, b, n) to compute Midpoint rule. Use
a plain Python for loop to implement the sum.

b) Make a vectorized implementation of the Midpoint rule where you compute the
sum by Python’s built-in function sum.

c) Make another vectorized implementation of the Midpoint rule where you com-
pute the sum by the sum function in the numpy package.

d) Organize the three implementations above in a module file midpoint_vec.py.
Equip the module with one test function for verifying the three implementations.
Use the integral

R 4

2
2xdx D 12 as test case since the Midpoint rule will integrate

such a linear integrand exactly.
e) Start IPython, import the functions from midpoint_vec.py, define some

Python implementation of a mathematical function f .x/ to integrate, and use
the %timeit feature of IPython to measure the efficiency of the three alternative
implementations.

Hint The %timeit feature is described in Sect. H.8.1.
Filename: midpoint_vec.

Remarks The lesson learned from the experiments in e) is that numpy.sum is much
more efficient than Python’s built-in function sum. Vectorized implementations
must always make use of numpy.sum to compute sums.

Exercise 5.24: Vectorize a function for computing the area of a polygon

The area of a polygon is given by (3.17) in Exercise 3.19. Vectorize this formula
such that there are no Python loops in the implementation. Make a test function that
compares the scalar implementation in the referred exercise with the new vectorized
implementation for some chosen polygons (the scalar version must then be available
in a module so that the function can be imported).

Hint Observe that the formula x1y2 C x2y3 C � � � C xn�1yn D
Pn�1

iD0 xiyiC1 is
the dot product of two vectors, x[:-1] and y[1:], which can be computed as
numpy.dot(x[:-1], y[1:]).
Filename: polygon_area_vec.
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Exercise 5.25: Implement Lagrange’s interpolation formula

Imagine we have n C 1 measurements of some quantity y that depends on x:
.x0; y0/; .x1; y1/; : : : ; .xn; yn/. We may think of y as a function of x and ask what y

is at some arbitrary point x not coinciding with any of the points x0; : : : ; xn. It is not
clear how y varies between the measurement points, but we can make assumptions
or models for this behavior. Such a problem is known as interpolation.

One way to solve the interpolation problem is to fit a continuous function that
goes through all the nC 1 points and then evaluate this function for any desired x.
A candidate for such a function is the polynomial of degree n that goes through all
the points. It turns out that this polynomial can be written

pL.x/ D
n
X

kD0

ykLk.x/; (5.26)

where

Lk.x/ D
n
Y

iD0;i¤k

x � xi

xk � xi

: (5.27)

The
Q

notation corresponds to
P

, but the terms are multiplied. For example,

n
Y

iD0;i¤k

xi D x0x1 � � �xk�1xkC1 � � �xn :

The polynomial pL.x/ is known as Lagrange’s interpolation formula, and the points
.x0; y0/; : : : ; .xn; yn/ are called interpolation points.

a) Make functions p_L(x, xp, yp) and L_k(x, k, xp, yp) that evaluate
pL.x/ and Lk.x/ by (5.26) and (5.27), respectively, at the point x. The arrays
xp and yp contain the x and y coordinates of the n C 1 interpolation points,
respectively. That is, xp holds x0; : : : ; xn, and yp holds y0; : : : ; yn.

b) To verify the program, we observe that Lk.xk/ D 1 and that Lk.xi / D 0 for
i ¤ k, implying that pL.xk/ D yk . That is, the polynomial pL goes through
all the points .x0; y0/; : : : ; .xn; yn/. Write a function test_p_L(xp, yp) that
computes jpL.xk/ � yk j at all the interpolation points .xk; yk/ and checks that
the value is approximately zero. Call test_p_L with xp and yp corresponding
to 5 equally spaced points along the curve y D sin.x/ for x 2 Œ0; ��. Thereafter,
evaluate pL.x/ for an x in the middle of two interpolation points and compare
the value of pL.x/ with the exact one.

Filename: Lagrange_poly1.

Exercise 5.26: Plot Lagrange’s interpolating polynomial

a) Write a function

def graph(f, n, xmin, xmax, resolution=1001):
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for plotting pL.x/ in Exercise 5.25, based on interpolation points taken from
some mathematical function f .x/ represented by the argument f. The argu-
ment n denotes the number of interpolation points sampled from the f .x/ func-
tion, and resolution is the number of points between xmin and xmax used
to plot pL.x/. The x coordinates of the n interpolation points can be uni-
formly distributed between xmin and xmax. In the graph, the interpolation points
.x0; y0/; : : : ; .xn; yn/ should be marked by small circles. Test the graph func-
tion by choosing 5 points in Œ0; �� and f as sin x.

b) Make a module Lagrange_poly2 containing the p_L, L_k, test_p_L, and
graph functions. The call to test_p_L described in Exercise 5.25 and the call
to graph described above should appear in the module’s test block.

Hint Section 4.9 describes how to make a module. In particular, a test block is ex-
plained in Sect. 4.9.3, test functions like test_p_L are demonstrated in Sect. 4.9.4
and also in Sect. 3.4.2, and how to combine test_p_L and graph calls in the test
block is exemplified in Sect. 4.9.5.
Filename: Lagrange_poly2.

Exercise 5.27: Investigate the behavior of Lagrange’s interpolating

polynomials

Unfortunately, the polynomial pL.x/ defined and implemented in Exercise 5.25
can exhibit some undesired oscillatory behavior that we shall explore graphically
in this exercise. Call the graph function from Exercise 5.26 with f .x/ D jxj,
x 2 Œ�2; 2�, for n D 2; 4; 6; 10. All the graphs of pL.x/ should appear in the same
plot for comparison. In addition, make a new figure with results from calls to graph

for n D 13 and n D 20. All the code necessary for solving this exercise should
appear in some separate program file, which imports the Lagrange_poly2module
made in Exercise 5.26.
Filename: Lagrange_poly2b.

Remarks The purpose of the pL.x/ function is to compute .x; y/ between some
given (often measured) data points .x0; y0/; : : : ; .xn; yn/. We see from the graphs
that for a small number of interpolation points, pL.x/ is quite close to the curve
y D jxj we used to generate the data points, but as n increases, pL.x/ starts to
oscillate, especially toward the end points .x0; y0/ and .xn; yn/. Much research has
historically been focused on methods that do not result in such strange oscillations
when fitting a polynomial to a set of points.

Exercise 5.28: Plot a wave packet

The function
f .x; t/ D e�.x�3t/2

sin .3�.x � t// (5.28)

describes for a fixed value of t a wave localized in space. Make a program that
visualizes this function as a function of x on the interval Œ�4; 4� when t D 0.
Filename: plot_wavepacket.

Exercise 5.29: Judge a plot

Assume you have the following program for plotting a parabola:
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import numpy as np
x = np.linspace(0, 2, 20)
y = x*(2 - x)
import matplotlib.pyplot as plt
plt.plot(x, y)
plt.show()

Then you switch to the function cos.18�x/ by altering the computation of y to y

= cos(18*pi*x). Judge the resulting plot. Is it correct? Display the cos.18�x/

function with 1000 points in the same plot.
Filename: judge_plot.

Exercise 5.30: Plot the viscosity of water

The viscosity of water, �, varies with the temperature T (in Kelvin) according to

�.T / D A � 10B=.T�C /; (5.29)

where A D 2:414 � 10�5 Pa s, B D 247:8 K, and C D 140 K. Plot �.T / for T

between 0 and 100 degrees Celsius. Label the x axis with ‘temperature (C)’ and the
y axis with ‘viscosity (Pa s)’. Note that T in the formula for � must be in Kelvin.
Filename: water_viscosity.

Exercise 5.31: Explore a complicated function graphically

The wave speed c of water surface waves depends on the length � of the waves.
The following formula relates c to �:

c.�/ D
s

g�

2�

�

1C s
4�2

�g�2

�

tanh

�

2�h

�

�

: (5.30)

Here, g is the acceleration of gravity (9:81 m/s2), s is the air-water surface tension
(7:9 � 10�2 N/m), � is the density of water (can be taken as 1000 kg/m3), and h is
the water depth. Let us fix h at 50 m. First make a plot of c.�/ (in m/s) for small �

(0.001 m to 0.1 m). Then make a plot c.�/ for larger � (1 m to 2 km.
Filename: water_wave_velocity.

Exercise 5.32: Plot Taylor polynomial approximations to sin x

The sine function can be approximated by a polynomial according to the following
formula:

sin x � S.xIn/ D
n
X

jD0

.�1/j x2jC1

.2j C 1/Š
: (5.31)

The expression .2j C1/Š is the factorial (math.factorial can compute this quan-
tity). The error in the approximation S.xIn/ decreases as n increases and in the
limit we have that limn!1 S.xIn/ D sin x. The purpose of this exercise is to
visualize the quality of various approximations S.xIn/ as n increases.

a) Write a Python function S(x, n) that computes S.xIn/. Use a straightfor-
ward approach where you compute each term as it stands in the formula, i.e.,
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.�1/j x2jC1 divided by the factorial .2j C 1/Š. (We remark that Exercise A.14
outlines a much more efficient computation of the terms in the series.)

b) Plot sin x on Œ0; 4�� together with the approximations S.xI 1/, S.xI 2/, S.xI 3/,
S.xI 6/, and S.xI 12/.

Filename: plot_Taylor_sin.

Exercise 5.33: Animate a wave packet

Display an animation of the function f .x; t/ in Exercise 5.28 by plotting f as
a function of x on Œ�6; 6� for a set of t values in Œ�1; 1�. Also make an animated
GIF file.

Hint A suitable resolution can be 1000 intervals (1001 points) along the x axis, 60
intervals (61 points) in time, and 6 frames per second in the animated GIF file. Use
the recipe in Sect. 5.3.4 and remember to remove the family of old plot files in the
beginning of the program.
Filename: plot_wavepacket_movie.

Exercise 5.34: Animate a smoothed Heaviside function

Visualize the smoothed Heaviside function H�.x/, defined in 3.26), as an animation
where � starts at 2 and then goes to zero.
Filename: smoothed_Heaviside_movie.

Exercise 5.35: Animate two-scale temperature variations

We consider temperature oscillations in the ground as addressed in Sect. 5.13.2.
Now we want to visualize daily and annual variations. Let A1 be the amplitude of
annual variations and A2 the amplitude of the day/night variations. Let also P1 D
365 days and P2 D 24 h be the periods of the annual and the daily oscillations. The
temperature at time t and depth z is then given by

T .z; t/ D T0 C A1e�a1z sin.!1t � a1z/C A2e�a2z sin.!2t � a2z/; (5.32)

where

!1 D 2�P1;

!2 D 2�P2;

a1 D
r

!1

2k
;

a2 D
r

!2

2k
:

Choose k D 10�6 m2=s, A1 D 15 C, A2 D 7 C, and the resolution �t as P2=10.
Modify the heatwave.py program in order to animate this new temperature func-
tion.
Filename: heatwave2.
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Remarks We assume in this problem that the temperature T equals the reference
temperature T0 at t D 0, resulting in a sine variation rather than the cosine variation
in (5.18).

Exercise 5.36: Use non-uniformly distributed coordinates for visualization

Watching the animation in Exercise 5.35 reveals that there are rapid oscillations in
a small layer close to z D 0. The variations away from z D 0 are much smaller
in time and space. It would therefore be wise to use more z coordinates close to
z D 0 than for larger z values. Given a set x0 < x1 < � � � < xn of uniformly spaced
coordinates in Œa; b�, we can compute new coordinates Nxi , stretched toward x D a,
by the formula

Nxi D aC .b � a/
�xi � a

b � a

�s

;

for some s > 1. In the present example, we can use this formula to stretch the z

coordinates to the left.

a) Experiment with s 2 Œ1:2; 3� and few points (say 15) and visualize the curve
as a line with circles at the points so that you can easily see the distribution of
points toward the left end. Identify a suitable value of s.

b) Run the animation with no circles and (say) 501 points with the found s value.

Filename: heatwave2a.

Exercise 5.37: Animate a sequence of approximations to �

Exercise 3.18 outlines an idea for approximating � as the length of a polygon in-
side the circle. Wrap the code from that exercise in a function pi_approx(N),
which returns the approximation to � using a polygon with N C 1 equally dis-
tributed points. The task of the present exercise is to visually display the polygons
as a movie, where each frame shows the polygon with N C 1 points together with
the circle and a title reflecting the corresponding error in the approximate value of
� . The whole movie arises from letting N run through 4; 5; 6; : : : ; K, where K is
some (large) prescribed value. Let there be a pause of 0.3 s between each frame in
the movie. By playing the movie you will see how the polygons move closer and
closer to the circle and how the approximation to � improves.
Filename: pi_polygon_movie.

Exercise 5.38: Animate a planet’s orbit

A planet’s orbit around a star has the shape of an ellipse. The purpose of this ex-
ercise is to make an animation of the movement along the orbit. One should see
a small disk, representing the planet, moving along an elliptic curve. An evolving
solid line shows the development of the planet’s orbit as the planet moves and the
title displays the planet’s instantaneous velocity magnitude. As a test, run the spe-
cial case of a circle and verify that the magnitude of the velocity remains constant
as the planet moves.

Hint 1 The points .x; y/ along the ellipse are given by the expressions

x D a cos.!t/; y D b sin.!t/;
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where a is the semi-major axis of the ellipse, b is the semi-minor axis, ! is an
angular velocity of the planet around the star, and t denotes time. One complete
orbit corresponds to t 2 Œ0; 2�=!�. Let us discretize time into time points tk D k�t ,
where �t D 2�=.!n/. Each frame in the movie corresponds to .x; y/ points along
the curve with t values t0; t1; : : : ; ti , i representing the frame number (i D 1; : : : ; n).

Hint 2 The velocity vector is

.
dx

dt
;

dy

dt
/ D .�!a sin.!t/; !b cos.!t//;

and the magnitude of this vector becomes !
p

a2 sin2.!t/C b2 cos2.!t/.
Filename: planet_orbit.

Exercise 5.39: Animate the evolution of Taylor polynomials

A general series approximation (to a function) can be written as

S.xIM; N / D
N
X

kDM

fk.x/ :

For example, the Taylor polynomial of degree N for ex equals S.xI 0; N / with
fk.x/ D xk=kŠ. The purpose of the exercise is to make a movie of how S.xIM; N /

develops and improves as an approximation as we add terms in the sum. That
is, the frames in the movie correspond to plots of S.xIM; M /, S.xIM; M C 1/,
S.xIM; M C 2/, : : :, S.xIM; N /.

a) Make a function

animate_series(fk, M, N, xmin, xmax, ymin, ymax, n, exact)

for creating such animations. The argument fk holds a Python function imple-
menting the term fk.x/ in the sum, M and N are the summation limits, the next
arguments are the minimum and maximum x and y values in the plot, n is the
number of x points in the curves to be plotted, and exact holds the function
that S.x/ aims at approximating.

Hint Here is some more information on how to write the animate_series func-
tion. The function must accumulate the fk.x/ terms in a variable s, and for each
k value, s is plotted against x together with a curve reflecting the exact function.
Each plot must be saved in a file, say with names tmp_0000.png, tmp_0001.png,
and so on (these filenames can be generated by tmp_%04d.png, using an appropri-
ate counter). Use the movie function to combine all the plot files into a movie in
a desired movie format.

In the beginning of the animate_series function, it is necessary to remove all
old plot files of the form tmp_*.png. This can be done by the glob module and
the os.remove function as exemplified in Sect. 5.3.4.
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b) Call the animate_series function for the Taylor series for sin x, where
fk.x/ D .�1/kx2kC1=.2k C 1/Š, and x 2 Œ0; 13��, M D 0, N D 40,
y 2 Œ�2; 2�.

c) Call the animate_series function for the Taylor series for e�x , where fk.x/ D
.�x/k=kŠ, and x 2 Œ0; 15�, M D 0, N D 30, y 2 Œ�0:5; 1:4�.

Filename: animate_Taylor_series.

Exercise 5.40: Plot the velocity profile for pipeflow

A fluid that flows through a (very long) pipe has zero velocity on the pipe wall and
a maximum velocity along the centerline of the pipe. The velocity v varies through
the pipe cross section according to the following formula:

v.r/ D
�

ˇ

2�0

�1=n
n

nC 1

�

R1C1=n � r1C1=n
	

; (5.33)

where R is the radius of the pipe, ˇ is the pressure gradient (the force that drives the
flow through the pipe), �0 is a viscosity coefficient (small for air, larger for water
and even larger for toothpaste), n is a real number reflecting the viscous properties
of the fluid (n D 1 for water and air, n < 1 for many modern plastic materials), and
r is a radial coordinate that measures the distance from the centerline (r D 0 is the
centerline, r D R is the pipe wall).

a) Make a Python function that evaluates v.r/.
b) Plot v.r/ as a function of r 2 Œ0; R�, with R D 1, ˇ D 0:02, �0 D 0:02, and

n D 0:1.
c) Make an animation of how the v.r/ curves varies as n goes from 1 and down

to 0.01. Because the maximum value of v.r/ decreases rapidly as n decreases,
each curve can be normalized by its v.0/ value such that the maximum value is
always unity.

Filename: plot_velocity_pipeflow.

Exercise 5.41: Plot sum-of-sines approximations to a function

Exercise 3.21 defines the approximation S.t In/ to a function f .t/. Plot S.t I 1/,
S.t I 3/, S.t I 20/, S.t I 200/, and the exact f .t/ function in the same plot. Use T D
2� .
Filename: sinesum1_plot.

Exercise 5.42: Animate the evolution of a sum-of-sine approximation to

a function

First perform Exercise 5.41. A natural next step is to animate the evolution of
S.t In/ as n increases. Create such an animation and observe how the discontinuity
in f .t/ is poorly approximated by S.t In/, even when n grows large (plot f .t/ in
each frame). This is a well-known deficiency, called Gibb’s phenomenon, when
approximating discontinuous functions by sine or cosine (Fourier) series.
Filename: sinesum1_movie.
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Exercise 5.43: Plot functions from the command line

For quickly getting a plot of a function f .x/ for x 2 Œxmin; xmax� it could be nice to
a have a program that takes the minimum amount of information from the command
line and produces a plot on the screen and saves the plot to a file tmp.png. The
usage of the program goes as follows:

Terminal

plotf.py "f(x)" xmin xmax

Plotting e�0:2x sin.2�x/ for x 2 Œ0; 4�� is then specified as

Terminal

plotf.py "exp(-0.2*x)*sin(2*pi*x)" 0 4*pi

Write the plotf.py program with as short code as possible (we leave it to Ex-
ercise 5.44 to test for valid input).

Hint Make x coordinates from the second and third command-line arguments
and then use eval (or StringFunction from scitools.std, see Sects. 4.3.3
and 5.5.1) on the first argument.
Filename: plotf.

Exercise 5.44: Improve command-line input

Equip the program from Exercise 5.43 with tests on valid input on the command
line. Also allow an optional fourth command-line argument for the number of points
along the function curve. Set this number to 501 if it is not given.
Filename: plotf2.

Exercise 5.45: Demonstrate energy concepts from physics

The vertical position y.t/ of a ball thrown upward is given by y.t/ D v0t � 1
2
gt2,

where g is the acceleration of gravity and v0 is the velocity at t D 0. Two important
physical quantities in this context are the potential energy, obtained by doing work
against gravity, and the kinetic energy, arising from motion. The potential energy is
defined as P D mgy, where m is the mass of the ball. The kinetic energy is defined
as K D 1

2
mv2, where v is the velocity of the ball, related to y by v.t/ D y0.t/.

Make a program that can plot P.t/ and K.t/ in the same plot, along with their
sum P C K. Let t 2 Œ0; 2v0=g�. Read m and v0 from the command line. Run
the program with various choices of m and v0 and observe that P C K is always
constant in this motion. (In fact, it turns out that P CK is constant for a large class
of motions, and this is a very important result in physics.)
Filename: energy_physics.

Exercise 5.46: Plot a w-like function

Define mathematically a function that looks like the “w” character. Plot the func-
tion. Also write a formal test function that verifies the implementation.
Filename: plot_w.



5.14 Exercises 329

Fig. 5.22 Visualization of numerical integration rules, with the Midpoint rule to the left and the
Trapezoidal rule to the right. The filled areas illustrate the deviations in the approximation of the
area under the curve

Exercise 5.47: Plot a piecewise constant function

Consider the piecewise constant function defined in Exercise 3.32. Make a Python
function plot_piecewise(data, xmax) that draws a graph of the function,
where data is the nested list explained in mentioned exercise and xmax is the
maximum x coordinate. Use ideas from Sect. 5.4.1.
Filename: plot_piecewise_constant.

Exercise 5.48: Vectorize a piecewise constant function

Consider the piecewise constant function defined in Exercise 3.32. Make a vec-
torized implementation piecewise_constant_vec(x, data, xmax) of such
a function, where x is an array.

Hint You can use ideas from the Nv1 function in Sect. 5.5.3. However, since the
number of intervals is not known, it is necessary to store the various intervals and
conditions in lists.
Filename: piecewise_constant_vec.

Remarks Plotting the array returned from piecewise_constant_vec faces the
same problems as encountered in Sect. 5.4.1. It is better to make a custom plotting
function that simply draws straight horizontal lines in each interval (Exercise 5.47).

Exercise 5.49: Visualize approximations in the Midpoint integration rule

Consider the midpoint rule for integration from Exercise 3.12. Use Matplotlib to
make an illustration of the midpoint rule as shown to the left in Fig. 5.22.

The f .x/ function used in Fig. 5.22 is

f .x/ D x.12� x/C sin.�x/; x 2 Œ0; 10� :

Hint Look up the documentation of the Matplotlib function fill_between and
use this function to create the filled areas between f .x/ and the approximating
rectangles.

Note that the fill_between requires the two curves to have the same number
of points. For accurate visualization of f .x/ you need quite many x coordinates,
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and the rectangular approximation to f .x/ must be drawn using the same set of x

coordinates.
Filename: viz_midpoint.

Exercise 5.50: Visualize approximations in the Trapezoidal integration rule

Redo Exercise 5.49 for the Trapezoidal rule from Exercise 3.11 to produce the graph
shown to the right in Fig. 5.22.
Filename: viz_trapezoidal.

Exercise 5.51: Experience overflow in a function

We are give the mathematical function

v.x/ D 1 � ex=�

1 � e1=�
;

where � is a parameter.

a) Make a Python function v(x, mu=1E-6, exp=math.exp) for calculating the
formula for v.x/ using exp as a possibly user-given exponential function. Let
the v function return the nominator and denominator in the formula as well as
the fraction.

b) Call the v function for various x values between 0 and 1 in a for loop, let mu be
1E-3, and have an inner for loop over two different exp functions: math.exp
and numpy.exp. The output will demonstrate how the denominator is subject to
overflow and how difficult it is to calculate this function on a computer.

c) Plot v.x/ for � D 1; 0:01; 0:001 on Œ0; 1� using 10,000 points to see what the
function looks like.

d) Convert x and eps to a higher precision representation of real numbers, with the
aid of the NumPy type float96, before calling v:

import numpy
x = numpy.float96(x); mu = numpy.float96(e)

Repeat point b) with these type of variables and observe how much better re-
sults we get with float96 compared with the standard float value, which is
float64 (the number reflects the number of bits in the machine’s representation
of a real number).

e) Call the v function with x and mu as float32 variables and report how the
function now behaves.

Filename: boundary_layer_func1.

Remarks When an object (ball, car, airplane) moves through the air, there is a very,
very thin layer of air close to the object’s surface where the air velocity varies dra-
matically, from the same value as the velocity of the object at the object’s surface
to zero a few centimeters away. This layer is called a boundary layer. The physics
in the boundary layer is important for air resistance and cooling/heating of objects.
The change in velocity in the boundary layer is quite abrupt and can be modeled by
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the functiion v.x/, where x D 1 is the object’s surface, and x D 0 is some distance
away where one cannot notice any wind velocity v because of the passing object
(v D 0). The wind velocity coincides with the velocity of the object at x D 1,
here set to v D 1. The parameter � is very small and related to the viscosity of air.
With a small value of �, it becomes difficult to calculate v.x/ on a computer. The
exercise demonstrates the difficulties and provides a remedy.

Exercise 5.52: Apply a function to a rank 2 array

Let A be the two-dimensional array

2

6

4

0 2 �1

�1 �1 0

0 5 0

3

7

5

Apply the function f from Exercise 5.5 to each element in A. Then calculate the
result of the array expression A**3 + A*exp(A) + 1, and demonstrate that the
end result of the two methods are the same.
Filename: apply_arrayfunc.

Exercise 5.53: Explain why array computations fail

The following loop computes the array y from x:

>>> import numpy as np
>>> x = np.linspace(0, 1, 3)
>>> y = np.zeros(len(x))
>>> for i in range(len(x)):
... y[i] = x[i] + 4

However, the alternative loop

>>> for xi, yi in zip(x, y):
... yi = xi + 5

leaves y unchanged. Why? Explain in detail what happens in each pass of this loop
and write down the contents of xi, yi, x, and y as the loop progresses.
Filename: find_errors_arraycomp.

Exercise 5.54: Verify linear algebra results

When we want to verify that a mathematical result is true, we often generate ma-
trices or vectors with random elements and show that the result holds for these
“arbitrary” mathematical objects. As an example, consider testing that A C B D
B C A for matrices A and B :

def test_addition():
n = 4 # matrix size
A = matrix(random.rand(n, n))
B = matrix(random.rand(n, n))
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tol = 1E-14
result1 = A + B
result2 = B + A
assert abs(result1 - result2).max() < tol

Use this technique to write test functions for the following mathematical results:

1. .AC B/C D AC C BC

2. .AB/C D A.BC /

3. rankA D rankAT

4. det.AB/ D det A det B

5. The eigenvalues if A equals the eigenvalues of AT when A is square.

Filename: verify_linalg.
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The present chapter addresses many techniques for interpreting information in files
and storing the data in convenient Python objects for further data analysis. A par-
ticularly handy object for many purposes is the dictionary, which maps objects
to objects, very often strings to various kinds of data that later can be looked up
through the strings. Section 6.1 is devoted to dictionaries.

Information in files often appear as pure text, so to interpret and extract data
from files it is sometimes necessary to carry out sophisticated operations on the
text. Python strings have many methods for performing such operations, and the
most important functionality is described in Sect. 6.2.

The World Wide Web is full of information and scientific data that may be use-
ful to access from a program. Section 6.3 tells you how to read web pages from
a program and interpret the contents using string operations.

Working with data often involves spreadsheets. Python programs not only need
to extract data from spreadsheet files, but it can be advantageous and convenient
to actually to the data processing in a Python program rather than in a spreadsheet
program like Microsoft Excel or LibreOffice. Section 6.4 goes through relevant
techniques for reading and writing files in the common CSV format for spread-
sheets.

The present chapter builds on fundamental programming concepts such as loops,
lists, arrays, if tests, command-line arguments, and curve plotting. The folder
src/files1 contains all the relevant program example files and associated data
files.

6.1 Dictionaries

So far in the book we have stored information in various types of objects, such as
numbers, strings, list, and arrays. A dictionary is a very flexible object for storing
various kind of information, and in particular when reading files. It is therefore time
to introduce the popular dictionary type.

A list is a collection of objects indexed by an integer going from 0 to the number
of elements minus one. Instead of looking up an element through an integer index,

1 http://tinyurl.com/pwyasaa/files
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it can be more handy to use a text. Roughly speaking, a list where the index can be
a text is called a dictionary in Python. Other computer languages use other names
for the same thing: HashMap, hash, associative array, or map.

6.1.1 Making Dictionaries

Suppose we need to store the temperatures from three cities: Oslo, London, and
Paris. For this purpose we can use a list,

temps = [13, 15.4, 17.5]

but then we need to remember the sequence of cities, e.g., that index 0 corresponds
to Oslo, index 1 to London, and index 2 to Paris. That is, the London temperature is
obtained as temps[1]. A dictionary with the city name as index is more convenient,
because this allows us to write temps[’London’] to look up the temperature in
London. Such a dictionary is created by one of the following two statements

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}
# or
temps = dict(Oslo=13, London=15.4, Paris=17.5)

Additional text-value pairs can be added when desired. We can, for instance, write

temps[’Madrid’] = 26.0

The temps dictionary has now four text-value pairs, and a print temps yields

{’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5, ’Madrid’: 26.0}

6.1.2 Dictionary Operations

The string “indices” in a dictionary are called keys. To loop over the keys in a dic-
tionary d, one writes for key in d: and works with key and the corresponding
value d[key] inside the loop. We may apply this technique to write out the tem-
peratures in the temps dictionary from the previous paragraph:

>>> for city in temps:
... print ’The temperature in %s is %g’ % (city, temps[city])
...
The temperature in Paris is 17.5
The temperature in Oslo is 13
The temperature in London is 15.4
The temperature in Madrid is 26
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We can check if a key is present in a dictionary by the syntax if key in d:

>>> if ’Berlin’ in temps:
... print ’Berlin:’, temps[’Berlin’]
... else:
... print ’No temperature data for Berlin’
...
No temperature data for Berlin

Writing key in d yields a standard boolean expression, e.g.,

>>> ’Oslo’ in temps
True

The keys and values can be extracted as lists from a dictionary:

>>> temps.keys()
[’Paris’, ’Oslo’, ’London’, ’Madrid’]
>>> temps.values()
[17.5, 13, 15.4, 26.0]

An important feature of the keys method in dictionaries is that the order of the
returned list of keys is unpredictable. If you need to traverse the keys in a cer-
tain order, you can sort the keys. A loop over the keys in the temps dictionary in
alphabetic order is written as

>>> for city in sorted(temps):
... print city
...
London
Madrid
Oslo
Paris

Python also has a special dictionary type OrderedDict where the key-value pairs
has a specific order, see Sect. 6.1.4.

A key-value pair can be removed by del d[key]:

>>> del temps[’Oslo’]
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
>>> len(temps) # no of key-value pairs in dictionary
3

Sometimes we need to take a copy of a dictionary:

>>> temps_copy = temps.copy()
>>> del temps_copy[’Paris’] # this does not affect temps
>>> temps_copy
{’London’: 15.4, ’Madrid’: 26.0}
>>> temps
{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
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Note that if two variables refer to the same dictionary and we change the contents
of the dictionary through either of the variables, the change will be seen in both
variables:

>>> t1 = temps
>>> t1[’Stockholm’] = 10.0 # change t1
>>> temps # temps is also changed
{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

To avoid that temps is affected by adding a new key-value pair to t1, t1 must be
a copy of temps.

Remark In Python version 2.x, temps.keys() returns a list object while in
Python version 3.x, temps.keys() only enables iterating over the keys. To write
code that works with both versions one can use list(temps.keys()) in the cases
where a list is really needed and just temps.keys() in a for loop over the keys.

6.1.3 Example: Polynomials as Dictionaries

Python objects that cannot change their contents are known as immutable data types
and consist of int, float, complex, str, and tuple. Lists and dictionaries can
change their contents and are called mutable objects.

The keys in a dictionary are not restricted to be strings. In fact, any immutable
Python object can be used as key. For example, if you want a list as key, it cannot
be used since lists can change their contents are hence mutable objects, but a tuple
will do, since it is immutable.

A common type of key in dictionaries is integers. Next we shall explain how
dictionaries with integers as key provide a handy way of representing polynomials.
Consider the polynomial

p.x/ D �1C x2 C 3x7 :

The data associated with this polynomial can be viewed as a set of power-coefficient
pairs, in this case the coefficient �1 belongs to power 0, the coefficient 1 belongs to
power 2, and the coefficient 3 belongs to power 7. A dictionary can be used to map
a power to a coefficient:

p = {0: -1, 2: 1, 7: 3}

A list can, of course, also be used, but in this case we must fill in all the zero
coefficients too, since the index must match the power:

p = [-1, 0, 1, 0, 0, 0, 0, 3]

The advantage with a dictionary is that we need to store only the non-zero coeffi-
cients. For the polynomial 1C x100 the dictionary holds two elements while the list
holds 101 elements (see Exercise 6.10).
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The following function can be used to evaluate a polynomial represented as a dic-
tionary:

def eval_poly_dict(poly, x):
sum = 0.0
for power in poly:

sum += poly[power]*x**power
return sum

The poly argument must be a dictionary where poly[power] holds the coefficient
associated with the term x**power.

A more compact implementation can make use of Python’s sum function to sum
the elements of a list:

def eval_poly_dict2(poly, x):
return sum([poly[power]*x**power for power in poly])

That is, we first make a list of the terms in the polynomial using a list comprehen-
sion, and then we feed this list to the sum function. We can in fact drop the brackets
and storing all the poly[power]*x**power numbers in a list, because sum can
directly add elements of an iterator (like for power in poly):

def eval_poly_dict2(poly, x):
return sum(poly[power]*x**power for power in poly)

Be careful with redefining variables!

The name sum appears in both eval_poly_dict and eval_poly_dict2. In
the former, sum is a float object, and in the latter, sum is a built-in Python
function. When we set sum=0.0 in the first implementation, we bind the name
sum to a new float object, and the built-in Python function associated with the
name sum is then no longer accessible inside the eval_poly_dict function.
(Actually, this is not strictly correct, because sum is a local variable while the
built-in Python sum function is associated with a global name sum, which can
always be reached through globals()[’sum’].) Outside the eval_poly_dict
function, nevertheless, sum will be Python’s summation function and the local
sum variable inside the eval_poly_dict function is destroyed.

As a rule of thumb, avoid using sum or other names associated with frequently
used functions as new variables unless you are in a very small function (like
eval_poly_dict) where there is no danger that you need the original meaning
of the name.

With a list instead of dictionary for representing the polynomial, a slightly dif-
ferent evaluation function is needed:

def eval_poly_list(poly, x):
sum = 0
for power in range(len(poly)):

sum += poly[power]*x**power
return sum
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If there are many zeros in the poly list, eval_poly_list must perform all the
multiplications with the zeros, while eval_poly_dict computes with the non-zero
coefficients only and is hence more efficient.

Another major advantage of using a dictionary to represent a polynomial rather
than a list is that negative powers are easily allowed, e.g.,

p = {-3: 0.5, 4: 2}

can represent 1
2
x�3C2x4. With a list representation, negative powers require much

more book-keeping. We may, for example, set

p = [0.5, 0, 0, 0, 0, 0, 0, 2]

and remember that p[i] is the coefficient associated with the power i-3. In par-
ticular, the eval_poly_list function will no longer work for such lists, while the
eval_poly_dict function works also for dictionaries with negative keys (powers).

There is a dictionary counterpart to list comprehensions, called dictionary com-

prehensions, for quickly generating parameterized key-value pairs with a for loop.
Such a construction is convenient to generate the coefficients in a polynomial:

from math import factorial
d = {k: (-1)**k/float(factorial(k)) for k in range(n+1)}

The d dictionary now contains the power-coefficient pairs of the Taylor polynomial
of degree n for e�x . (Note the use of float to avoid integer division.)

You are now encouraged to solve Exercise 6.11 to become more familiar with
the concept of dictionaries.

6.1.4 Dictionaries with Default Values and Ordering

Dictionaries with default values Looking up keys that are not present in the dic-
tionary requires special treatment. Consider a polynomial dictionary of the type
introduced in Sect. 6.1.3. Say we have 2x�3 � 1:5x�1 � 2x2 represented by

p1 = {-3: 2, -1: -1.5, 2: -2}

If the code tries to look up p1[1], this operation results in a KeyError since 1 is
not a registered key in p1. We therefore need to do either

if key in p1:
value = p1[key]

or use

value = p1.get(key, 0.0)
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where p1.get returns p1[key] if key in p1 and the default value 0.0 if not.
A third possibility is to work with a dictionary with a default value:

from collections import defaultdict

def polynomial_coeff_default():
# default value for polynomial dictionary
return 0.0

p2 = defaultdict(polynomial_coeff_default)
p2.update(p1)

The p2 can be indexed by any key, and for unregistered keys the polynomial_

coeff_default function is called to provide a value. This must be a function
without arguments. Usually, a separate function is never made, but either a type is
inserted or a lambda function. The example above is equivalent to

p2 = defaultdict(lambda: 0.0)
p2 = defaultdict(float)

In the latter case float() is called for each unknown key, and float() returns
a float object with zero value. Now we can look up p2[1] and get the default
value 0. It must be remarked that this key is then a part of the dictionary:

>>> p2 = defaultdict(lambda: 0.0)
>>> p2.update({2: 8}) # only one key
>>> p2[1]
0.0
>>> p2[0]
0.0
>>> p2[-2]
0.0
>>> print p2
{0: 0.0, 1: 0.0, 2: 8, -2: 0.0}

Ordered dictionaries The elements of a dictionary have an undefined order. For
example,

>>> p1 = {-3: 2, -1: -1.5, 2: -2}
>>> print p1
{2: -2, -3: 2, -1: -1.5}

One can control the order by sorting the keys, either by the default sorting (alpha-
betically for string keys, ascending order for number keys):

>>> for key in sorted(p1):
... print key, p1[key]
...
-3 2
-1 -1.5
2 -2
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The sorted function also accept an optional argument where the user can supply
a function that sorts two keys (see Exercise 3.39).

However, Python features a dictionary type that preserves the order of the keys
as they were registered:

>>> from collections import OrderedDict
>>> p2 = OrderedDict({-3: 2, -1: -1.5, 2: -2})
>>> print p2
OrderedDict([(2, -2), (-3, 2), (-1, -1.5)])
>>> p2[-5] = 6
>>> for key in p2:
... print key, p2[key]
...
2 -2
-3 2
-1 -1.5
-5 6

Here is an example with dates as keys where the order is important.

>>> data = {’Jan 2’: 33, ’Jan 16’: 0.1, ’Feb 2’: 2}
>>> for date in data:
... print date, data[date]
...
Feb 2 2
Jan 2 33
Jan 16 0.1

The order of the keys in the loop is not the right registered order, but this is easily
achieved by OrderedDict

>>> data = OrderedDict()
>>> data[’Jan 2’] = 33
>>> data[’Jan 16’] = 0.1
>>> data[’Feb 2’] = 2
>>> for date in data:
... print date, data[date]
...
Jan2 33
Jan 16 0.1
Feb 2 2

A comment on alternative solutions should be made here. Trying to sort the
data dictionary when it is an ordinary dict object does not help, as by default the
sorting will be alphabetically, resulting in the sequence ’Feb 2’, ’Jan 16’, and
’Jan 2’. What does help, however, is to use Python’s datetime objects as keys
reflecting dates, since these objects will be correctly sorted. A datetime object
can be created from a string like ’Jan 2, 2017’ using a special syntax (see the
module documentation). The relevant code is
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>>> import datetime
>>> data = {}
>>> d = datetime.datetime.strptime # short form
>>> data[d(’Jan 2, 2017’, ’%b %d, %Y’)] = 33
>>> data[d(’Jan 16, 2017’, ’%b %d, %Y’)] = 0.1
>>> data[d(’Feb 2, 2017’, ’%b %d, %Y’)] = 2

Printing out in sorted order gives the right sequence of dates:

>>> for date in sorted(data):
... print date, data[date]
...
2017-01-02 00:00:00 33
2017-01-16 00:00:00 0.1
2017-02-02 00:00:00 2

The time is automatically part of a datetime object and set to 00:00:00 when not
specified.

While OrderedDict provides a simpler and shorter solution to keeping keys
(here dates) in the right order in a dictionary, using datetime objects for dates has
many advantages: dates can be formatted and written out in various ways, counting
days between two dates is easy (see Sect. A.1.1), calculating the corresponding
week number and name of the weekday is supported, to mention some functionality.

6.1.5 Example: Storing File Data in Dictionaries

Problem The file files/densities.dat contains a table of densities of various
substances measured in g=cm3:

air 0.0012
gasoline 0.67
ice 0.9
pure water 1.0
seawater 1.025
human body 1.03
limestone 2.6
granite 2.7
iron 7.8
silver 10.5
mercury 13.6
gold 18.9
platinium 21.4
Earth mean 5.52
Earth core 13
Moon 3.3
Sun mean 1.4
Sun core 160
proton 2.3E+14
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In a program we want to access these density data. A dictionary with the name
of the substance as key and the corresponding density as value seems well suited
for storing the data.

Solution We can read the densities.dat file line by line, split each line into
words, use a float conversion of the last word as density value, and the remaining
one or two words as key in the dictionary.

def read_densities(filename):
infile = open(filename, ’r’)
densities = {}
for line in infile:

words = line.split()
density = float(words[-1])

if len(words[:-1]) == 2:
substance = words[0] + ’ ’ + words[1]

else:
substance = words[0]

densities[substance] = density
infile.close()
return densities

densities = read_densities(’densities.dat’)

This code is found in the file density.py. With string operations from Sect. 6.2.1
we can avoid the special treatment of one or two words in the name of the substance
and achieve simpler and more general code, see Exercise 6.3.

6.1.6 Example: Storing File Data in Nested Dictionaries

Problem We are given a data file with measurements of some properties with given
names (here A, B, C . . . ). Each property is measured a given number of times. The
data are organized as a table where the rows contain the measurements and the
columns represent the measured properties:

A B C D
1 11.7 0.035 2017 99.1
2 9.2 0.037 2019 101.2
3 12.2 no no 105.2
4 10.1 0.031 no 102.1
5 9.1 0.033 2009 103.3
6 8.7 0.036 2015 101.9

The word no stands for no data, i.e., we lack a measurement. We want to read
this table into a dictionary data so that we can look up measurement no. i of (say)
property C as data[’C’][i]. For each property p, we want to compute the mean
of all measurements and store this as data[p][’mean’].

http://tinyurl.com/pwyasaa/dictstring/density.py
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Algorithm The algorithm for creating the data dictionary goes as follows:

examine the first line: split it into words and
initialize a dictionary with the property names
as keys and empty dictionaries {} as values

for each of the remaining lines in the file:
split the line into words
for each word after the first:

if the word is not ‘no‘:
transform the word to a real number and store
the number in the relevant dictionary

� examine the first line: split it into words and initialize a dictionary with the
property names as keys and empty dictionaries as values

� for each of the remaining lines in the file
– split the line into words
– for each word after the first
� if the word is not no:
� transform the word to a real number and store the number in the relevant

dictionary

Implementation A new aspect needed in the solution is nested dictionaries, that
is, dictionaries of dictionaries. The latter topic is first explained, via an example:

>>> d = {’key1’: {’key1’: 2, ’key2’: 3}, ’key2’: 7}

Observe here that the value of d[’key1’] is a dictionary, which we can index with
its keys key1 and key2:

>>> d[’key1’] # this is a dictionary
{’key2’: 3, ’key1’: 2}
>>> type(d[’key1’]) # proof
<type ’dict’>
>>> d[’key1’][’key1’] # index a nested dictionary
2
>>> d[’key1’][’key2’]
3

In other words, repeated indexing works for nested dictionaries as for nested lists.
The repeated indexing does not apply to d[’key2’] since that value is just an
integer:

>>> d[’key2’][’key1’]
...

TypeError: unsubscriptable object
>>> type(d[’key2’])
<type ’int’>

When we have understood the concept of nested dictionaries, we are in a position
to present a complete code that solves our problem of loading the tabular data in the
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file table.dat into a nested dictionary data and computing mean values. First,
we list the program, stored in the file table2dict.py, and display the program’s
output. Thereafter, we dissect the code in detail.

infile = open(’table.dat’, ’r’)
lines = infile.readlines()
infile.close()
data = {} # data[property][measurement_no] = propertyvalue
first_line = lines[0]
properties = first_line.split()
for p in properties:

data[p] = {}

for line in lines[1:]:
words = line.split()
i = int(words[0]) # measurement number
values = words[1:] # values of properties
for p, v in zip(properties, values):

if v != ’no’:
data[p][i] = float(v)

# Compute mean values
for p in data:

values = data[p].values()
data[p][’mean’] = sum(values)/len(values)

for p in sorted(data):
print ’Mean value of property %s = %g’ % (p, data[p][’mean’])

The corresponding output from this program becomes

Mean value of property A = 10.1667
Mean value of property B = 0.0344
Mean value of property C = 2015
Mean value of property D = 102.133

To view the nested data dictionary, we may insert

import scitools.pprint2; scitools.pprint2.pprint(data)

which produces something like

{’A’: {1: 11.7, 2: 9.2, 3: 12.2, 4: 10.1, 5: 9.1, 6: 8.7,
’mean’: 10.1667},

’B’: {1: 0.035, 2: 0.037, 4: 0.031, 5: 0.033, 6: 0.036,
’mean’: 0.0344},

’C’: {1: 2017, 2: 2019, 5: 2009, 6: 2015, ’mean’: 2015},
’D’: {1: 99.1,

2: 101.2,
3: 105.2,
4: 102.1,
5: 103.3,
6: 101.9,
’mean’: 102.133}}

http://tinyurl.com/pwyasaa/dictstring/table2dict.py
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Dissection To understand a computer program, you need to understand what the
result of every statement is. Let us work through the code, almost line by line, and
see what it does.

First, we load all the lines of the file into a list of strings called lines. The
first_line variable refers to the string

’ A B C D’

We split this line into a list of words, called properties, which then contains

[’A’, ’B’, ’C’, ’D’]

With each of these property names we associate a dictionary with the measurement
number as key and the property value as value, but first we must create these “inner”
dictionaries as empty before we can add the measurements:

for p in properties:
data[p] = {}

The first pass in the for loop picks out the string

’1 11.7 0.035 2017 99.1’

as the line variable. We split this line into words, the first word (words[0]) is
the measurement number, while the rest words[1:] is a list of property values,
here named values. To pair up the right properties and values, we loop over the
properties and values lists simultaneously:

for p, v in zip(properties, values):
if v != ’no’:

data[p][i] = float(v)

Recall that some values may be missing and we drop to record that value (we
could, alternatively, set the value to None). Because the values list contains strings
(words) read from the file, we need to explicitly transform each string to a float

number before we can compute with the values.
After the for line in lines[1:] loop, we have a dictionary data of dictio-

naries where all the property values are stored for each measurement number and
property name. Figure 6.1 shows a graphical representation of the data dictionary.

It remains to compute the average values. For each property name p, i.e., key
in the data dictionary, we can extract the recorded values as the list data[p].
values() and simply send this list to Python’s sum function and divide by the
number of measured values for this property, i.e., the length of the list:

for p in data:
values = data[p].values()
data[p][’mean’] = sum(values)/len(values)
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data 'A'

'C'

'B'

'D'

'mean' 102.133333333

1 99.1

2 101.2

3 105.2

4 102.1

5 103.3

6 101.9

'mean' 0.0344

6 0.036

5 0.033

4 0.031

2 0.037

1 0.035

'mean' 2015.0

6 2015.0

5 2009.0

2 2019.0

1 2017.0

'mean' 10.1666666667

6 8.7

5 9.1

4 10.1

3 12.2

2 9.2

1 11.7

Fig. 6.1 Illustration of the nested dictionary created in the table2dict.py program
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Alternatively, we can write an explicit loop to compute the average:

for p in data:
sum_values = 0
for value in data[p]:

sum_values += value
data[p][’mean’] = sum_values/len(data[p])

When we want to look up a measurement no. n of property B, we must recall
that this particular measurement may be missing so we must do a test if n is key in
the dictionary data[p]:

if n in data[’B’]:
value = data[’B’][n]

# alternative:
value = data[’B’][n] if n in data[’B’] else None

6.1.7 Example: Reading and Plotting Data Recorded at Specific
Dates

Problem We want to compare the evolution of the stock prices of some giant com-
panies in the computer industry: Microsoft, Apple, and Google. Relevant data files
for stock prices can be downloaded from http://finance.yahoo.com. Fill in the com-
pany’s name and click on Search Finance in the top bar of this page and choose
Historical Prices in the left pane. On the resulting web page one can specify start
and end dates for the historical prices of the stock. The default values were used in
this example. Ticking off Monthly values and clicking Get Prices result in a table
of stock prices for each month since the stock was introduced. The table can be
downloaded as a spreadsheet file in CSV format, typically looking like

Date,Open,High,Low,Close,Volume,Adj Close
2014-02-03,502.61,551.19,499.30,545.99,12244400,545.99
2014-01-02,555.68,560.20,493.55,500.60,15698500,497.62
2013-12-02,558.00,575.14,538.80,561.02,12382100,557.68
2013-11-01,524.02,558.33,512.38,556.07,9898700,552.76
2013-10-01,478.45,539.25,478.28,522.70,12598400,516.57
...
1984-11-01,25.00,26.50,21.87,24.75,5935500,2.71
1984-10-01,25.00,27.37,22.50,24.87,5654600,2.73
1984-09-07,26.50,29.00,24.62,25.12,5328800,2.76

The file format is simple: columns are separated by comma, the first line contains
column headings, and the data lines have the date in the first column and various
measures of stock prices in the next columns. Reading about the meaning of the
various data on the Yahoo! web pages reveals that our interest concerns the final
column (as these prices are adjusted for splits and dividends). Three relevant data

http://finance.yahoo.com
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files can be found in the folder src/files2 with the names stockprices_X.csv,
where X is Microsoft, Apple, or Google.

The task is visually illustrate the historical, relative stock market value of these
companies. For this purpose it is natural to scale the prices of a company’s stock to
start at a unit value when the most recent company entered the market. Since the
date of entry varies, the oldest data point can be skipped such that all data points
correspond to the first trade day every month.

Solution There are two major parts of this problem: reading the file and plotting
the data. The reading part is quite straightforward, while the plotting part needs
some special considerations since the x values in the plot are dates and not real
numbers. In the forthcoming text we solve the individual subproblems one by one,
showing the relevant Python snippets. The complete program is found in the file
stockprices.py.

We start with the reading part. Since the reading will be repeated for several
companies, we create a function for extracting the relevant data for a specific com-
pany. These data cover the dates in column 1 and the stock prices in the last column.
Since we want to plot prices versus dates, it will be convenient to turn the dates into
date objects. In more detail the algorithms has the following points:

1. open the file
2. create two empty lists, dates and prices, for collecting the data
3. read the first line (of no interest)
4. for each line in the rest of the file:

(a) split the line wrt. comma into words
(b) append the first word to the dates list
(c) append the last word to the prices list

5. reverse the lists (oldest date first)
6. convert date strings to datetime objects
7. convert prices list to float array for computations
8. return dates and prices, except for the first (oldest) data point

There are a couple of additional points to consider. First, the words on a line are
strings, and at least the prices (last word) should be converted to a float. Second, the
recipe for converting dates like ’2008-02-04’ to date (or datetime) objects goes
as

from datetime import datetime
datefmt = ’%Y-%m-%d’ # date format YYYY-MM-DD used in datetime
strdate = ’2008-02-04’
datetime_object = datetime.strptime(strdate, datefmt)
date_object = datetime_object.date()

The nice thing with date and datetime object is that we can compute with them
and in particular used them in plotting with Matplotlib.

2 http://tinyurl.com/pwyasaa/files

http://tinyurl.com/pwyasaa/files
http://tinyurl.com/pwyasaa/dictstring/stockprices.py
http://tinyurl.com/pwyasaa/files
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We can now translate the algorithm to Python code:

from datetime import datetime

def read_file(filename):
infile = open(filename, ’r’)
infile.readline() # read column headings
dates = []; prices = []
for line in infile:

words = line.split(’,’)
dates.append(words[0])
prices.append(float(words[-1]))

infile.close()
dates.reverse()
prices.reverse()
# Convert dates on the form ’YYYY-MM-DD’ to date objects
datefmt = ’%Y-%m-%d’
dates = [datetime.strptime(_date, datefmt).date()

for _date in dates]
prices = np.array(prices)
return dates[1:], prices[1:]

Although we work with three companies in this example, it is easy and almost
always a good idea to generalize the program to an arbitrary number of compa-
nies. All we assume is that their stock prices are in files with names of the form
stockprices_X.csv, where X is the company name. With aid of the function call
glob.glob(’stockprices_*.csv’) we get a list of all such files. By looping
over this list, extracting the company name, and calling read_file, we can store
the dates and corresponding prices in dictionaries dates and prices, indexed by
the company name:

dates = {}; prices = {}
import glob, numpy as np
filenames = glob.glob(’stockprices_*.csv’)
companies = []
for filename in filenames:

company = filename[12:-4]
d, p = read_file(filename)
dates[company] = d
prices[company] = p

The next step is to normalize the prices such that they coincide on a certain date.
We pick this date as the first month we have data for the youngest company. In lists
of date or datetime objects, we can use Python’s max and min functions to extract
the newest and oldest date.

first_months = [dates[company][0] for company in dates]
normalize_date = max(first_months)
for company in dates:

index = dates[company].index(normalize_date)
prices[company] /= prices[company][index]
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# Plot log of price versus years

import matplotlib.pyplot as plt
from matplotlib.dates import YearLocator, MonthLocator, DateFormatter

fig, ax = plt.subplots()
legends = []
for company in prices:

ax.plot_date(dates[company], np.log(prices[company]),
’-’, label=company)

legends.append(company)
ax.legend(legends, loc=’upper left’)
ax.set_ylabel(’logarithm of normalized value’)

# Format the ticks
years = YearLocator(5) # major ticks every 5 years
months = MonthLocator(6) # minor ticks every 6 months
yearsfmt = DateFormatter(’%Y’)
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(yearsfmt)
ax.xaxis.set_minor_locator(months)
ax.autoscale_view()
fig.autofmt_xdate()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
plt.show()

The normalized prices vary a lot, so to see the development over 30 years better,
we decide to take the logarithm of the prices. The plotting procedure is somewhat
involved so the reader should take the coming code more as a recipe than as a se-
quence of statement to really understand:

import matplotlib.pyplot as plt
from matplotlib.dates import YearLocator, MonthLocator, DateFormatter

fig, ax = plt.subplots()
legends = []
for company in prices:

ax.plot_date(dates[company], np.log(prices[company]),
’-’, label=company)

legends.append(company)
ax.legend(legends, loc=’upper left’)
ax.set_ylabel(’logarithm of normalized value’)

# Format the ticks
years = YearLocator(5) # major ticks every 5 years
months = MonthLocator(6) # minor ticks every 6 months
yearsfmt = DateFormatter(’%Y’)
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(yearsfmt)
ax.xaxis.set_minor_locator(months)
ax.autoscale_view()
fig.autofmt_xdate()

plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
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Fig. 6.2 The evolution of stock prices for three companies

Figure 6.2 shows the resulting plot. We observe that the normalized prices coincide
when Google entered the market, here at Sep 1, 2004. Note that there is a log
scale on the vertical axis. You may want to plot the real normalized prices to get
a stronger impression of the significant recent rise in value, especially for Apple.

6.2 Strings

Many programs need to manipulate text. For example, when we read the contents
of a file into a string or list of strings (lines), we may want to change parts of the
text in the string(s) – and maybe write out the modified text to a new file. So far in
this chapter we have converted parts of the text to numbers and computed with the
numbers. Now it is time to learn how to manipulate the text strings themselves.

6.2.1 CommonOperations on Strings

Python has a rich set of operations on string objects. Some of the most common
operations are listed below.

Substring specification The expression s[i:j] extracts the substring starting
with character number i and ending with character number j-1 (similarly to lists,
0 is the index of the first character):
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>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s[8:] # from index 8 to the end of the string
’18.4 C at 4 pm’
>>> s[8:12] # index 8, 9, 10 and 11 (not 12!)
’18.4’

A negative upper index counts, as usual, from the right such that s[-1] is the last
element, s[-2] is the next last element, and so on.

>>> s[8:-1]
’18.4 C at 4 p’
>>> s[8:-8]
’18.4 C’

Searching for substrings The call s.find(s1) returns the index where the sub-
string s1 first appears in s. If the substring is not found, �1 is returned.

>>> s.find(’Berlin’) # where does ’Berlin’ start?
0
>>> s.find(’pm’)
20
>>> s.find(’Oslo’) # not found
-1

Sometimes the aim is to just check if a string is contained in another string, and
then we can use the syntax:

>>> ’Berlin’ in s:
True
>>> ’Oslo’ in s:
False

Here is a typical use of the latter construction in an if test:

>>> if ’C’ in s:
... print ’C found’
... else:
... print ’no C’
...
C found

Two other convenient methods for checking if a string starts with or ends with
a specified string are startswith and endswith:

>>> s.startswith(’Berlin’)
True
>>> s.endswith(’am’)
False
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Substitution The call s.replace(s1, s2) replaces substring s1 by s2 every-
where in s:

>>> s.replace(’ ’, ’_’)
’Berlin:_18.4_C__at_4_pm’
>>> s.replace(’Berlin’, ’Bonn’)
’Bonn: 18.4 C at 4 pm’

A variant of the last example, where several string operations are put together, con-
sists of replacing the text before the first colon:

>>> s.replace(s[:s.find(’:’)], ’Bonn’)
’Bonn: 18.4 C at 4 pm’

Take a break at this point and convince yourself that you understand how we specify
the substring to be replaced!

String splitting The call s.split() splits the string s into words separated by
whitespace (space, tabulator, or newline):

>>> s.split()
[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

Splitting a string s into words separated by a text t can be done by s.split(t).
For example, we may split with respect to colon:

>>> s.split(’:’)
[’Berlin’, ’ 18.4 C at 4 pm’]

We know that s contains a city name, a colon, a temperature, and then C:

>>> s = ’Berlin: 18.4 C at 4 pm’

With s.splitlines(), a multi-line string is split into lines (very useful when a file
has been read into a string and we want a list of lines):

>>> t = ’1st line\n2nd line\n3rd line’
>>> print t
1st line
2nd line
3rd line
>>> t.splitlines()
[’1st line’, ’2nd line’, ’3rd line’]

Upper and lower case s.lower() transforms all characters to their lower case
equivalents, and s.upper() performs a similar transformation to upper case letters:

>>> s.lower()
’berlin: 18.4 c at 4 pm’
>>> s.upper()
’BERLIN: 18.4 C AT 4 PM’
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Strings are constant A string cannot be changed, i.e., any change always results
in a new string. Replacement of a character is not possible:

>>> s[18] = 5
...
TypeError: ’str’ object does not support item assignment

If we want to replace s[18], a new string must be constructed, for example by
keeping the substrings on either side of s[18] and inserting a ’5’ in between:

>>> s[:18] + ’5’ + s[19:]
’Berlin: 18.4 C at 5 pm’

Strings with digits only One can easily test whether a string contains digits only
or not:

>>> ’214’.isdigit()
True
>>> ’ 214 ’.isdigit()
False
>>> ’2.14’.isdigit()
False

Whitespace We can also check if a string contains spaces only by calling the
isspace method. More precisely, isspace tests for whitespace, which means the
space character, newline, or the TAB character:

>>> ’ ’.isspace() # blanks
True
>>> ’ \n’.isspace() # newline
True
>>> ’ \t ’.isspace() # TAB
True
>>> ’’.isspace() # empty string
False

The isspace is handy for testing for blank lines in files. An alternative is to strip
first and then test for an empty string:

>>> line = ’ \n’
>>> line.strip() == ’’
True

Stripping off leading and/or trailing spaces in a string is sometimes useful:

>>> s = ’ text with leading/trailing space \n’
>>> s.strip()
’text with leading/trailing space’
>>> s.lstrip() # left strip
’text with leading/trailing space \n’
>>> s.rstrip() # right strip
’ text with leading/trailing space’
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Joining strings The opposite of the split method is join, which joins elements
in a list of strings with a specified delimiter in between. That is, the following two
types of statements are inverse operations:

t = delimiter.join(words)
words = t.split(delimiter)

An example on using join may be

>>> strings = [’Newton’, ’Secant’, ’Bisection’]
>>> t = ’, ’.join(strings)
>>> t
’Newton, Secant, Bisection’

As an illustration of the usefulness of split and join, we want to remove the
first two words on a line. This task can be done by first splitting the line into words
and then joining the words of interest:

>>> line = ’This is a line of words separated by space’
>>> words = line.split()
>>> line2 = ’ ’.join(words[2:])
>>> line2
’a line of words separated by space’

There are many more methods in string objects. All methods are described in
the String Methods3 section of the Python Standard Library online document.

6.2.2 Example: Reading Pairs of Numbers

Problem Suppose we have a file consisting of pairs of real numbers, i.e., text of the
form .a; b/, where a and b are real numbers. This notation for a pair of numbers
is often used for points in the plane, vectors in the plane, and complex numbers.
A sample file may look as follows:

(1.3,0) (-1,2) (3,-1.5)
(0,1) (1,0) (1,1)
(0,-0.01) (10.5,-1) (2.5,-2.5)

The file can be found as read_pairs1.dat. Our task is to read this text into
a nested list pairs such that pairs[i] holds the pair with index i, and this pair is
a tuple of two float objects. We assume that there are no blanks inside the paren-
theses of a pair of numbers (we rely on a split operation, which would otherwise
not work).

Solution To solve this programming problem, we can read in the file line by line;
for each line: split the line into words (i.e., split with respect to whitespace); for

3 http://docs.python.org/2/library/stdtypes.html#string-methods

http://docs.python.org/2/library/stdtypes.html#string-methods
http://docs.python.org/2/library/stdtypes.html#string-methods
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each word: strip off the parentheses, split with respect to comma, and convert the
resulting two words to floats. Our brief algorithm can be almost directly translated
to Python code:

# Load the file into list of lines
with open(’read_pairs1.dat’, ’r’) as infile:

lines = infile.readlines()

# Analyze the contents of each line
pairs = [] # list of (n1, n2) pairs of numbers
for line in lines:

words = line.split()
for word in words:

word = word[1:-1] # strip off parenthesis
n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair) # add 2-tuple to last row

This code is available in the file read_pairs1.py. The with statement is the
modern Python way of reading files, see Sect. 4.5.2, with the advantage that we
do not need to think about closing the file. Figure 6.3 shows a snapshot of the
state of the variables in the program after having treated the first line. You should
explain each line in the program to yourself, and compare your understanding with
the figure.

The output from the program becomes

[(1.3, 0.0),
(-1.0, 2.0),
(3.0, -1.5),
(0.0, 1.0),
(1.0, 0.0),
(1.0, 1.0),
(0.0, -0.01),
(10.5, -1.0),
(2.5, -2.5)]

We remark that our solution to this programming problem relies heavily on the
fact that spaces inside the parentheses are not allowed. If spaces were allowed, the
simple split to obtain the pairs on a line as words would not work. What can we
then do?

We can first strip off all blanks on a line, and then observe that the pairs are
separated by the text ’)(’. The first and last pair on a line will have an extra
parenthesis that we need to remove. The rest of code is similar to the previous code
and can be found in read_pairs2.py:

with open(’read_pairs2.dat’, ’r’) as infile:
lines = infile.readlines()

# Analyze the contents of each line
pairs = [] # list of (n1, n2) pairs of numbers

http://tinyurl.com/pwyasaa/dictstring/read_pairs1.py
http://tinyurl.com/pwyasaa/dictstring/read_pairs2.py
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lumpy_fig True

words 0 ’(1.3,0)’

1 ’(−1,2)’

2 ’(3,−1.5)’

pair 0 3.0

1 −1.5

line ’(1.3,0)    (−1,2)    (3,−1.5)’

pairs 0 0 1.3

1 0.0

1 0 −1.0

1 2.0

2

word ’3,−1.5’

n1 3.0

n2 −1.5

Fig. 6.3 Illustration of the variables in the read_pairs.py program after the first pass in the
loop over words in the first line of the data file

for line in lines:
line = line.strip() # remove whitespace such as newline
line = line.replace(’ ’, ’’) # remove all blanks
words = line.split(’)(’)
# strip off leading/trailing parenthesis in first/last word:
words[0] = words[0][1:] # (-1,3 -> -1,3
words[-1] = words[-1][:-1] # 8.5,9) -> 8.5,9
for word in words:

n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair)

The program can be tested on the file read_pairs2.dat:

(1.3 , 0) (-1 , 2 ) (3, -1.5)
(0 , 1) ( 1, 0) ( 1 , 1 )
(0,-0.01) (10.5,-1) (2.5, -2.5)
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A third approach is to notice that if the pairs were separated by commas,

(1, 3.0), (-1, 2), (3, -1.5),
(0, 1), (1, 0), (1, 1),

the file text is very close to the Python syntax of a list of 2-tuples. We only miss the
enclosing brackets:

[(1, 3.0), (-1, 2), (3, -1.5),
(0, 1), (1, 0), (1, 1),]

Running eval on this text will automatically produce the list object we want to
construct! All we need to do is to read the file into a string, add a comma after
every right parenthesis, add opening and closing bracket, and call eval (program
read_pairs3.py):

with open(’read_pairs2.dat’, ’r’) as infile:
text = infile.read()

text = text.replace(’)’, ’),’)
text = ’[’ + text + ’]’
pairs = eval(text)

In general, it is a good idea to construct file formats that are as close as possible to
valid Python syntax such that one can take advantage of the eval or exec functions
to turn text into “live objects”.

6.2.3 Example: Reading Coordinates

Problem Suppose we have a file with coordinates .x; y; z/ in three-dimensional
space. The file format looks as follows:

x=-1.345 y= 0.1112 z= 9.1928
x=-1.231 y=-0.1251 z= 1001.2
x= 0.100 y= 1.4344E+6 z=-1.0100
x= 0.200 y= 0.0012 z=-1.3423E+4
x= 1.5E+5 y=-0.7666 z= 1027

The goal is to read this file and create a list with (x,y,z) 3-tuples, and thereafter
convert the nested list to a two-dimensional array with which we can compute.

Note that there is sometimes a space between the = signs and the following num-
ber and sometimes not. Splitting with respect to space and extracting every second
word is therefore not an option. We shall present three solutions.

Solution 1: substring extraction The file format looks very regular with the x=,
y=, and z= texts starting in the same columns at every line. By counting characters,
we realize that the x= text starts in column 2, the y= text starts in column 16, while
the z= text starts in column 31. Introducing

http://tinyurl.com/pwyasaa/dictstring/read_pairs3.py
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x_start = 2
y_start = 16
z_start = 31

the three numbers in a line string are obtained as the substrings

x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]

The following code, found in file file2coor_v1.py, creates the coor array with
shape .n; 3/, where n is the number of .x; y; z/ coordinates.

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

x_start = 2
y_start = 16
z_start = 31
x = line[x_start+2:y_start]
y = line[y_start+2:z_start]
z = line[z_start+2:]
print ’debug: x="%s", y="%s", z="%s"’ % (x,y,z)
coor.append((float(x), float(y), float(z)))

infile.close()

import numpy as np
coor = np.array(coor)
print coor.shape, coor

The print statement inside the loop is always wise to include when doing string
manipulations, simply because counting indices for substring limits quickly leads
to errors. Running the program, the output from the loop looks like this

debug: x="-1.345 ", y=" 0.1112 ", z=" 9.1928
"

for the first line in the file. The double quotes show the exact extent of the extracted
coordinates. Note that the last quote appears on the next line. This is because line
has a newline at the end (this newline must be there to define the end of the line),
and the substring line[z_start:] contains the newline at the of line. Writing
line[z_start:-1] would leave the newline out of the z coordinate. However,
this has no effect in practice since we transform the substrings to float, and an
extra newline or other blanks make no harm.

The coor object at the end of the program has the value

[[ -1.34500000e+00 1.11200000e-01 9.19280000e+00]
[ -1.23100000e+00 -1.25100000e-01 1.00120000e+03]
[ 1.00000000e-01 1.43440000e+06 -1.01000000e+00]
[ 2.00000000e-01 1.20000000e-03 -1.34230000e+04]
[ 1.50000000e+05 -7.66600000e-01 1.02700000e+03]]

http://tinyurl.com/pwyasaa/dictstring/file2coor_v1.py
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Solution 2: string search One problem with the solution approach above is that
the program will not work if the file format is subject to a change in the column
positions of x=, y=, or z=. Instead of hardcoding numbers for the column positions,
we can use the find method in string objects to locate these column positions:

x_start = line.find(’x=’)
y_start = line.find(’y=’)
z_start = line.find(’z=’)

The rest of the code is similar to the complete program listed above, and the com-
plete code is stored in the file file2coor_v2.py.

Solution 3: string split String splitting is a powerful tool, also in the present case.
Let us split with respect to the equal sign. The first line in the file then gives us the
words

[’x’, ’-1.345 y’, ’ 0.1112 z’, ’ 9.1928’]

We throw away the first word, and strip off the last character in the next word.
The final word can be used as is. The complete program is found in the file
file2coor_v3.py and looks like

infile = open(’xyz.dat’, ’r’)
coor = [] # list of (x,y,z) tuples
for line in infile:

words = line.split(’=’)
x = float(words[1][:-1])
y = float(words[2][:-1])
z = float(words[3])
coor.append((x, y, z))

infile.close()

import numpy as np
coor = np.array(coor)
print coor.shape, coor

More sophisticated examples of string operations appear in Sect. 6.3.4.

6.3 Reading Data fromWeb Pages

Python has a module urllib which makes it possible to read data from a web page
as easily as we can read data from an ordinary file. (In principle this is true, but in
practice the text in web pages tend to be much more complicated than the text in
the files we have treated so far.) Before we do this, a few concepts from the Internet
world must be touched.

http://tinyurl.com/pwyasaa/dictstring/file2coor_v2.py
http://tinyurl.com/pwyasaa/dictstring/file2coor_v3.py
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6.3.1 About Web Pages

Web pages are viewed with a web browser. There are many browsers: Firefox,
Internet Explorer, Safari, Opera, and Google Chrome to mention the most famous.
Any web page you visit is associated with an address, usually something like

http://www.some.where.net/some/file.html

This type of web address is called a URL (Uniform Resource Locator) or URI
(Uniform Resource Identifier). (We stick to the term URL in this book because
Python’s tools for accessing resources on the Internet have url as part of module
and function names.) The graphics you see in a web browser, i.e., the web page you
see with your eyes, is produced by a series of commands that specifies the text on
the page, the images, buttons to be pressed, etc. Roughly speaking, these commands
are like statements in computer programs. The commands are stored in a text file
and follow rules in a language, exactly as you are used to when writing statements
in a programming language.

The common language for defining web pages is HTML. A web page is then
simply a text file with text containing HTML commands. Instead of a physical file,
the web page can also be the output text from a program. In that case the URL is
the name of the program file.

The web browser interprets the text and the HTML commands, and then decides
how to display the information visually. Let us demonstrate this for a very simple
web page shown in Fig. 6.4. This page was produced by the following text with
embedded HTML commands:

<html>
<body bgcolor="orange">
<h1>A Very Simple HTML Page</h1> <!-- headline -->
Web pages are written in a language called
<a href="http://www.w3.org/MarkUp/Guide/">HTML</a>.
Ordinary text is written as ordinary text, but when we
need links, headlines, lists,
<ul>
<li><em>emphasized words</em>, or

Fig. 6.4 Example of what a very simple HTML file looks like in a web browser
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<li> <b>boldface text</b>,
</ul>
we need to embed the text inside HTML tags. We can also
insert GIF or PNG images, taken from other Internet sites,
if desired.
<hr> <!-- horizontal line -->
<img src="http://www.simula.no/simula_logo.gif">
</body>
</html>

A typical HTML command consists of an opening and a closing tag. For exam-
ple, emphasized text is specified by enclosing the text inside em (emphasize) tags:

<em>emphasized words</em>

The opening tag is enclosed in less than and greater than signs, while the closing
tag has an additional forward slash before the tag name.

In the HTML file we see an opening and closing html tag around the whole
text in the file. Similarly, there is a pair of body tags, where the first one also
has a parameter bgcolor which can be used to specify a background color in the
web page. Section headlines are specified by enclosing the headline text inside h1

tags. Subsection headlines apply h2 tags, which results in a smaller font compared
with h1 tags. Comments appear inside <!-- and –>. Links to other web pages are
written inside a tags, with an argument href for the link’s web address. Lists apply
the ul (unordered list) tag, while each item is written with just an opening tag li

(list item), but no closing tag is necessary. Images are also specified with just an
opening tag having name img, and the image file is given as a file name or URL of
a file, enclosed in double quotes, as the src parameter.

The ultra-quick HTML course in the previous paragraphs gives a glimpse of how
web pages can be constructed. One can either write the HTML file by hand in a pure
text editor, or one can use programs such as Dream Weaver to help design the page
graphically in a user-friendly environment, and then the program can automatically
generate the right HTML syntax in files.

6.3.2 How to Access Web Pages in Programs

Why is it useful to know some HTML and how web pages are constructed? The
reason is that the web is full of information that we can get access to through pro-
grams and use in new contexts. What we can get access to is not the visual web
page you see, but the underlying HTML file. The information you see on the screen
appear in text form in the HTML file, and by extracting text, we can get hold of the
text’s information in a program.

Given the URL as a string stored in a variable, there are two ways of accessing
the HTML text in a Python program:

Alternative 1 Download the HTML file and store it as a local file with a given
name, say webpage.html:
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import urllib
url = ’http://www.simula.no/research/scientific/cbc’
urllib.urlretrieve(url, filename=’webpage.html’)

Alternative 2 Open the HTML file as a file-like object:

infile = urllib.urlopen(url)

This infile object has methods such as read, readline, and readlines.

6.3.3 Example: Reading Pure Text Files

Some web pages are just pure text files. Extracting the data from such pages are as
easy as reading ordinary text files. Here is an example of historic weather data from
the UK:

http://www.metoffice.gov.uk/climate/uk/stationdata/

We may choose a station, say Oxford, which directs us to the page

http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt

We can download this data file by

import urllib
url = \
’http://www.metoffice.gov.uk/climate/uk/stationdata/oxforddata.txt’
urllib.urlretrieve(url, filename=’Oxford.txt’)

The files looks as follows:

Oxford
Location: 4509E 2072N, 63 metres amsl
Estimated data is marked with a * after the value.
Missing data (more than 2 days missing in month) is marked by ---.
Sunshine data taken from an automatic ...

yyyy mm tmax tmin af rain sun
degC degC days mm hours

1853 1 8.4 2.7 4 62.8 ---
1853 2 3.2 -1.8 19 29.3 ---
1853 3 7.7 -0.6 20 25.9 ---
1853 4 12.6 4.5 0 60.1 ---
1853 5 16.8 6.1 0 59.5 ---

...

2010 1 4.7 -1.0 17 56.4 68.2
2010 2 7.1 1.3 7 79.8 59.3
2010 3 11.3 3.2 8 47.6 130.2
2010 4 15.8 4.9 0 25.5 209.5
2010 5 17.6 7.3 0 28.6 207.4



364 6 Dictionaries and Strings

2010 6 23.0 11.1 0 34.5 230.5
2010 7 23.3* 14.1* 0* 24.4* 184.4* Provisional
2010 8 21.4 12.0 0 146.2 123.8 Provisional
2010 9 19.0 10.0 0 48.1 118.6 Provisional
2010 10 14.6 7.4 2 43.5 128.8 Provisional

After the 7 header lines the data consists of 7 or 8 columns of numbers, the 8th
being of no interest. Some numbers may have * or # appended to them, but this
character must be stripped off before using the number. The columns contain the
year, the month number (1–12), average maximum temperature, average minimum
temperature, total number of days of air frost (af) during the month, total rainfall
during the month, and the total number of hours with sun during the month. The
temperature averages are taken over the maximum and minimum temperatures for
all days in the month. Unavailable data are marked by three dashes.

The data can be conveniently stored in a dictionary with, e.g., three main keys:
place (name), location (the info on the 2nd), and data. The latter is a dictionary with
two keys: year and month.

The following program creates the data dictionary:

infile = open(local_file, ’r’)
data = {}
data[’place’] = infile.readline().strip()
data[’location’] = infile.readline().strip()
# Skip the next 5 lines
for i in range(5):

infile.readline()

data[’data’] ={}
for line in infile:

columns = line.split()

year = int(columns[0])
month = int(columns[1])

if columns[-1] == ’Provisional’:
del columns[-1]

for i in range(2, len(columns)):
if columns[i] == ’---’:

columns[i] = None
elif columns[i][-1] == ’*’ or columns[i][-1] == ’#’:

# Strip off trailing character
columns[i] = float(columns[i][:-1])

else:
columns[i] = float(columns[i])

tmax, tmin, air_frost, rain, sun = columns[2:]

if not year in data[’data’]:
data[’data’][year] = {}

data[’data’][year][month] = {’tmax’: tmax,
’tmin’: tmin,
’air frost’: air_frost,
’sun’: sun}

The code is available in the file historic_weather.py.

http://tinyurl.com/pwyasaa/dictstring/historic_weather.py
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With a few lines of code, we can extract the data we want, say a two-dimensional
array of the number of sun hours in a month (these data are available from year
1929):

sun = [[data[’data’][y][m][’sun’] for m in range(1,13)] \
for y in range(1929, 2010)]

import numpy as np
sun = np.array(sun)

One can now do analysis of the data as exemplified in Sect. 2.6.2 and Exercise 5.8.

6.3.4 Example: Extracting Data fromHTML

Very often, interesting data in a web page appear inside HTML code. We then
need to interpret the text using string operations and store the data in variables. An
example will clarify the principle.

The web site www.worldclimate.comcontains data on temperature and rainfall
in a large number of cities around the world. For example,

http://www.worldclimate.com/cgi-bin/data.pl?ref=N38W009+2100+08535W

contains a table of the average rainfall for each month of the year in the town Lisbon,
Portugal. Our task is to download this web page and extract the tabular data (rainfall
per month) in a list.

Downloading the file is done with urllib as explained in Sects. 6.3.2 and 6.3.3.
Before attempting to read and interpret the text in the file, we need to look at the
HTML code to find the interesting parts and determine how we can extract the data.
The table with the rainfall data appears in the middle of the file. A sketch of the
relevant HTML code goes as follows:

<p>Weather station <strong>LISBOA</strong> ...
<tr><th align=right><th> Jan<th> Feb<th> ... <br>
<tr><td> mm <td align=right> 95.2 <td align=right> 86.7 ...<br>
<tr><td>inches <td align=right>3.7<td align=right>3.4 ...<br>

Our task is to walk through the file line by line and stop for processing the first and
third line above:

infile = open(’Lisbon_rainfall.html’, ’r’)
rainfall = []
for line in infile:

if ’Weather station’ in line:
station = line.split(’</strong>’)[0].split(’<strong>’)[1]

if ’<td> mm <td’ in line:
data = line.split(’<td align=right>’)

The resulting data list looks like

[’<tr><td> mm ’, ’ 95.2 ’, ..., ’702.4<br> \n’]
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To process this list further, we strip off the <br>... part of the last element:

data[-1] = data[-1].split(’<br>’)[0]

Then we drop the first element and convert the others to float objects:

data = [float(x) for x in data[1:]]

Now we have the rainfall data for each month as a list of real numbers. The complete
program appears in the file Lisbon_rainfall.py. The recipe provided in this
example can be used to interpret many other types of web pages where HTML code
and data are wired together.

6.3.5 Handling Non-English Text

By default, Python only accepts English characters in a program file. Comments
and strings in other languages, containing non-English characters, requires a special
comment line before any non-English characters appears:

# -*- coding: utf-8 -*-

This line specifies that the file applies the UTF-8 encoding. Alternative encodings
are UTF-16 and latin-1, depending on what your computer system supports. UTF-8
is most common nowadays.

There are two types of strings in Python: plain strings (known as byte strings)
with type str and unicode strings with type unicode. Plain strings suffice as long
as you are writing English text only. A string is then just a series of bytes represent-
ing integers between 0 and 255. The first characters corresponding to the numbers
0 to 127 constitute the ASCII set. These can be printed out:

for i in range(0, 128):
print i, chr(i)

The keys on an English keyboard can be recognized from i=32 to i=126. The next
numbers are used to represent non-English characters.

Texts with non-English characters are recommended to be represented by uni-
code strings. This is the default string type in Python 3, while in Python 2 we need
to explicitly annotate a string as unicode by a u prefix as in s = u’my text’.

We shall now explore plain strings and unicode strings and will for that purpose
need a help function for displaying a string in the terminal window, printing the
type of string, dumping the exact content of the string, and telling us the length of
the string in bytes:

def check(s):
print ’%s, %s: %s (%d)’ % \

(s, s.__class__.__name__, repr(s), len(s))

http://tinyurl.com/pwyasaa/dictstring/Lisbon_rainfall.py
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Let us start with a German character typed with a German keyboard:

>>> Gauss = ’C. F. ßGau’
>>> check(Gauss)
C. F. ßGau, str: ’C. F. Gau\xc3\x9f’ (11)

Observe that there are 10 characters in the string, but len(Gauss) is 11. We can
write each character:

>>> for char in Gauss:
... print ord(char),
...
67 46 32 70 46 32 71 97 117 195 159

The last character in the Gauss object, the special German character, is represented
by two bytes: 195 and 159. The other characters are in the range 0–127.

The Gauss object above is a plain Python 2 (byte) string. We can define the
string as unicode in Python 2:

>>> Gauss = u’C. F. ßGau’
>>> check(Gauss)
C. F. ßGau, unicode: u’C. F. Gau\xdf’ (10)

This time the unicode representation is as long as the expected number of charac-
ters, and the special German ß looks like \xdf. In fact, this character has unicode
representation DF and we can use this code directly when we define the string,
instead of a German keyboard:

>>> Gauss = u’C. F. Gau\xdf’
>>> check(Gauss)
C. F. ßGau, unicode: u’C. F. Gau\xdf’ (10)

The string can be defined through the UTF-8 bytecode counterpart to ß, which is
C3 9F:

>>> Gauss = ’C. F. Gau\xc3\x9f’ # plain string
>>> check(Gauss)
C. F. ßGau, str: ’C. F. Gau\xc3\x9f’ (11)

Mixing UTF-8 bytecode in unicode strings, as in u’C. F. Gau\xc3\x9f’, gives
and unreadable output.

We can convert from a unicode representation to UTF-8 bytecode and back
again:

>>> Gauss = u’C. F. Gau\xdf’
>>> repr(Gauss.encode(’utf-8’)) # convert to UTF-8 bytecode
’C. F. Gau\xc3\x9f’
>>> unicode(Gauss.encode(’utf-8’), ’utf-8’) # convert back again
u’C. F. Gau\xdf’
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Other encodings are UTF-16 and latin-1:

>>> repr(Gauss.encode(’utf-16’))
’\xff\xfeC\x00.\x00 \x00F\x00.\x00 \x00G\x00a\x00u\x00\xdf\x00’
>>> repr(Gauss.encode(’latin-1’))
’C. F. Gau\xdf’

Writing the unicode variable Gauss to file, a la f.write(Gauss), leads
to a UnicodeEncodeError in Python 2, saying that ’ascii’ codec can’t

encode character u’\xdf’ in position 9. The UTF-8 bytecode represen-
tation of strings does not pose any problems with file writing. The solution for
unicode strings is to use the codecs module and explicitly work with a file object
that converts unicode to UTF-8:

import codecs
with codecs.open(’tmp.txt’, ’w’, ’utf-8’) as f:

f.write(Gauss)

This is not necessary with Python 3, so if you use non-English characters, Python 3
has a clear advantage over Python 2.

To summarize, non-English character can be input with a non-English keyboard
and stored either as a plain (byte) string or as a unicode string:

>>> name = ’Åsmund Øådegrd’ # plain string
>>> check(name)Å
smund Øådegrd, str: ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’ (17)
>>> name = u’Åsmund Øådegrd’ # unicode
>>> check(name)Å
smund Øådegrd, unicode: u’\xc5smund \xd8deg\xe5rd’ (14)

Alternatively, the non-English characters can be specified with special codes, de-
pending on whether the representation is a plain UTF-8 string or a unicode string.
Using a table4 with conversion between unicode and UTF-8 representation we find
that in UTF-8, Å has the code C3 85, Ø is C3 98, and å is C3 A5:

>>> name = ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’
>>> check(name)Å
smund Øådegrd, str: ’\xc3\x85smund \xc3\x98deg\xc3\xa5rd’ (17)

In unicode, Å is C5, Ø is D8, å is E5:

>>> name = u’\xc5smund \xd8deg\xe5rd’
>>> check(name)Å
smund Øådegrd, unicode: u’\xc5smund \xd8deg\xe5rd’ (14)

The examples above have been collected in the file unicode_utf8.py.

4 http://www.utf8-chartable.de/

http://www.utf8-chartable.de/
http://tinyurl.com/pwyasaa/dictstring/unicode_utf8.py
http://www.utf8-chartable.de/
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6.4 Reading andWriting Spreadsheet Files

From school you are probably used to spreadsheet programs such as Microsoft Ex-
cel or LibreOffice. This type of program is used to represent a table of numbers
and text. Each table entry is known as a cell, and one can easily perform calcula-
tions with cells that contain numbers. The application of spreadsheet programs for
mathematical computations and graphics is steadily growing.

Also Python may be used to do spreadsheet-type calculations on tabular data.
The advantage of using Python is that you can easily extend the calculations far
beyond what a spreadsheet program can do. However, even if you can view Python
as a substitute for a spreadsheet program, it may be beneficial to combine the two.
Suppose you have some data in a spreadsheet. How can you read these data into
a Python program, perform calculations on the data, and thereafter read the data
back to the spreadsheet program? This is exactly what we will explain below
through an example. With this example, you should understand how easy it is to
combine Excel or LibreOffice with your own Python programs.

6.4.1 CSV Files

The table of data in a spreadsheet can be saved in so-called CSV files, where CSV
stands for comma separated values. The CSV file format is very simple: each row
in the spreadsheet table is a line in the file, and each cell in the row is separated by
a comma or some other specified separation character. CSV files can easily be read
into Python programs, and the table of cell data can be stored in a nested list (table,
see Sect. 2.4), which can be processed as we desire. The modified table of cell data
can be written back to a CSV file and read into the spreadsheet program for further
processing.

Figure 6.5 shows a simple spreadsheet in the LibreOffice program. The table
contains 4 � 4 cells, where the first row contains column headings and the first
column contains row headings. The remaining 3�3 subtable contains numbers that

Fig. 6.5 A simple spreadsheet in LibreOffice
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we may compute with. Let us save this spreadsheet to a file in the CSV format. The
complete file will typically look as follows:

,"year 1","year 2","year 3"
"person 1",651000,651000,651000
"person 2",1100500,950100,340000
"person 3",740000,780000,800000

Our primary task is now to load these data into a Python program, compute the
sum of each column, and write the data out again in the CSV format.

6.4.2 Reading CSV Files

We start with loading the data into a table, represented as a nested list, with aid of
the csv module from Python’s standard library. This approach gives us complete
control of all details. Later, we will use more high-level numpy functionality for
accomplishing the same thing with less lines.

The csv module offers functionality for reading one line at a time from a CSV
file:

infile = open(’budget.csv’, ’r’) # CSV file
import csv
table = []
for row in csv.reader(infile):

table.append(row)
infile.close()

The row variable is a list of column values that are read from the file by the csv

module. The three lines computing table can be condensed to one using a list
comprehension:

table = [row for row in csv.reader(infile)]

We can easily print table,

import pprint
pprint.pprint(table)

to see what the spreadsheet looks like when it is represented as a nested list in
a Python program:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, ’651000’, ’651000’, ’651000’],
[’person 2’, ’1100500’, ’950100’, ’340000’],
[’person 3’, ’740000’, ’780000’, ’800000’]]

Observe now that all entries are surrounded by quotes, which means that all entries
are string (str) objects. This is a general rule: the csv module reads all cells
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into string objects. To compute with the numbers, we need to transform the string
objects to float objects. The transformation should not be applied to the first row
and first column, since the cells here hold text. The transformation from strings to
numbers therefore applies to the indices r and c in table (table[r][c]), such
that the row counter r goes from 1 to len(table)-1, and the column counter c
goes from 1 to len(table[0])-1 (len(table[0]) is the length of the first row,
assuming the lengths of all rows are equal to the length of the first row). The relevant
Python code for this transformation task becomes

for r in range(1,len(table)):
for c in range(1, len(table[0])):

table[r][c] = float(table[r][c])

A pprint.pprint(table) statement after this transformation yields

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0]]

The numbers now have a decimal and no quotes, indicating that the numbers are
float objects and hence ready for mathematical calculations.

6.4.3 Processing Spreadsheet Data

Let us perform a very simple calculation with table, namely adding a final row
with the sum of the numbers in the columns:

row = [0.0]*len(table[0])
row[0] = ’sum’
for c in range(1, len(row)):

s = 0
for r in range(1, len(table)):

s += table[r][c]
row[c] = s

As seen, we first create a list row consisting of zeros. Then we insert a text in the
first column, before we invoke a loop over the numbers in the table and compute
the sum of each column. The table list now represents a spreadsheet with four
columns and five rows:

[[’’, ’year 1’, ’year 2’, ’year 3’],
[’person 1’, 651000.0, 651000.0, 651000.0],
[’person 2’, 1100500.0, 950100.0, 340000.0],
[’person 3’, 740000.0, 780000.0, 800000.0],
[’sum’, 2491500.0, 2381100.0, 1791000.0]]
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6.4.4 Writing CSV Files

Our final task is to write the modified table list back to a CSV file so that the data
can be loaded in a spreadsheet program. The write task is done by the code segment

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
for row in table:

writer.writerow(row)
outfile.close()

The budget2.csv looks like this:

year 1,year 2,year 3
person 1,651000.0,651000.0,651000.0
person 2,1100500.0,950100.0,340000.0
person 3,740000.0,780000.0,800000.0
sum,2491500.0,2381100.0,1791000.0

The final step is to read budget2.csv into a spreadsheet. The result is displayed
in Fig. 6.6 (in LibreOffice one must specify in the Open dialog that the spreadsheet
data are separated by commas, i.e., that the file is in CSV format).

The complete program reading the budget.csv file, processing its data, and
writing the budget2.csv file can be found in rw_csv.py. With this example at
hand, you should be in a good position to combine spreadsheet programs with your
own Python programs.

Remark You may wonder why we used the csv module to read and write CSV
files when such files have comma separated values, which we can extract by splitting
lines with respect to the comma (this technique is used in Sect. 6.1.7 to read a CSV
file):

Fig. 6.6 A spreadsheet processed in a Python program and loaded back into LibreOffice

http://tinyurl.com/pwyasaa/dictstring/rw_csw.py
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infile = open(’budget.csv’, ’r’)
for line in infile:

row = line.split(’,’)

This works well for the present budget.csv file, but the technique breaks down
when a text in a cell contains a comma, for instance "Aug 8, 2007". The
line.split(’,’) will split this cell text, while the csv.reader functionality
is smart enough to avoid splitting text cells with a comma.

6.4.5 Representing Number Cells with Numerical Python Arrays

Instead of putting the whole spreadsheet into a single nested list, we can make
a Python data structure more tailored to the data at hand. What we have are two
headers (for rows and columns, respectively) and a subtable of numbers. The
headers can be represented as lists of strings, while the subtable could be a two-
dimensional Numerical Python array. The latter makes it easier to implement var-
ious mathematical operations on the numbers. A dictionary can hold all the three
items: two header lists and one array. The relevant code for reading, processing, and
writing the data is shown below and can be found in the file rw_csv_numpy.py:

infile = open(’budget.csv’, ’r’)
import csv
table = [row for row in csv.reader(infile)]
infile.close()

# Convert subtable of numbers (string to float)
import numpy
subtable = [[float(c) for c in row[1:]] for row in table[1:]]

data = {’column headings’: table[0][1:],
’row headings’: [row[0] for row in table[1:]],
’array’: numpy.array(subtable)}

# Add a new row with sums
data[’row headings’].append(’sum’)
a = data[’array’] # short form
data[’column sum’] = [sum(a[:,c]) for c in range(a.shape[1])]

outfile = open(’budget2.csv’, ’w’)
writer = csv.writer(outfile)
# Turn data dictionary into a nested list first (for easy writing)
table = a.tolist() # transform array to nested list
table.append(data[’column sum’])
table.insert(0, data[’column headings’])
# Extend table with row headings (a new column)
[table[r+1].insert(0, data[’row headings’][r])
for r in range(len(table)-1)]

for row in table:
writer.writerow(row)

outfile.close()

http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy.py
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The code makes heavy use of list comprehensions, and the transformation between
a nested list, for file reading and writing, and the data dictionary, for representing
the data in the Python program, is non-trivial. If you manage to understand every
line in this program, you have digested a lot of topics in Python programming!

6.4.6 UsingMore High-Level Numerical Python Functionality

The previous program can be shortened significantly by applying the genfromtxt
function from Numerical Python:

import numpy as np
arr = np.genfromtxt(’budget.csv’, delimiter=’,’, dtype=str)

data = {’column headings’: arr[0,1:].tolist(),
’row headings’: arr[1:,0].tolist(),
’array’: np.asarray(arr[1:,1:], dtype=np.float)}

data[’row headings’].append(’sum’)
data[’column sum’] = np.sum(data[’array’], axis=1).tolist()

Doing a repr(arr) on the array returned from genfromtxt results in

array([[’’, ’"year 1"’, ’"year 2"’, ’"year 3"’],
[’"person 1"’, ’651000’, ’651000’, ’651000’],
[’"person 2"’, ’1100500’, ’950100’, ’340000’],
[’"person 3"’, ’740000’, ’780000’, ’800000’]],

dtype=’|S10’)

That is, the data in the CSV file are available as an array of strings. The code shows
how we can easily use slices to extract the row and column headings, convert the
numbers to a floating-point array for computations, compute the sums, and store
various object in the data dictionary. Then we may write a CSV file as described
in the previous example (see rw_csv_numpy2.py) or we may take a different ap-
proach and extend the arr array with an extra row and fill in the row heading and
the sums (see rw_csv_numpy3.py for the complete code):

arr = np.genfromtxt(’budget.csv’, delimiter=’,’, dtype=str)

# Add row for sum of columns
arr.resize((arr.shape[0]+1, arr.shape[1]))
arr[-1,0] = ’"sum"’
subtable = np.asarray(arr[1:-1,1:], dtype=np.float)
sum_row = np.sum(subtable, axis=1)
arr[-1,1:] = np.asarray(sum_row, dtype=str)

# numpy.savetxt writes table with a delimiter between entires
np.savetxt(’budget2c.csv’, arr, delimiter=’,’, fmt=’%s’)

Observe how we extract the numbers in subtable, compute with them, and put
the results back into the arr array as strings. The savetxt function saves a two-
dimensional array as a plain table in a text file, here with comma as delimiter. The

http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy2.py
http://tinyurl.com/pwyasaa/dictstring/rw_csv_numpy3.py
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function suffices in this example, none of the approaches with genfromtxt and
savetxt work with column or row headings containing a comma. Then we need
to use the csv module.

6.5 Examples from Analyzing DNA

We shall here continue the bioinformatics applications started in Sect. 3.3. Analysis
of DNA sequences is conveniently done in Python, much with the aid of lists, dic-
tionaries, numpy arrays, strings, and files. This will be illustrated through a series
of examples.

6.5.1 Computing Frequencies

Your genetic code is essentially the same from you are born until you die, and the
same in your blood and your brain. Which genes that are turned on and off make
the difference between the cells. This regulation of genes is orchestrated by an im-
mensely complex mechanism, which we have only started to understand. A central
part of this mechanism consists of molecules called transcription factors that float
around in the cell and attach to DNA, and in doing so turn nearby genes on or off.
These molecules bind preferentially to specific DNA sequences, and this binding
preference pattern can be represented by a table of frequencies of given symbols at
each position of the pattern. More precisely, each row in the table corresponds to
the bases A, C, G, and T, while column j reflects how many times the base appears
in position j in the DNA sequence.

For example, if our set of DNA sequences are TAG, GGT, and GGG, the table
becomes

base 0 1 2
A 0 1 0
C 0 0 0
G 2 2 2
T 1 0 1

From this table we can read that base A appears once in index 1 in the DNA strings,
base C does not appear at all, base G appears twice in all positions, and base T
appears once in the beginning and end of the strings.

In the following we shall present different data structures to hold such a table
and different ways of computing them. The table is known as a frequency matrix in
bioinformatics and this is the term used here too.

Separate frequency lists Since we know that there are only four rows in the fre-
quency matrix, an obvious data structure would be four lists, each holding a row.
A function computing these lists may look like
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def freq_lists(dna_list):
n = len(dna_list[0])
A = [0]*n
T = [0]*n
G = [0]*n
C = [0]*n
for dna in dna_list:

for index, base in enumerate(dna):
if base == ’A’:

A[index] += 1
elif base == ’C’:

C[index] += 1
elif base == ’G’:

G[index] += 1
elif base == ’T’:

T[index] += 1
return A, C, G, T

We need to initialize the lists with the right length and a zero for each element,
since each list element is to be used as a counter. Creating a list of length n with
object x in all positions is done by [x]*n. Finding the proper length is here carried
out by inspecting the length of the first element in dna_list, the list of all DNA
strings to be counted, assuming that all elements in this list have the same length.

In the for loop we apply the enumerate function, which is used to extract
both the element value and the element index when iterating over a sequence. For
example,

>>> for index, base in enumerate([’t’, ’e’, ’s’, ’t’]):
... print index, base
...
0 t
1 e
2 s
3 t

Here is a test,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
A, C, G, T = freq_lists(dna_list)
print A
print C
print G
print T

with output

[0, 0, 0, 2, 0]
[0, 0, 0, 0, 2]
[3, 3, 0, 1, 1]
[0, 0, 3, 0, 0]

Nested list The frequency matrix can also be represented as a nested list M such
that M[i][j] is the frequency of base i in position j in the set of DNA strings.
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Here i is an integer, where 0 corresponds to A, 1 to T, 2 to G, and 3 to C. The
frequency is the number of times base i appears in position j in a set of DNA
strings. Sometimes this number is divided by the number of DNA strings in the set
so that the frequency is between 0 and 1. Note that all the DNA strings must have
the same length.

The simplest way to make a nested list is to insert the A, C, G, and T lists into
another list:

>>> frequency_matrix = [A, C, G, T]
>>> frequency_matrix[2][3]
2
>>> G[3] # same element
2

Alternatively, we can illustrate how to compute this type of nested list directly:

def freq_list_of_lists_v1(dna_list):
# Create empty frequency_matrix[i][j] = 0
# i=0,1,2,3 corresponds to A,T,G,C
# j=0,...,length of dna_list[0]
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]

for dna in dna_list:
for index, base in enumerate(dna):

if base == ’A’:
frequency_matrix[0][index] +=1

elif base == ’C’:
frequency_matrix[1][index] +=1

elif base == ’G’:
frequency_matrix[2][index] +=1

elif base == ’T’:
frequency_matrix[3][index] +=1

return frequency_matrix

As in the case with individual lists we need to initialize all elements in the nested
list to zero.

A call and printout,

dna_list = [’GGTAG’, ’GGTAC’, ’GGTGC’]
frequency_matrix = freq_list_of_lists_v1(dna_list)
print frequency_matrix

results in

[[0, 0, 0, 2, 0], [0, 0, 0, 0, 2], [3, 3, 0, 1, 1], [0, 0, 3, 0, 0]]

Dictionary for more convenient indexing The series of if tests in the Python
function freq_list_of_lists_v1 are somewhat cumbersome, especially if we
want to extend the code to other bioinformatics problems where the alphabet is
larger. What we want is a mapping from base, which is a character, to the corre-
sponding index 0, 1, 2, or 3. A Python dictionary may represent such mappings:
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>>> base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
>>> base2index[’G’]
2

With the base2index dictionary we do not need the series of if tests and the
alphabet ’ATGC’ could be much larger without affecting the length of the code:

def freq_list_of_lists_v2(dna_list):
frequency_matrix = [[0 for v in dna_list[0]] for x in ’ACGT’]
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

Numerical Python array As long as each sublist in a list of lists has the same
length, a list of lists can be replaced by a Numerical Python (numpy) array. Pro-
cessing of such arrays is often much more efficient than processing of the nested
list data structure. To initialize a two-dimensional numpy array we need to know
its size, here 4 times len(dna_list[0]). Only the first line in the function
freq_list_of_lists_v2 needs to be changed in order to utilize a numpy array:

import numpy as np

def freq_numpy(dna_list):
frequency_matrix = np.zeros((4, len(dna_list[0])), dtype=int)
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base2index[base]][index] += 1

return frequency_matrix

The resulting frequency_matrix object can be indexed as [b][i] or [b,i],
with integers b and i. Typically, b will be something line base2index[’C’].

Dictionary of lists Instead of going from a character to an integer index via
base2index, we may prefer to index frequency_matrix by the base name and
the position index directly, like in [’C’][14]. This is the most natural syntax
for a user of the frequency matrix. The relevant Python data structure is then
a dictionary of lists. That is, frequency_matrix is a dictionary with keys ’A’,
’C’, ’G’, and ’T’. The value for each key is a list. Let us now also extend the
flexibility such that dna_list can have DNA strings of different lengths. The lists
in frequency_listwill have lengths equal to the longest DNA string. A relevant
function is
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def freq_dict_of_lists_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {

’A’: [0]*n,
’C’: [0]*n,
’G’: [0]*n,
’T’: [0]*n,
}

for dna in dna_list:
for index, base in enumerate(dna):

frequency_matrix[base][index] += 1

return frequency_matrix

Running the test code

frequency_matrix = freq_dict_of_lists_v1(dna_list)
import pprint # for nice printout of nested data structures
pprint.pprint(frequency_matrix)

results in the output

{’A’: [0, 0, 0, 2, 0],
’C’: [0, 0, 0, 0, 2],
’G’: [3, 3, 0, 1, 1],
’T’: [0, 0, 3, 0, 0]}

The initialization of frequency_matrix in the above code can be made more
compact by using a dictionary comprehension:

dict = {key: value for key in some_sequence}

In our example we set

frequency_matrix = {base: [0]*n for base in ’ACGT’}

Adopting this construction in the freq_dict_of_lists_v1 function leads to
a slightly more compact version:

def freq_dict_of_lists_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: [0]*n for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix
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As an additional comment on computing the maximum length of the DNA
strings can be made as there are several alternative ways of doing this. The classical
use of max is to apply it to a list as done above:

n = max([len(dna) for dna in dna_list])

However, for very long lists it is possible to avoid the memory demands of storing
the result of the list comprehension, i.e., the list of lengths. Instead max can work
with the lengths as they are computed:

n = max(len(dna) for dna in dna_list)

It is also possible to write

n = max(dna_list, key=len)

Here, len is applied to each element in dna_list, and the maximum of the result-
ing values is returned.

Dictionary of dictionaries.

The dictionary of lists data structure can alternatively be replaced by a dictio-
nary of dictionaries object, often just called a dict of dicts object. That is,
frequency_matrix[base] is a dictionary with key i and value equal to the
added number of occurrences of base in dna[i] for all dna strings in the list
dna_list. The indexing frequency_matrix[’C’][i] and the values are exactly
as in the last example; the only difference is whether frequency_matrix[’C’] is
a list or dictionary.

Our function working with frequency_matrix as a dict of dicts is written as

def freq_dict_of_dicts_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: {index: 0 for index in range(n)}

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Using dictionaries with default values The manual initialization of each subdic-
tionary to zero,

frequency_matrix = {base: {index: 0 for index in range(n)}
for base in ’ACGT’}

can be simplified by using a dictionary with default values for any key. The con-
struction defaultdict(lambda: obj) makes a dictionary with obj as default
value. This construction simplifies the previous function a bit:
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from collections import defaultdict

def freq_dict_of_dicts_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: defaultdict(lambda: 0)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Remark Dictionary comprehensions were new in Python 2.7 and 3.1, but can be
simulated in earlier versions by making (key, value) tuples via list comprehensions.
A dictionary comprehension

d = {key: value for key in sequence}

is then constructed as

d = dict([(key, value) for key in sequence])

Using arrays and vectorization The frequency_matrixdict of lists for can eas-
ily be changed to a dict of numpy arrays: just replace the initialization [0]*n by
np.zeros(n, dtype=np.int). The indexing remains the same:

def freq_dict_of_arrays_v1(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

for index, base in enumerate(dna):
frequency_matrix[base][index] += 1

return frequency_matrix

Having frequency_matrix[base] as a numpy array instead of a list does not
give any immediate advantage, as the storage and CPU time is about the same.
The loop over the dna string and the associated indexing is what consumes all
the CPU time. However, the numpy arrays provide a potential for increasing ef-
ficiency through vectorization, i.e., replacing the element-wise operations on dna

and frequency_matrix[base] by operations on the entire arrays at once.
Let us use the interactive Python shell to explore the possibilities of vectoriza-

tion. We first convert the string to a numpy array of characters:

>>> dna = ’ACAT’
>>> dna = np.array(dna, dtype=’c’)
>>> dna
array([’A’, ’C’, ’A’, ’T’],

dtype=’|S1’)
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For a given base, say A, we can in one vectorized operation find which locations in
dna that contain A:

>>> b = dna == ’A’
>>> b
array([ True, False, True, False], dtype=bool)

By converting b to an integer array i we can update the frequency counts for all
indices by adding i to frequency_matrix[’A’]:

>>> i = np.asarray(b, dtype=np.int)
>>> i
array([1, 0, 1, 0])
>>> frequency_matrix[’A’] = frequency_matrix[’A’] + i

This recipe can be repeated for all bases:

for dna in dna_list:
dna = np.array(dna, dtype=’c’)
for base in ’ACGT’:

b = dna == base
i = np.asarray(b, dtype=np.int)
frequency_matrix[base] = frequency_matrix[base] + i

It turns out that we do not need to convert the boolean array b to an integer array
i, because doing arithmetics with b directly is possible: False is interpreted as 0
and True as 1 in arithmetic operations. We can also use the += operator to update
all elements of frequency_matrix[base] directly, without first computing the
sum of two arrays frequency_matrix[base] + i and then assigning this result
to frequency_matrix[base]. Collecting all these ideas in one function yields
the code

def freq_dict_of_arrays_v2(dna_list):
n = max([len(dna) for dna in dna_list])
frequency_matrix = {base: np.zeros(n, dtype=np.int)

for base in ’ACGT’}
for dna in dna_list:

dna = np.array(dna, dtype=’c’)
for base in ’ACCT’:

frequency_matrix[base] += dna == base

return frequency_matrix

This vectorized function runs almost 10 times as fast as the (scalar) counterpart
freq_list_of_arrays_v1!

6.5.2 Analyzing the Frequency Matrix

Having built a frequency matrix out of a collection of DNA strings, it is time to
use it for analysis. The short DNA strings that a frequency matrix is built out of, is
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typically a set of substrings of a larger DNA sequence, which shares some common
purpose. An example of this is to have a set of substrings that serves as a kind of
anchors/magnets at which given molecules attach to DNA and perform biological
functions (like turning genes on or off). With the frequency matrix constructed
from a limited set of known anchor locations (substrings), we can now scan for
other similar substrings that have the potential to perform the same function. The
simplest way to do this is to first determine the most typical substring according to
the frequency matrix, i.e., the substring having the most frequent nucleotide at each
position. This is referred to as the consensus string of the frequency matrix. We can
then look for occurrences of the consensus substring in a larger DNA sequence, and
consider these occurrences as likely candidates for serving the same function (e.g.,
as anchor locations for molecules).

For instance, given three substrings ACT, CCA and AGA, the frequency matrix
would be (list of lists, with rows corresponding to A, C, G, and T):

[[2, 0, 2]
[1, 2, 0]
[0, 1, 0]
[0, 0, 1]]

We see that for position 0, which corresponds to the left-most column in the table,
the symbol A has the highest frequency (2). The maximum frequencies for the other
positions are seen to be C for position 1, and A for position 2. The consensus string
is therefore ACA. Note that the consensus string does not need to be equal to any of
the substrings that formed the basis of the frequency matrix (this is indeed the case
for the above example).

List of lists frequency matrix Let frequency_matrix be a list of lists. For each
position i we run through the rows in the frequency matrix and keep track of the
maximum frequency value and the corresponding letter. If two or more letters have
the same frequency value we use a dash to indicate that this position in the consen-
sus string is undetermined.

The following function computes the consensus string:

def find_consensus_v1(frequency_matrix):
base2index = {’A’: 0, ’C’: 1, ’G’: 2, ’T’: 3}
consensus = ’’
dna_length = len(frequency_matrix[0])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ATGC’:
if frequency_matrix[base2index[base]][i] > max_freq:

max_freq = frequency_matrix[base2index[base]][i]
max_freq_base = base

elif frequency_matrix[base2index[base]][i] \
== max_freq:

max_freq_base = ’-’ # more than one base as max
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consensus += max_freq_base # add new base with max freq
return consensus

Since this code requires frequency_matrix to be a list of lists we should insert
a test and raise an exception if the type is wrong:

def find_consensus_v1(frequency_matrix):
if isinstance(frequency_matrix, list) and \

isinstance(frequency_matrix[0], list):
pass # right type

else:
raise TypeError(’frequency_matrix must be list of lists’)

...

Dict of dicts frequency matrix How must the find_consensus_v1 function be
altered if frequency_matrix is a dict of dicts?

1. The base2index dict is no longer needed.
2. Access of sublist, frequency_matrix[0], to test for type and length of the

strings, must be replaced by frequency_matrix[’A’].

The updated function becomes

def find_consensus_v3(frequency_matrix):
if isinstance(frequency_matrix, dict) and \

isinstance(frequency_matrix[’A’], dict):
pass # right type

else:
raise TypeError(’frequency_matrix must be dict of dicts’)

consensus = ’’
dna_length = len(frequency_matrix[’A’])

for i in range(dna_length): # loop over positions in string
max_freq = -1 # holds the max freq. for this i
max_freq_base = None # holds the corresponding base

for base in ’ACGT’:
if frequency_matrix[base][i] > max_freq:

max_freq = frequency_matrix[base][i]
max_freq_base = base

elif frequency_matrix[base][i] == max_freq:
max_freq_base = ’-’ # more than one base as max

consensus += max_freq_base # add new base with max freq
return consensus

Here is a test:

frequency_matrix = freq_dict_of_dicts_v1(dna_list)
pprint.pprint(frequency_matrix)
print find_consensus_v3(frequency_matrix)
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with output

{’A’: {0: 0, 1: 0, 2: 0, 3: 2, 4: 0},
’C’: {0: 0, 1: 0, 2: 0, 3: 0, 4: 2},
’G’: {0: 3, 1: 3, 2: 0, 3: 1, 4: 1},
’T’: {0: 0, 1: 0, 2: 3, 3: 0, 4: 0}}

Consensus string: GGTAC

Let us try find_consensus_v3 with the dict of defaultdicts as input (freq_
dicts_of_dicts_v2). The code runs fine, but the output string is just G! The
reason is that dna_length is 1, and therefore that the length of the A dict in
frequency_matrix is 1. Printing out frequency_matrix yields

{’A’: defaultdict(X, {3: 2}),
’C’: defaultdict(X, {4: 2}),
’G’: defaultdict(X, {0: 3, 1: 3, 3: 1, 4: 1}),
’T’: defaultdict(X, {2: 3})}

where our X is a short form for text like

‘<function <lambda> at 0xfaede8>‘

We see that the length of a defaultdict will only count the nonzero entries. Hence,
to use a defaultdict our function must get the length of the DNA string to build as
an extra argument:

def find_consensus_v4(frequency_matrix, dna_length):
...

Exercise 6.16 suggests to make a unified find_consensus function which
works with all of the different representations of frequency_matrix that we have
used.

The functions making and using the frequency matrix are found in the file
freq.py.

6.5.3 Finding Base Frequencies

DNA consists of four molecules called nucleotides, or bases, and can be repre-
sented as a string of the letters A, C, G, and T. But this does not mean that all four
nucleotides need to be similarly frequent. Are some nucleotides more frequent than
others, say in yeast, as represented by the first chromosome of yeast? Also, DNA is
really not a single thread, but two threads wound together. This wounding is based
on an A from one thread binding to a T of the other thread, and C binding to G (that
is, A will only bind with T, not with C or G). Could this fact force groups of the four
symbol frequencies to be equal? The answer is that the A-T and G-C binding does
not in principle force certain frequencies to be equal, but in practice they usually
become so because of evolutionary factors related to this pairing.

http://tinyurl.com/pwyasaa/dictstring/freq.py
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Our first programming task now is to compute the frequencies of the bases A, C,
G, and T. That is, the number of times each base occurs in the DNA string, divided
by the length of the string. For example, if the DNA string is ACGGAAA, the
length is 7, A appears 4 times with frequency 4/7, C appears once with frequency
1/7, G appears twice with frequency 2/7, and T does not appear so the frequency is
0.

From a coding perspective we may create a function for counting how many
times A, C, G, and T appears in the string and then another function for computing
the frequencies. In both cases we want dictionaries such that we can index with the
character and get the count or the frequency out. Counting is done by

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

This function can then be used to compute the base frequencies:

def get_base_frequencies_v1(dna):
counts = get_base_counts(dna)
return {base: count*1.0/len(dna)

for base, count in counts.items()}

Since we learned at the end of Sect. 3.3.2 that dna.count(base)was much faster
than the various manual implementations of counting, we can write a faster and
simpler function for computing all the base frequencies:

def get_base_frequencies_v2(dna):
return {base: dna.count(base)/float(len(dna))

for base in ’ATGC’}

A little test,

dna = ’ACCAGAGT’
frequencies = get_base_frequencies_v2(dna)

def format_frequencies(frequencies):
return ’, ’.join([’%s: %.2f’ % (base, frequencies[base])

for base in frequencies])

print "Base frequencies of sequence ’%s’:\n%s" % \
(dna, format_frequencies(frequencies))

gives the result

Base frequencies of sequence ’ACCAGAGT’:
A: 0.38, C: 0.25, T: 0.12, G: 0.25

The format_frequencies function was made for nice printout of the frequencies
with 2 decimals. The one-line code is an effective combination of a dictionary, list
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comprehension, and the join functionality. The latter is used to get a comma cor-
rectly inserted between the items in the result. Lazy programmers would probably
just do a print frequencies and live with the curly braces in the output and (in
general) 16 disturbing decimals.

We can try the frequency computation on real data. The file

http://hplgit.github.com/bioinf-py/data/yeast_chr1.txt

contains the DNA for yeast. We can download this file from the Internet by

urllib.urlretrieve(url, filename=name_of_local_file)

where url is the Internet address of the file and name_of_local_file is a string
containing the name of the file on the computer where the file is downloaded. To
avoid repeated downloads when the program is run multiple times, we insert a test
on whether the local file exists or not. The call os.path.isfile(f) returns True
if a file with name f exists in the current working folder.

The appropriate download code then becomes

import urllib, os
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
yeast_file = ’yeast_chr1.txt’
if not os.path.isfile(yeast_file):

url = urlbase + yeast_file
urllib.urlretrieve(url, filename=yeast_file)

A copy of the file on the Internet is now in the current working folder under the
name yeast_chr1.txt. (See Sect. 6.3.2 for more information about urllib and
downloading files from the Internet.)

The yeast_chr1.txt files contains the DNA string split over many lines. We
therefore need to read the lines in this file, strip each line to remove the trailing
newline, and join all the stripped lines to recover the DNA string:

def read_dnafile_v1(filename):
lines = open(filename, ’r’).readlines()
# Remove newlines in each line (line.strip()) and join
dna = ’’.join([line.strip() for line in lines])
return dna

As usual, an alternative programming solution can be devised:

def read_dnafile_v2(filename):
dna = ’’
for line in open(filename, ’r’):

dna += line.strip()
return dna

dna = read_dnafile_v2(yeast_file)
yeast_freq = get_base_frequencies_v2(dna)
print "Base frequencies of yeast DNA (length %d):\n%s" % \

(len(dna), format_frequencies(yeast_freq))
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The output becomes

Base frequencies of yeast DNA (length 230208):
A: 0.30, C: 0.19, T: 0.30, G: 0.20

The varying frequency of different nucleotides in DNA is referred to as nu-
cleotide bias. The nucleotide bias varies between organisms, and have a range of
biological implications. For many organisms the nucleotide bias has been highly
optimized through evolution and reflects characteristics of the organisms and their
environments, for instance the typical temperature the organism is adapted to.

The functions computing base frequencies are available in the file basefreq.py.

6.5.4 Translating Genes into Proteins

An important usage of DNA is for cells to store information on their arsenal of
proteins. Briefly, a gene is, in essence, a region of the DNA, consisting of several
coding parts (called exons), interspersed by non-coding parts (called introns). The
coding parts are concatenated to form a string called mRNA, where also occur-
rences of the letter T in the coding parts are substituted by a U. A triplet of mRNA
letters code for a specific amino acid, which are the building blocks of proteins.
Consecutive triplets of letters in mRNA define a specific sequence of amino acids,
which amounts to a certain protein.

Here is an example of using the mapping from DNA to proteins to create the
Lactase protein (LPH), using the DNA sequence of the Lactase gene (LCT) as un-
derlying code. An important functional property of LPH is in digesting Lactose,
which is found most notably in milk. Lack of the functionality of LPH leads to
digestive problems referred to as lactose intolerance. Most mammals and humans
lose their expression of LCT and therefore their ability to digest milk when they
stop receiving breast milk.

The file

http://hplgit.github.com/bioinf-py/doc/src/data/genetic_code.tsv

contains a mapping of genetic codes to amino acids. The file format looks like

UUU F Phe Phenylalanine
UUC F Phe Phenylalanine
UUA L Leu Leucine
UUG L Leu Leucine
CUU L Leu Leucine
CUC L Leu Leucine
CUA L Leu Leucine
CUG L Leu Leucine
AUU I Ile Isoleucine
AUC I Ile Isoleucine
AUA I Ile Isoleucine
AUG M Met Methionine (Start)

http://tinyurl.com/pwyasaa/dictstring/basefreq.py
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The first column is the genetic code (triplet in mRNA), while the other columns rep-
resent various ways of expressing the corresponding amino acid: a 1-letter symbol,
a 3-letter name, and the full name.

Downloading the genetic_code.tsv file can be done by this robust function:

def download(urlbase, filename):
if not os.path.isfile(filename):

url = urlbase + filename
try:

urllib.urlretrieve(url, filename=filename)
except IOError as e:

raise IOError(’No Internet connection’)
# Check if downloaded file is an HTML file, which
# is what github.com returns if the URL is not existing
f = open(filename, ’r’)
if ’DOCTYPE html’ in f.readline():

raise IOError(’URL %s does not exist’ % url)

We want to make a dictionary of this file that maps the code (first column) on to
the 1-letter name (second column):

def read_genetic_code_v1(filename):
infile = open(filename, ’r’)
genetic_code = {}
for line in infile:

columns = line.split()
genetic_code[columns[0]] = columns[1]

return genetic_code

Downloading the file, reading it, and making the dictionary are done by

urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code_v1(genetic_code_file)

Not surprisingly, the read_genetic_code_v1 can be made much shorter by
collecting the first two columns as list of 2-lists and then converting the 2-lists to
key-value pairs in a dictionary:

def read_genetic_code_v2(filename):
return dict([line.split()[0:2]

for line in open(filename, ’r’)])

Creating a mapping of the code onto all the three variants of the amino acid
name is also of interest. For example, we would like to make look ups like
[’CUU’][’3-letter’] or [’CUU’][’amino acid’]. This requires a dictionary
of dictionaries:
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def read_genetic_code_v3(filename):
genetic_code = {}
for line in open(filename, ’r’):

columns = line.split()
genetic_code[columns[0]] = {}
genetic_code[columns[0]][’1-letter’] = columns[1]
genetic_code[columns[0]][’3-letter’] = columns[2]
genetic_code[columns[0]][’amino acid’] = columns[3]

return genetic_code

An alternative way of writing the last function is

def read_genetic_code_v4(filename):
genetic_code = {}
for line in open(filename, ’r’):

c = line.split()
genetic_code[c[0]] = {
’1-letter’: c[1], ’3-letter’: c[2], ’amino acid’: c[3]}

return genetic_code

To form mRNA, we need to grab the exon regions (the coding parts) of the lactase
gene. These regions are substrings of the lactase gene DNA string, corresponding
to the start and end positions of the exon regions. Then we must replace T by U,
and combine all the substrings to build the mRNA string.

Two straightforward subtasks are to load the lactase gene and its exon posi-
tions into variables. The file lactase_gene.txt, at the same Internet location as
the other files, stores the lactase gene. The file has the same format as yeast_

chr1.txt. Using the download function and the previously shown read_

dnafile_v1, we can easily load the data in the file into the string lactase_

gene.
The exon regions are described in a file lactase_exon.tsv, also found at the

same Internet site as the other files. The file is easily transferred to your computer
by calling download. The file format is very simple in that each line holds the start
and end positions of an exon region:

0 651
3990 4070
7504 7588
13177 13280
15082 15161

We want to have this information available in a list of (start, end) tuples. The
following function does the job:

def read_exon_regions_v1(filename):
positions = []
infile = open(filename, ’r’)
for line in infile:

start, end = line.split()
start, end = int(start), int(end)
positions.append((start, end))
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infile.close()
return positions

Readers favoring compact code will appreciate this alternative version of the func-
tion:

def read_exon_regions_v2(filename):
return [tuple(int(x) for x in line.split())

for line in open(filename, ’r’)]

lactase_exon_regions = read_exon_regions_v2(lactase_exon_file)

For simplicity’s sake, we shall consider mRNA as the concatenation of exons,
although in reality, additional base pairs are added to each end. Having the lactase
gene as a string and the exon regions as a list of (start, end) tuples, it is straightfor-
ward to extract the regions as substrings, replace T by U, and add all the substrings
together:

def create_mRNA(gene, exon_regions):
mrna = ’’
for start, end in exon_regions:

mrna += gene[start:end].replace(’T’,’U’)
return mrna

mrna = create_mRNA(lactase_gene, lactase_exon_regions)

We would like to store the mRNA string in a file, using the same format as
lactase_gene.txt and yeast_chr1.txt, i.e., the string is split on multiple lines
with, e.g., 70 characters per line. An appropriate function doing this is

def tofile_with_line_sep_v1(text, filename, chars_per_line=70):
outfile = open(filename, ’w’)
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

It might be convenient to have a separate folder for files that we create. Python
has good support for testing if a folder exists, and if not, make a folder:

output_folder = ’output’
if not os.path.isdir(output_folder):

os.mkdir(output_folder)
filename = os.path.join(output_folder, ’lactase_mrna.txt’)
tofile_with_line_sep_v1(mrna, filename)

Python’s term for folder is directory, which explains why isdir is the function
name for testing on a folder existence. Observe especially that the combination
of a folder and a filename is done via os.path.join rather than just inserting
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a forward slash, or backward slash on Windows: os.path.join will insert the
right slash, forward or backward, depending on the current operating system.

Occasionally, the output folder is nested, say

output_folder = os.path.join(’output’, ’lactase’)

In that case, os.mkdir(output_folder)may fail because the intermediate folder
output is missing. Making a folder and also all missing intermediate folders is
done by os.makedirs. We can write a more general file writing function that takes
a folder name and file name as input and writes the file. Let us also add some
flexibility in the file format: one can either write a fixed number of characters per
line, or have the string on just one long line. The latter version is specified through
chars_per_line=’inf’ (for infinite number of characters per line). The flexible
file writing function then becomes

def tofile_with_line_sep_v2(text, foldername, filename,
chars_per_line=70):

if not os.path.isdir(foldername):
os.makedirs(foldername)

filename = os.path.join(foldername, filename)
outfile = open(filename, ’w’)

if chars_per_line == ’inf’:
outfile.write(text)

else:
for i in xrange(0, len(text), chars_per_line):

start = i
end = start + chars_per_line
outfile.write(text[start:end] + ’\n’)

outfile.close()

To create the protein, we replace the triplets of the mRNA strings by the corre-
sponding 1-letter name as specified in the genetic_code.tsv file.

def create_protein(mrna, genetic_code):
protein = ’’
for i in xrange(len(mrna)/3):

start = i * 3
end = start + 3
protein += genetic_code[mrna[start:end]]

return protein

genetic_code = read_genetic_code_v1(’genetic_code.tsv’)
protein = create_protein(mrna, genetic_code)
tofile_with_line_sep_v2(protein, ’output’,

Unfortunately, this first try to simulate the translation process is incorrect. The
problem is that the translation always begins with the amino acid Methionine, code
AUG, and ends when one of the stop codons is met. We must thus check for the
correct start and stop criteria. A fix is
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def create_protein_fixed(mrna, genetic_code):
protein_fixed = ’’
trans_start_pos = mrna.find(’AUG’)
for i in range(len(mrna[trans_start_pos:])/3):

start = trans_start_pos + i*3
end = start + 3
amino = genetic_code[mrna[start:end]]
if amino == ’X’:

break
protein_fixed += amino

return protein_fixed

protein = create_protein_fixed(mrna, genetic_code)
tofile_with_line_sep_v2(protein, ’output’,

’lactase_protein_fixed.txt’, 70)

print ’10 last amino acids of the correct lactase protein: ’, \
protein[-10:]

print ’Lenght of the correct protein: ’, len(protein)

The output, needed below for comparison, becomes

10 last amino acids of the correct lactase protein: QQELSPVSSF
Lenght of the correct protein: 1927

6.5.5 Some Humans Can DrinkMilk, While Others Cannot

One type of lactose intolerance is called Congenital lactase deficiency. This is
a rare genetic disorder that causes lactose intolerance from birth, and is particularly
common in Finland. The disease is caused by a mutation of the base in position
30049 (0-based) of the lactase gene, a mutation from T to A. Our goal is to check
what happens to the protein if this base is mutated. This is a simple task using the
previously developed tools:

def congential_lactase_deficiency(
lactase_gene,
genetic_code,
lactase_exon_regions,
output_folder=os.curdir,
mrna_file=None,
protein_file=None):

pos = 30049
mutated_gene = lactase_gene[:pos] + ’A’ + lactase_gene[pos+1:]
mutated_mrna = create_mRNA(mutated_gene, lactase_exon_regions)

if mrna_file is not None:
tofile_with_line_sep_v2(

mutated_mrna, output_folder, mrna_file)

mutated_protein = create_protein_fixed(
mutated_mrna, genetic_code)
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if protein_file:
tofile_with_line_sep_v2(

mutated_protein, output_folder, protein_file)
return mutated_protein

mutated_protein = congential_lactase_deficiency(
lactase_gene, genetic_code, lactase_exon_regions,
output_folder=’output’,
mrna_file=’mutated_lactase_mrna.txt’,
protein_file=’mutated_lactase_protein.txt’)

print ’10 last amino acids of the mutated lactase protein:’, \
mutated_protein[-10:]

print ’Lenght of the mutated lactase protein:’, \
len(mutated_protein)

The output, to be compared with the non-mutated gene above, is now

10 last amino acids of the mutated lactase protein: GFIWSAASAA
Lenght of the mutated lactase protein: 1389

As we can see, the translation stops prematurely, creating a much smaller protein,
which will not have the required characteristics of the lactase protein.

A couple of mutations in a region for LCT located in front of LCT (actually in
the introns of another gene) is the reason for the common lactose intolerance. That
is, the one that sets in for adults only. These mutations control the expression of
the LCT gene, i.e., whether that the gene is turned on or off. Interestingly, different
mutations have evolved in different regions of the world, e.g., Africa and Northern
Europe. This is an example of convergent evolution: the acquisition of the same
biological trait in unrelated lineages. The prevalence of lactose intolerance varies
widely, from around 5 % in northern Europe, to close to 100 % in south-east Asia.

The functions analyzing the lactase gene are found in the file genes2proteins.
py.

6.6 Making Code that is Compatible with Python 2 and 3

Some basic differences between Python 2 and 3 are covered Sect. 4.10. With the
additional constructions met in this chapter, there are some important additional
differences between the two versions of Python.

6.6.1 More Basic Differences Between Python 2 and 3

xrange in Python 2 is range in Python 3 The range function in Python 2 gen-
erates a list of integers, and for very long loops this list may consume significant
computer memory. The xrange function in Python was therefore made to just gen-
erate a series of integers without storing them. In Python 3, range is the xrange

function from Python 2. If one wants a list of integers in Python 3, one has to do
list(range(5)) to store the output from range in a list.

http://tinyurl.com/pwyasaa/dictstring/genes2proteins.py
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Python 3 often avoids returning lists and dictionaries The Python 3 idea of
letting range just generate one object at a time instead of storing all of them applies
to many other constructions too. Let d be a dictionary. In Python 2, d.keys()
returns a list of the keys in the dictionary, while in Python 3, d.keys() just enables
iteration over the keys in a for loop. Similarly, d.values() and d.items() returns
lists of values or key-value pairs in Python 2, while in Python 3 we can only iterate
over the values in a for loop. A simple loop like

for key in d.keys():
...

works well for both Python versions, but

keys = d.keys()

in Python 2, where we want the keys as a list, needs a modification in Python 3:

keys = list(d.keys())

We should add that for key in d.keys() is not the preferred syntax anyway –
use for key in d. Also, if we just want a for loop over all key-value pairs, we
can use d.iteritems() which does not return any list, neither in Python 2 nor in
Python 3.

Library modules have different names We have used the urllib module in
Sects. 6.3.2 and 6.3.3. Python 3 has some different names for this module:

# Python 2
import urllib
with urllib.urlopen(’http://google.com’) as webfile:

text = webfile.read()
urllib.urlretrieve(’http://google.com’, filename=’tmp.html’)

# Python 3
import urllib.request as urllibr
with urllibr.urlopen(’http://google.com’) as webfile:

text = webfile.read()
urllibr.urlretrieve(’http://google.com’, filename=’tmp.html’)

A lot of other modules have also changed names, but the futurize program (see
below) help you to find the right new names.

Python 3 has unicode and byte strings A standard Python 2 string, s = ’abc’,
is a sequence of bytes, called byte string in Python 3, declared as s = b’abc’ in
Python 3. The assignment s = ’abc’ in Python 3 leads to a unicode string and
is equivalent to s = u’abc’ in Python 2. To convert a byte string in Python 3 to
an ordinary (unicode) string, do s.decode(’utf-8’). String handling is often the
most tricky task when converting Python 2 code to Python 3.
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Python 3 has different relative import syntax inside packages If you work with
Python packages5, relative imports inside a package has slightly different syntax
in Python 2 and 3. Say you want to import somefunc from a module somemod in
some other module at the same level (same subfolder) in the package. Python 2 syn-
tax would be from somemod import somefunc, while Python 3 demands from
.somemod import somefunc. The leading dot in the module name indicates that
somemod is a module located in the same subfolder as the file containing this import
statement. The alternative import, import somemod, in Python 2 must read from

. import somemod in Python 3.

6.6.2 Turning Python 2 Code into Python 3 Code

As demonstrated in Sect. 4.10, one can use the futurize program to turn a Python
2 program into a version that works with both Python 2 and 3. For the programs at
this stage in the book, and also for more advanced programs, we recommend to run
the command

Terminal

Terminal> futurize --all-imports -w -n -o py23 prog.py

which generates the new version of the program prog.py in the subfolder py23.
Sometimes manual changes are needed in addition, but this depends on the com-
plexity of prog.py.

By frequently running just futurize prog.py to see what needs to be changed,
you can learn a lot of the differences between Python 2 and 3 and also change
your programming style in Python 2 so that it comes even closer to Python 3. The
python-futuredocumentation has a very useful list of difference between Python
2 and 36 and recipes on how to make common code for both versions.

Porting of larger programs from Python 2 to 3 is recommended to use futurize
in a two-stage fashion7.

6.7 Summary

6.7.1 Chapter Topics

Dictionaries Array or list-like objects with text or other (fixed-valued) Python ob-
jects as indices are called dictionaries. They are very useful for storing general
collections of objects in a single data structure. The table below displays some of
the most important dictionary operations.

5 https://docs.python.org/3/tutorial/modules.html#packages
6 http://python-future.org/compatible_idioms.html
7 http://python-future.org/futurize.html#forwards-conversion-stage1

https://docs.python.org/3/tutorial/modules.html#packages
http://python-future.org/compatible_idioms.html
http://python-future.org/futurize.html#forwards-conversion-stage1
https://docs.python.org/3/tutorial/modules.html#packages
http://python-future.org/compatible_idioms.html
http://python-future.org/futurize.html#forwards-conversion-stage1
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Construction Meaning
a = fg initialize an empty dictionary
a = f’point’: [0,0.1], ’value’: 7g initialize a dictionary
a = dict(point=[2,7], value=3) initialize a dictionary w/string keys
a.update(b) add/update key-value pairs from b in a
a.update(key1=value1, key2=value2) add/update key-value pairs in a
a[’hide’] = True add new key-value pair to a
a[’point’] get value corresponding to key point

for key in a: loop over keys in unknown order
for key in sorted(a): loop over keys in alphabetic order
’value’ in a True if string value is a key in a
del a[’point’] delete a key-value pair from a

list(a.keys()) list of keys
list(a.values()) list of values
len(a) number of key-value pairs in a
isinstance(a, dict) is True if a is a dictionary

Strings Some of the most useful functionalities in a string object s are listed below.

Split the string into substrings separated by delimiter:

words = s.split(delimiter)

Join elements in a list of strings:

newstring = delimiter.join(words[i:j])

Extract a substring:

substring = s[2:n-4]

Replace a substring substr by new a string replacement:

s_new = s.replace(substr, replacement)

Check if a substring is contained within another string:

if ’some text’ in s:
...

Find the index where some text starts:

index = s.find(text)
if index == -1:

print ’Could not find "%s" in "%s" (text, s)
else:

substring = s[index:] # strip off chars before text
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Extend a string:

s += another_string # append at the end
s = another_string + s # append at the beginning

Check if a string contains whitespace only:

if s.isspace():
...

Note: you cannot change the characters in a string like you can change elements in
a list (a string is in this sense like a tuple). You have to make a new string:

>>> filename = ’myfile1.txt’
>>> filename[6] = ’2’
Traceback (most recent call last):

...
TypeError: ’str’ object does not support item assignment
>>> filename.replace(’1’, ’2’)
’myfile2.txt’
>>> filename[:6] + ’2’ + filename[7:] # ’myfile’ + ’2’ + ’.txt’
’myfile2.txt’

Downloading Internet files Internet files can be downloaded if we know their
URL:

import urllib
url = ’http://www.some.where.net/path/thing.html’
urllib.urlretrieve(url, filename=’thing.html’)

The downloaded information is put in the local file thing.html in the current
working folder. Alternatively, we can open the URL as a file object:

webpage = urllib.urlopen(url)

HTML files are often messy to interpret by string operations.

Terminology The important computer science topics in this chapter are

� dictionaries
� strings and string operations
� CSV files
� HTML files

6.7.2 Example: A File Database

Problem We have a file containing information about the courses that students
have taken. The file format consists of blocks with student data, where each block
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starts with the student’s name (Name:), followed by the courses that the student has
taken. Each course line starts with the name of the course, then comes the semester
when the exam was taken, then the size of the course in terms of credit points, and
finally the grade is listed (letters A to F). Here is an example of a file with three
student entries:

Name: John Doe
Astronomy 2003 fall 10 A
Introductory Physics 2003 fall 10 C
Calculus I 2003 fall 10 A
Calculus II 2004 spring 10 B
Linear Algebra 2004 spring 10 C
Quantum Mechanics I 2004 fall 10 A
Quantum Mechanics II 2005 spring 10 A
Numerical Linear Algebra 2004 fall 5 E
Numerical Methods 2004 spring 20 C

Name: Jan Modaal
Calculus I 2005 fall 10 A
Calculus II 2006 spring 10 A
Introductory C++ Programming 2005 fall 15 D
Introductory Python Programming 2006 spring 5 A
Astronomy 2005 fall 10 A
Basic Philosophy 2005 fall 10 F

Name: Kari Nordmann
Introductory Python Programming 2006 spring 5 A
Astronomy 2005 fall 10 D

Our problem consists of reading this file into a dictionary data with the student
name as key and a list of courses as value. Each element in the list of courses is
a dictionary holding the course name, the semester, the credit points, and the grade.
A value in the data dictionary may look as

’Kari Nordmann’: [{’credit’: 5,
’grade’: ’A’,
’semester’: ’2006 spring’,
’title’: ’Introductory Python Programming’},

{’credit’: 10,
’grade’: ’D’,
’semester’: ’2005 fall’,
’title’: ’Astronomy’}],

Having the data dictionary, the next task is to print out the average grade of each
student.

Solution We divide the problem into two major tasks: loading the file data into the
data dictionary, and computing the average grades. These two tasks are naturally
placed in two functions.

We need to have a strategy for reading the file and interpreting the contents. It
will be natural to read the file line by line, and for each line check if this is a line
containing a new student’s name, a course information line, or a blank line. In
the latter case we jump to the next pass in the loop. When a new student name is
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encountered, we initialize a new entry in the data dictionary to an empty list. In
the case of a line about a course, we must interpret the contents on that line, which
we postpone a bit.

We can now sketch the algorithm described above in terms of some unfinished
Python code, just to get the overview:

def load(studentfile):
infile = open(studentfile, ’r’)
data = {}
for line in infile:

i = line.find(’Name:’)
if i != -1:

# line contains ’Name:’, extract the name.
...

elif line.isspace(): # Blank line?
continue # Yes, go to next loop iteration.

else:
# This must be a course line, interpret the line.
...

infile.close()
return data

If we find ’Name:’ as a substring in line, we must extract the name. This can
be done by the substring line[i+5:]. Alternatively, we can split the line with
respect to colon and strip off the first word:

words = line.split(’:’)
name = ’ ’.join(words[1:])

We have chosen the former strategy of extracting the name as a substring in the final
program.

Each course line is naturally split into words for extracting information:

words = line.split()

The name of the course consists of a number of words, but we do not know how
many. Nevertheless, we know that the final words contain the semester, the credit
points, and the grade. We can hence count from the right and extract information,
and when we are finished with the semester information, the rest of the words list
holds the words in the name of the course. The code goes as follows:

grade = words[-1]
credit = int(words[-2])
semester = ’ ’.join(words[-4:-2])
course_name = ’ ’.join(words[:-4])
data[name].append({’title’: course_name,

’semester’: semester,
’credit’: credit,
’grade’: grade})

This code is a good example of the usefulness of split and join operations when
extracting information from a text.
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Now to the second task of computing the average grade. Since the grades are
letters we cannot compute with them. A natural way to proceed is to convert the
letters to numbers, compute the average number, and then convert that number back
to a letter. Conversion between letters and numbers is easily represented by a dic-
tionary:

grade2number = {’A’: 5, ’B’: 4, ’C’: 3, ’D’: 2, ’E’: 1, ’F’: 0}

To convert from numbers to grades, we construct the inverse dictionary:

number2grade = {}
for grade in grade2number:

number2grade[grade2number[grade]] = grade

In the computation of the average grade we should use a weighted sum such that
larger courses count more than smaller courses. The weighted mean value of a set
of numbers ri with weights wi , i D 0; : : : ; n � 1, is given by

Pn�1
iD0 wi ri
Pn�1

iD0 wi

:

This weighted mean value must then be rounded to the nearest integer, which can be
used as key in number2grade to find the corresponding grade expressed as a letter.
The weight wi is naturally taken as the number of credit points in the course with
grade ri . The whole process is performed by the following function:

def average_grade(data, name):
sum = 0; weights = 0
for course in data[name]:

weight = course[’credit’]
grade = course[’grade’]
sum += grade2number[grade]*weight
weights += weight

avg = sum/float(weights)
return number2grade[round(avg)]

The complete code is found in the file students.py. Running this program gives
the following output of the average grades:

John Doe: B
Kari Nordmann: C
Jan Modaal: C

One feature of the students.py code is that the output of the names are sorted
after the last name. How can we accomplish that? A straight for name in data

loop will visit the keys in an unknown (random) order. To visit the keys in alphabetic
order, we must use

for name in sorted(data):

http://tinyurl.com/pwyasaa/dictstring/student.py
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This default sort will sort with respect to the first character in the name strings. We
want a sort according to the last part of the name. A tailored sort function can then
be written (see Exercise 3.39 for an introduction to tailored sort functions). In this
function we extract the last word in the names and compare them:

def sort_names(name1, name2):
last_name1 = name1.split()[-1]
last_name2 = name2.split()[-1]
if last_name1 < last_name2:

return -1
elif last_name1 > last_name2:

return 1
else:

return 0

We can now pass on sort_names to the sorted function to get a sequence that is
sorted with respect to the last word in the students’ names:

for name in sorted(data, sort_names):
print ’%s: %s’ % (name, average_grade(data, name))

6.8 Exercises

Exercise 6.1: Make a dictionary from a table

The file src/dictstring/constants.txt8 contains a table of the values and the
dimensions of some fundamental constants from physics. We want to load this table
into a dictionary constants, where the keys are the names of the constants. For
example, constants[’gravitational constant’] holds the value of the grav-
itational constant (6:67259 �10�11) in Newton’s law of gravitation. Make a function
that reads and interprets the text in the file, and finally returns the dictionary.
Filename: fundamental_constants.

Exercise 6.2: Explore syntax differences: lists vs. dicts

Consider this code:

t1 = {}
t1[0] = -5
t1[1] = 10.5

Explain why the lines above work fine while the ones below do not:

t2 = []
t2[0] = -5
t2[1] = 10.5

What must be done in the last code snippet to make it work properly?
Filename: list_vs_dict.

8 http://tinyurl.com/pwyasaa/dictstring/constants.txt

http://tinyurl.com/pwyasaa/dictstring/constants.txt
http://tinyurl.com/pwyasaa/dictstring/constants.txt
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Exercise 6.3: Use string operations to improve a program

Consider the program density.py from Sect. 6.1.5. One problem with this pro-
gram is that the name of the substance can contain only one or two words, while
more comprehensive tables may have substances with names consisting of several
words. The purpose of this exercise is to use string operations to shorten the code
and make it more general and elegant.

a) Make a Python function that lets the name substance consist of all the words
that line is split into, but not the last (which is the value of the corresponding
density). Use the join method in string objects to combine the words that make
up the name of the substance.

b) Observe that all the density values in the file densities.dat start in the same
column. Write an alternative function that makes use of substring indexing to
divide line into two parts (substance and density).

Hint Remember to strip the first part such that, e.g., the density of ice is obtained
as densities[’ice’] and not densities[’ice ’].

c) Make a test function that calls the two other functions and tests that they produce
the same result.

Filename: density_improved.

Exercise 6.4: Interpret output from a program

The program src/funcif/lnsum.py produces, among other things, this output:

epsilon: 1e-04, exact error: 8.18e-04, n=55
epsilon: 1e-06, exact error: 9.02e-06, n=97
epsilon: 1e-08, exact error: 8.70e-08, n=142
epsilon: 1e-10, exact error: 9.20e-10, n=187
epsilon: 1e-12, exact error: 9.31e-12, n=233

Redirect the output to a file (by python lnsum.py > file). Write a Python pro-
gram that reads the file and extracts the numbers corresponding to epsilon, exact
error, and n. Store the numbers in three arrays and plot epsilon and the exact

error versus n. Use a logarithmic scale on the y axis.

Hint The function semilogy is an alternative to plot and gives logarithmic scale
on y axis.
Filename: read_error.

Exercise 6.5: Make a dictionary

Based on the stars data in Exercise 3.39, make a dictionary where the keys contain
the names of the stars and the values correspond to the luminosity.
Filename: stars_data_dict1.

http://tinyurl.com/pwyasaa/funcif/lnsum.py
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Exercise 6.6: Make a nested dictionary

Store the data about stars from Exercise 3.39 in a nested dictionary such that we
can look up the distance, the apparent brightness, and the luminosity of a star with
name N by

stars[N][’distance’]
stars[N][’apparent brightness’]
stars[N][’luminosity’]

Hint Initialize the data by just copying the stars.txt9 text into the program.
Filename: stars_data_dict2.

Exercise 6.7: Make a nested dictionary from a file

The file src/dictstring/human_evolution.txt10 holds information about
various human species and their height, weight, and brain volume. Make a pro-
gram that reads this file and stores the tabular data in a nested dictionary humans.
The keys in humans correspond to the specie name (e.g., homo erectus), and
the values are dictionaries with keys for height, weight, brain volume,
and when (the latter for when the specie lived). For example, humans[’homo

neanderthalensis’][’mass’] should equal ’55-70’. Let the program write
out the humans dictionary in a nice tabular form similar to that in the file.
Filename: humans.

Exercise 6.8: Make a nested dictionary from a file

The viscosity � of gases depends on the temperature. For some gases the following
formula is relevant:

�.T / D �0

T0 � C

T C C

�

T

T0

�1:5

;

where the values of the constants C , T0, and �0 are found in the file src/

dictstring/viscosity_of_gases.dat11. The temperature is measured in
Kelvin.

a) Load the file into a nested dictionary mu_data such that we can look up C , T0,
and �0 for a gas with name name by mu_data[name][X], where X is ’C’ for
C , ’T_0’ for T0, and ’mu_0’ for �0.

b) Make a function mu(T, gas, mu_data) for computing �.T / for a gas with
name gas (according to the file) and information about constants C , T0, and �0

in mu_data.
c) Plot �.T / for air, carbon dioxide, and hydrogen with T 2 Œ223; 373�.

Filename: viscosity_of_gases.

9 http://tinyurl.com/pwyasaa/funcif/stars.txt
10 http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
11 http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt

http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
http://tinyurl.com/pwyasaa/funcif/stars.txt
http://tinyurl.com/pwyasaa/dictstring/human_evolution.txt
http://tinyurl.com/pwyasaa/dictstring/viscosity_of_gases.txt
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Exercise 6.9: Compute the area of a triangle

The purpose of this exercise is to write an area function as in Exercise 3.16, but
now we assume that the vertices of the triangle is stored in a dictionary and not
a list. The keys in the dictionary correspond to the vertex number (1, 2, or 3) while
the values are 2-tuples with the x and y coordinates of the vertex. For example, in
a triangle with vertices .0; 0/, .1; 0/, and .0; 2/ the vertices argument becomes

{1: (0,0), 2: (1,0), 3: (0,2)}

Filename: area_triangle_dict.

Exercise 6.10: Compare data structures for polynomials

Write a code snippet that uses both a list and a dictionary to represent the polyno-
mial � 1

2
C 2x100. Print the list and the dictionary, and use them to evaluate the

polynomial for x D 1:05.

Hint You can apply the eval_poly_dict and eval_poly_list functions from
Sect. 6.1.3).
Filename: poly_repr.

Exercise 6.11: Compute the derivative of a polynomial

A polynomial can be represented by a dictionary as explained in Sect. 6.1.3. Write
a function diff for differentiating such a polynomial. The diff function takes the
polynomial as a dictionary argument and returns the dictionary representation of
the derivative. Here is an example of the use of the function diff:

>>> p = {0: -3, 3: 2, 5: -1} # -3 + 2*x**3 - x**5
>>> diff(p) # should be 6*x**2 - 5*x**4
{2: 6, 4: -5}

Hint Recall the formula for differentiation of polynomials:

d

dx

n
X

jD0

cj xj D
n
X

jD1

jcj xj�1 : (6.1)

This means that the coefficient of the xj�1 term in the derivative equals j times the
coefficient of xj term of the original polynomial. With p as the polynomial dictio-
nary and dp as the dictionary representing the derivative, we then have dp[j-1] =

j*p[j] for j running over all keys in p, except when j equals 0.
Filename: poly_diff.

Exercise 6.12: Specify functions on the command line

Explain what the following two code snippets do and give an example of how they
can be used.
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Hint Read about the StringFunction tool in Sect. 4.3.3 and about a variable
number of keyword arguments in Sect. H.7.

a)

import sys
from scitools.StringFunction import StringFunction
parameters = {}
for prm in sys.argv[4:]:

key, value = prm.split(’=’)
parameters[key] = eval(value)

f = StringFunction(sys.argv[1], independent_variables=sys.argv[2],
**parameters)

var = float(sys.argv[3])
print f(var)

b)

import sys
from scitools.StringFunction import StringFunction
f = eval(’StringFunction(sys.argv[1], ’ + \

’independent_variables=sys.argv[2], %s)’ % \
(’, ’.join(sys.argv[4:])))

var = float(sys.argv[3])
print f(var)

Filename: cml_functions.

Exercise 6.13: Interpret function specifications

To specify arbitrary functions f .x1; x2; : : : Ip1; p2; : : :/ with independent variables
x1; x2; : : : and a set of parameters p1; p2; : : :, we allow the following syntax on the
command line or in a file:

<expression> is function of <list1> with parameter <list2>

where <expression> denotes the function formula, <list1> is a comma-
separated list of the independent variables, and <list2> is a comma-separated
list of name=value parameters. The part with parameters <list2> is omitted if
there are no parameters. The names of the independent variables and the parameters
can be chosen freely as long as the names can be used as Python variables. Here
are four different examples of what we can specify on the command line using this
syntax:

sin(x) is a function of x
sin(a*y) is a function of y with parameter a=2
sin(a*x-phi) is a function of x with parameter a=3, phi=-pi
exp(-a*x)*cos(w*t) is a function of t with parameter a=1,w=pi,x=2

Create a Python function that takes such function specifications as input and returns
an appropriate StringFunctionobject. This object must be created from the func-
tion expression and the list of independent variables and parameters. For example,
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the last function specification above leads to the following StringFunction cre-
ation:

f = StringFunction(’exp(-a*x)*cos(w*t)’,
independent_variables=[’t’],
a=1, w=pi, x=2)

Write a test function for verifying the implementation (fill sys.argv with ap-
propriate content prior to each individual test).

Hint Use string operations to extract the various parts of the string. For example,
the expression can be split out by calling split(’is a function of’). Typ-
ically, you need to extract <expression>, <list1>, and <list2>, and create
a string like

StringFunction(<expression>, independent_variables=[<list1>],
<list2>)

and sending it to eval to create the object.
Filename: text2func.

Exercise 6.14: Compare average temperatures in cities

The tarfile src/misc/city_temp.tar.gz12 contains a set of files with tempera-
ture data for a large number of cities around the world. The files are in text format
with four columns, containing the month number, the date, the year, and the temper-
ature, respectively. Missing temperature observations are represented by the value
�99. The mapping between the names of the text files and the names of the cities
are defined in an HTML file citylistWorld.htm.

a) Write a function that can read the citylistWorld.htmfile and create a dictio-
nary with mapping between city and filenames.

b) Write a function that takes this dictionary and a city name as input, opens the
corresponding text file, and loads the data into an appropriate data structure
(dictionary of arrays and city name is a suggestion).

c) Write a function that can take a number of data structures and the corresponding
city names to create a plot of the temperatures over a certain time period.

Filename: temperature_data.

Exercise 6.15: Generate an HTML report with figures

The goal of this exercise is to let a program write a report in HTML format con-
taining the solution to Exercise 5.33. First, include the program from that exercise,
with additional explaining text if necessary. Program code can be placed inside
<pre> and </pre> tags. Second, insert three plots of the f .x; t/ function for three
different t values (find suitable t values that illustrate the displacement of the wave
packet). Third, add an animated GIF file with the movie of f .x; t/. Insert headlines
(<h1> tags) wherever appropriate.
Filename: wavepacket_report.

12 http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz

http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
http://tinyurl.com/pwyasaa/misc/city_temp.tar.gz
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Exercise 6.16: Allow different types for a function argument

Consider the family of find_consensus_v* functions from Sect. 6.5.2. The dif-
ferent versions work on different representations of the frequency matrix. Make
a unified find_consensus function that accepts different data structures for the
frequency_matrix. Test on the type of data structure and perform the necessary
actions.
Filename: find_consensus.

Exercise 6.17: Make a function more robust

Consider the function get_base_counts(dna) from Sect. 6.5.3, which counts
how many times A, C, G, and T appears in the string dna:

def get_base_counts(dna):
counts = {’A’: 0, ’T’: 0, ’G’: 0, ’C’: 0}
for base in dna:

counts[base] += 1
return counts

Unfortunately, this function crashes if other letters appear in dna. Write an en-
hanced function get_base_counts2which solves this problem. Test it on a string
like ’ADLSTTLLD’.
Filename: get_base_counts2.

Exercise 6.18: Find proportion of bases inside/outside exons

Consider the lactase gene as described in Sects. 6.5.4 and 6.5.5. What is the pro-
portion of base A inside and outside exons of the lactase gene?

Hint Write a function get_exons, which returns all the substrings of the exon
regions concatenated. Also write a function get_introns, which returns all
the substrings between the exon regions concatenated. The function get_base_

frequencies from Sect. 6.5.3 can then be used to analyze the frequencies of bases
A, C, G, and T in the two strings.
Filename: prop_A_exons.
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A class packs a set of data (variables) together with a set of functions operating on
the data. The goal is to achieve more modular code by grouping data and functions
into manageable (often small) units. Most of the mathematical computations in this
book can easily be coded without using classes, but in many problems, classes en-
able either more elegant solutions or code that is easier to extend at a later stage. In
the non-mathematical world, where there are no mathematical concepts and asso-
ciated algorithms to help structure the problem solving, software development can
be very challenging. Classes may then improve the understanding of the problem
and contribute to simplify the modeling of data and actions in programs. As a con-
sequence, almost all large software systems being developed in the world today are
heavily based on classes.

Programming with classes is offered by most modern programming languages,
also Python. In fact, Python employs classes to a very large extent, but one can
use the language for lots of purposes without knowing what a class is. However,
one will frequently encounter the class concept when searching books or the World
Wide Web for Python programming information. And more important, classes often
provide better solutions to programming problems. This chapter therefore gives an
introduction to the class concept with emphasis on applications to numerical com-
puting. More advanced use of classes, including inheritance and object orientation,
is treated in Chap. 9.

The folder src/class1 contains all the program examples from the present
chapter.

7.1 Simple Function Classes

Classes can be used for many things in scientific computations, but one of the most
frequent programming tasks is to represent mathematical functions that have a set of
parameters in addition to one or more independent variables. Section 7.1.1 explains
why such mathematical functions pose difficulties for programmers, and Sect. 7.1.2
shows how the class idea meets these difficulties. Sections 7.1.4 presents another
example where a class represents a mathematical function. More advanced material

1 http://tinyurl.com/pwyasaa/class
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about classes, which for some readers may clarify the ideas, but which can also be
skipped in a first reading, appears in Sects. 7.1.5 and Sect. 7.1.6.

7.1.1 Challenge: Functions with Parameters

To motivate for the class concept, we will look at functions with parameters. One
example is y.t/ D v0t� 1

2
gt2. Conceptually, in physics, the y quantity is viewed as

a function of t , but y also depends on two other parameters, v0 and g, although it is
not natural to view y as a function of these parameters. We may write y.t I v0; g/ to
indicate that t is the independent variable, while v0 and g are parameters. Strictly
speaking, g is a fixed parameter (as long as we are on the surface of the earth and
can view g as constant), so only v0 and t can be arbitrarily chosen in the formula.
It would then be better to write y.t I v0/.

In the general case, we may have a function of x that has n parameters
p1; : : : ; pn: f .xIp1; : : : ; pn/. One example could be

g.xIA; a/ D Ae�ax :

How should we implement such functions? One obvious way is to have the
independent variable and the parameters as arguments:

def y(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

def g(x, a, A):
return A*exp(-a*x)

Problem There is one major problem with this solution. Many software tools we
can use for mathematical operations on functions assume that a function of one
variable has only one argument in the computer representation of the function. For
example, we may have a tool for differentiating a function f .x/ at a point x, using
the approximation

f 0.x/ � f .x C h/ � f .x/

h
(7.1)

coded as

def diff(f, x, h=1E-5):
return (f(x+h) - f(x))/h

The diff function works with any function f that takes one argument:

def h(t):
return t**4 + 4*t

dh = diff(h, 0.1)

from math import sin, pi
x = 2*pi
dsin = diff(sin, x, h=1E-6)



7.1 Simple Function Classes 411

Unfortunately, diff will not work with our y(t, v0) function. Calling diff(y,

t) leads to an error inside the diff function, because it tries to call our y function
with only one argument while the y function requires two.

Writing an alternative diff function for f functions having two arguments is
a bad remedy as it restricts the set of admissible f functions to the very special
case of a function with one independent variable and one parameter. A fundamen-
tal principle in computer programming is to strive for software that is as general
and widely applicable as possible. In the present case, it means that the diff func-
tion should be applicable to all functions f of one variable, and letting f take one
argument is then the natural decision to make.

The mismatch of function arguments, as outlined above, is a major problem
because a lot of software libraries are available for operations on mathematical
functions of one variable: integration, differentiation, solving f .x/ D 0, finding
extrema, etc. All these libraries will try to call the mathematical function we pro-
vide with only one argument. When our function has more arguments, the code
inside the library aborts in the call to our function, and such errors may not always
be easy to track down.

A bad solution: global variables The requirement is thus to define Python im-
plementations of mathematical functions of one variable with one argument, the
independent variable. The two examples above must then be implemented as

def y(t):
g = 9.81
return v0*t - 0.5*g*t**2

def g(t):
return A*exp(-a*x)

These functions work only if v0, A, and a are global variables, initialized before one
attempts to call the functions. Here are two sample calls where diff differentiates
y and g:

v0 = 3
dy = diff(y, 1)

A = 1; a = 0.1
dg = diff(g, 1.5)

The use of global variables is in general considered bad programming. Why
global variables are problematic in the present case can be illustrated when there is
need to work with several versions of a function. Suppose we want to work with
two versions of y.t I v0/, one with v0 D 1 and one with v0 D 5. Every time we
call y we must remember which version of the function we work with, and set v0
accordingly prior to the call:

v0 = 1; r1 = y(t)
v0 = 5; r2 = y(t)
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Another problem is that variables with simple names like v0, a, and A may easily
be used as global variables in other parts of the program. These parts may change
our v0 in a context different from the y function, but the change affects the correct-
ness of the y function. In such a case, we say that changing v0 has side effects, i.e.,
the change affects other parts of the program in an unintentional way. This is one
reason why a golden rule of programming tells us to limit the use of global variables
as much as possible.

Another solution to the problem of needing two v0 parameters could be to intro-
duce two y functions, each with a distinct v0 parameter:

def y1(t):
g = 9.81
return v0_1*t - 0.5*g*t**2

def y2(t):
g = 9.81
return v0_2*t - 0.5*g*t**2

Now we need to initialize v0_1 and v0_2 once, and then we can work with y1

and y2. However, if we need 100 v0 parameters, we need 100 functions. This is
tedious to code, error prone, difficult to administer, and simply a really bad solution
to a programming problem.

So, is there a good remedy? The answer is yes: the class concept solves all the
problems described above!

7.1.2 Representing a Function as a Class

A class contains a set of variables (data) and a set of functions, held together as
one unit. The variables are visible in all the functions in the class. That is, we can
view the variables as “global” in these functions. These characteristics also apply
to modules, and modules can be used to obtain many of the same advantages as
classes offer (see comments in Sect. 7.1.6). However, classes are technically very
different from modules. You can also make many copies of a class, while there can
be only one copy of a module. When you master both modules and classes, you
will clearly see the similarities and differences. Now we continue with a specific
example of a class.

Consider the function y.t I v0/ D v0t � 1
2
gt2. We may say that v0 and g, rep-

resented by the variables v0 and g, constitute the data. A Python function, say
value(t), is needed to compute the value of y.t I v0/ and this function must have
access to the data v0 and g, while t is an argument.

A programmer experienced with classes will then suggest to collect the data v0
and g, and the function value(t), together as a class. In addition, a class usually
has another function, called constructor for initializing the data. The constructor
is always named __init__. Every class must have a name, often starting with
a capital, so we choose Y as the name since the class represents a mathematical
function with name y. Figure 7.1 sketches the contents of class Y as a so-called
UML diagram, here created with aid of the program class_Y_v1_UML.py. The

http://tinyurl.com/pwyasaa/class/class_Y_v1_UML.py
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Fig. 7.1 UML diagram with
function and data in the sim-
ple class Y for representing
a mathematical function
y.t I v0/

Y

__init__
value

g
v0

UML diagram has two “boxes”, one where the functions are listed, and one where
the variables are listed. Our next step is to implement this class in Python.

Implementation The complete code for our class Y looks as follows in Python:

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def value(self, t):
return self.v0*t - 0.5*self.g*t**2

A puzzlement for newcomers to Python classes is the self parameter, which may
take some efforts and time to fully understand.

Usage and dissection Before we dig into what each line in the class implementa-
tion means, we start by showing how the class can be used to compute values of the
mathematical function y.t I v0/.

A class creates a new data type, here of name Y, so when we use the class to make
objects, those objects are of type Y. (Actually, all the standard Python objects, such
as lists, tuples, strings, floating-point numbers, integers, etc., are built-in Python
classes, with names list, tuple, str, float, int, etc.) An object of a user-
defined class (like Y) is usually called an instance. We need such an instance in order
to use the data in the class and call the value function. The following statement
constructs an instance bound to the variable name y:

y = Y(3)

Seemingly, we call the class Y as if it were a function. Actually, Y(3) is automat-
ically translated by Python to a call to the constructor __init__ in class Y. The
arguments in the call, here only the number 3, are always passed on as arguments
to __init__ after the self argument. That is, v0 gets the value 3 and self is just
dropped in the call. This may be confusing, but it is a rule that the self argument
is never used in calls to functions in classes.

With the instance y, we can compute the value y.t D 0:1I v0 D 3/ by the
statement

v = y.value(0.1)
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Here also, the self argument is dropped in the call to value. To access functions
and variables in a class, we must prefix the function and variable names by the
name of the instance and a dot: the value function is reached as y.value, and the
variables are reached as y.v0 and y.g. We can, for example, print the value of v0
in the instance y by writing

print y.v0

The output will in this case be 3.
We have already introduced the term "instance” for the object of a class. Func-

tions in classes are commonly called methods, and variables (data) in classes are
called data attributes. Methods are also known as method attributes. From now on
we will use this terminology. In our sample class Y we have two methods or method
attributes, __init__ and value, two data attributes, v0 and g, and four attributes in
total (__init__, value, v0, and g). The names of attributes can be chosen freely,
just as names of ordinary Python functions and variables. However, the constructor
must have the name __init__, otherwise it is not automatically called when we
create new instances.

You can do whatever you want in whatever method, but it is a common conven-
tion to use the constructor for initializing the variables in the class.

Extension of the class We can have as many attributes as we like in a class, so let
us add a new method to class Y. This method is called formula and prints a string
containing the formula of the mathematical function y. After this formula, we
provide the value of v0. The string can then be constructed as

’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

where self is an instance of class Y. A call of formula does not need any argu-
ments:

print y.formula()

should be enough to create, return, and print the string. However, even if the
formula method does not need any arguments, it must have a self argument,
which is left out in the call but needed inside the method to access the attributes.
The implementation of the method is therefore

def formula(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

For completeness, the whole class now reads

class Y:
def __init__(self, v0):

self.v0 = v0
self.g = 9.81
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def value(self, t):
return self.v0*t - 0.5*self.g*t**2

def formula(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Example on use may be

y = Y(5)
t = 0.2
v = y.value(t)
print ’y(t=%g; v0=%g) = %g’ % (t, y.v0, v)
print y.formula()

with the output

y(t=0.2; v0=5) = 0.8038
v0*t - 0.5*g*t**2; v0=5

Be careful with indentation in class programming

A common mistake done by newcomers to the class construction is to place the
code that applies the class at the same indentation as the class methods. This is il-
legal. Only method definitions and assignments to so-called static data attributes
(Sect. 7.6) can appear in the indented block under the class headline. Ordinary
data attribute assignment must be done inside methods. The main program using
the class must appear with the same indent as the class headline.

Using methods as ordinary functions We may create several y functions with
different values of v0:

y1 = Y(1)
y2 = Y(1.5)
y3 = Y(-3)

We can treat y1.value, y2.value, and y3.value as ordinary Python functions
of t, and then pass them on to any Python function that expects a function of one
variable. In particular, we can send the functions to the diff(f, x) function from
Sect. 7.1.1:

dy1dt = diff(y1.value, 0.1)
dy2dt = diff(y2.value, 0.1)
dy3dt = diff(y3.value, 0.2)

Inside the diff(f, x) function, the argument f now behaves as a function of one
variable that automatically carries with it two variables v0 and g. When f refers
to (e.g.) y3.value, Python actually knows that f(x) means y3.value(x), and
inside the y3.value method self is y3, and we have access to y3.v0 and y3.g.
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New-style classes versus classic classes When use Python version 2 and write
a class like

class V:
...

we get what is known as an old-style or classic class. A revised implementation of
classes in Python came in version 2.2 with new-style classes. The specification of
a new-style class requires (object) after the class name:

class V(object):
...

New-style classes have more functionality, and it is in general recommended to
work with new-style classes. We shall therefore from now write V(object) rather
than just V. In Python 3, all classes are new-style whether we write V or V(object).

Doc strings A function may have a doc string right after the function definition,
see Sect. 3.1.11. The aim of the doc string is to explain the purpose of the function
and, for instance, what the arguments and return values are. A class can also have
a doc string, it is just the first string that appears right after the class headline. The
convention is to enclose the doc string in triple double quotes """:

class Y(object):
"""The vertical motion of a ball."""

def __init__(self, v0):
...

More comprehensive information can include the methods and how the class is used
in an interactive session:

class Y(object):
"""
Mathematical function for the vertical motion of a ball.

Methods:
constructor(v0): set initial velocity v0.
value(t): compute the height as function of t.
formula(): print out the formula for the height.

Data attributes:
v0: the initial velocity of the ball (time 0).
g: acceleration of gravity (fixed).

Usage:
>>> y = Y(3)
>>> position1 = y.value(0.1)
>>> position2 = y.value(0.3)
>>> print y.formula()
v0*t - 0.5*g*t**2; v0=3
"""
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7.1.3 The Self Variable

Now we will provide some more explanation of the self parameter and how the
class methods work. Inside the constructor __init__, the argument self is a vari-
able holding the new instance to be constructed. When we write

self.v0 = v0
self.g = 9.81

we define two new data attributes in this instance. The self parameter is invisibly
returned to the calling code. We can imagine that Python translates the syntax y =

Y(3) to a call written as

Y.__init__(y, 3)

Now, self becomes the new instance y we want to create, so when we do self.v0

= v0 in the constructor, we actually assign v0 to y.v0. The prefix with Y. illus-
trates how to reach a class method with a syntax similar to reaching a function in
a module (just like math.exp). If we prefix with Y., we need to explicitly feed
in an instance for the self argument, like y in the code line above, but if we pre-
fix with y. (the instance name) the self argument is dropped in the syntax, and
Python will automatically assign the y instance to the self argument. It is the
latter “instance name prefix” which we shall use when computing with classes.
(Y.__init__(y, 3) will not work since y is undefined and supposed to be an Y

object. However, if we first create y = Y(2) and then call Y.__init__(y, 3),
the syntax works, and y.v0 is 3 after the call.)

Let us look at a call to the value method to see a similar use of the self argu-
ment. When we write

value = y.value(0.1)

Python translates this to a call

value = Y.value(y, 0.1)

such that the self argument in the value method becomes the y instance. In the
expression inside the value method,

self.v0*t - 0.5*self.g*t**2

self is y so this is the same as

y.v0*t - 0.5*y.g*t**2

The use of self may become more apparent when we have multiple class in-
stances. We can make a class that just has one parameter so we can easily identify
a class instance by printing the value of this parameter. In addition, every Python
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object obj has a unique identifier obtained by id(obj) that we can also print to
track what self is.

class SelfExplorer(object):
def __init__(self, a):

self.a = a
print ’init: a=%g, id(self)=%d’ % (self.a, id(self))

def value(self, x):
print ’value: a=%g, id(self)=%d’ % (self.a, id(self))
return self.a*x

Here is an interactive session with this class:

>>> s1 = SelfExplorer(1)
init: a=1, id(self)=38085696
>>> id(s1)
38085696

We clearly see that self inside the constructor is the same object as s1, which we
want to create by calling the constructor.

A second object is made by

>>> s2 = SelfExplorer(2)
init: a=2, id(self)=38085192
>>> id(s2)
38085192

Now we can call the value method using the standard syntax s1.value(x) and
the “more pedagogical” syntax SelfExplorer.value(s1, x). Using both s1

and s2 illustrates how self take on different values, while we may look at the
method SelfExplorer.value as a single function that just operates on different
self and x objects:

>>> s1.value(4)
value: a=1, id(self)=38085696
4
>>> SelfExplorer.value(s1, 4)
value: a=1, id(self)=38085696
4

>>> s2.value(5)
value: a=2, id(self)=38085192
10
>>> SelfExplorer.value(s2, 5)
value: a=2, id(self)=38085192
10

Hopefully, these illustrations help to explain that self is just the instance used in
the method call prefix, here s1 or s2. If not, patient work with class programming
in Python will over time reveal an understanding of what self really is.
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Rules regarding self

� Any class method must have self as first argument. (The name can be any
valid variable name, but the name self is a widely established convention in
Python.)

� self represents an (arbitrary) instance of the class.
� To access any class attribute inside class methods, we must prefix with self,

as in self.name, where name is the name of the attribute.
� self is dropped as argument in calls to class methods.

7.1.4 Another Function Class Example

Let us apply the ideas from the Y class to the function

v.r/ D
�

ˇ

2�0

�1=n
n

nC 1

�

R1C1=n � r1C1=n
	

;

where r is the independent variable. We may write this function as v.r Iˇ; �0; n; R/

to explicitly indicate that there is one primary independent variable (r) and four
physical parameters ˇ, �0, n, and R. Exercise 5.40 describes a physical interpreta-
tion of v as the velocity of a fluid. The class typically holds the physical parameters
as variables and provides an value(r) method for computing the v function:

class V(object):
def __init__(self, beta, mu0, n, R):

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

def value(self, r):
beta, mu0, n, R = self.beta, self.mu0, self.n, self.R
n = float(n) # ensure float divisions
v = (beta/(2.0*mu0))**(1/n)*(n/(n+1))*\

(R**(1+1/n) - r**(1+1/n))
return v

There is seemingly one new thing here in that we initialize several variables on the
same line:

self.beta, self.mu0, self.n, self.R = beta, mu0, n, R

The comma-separated list of variables on the right-hand side forms a tuple so this
assignment is just the a valid construction where a set of variables on the left-hand
side is set equal to a list or tuple on the right-hand side, element by element. An
equivalent multi-line code is

self.beta = beta
self.mu0 = mu0
self.n = n
self.R = R



420 7 Introduction to Classes

In the value method it is convenient to avoid the self. prefix in the mathematical
formulas and instead introduce the local short names beta, mu0, n, and R. This is
in general a good idea, because it makes it easier to read the implementation of the
formula and check its correctness.

Remark Another solution to the problem of sending functions with parameters to
a general library function such as diff is provided in Sect. H.7. The remedy there
is to transfer the parameters as arguments “through” the diff function. This can be
done in a general way as explained in that appendix.

7.1.5 Alternative Function Class Implementations

To illustrate class programming further, we will now realize class Y from Sect. 7.1.2
in a different way. You may consider this section as advanced and skip it, but for
some readers the material might improve the understanding of class Y and give some
insight into class programming in general.

It is a good habit always to have a constructor in a class and to initialize the data
attributes in the class here, but this is not a requirement. Let us drop the constructor
and make v0 an optional argument to the valuemethod. If the user does not provide
v0 in the call to value, we use a v0 value that must have been provided in an earlier
call and stored as a data attribute self.v0. We can recognize if the user provides
v0 as argument or not by using None as default value for the keyword argument and
then test if v0 is None.

Our alternative implementation of class Y, named Y2, now reads

class Y2(object):
def value(self, t, v0=None):

if v0 is not None:
self.v0 = v0

g = 9.81
return self.v0*t - 0.5*g*t**2

This time the class has only one method and one data attribute as we skipped the
constructor and let g be a local variable in the value method.

But if there is no constructor, how is an instance created? Python fortunately
creates an empty constructor. This allows us to write

y = Y2()

to make an instance y. Since nothing happens in the automatically generated empty
constructor, y has no data attributes at this stage. Writing

print y.v0

therefore leads to the exception

AttributeError: Y2 instance has no attribute ’v0’
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By calling

v = y.value(0.1, 5)

we create an attribute self.v0 inside the value method. In general, we can create
any attribute name in any method by just assigning a value to self.name. Now
trying a

print y.v0

will print 5. In a new call,

v = y.value(0.2)

the previous v0 value (5) is used inside value as self.v0 unless a v0 argument is
specified in the call.

The previous implementation is not foolproof if we fail to initialize v0. For
example, the code

y = Y2()
v = y.value(0.1)

will terminate in the value method with the exception

AttributeError: Y2 instance has no attribute ’v0’

As usual, it is better to notify the user with a more informative message. To check
if we have an attribute v0, we can use the Python function hasattr. Calling
hasattr(self, ’v0’) returns True only if the instance self has an attribute
with name ’v0’. An improved value method now reads

def value(self, t, v0=None):
if v0 is not None:

self.v0 = v0
if not hasattr(self, ’v0’):

print ’You cannot call value(t) without first ’\
’calling value(t,v0) to set v0’

return None
g = 9.81
return self.v0*t - 0.5*g*t**2

Alternatively, we can try to access self.v0 in a try-except block, and perhaps
raise an exception TypeError (which is what Python raises if there are not enough
arguments to a function or method):
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def value(self, t, v0=None):
if v0 is not None:

self.v0 = v0
g = 9.81
try:

value = self.v0*t - 0.5*g*t**2
except AttributeError:

msg = ’You cannot call value(t) without first ’
’calling value(t,v0) to set v0’

raise TypeError(msg)
return value

Note that Python detects an AttributeError, but from a user’s point of view, not
enough parameters were supplied in the call so a TypeError is more appropriate to
communicate back to the calling code.

We think class Y is a better implementation than class Y2, because the former
is simpler. As already mentioned, it is a good habit to include a constructor and
set data here rather than “recording data on the fly” as we try to in class Y2. The
whole purpose of class Y2 is just to show that Python provides great flexibility with
respect to defining attributes, and that there are no requirements to what a class must

contain.

7.1.6 Making ClassesWithout the Class Construct

Newcomers to the class concept often have a hard time understanding what this
concept is about. The present section tries to explain in more detail how we can
introduce classes without having the class construct in the computer language. This
information may or may not increase your understanding of classes. If not, pro-
gramming with classes will definitely increase your understanding with time, so
there is no reason to worry. In fact, you may safely jump to Sect. 7.3 as there are no
important concepts in this section that later sections build upon.

A class contains a collection of variables (data) and a collection of methods
(functions). The collection of variables is unique to each instance of the class.
That is, if we make ten instances, each of them has its own set of variables. These
variables can be thought of as a dictionary with keys equal to the variable names.
Each instance then has its own dictionary, and we may roughly view the instance as
this dictionary. (The instance can also contain static data attributes (Sect. 7.6), but
these are to be viewed as global variables in the present context.)

On the other hand, the methods are shared among the instances. We may think
of a method in a class as a standard global function that takes an instance in the
form of a dictionary as first argument. The method has then access to the variables
in the instance (dictionary) provided in the call. For the Y class from Sect. 7.1.2
and an instance y, the methods are ordinary functions with the following names and
arguments:

Y.value(y, t)
Y.formula(y)
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The class acts as a namespace, meaning that all functions must be prefixed by the
namespace name, here Y. Two different classes, say C1 and C2, may have functions
with the same name, say value, but when the value functions belong to differ-
ent namespaces, their names C1.value and C2.value become distinct. Modules
are also namespaces for the functions and variables in them (think of math.sin,
cmath.sin, numpy.sin).

The only peculiar thing with the class construct in Python is that it allows us to
use an alternative syntax for method calls:

y.value(t)
y.formula()

This syntax coincides with the traditional syntax of calling class methods and pro-
viding arguments, as found in other computer languages, such as Java, C#, C++,
Simula, and Smalltalk. The dot notation is also used to access variables in an in-
stance such that we inside a method can write self.v0 instead of self[’v0’]
(self refers to y through the function call).

We could easily implement a simple version of the class concept without having
a class construction in the language. All we need is a dictionary type and ordinary
functions. The dictionary acts as the instance, and methods are functions that take
this dictionary as the first argument such that the function has access to all the
variables in the instance. Our Y class could now be implemented as

def value(self, t):
return self[’v0’]*t - 0.5*self[’g’]*t**2

def formula(self):
print ’v0*t - 0.5*g*t**2; v0=%g’ % self[’v0’]

The two functions are placed in a module called Y. The usage goes as follows:

import Y
y = {’v0’: 4, ’g’: 9.81} # make an "instance"
y1 = Y.value(y, t)

We have no constructor since the initialization of the variables is done when declar-
ing the dictionary y, but we could well include some initialization function in the Y
module

def init(v0):
return {’v0’: v0, ’g’: 9.81}

The usage is now slightly different:

import Y
y = Y.init(4) # make an "instance"
y1 = Y.value(y, t)
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This way of implementing classes with the aid of a dictionary and a set of
ordinary functions actually forms the basis for class implementations in many lan-
guages. Python and Perl even have a syntax that demonstrates this type of imple-
mentation. In fact, every class instance in Python has a dictionary __dict__ as
attribute, which holds all the variables in the instance. Here is a demo that proves
the existence of this dictionary in class Y:

>>> y = Y(1.2)
>>> print y.__dict__
{’v0’: 1.2, ’g’: 9.8100000000000005}

To summarize: A Python class can be thought of as some variables collected in
a dictionary, and a set of functions where this dictionary is automatically provided
as first argument such that functions always have full access to the class variables.

First remark We have in this section provided a view of classes from a technical

point of view. Others may view a class as a way of modeling the world in terms
of data and operations on data. However, in sciences that employ the language
of mathematics, the modeling of the world is usually done by mathematics, and
the mathematical structures provide understanding of the problem and structure of
programs. When appropriate, mathematical structures can conveniently be mapped
on to classes in programs to make the software simpler and more flexible.

Second remark The view of classes in this section neglects very important topics
such as inheritance and dynamic binding (explained in Chap. 9). For more com-
pleteness of the present section, we therefore briefly describe how our combination
of dictionaries and global functions can deal with inheritance and dynamic binding
(but this will not make sense unless you know what inheritance is).

Data inheritance can be obtained by letting a subclass dictionary do an update

call with the superclass dictionary as argument. In this way all data in the superclass
are also available in the subclass dictionary. Dynamic binding of methods is more
complicated, but one can think of checking if the method is in the subclass module
(using hasattr), and if not, one proceeds with checking super class modules until
a version of the method is found.

7.1.7 Closures

This section follows up the discussion in Sect. 7.1.6 and presents a more advanced
construction that may serve as alternative to class constructions in some cases.

Our motivating example is that we want a Python implementation of a mathe-
matical function y.t I v0/ D v0t � 1

2
gt2 to have t as the only argument, but also

have access to the parameter v0. Consider the following function, which returns
a function:
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>>> def generate_y():
... v0 = 5
... g = 9.81
... def y(t):
... return v0*t - 0.5*g*t**2
... return y
...
>>> y = generate_y()
>>> y(1)
0.09499999999999975

The remarkable property of the y function is that it remembers the value of v0 and
g, although these variables are not local to the parent function generate_y and not
local in y. In particular, we can specify v0 as argument to generate_y:

>>> def generate_y(v0):
... g = 9.81
... def y(t):
... return v0*t - 0.5*g*t**2
... return y
...
>>> y1 = generate_y(v0=1)
>>> y2 = generate_y(v0=5)
>>> y1(1)
-3.9050000000000002
>>> y2(1)
0.09499999999999975

Here, y1(t) has access to v0=1 while y2(t) has access to v0=5.
The function y(t) we construct and return from generate_y is called a closure

and it remembers the value of the surrounding local variables in the parent func-
tion (at the time we create the y function). Closures are very convenient for many
purposes in mathematical computing. Examples appear in Sect. 7.3.2. Closures are
also central in a programming style called functional programming.

Generatingmultiple closures in a function

As soon as you get the idea of a closure, you will probably use it a lot because
it is a convenient way to pack a function with extra data. However, there are
some pitfalls. The biggest is illustrated below, but this is considered advanced
material!

Let us generate a series of functions v(t) for various values of a parameter
v0. Each function just returns a tuple (v0, t) such that we can easily see what
the argument and the parameter are. We use lambda to quickly define each
function, and we place the functions in a list:

>>> def generate():
... return [lambda t: (v0, t) for v0 in [0, 1, 5, 10]]
...
>>> funcs = generate()
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Now, funcs is a list of functions with one argument. Calling each function and
printing the return values v0 and t gives

>>> for func in funcs:
... print func(1)
...
(10, 1)
(10, 1)
(10, 1)
(10, 1)

As we see, all functions have v0=10, i.e., they stored the most recent value of v0
before return. This is not what we wanted.

The trick is to let v0 be a keyword argument in each function, because the
value of a keyword argument is frozen at the time the function is defined:

>>> def generate():
... return [lambda t, v0=v0: (v0, t)
... for v0 in [0, 1, 5, 10]]
...
>>> funcs = generate()
>>> for func in funcs:
... print func(1)
...
(0, 1)
(1, 1)
(5, 1)
(10, 1)

7.2 More Examples on Classes

The use of classes to solve problems from mathematical and physical sciences may
not be so obvious. On the other hand, in many administrative programs for manag-
ing interactions between objects in the real world the objects themselves are natural
candidates for being modeled by classes. Below we give some examples on what
classes can be used to model.

7.2.1 Bank Accounts

The concept of a bank account in a program is a good candidate for a class. The
account has some data, typically the name of the account holder, the account num-
ber, and the current balance. Three things we can do with an account is withdraw
money, put money into the account, and print out the data of the account. These
actions are modeled by methods. With a class we can pack the data and actions
together into a new data type so that one account corresponds to one variable in
a program.
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Class Account can be implemented as follows:

class Account(object):
def __init__(self, name, account_number, initial_amount):

self.name = name
self.no = account_number
self.balance = initial_amount

def deposit(self, amount):
self.balance += amount

def withdraw(self, amount):
self.balance -= amount

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self.name, self.no, self.balance)
print s

Here is a simple test of how class Account can be used:

>>> from classes import Account
>>> a1 = Account(’John Olsson’, ’19371554951’, 20000)
>>> a2 = Account(’Liz Olsson’, ’19371564761’, 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a2.withdraw(10500)
>>> a1.withdraw(3500)
>>> print "a1’s balance:", a1.balance
a1’s balance: 13500
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> a2.dump()
Liz Olsson, 19371564761, balance: 9500

The author of this class does not want users of the class to operate on the at-
tributes directly and thereby change the name, the account number, or the balance.
The intention is that users of the class should only call the constructor, the deposit,
withdraw, and dump methods, and (if desired) inspect the balance attribute, but
never change it. Other languages with class support usually have special keywords
that can restrict access to attributes, but Python does not. Either the author of
a Python class has to rely on correct usage, or a special convention can be used:
any name starting with an underscore represents an attribute that should never be
touched. One refers to names starting with an underscore as protected names. These
can be freely used inside methods in the class, but not outside.

In class Account, it is natural to protect access to the name, no, and balance

attributes by prefixing these names by an underscore. For reading only of the
balance attribute, we provide a new method get_balance. The user of the class
should now only call the methods in the class and not access any data attributes
directly.
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The new “protected” version of class Account, called AccountP, reads

class AccountP(object):
def __init__(self, name, account_number, initial_amount):

self._name = name
self._no = account_number
self._balance = initial_amount

def deposit(self, amount):
self._balance += amount

def withdraw(self, amount):
self._balance -= amount

def get_balance(self):
return self._balance

def dump(self):
s = ’%s, %s, balance: %s’ % \

(self._name, self._no, self._balance)
print s

We can technically access the data attributes, but we then break the convention
that names starting with an underscore should never be touched outside the class.
Here is class AccountP in action:

>>> a1 = AccountP(’John Olsson’, ’19371554951’, 20000)
>>> a1.deposit(1000)
>>> a1.withdraw(4000)
>>> a1.withdraw(3500)
>>> a1.dump()
John Olsson, 19371554951, balance: 13500
>>> print a1._balance # it works, but a convention is broken
13500
print a1.get_balance() # correct way of viewing the balance
13500
>>> a1._no = ’19371554955’ # this is a "serious crime"

Python has a special construct, called properties, that can be used to protect data at-
tributes from being changed. This is very useful, but the author considers properties
a bit too complicated for this introductory book.

7.2.2 Phone Book

You are probably familiar with the phone book on your mobile phone. The phone
book contains a list of persons. For each person you can record the name, telephone
numbers, email address, and perhaps other relevant data. A natural way of repre-
senting such personal data in a program is to create a class, say class Person. The
data attributes of the class hold information like the name, mobile phone number,
office phone number, private phone number, and email address. The constructor
may initialize some of the data about a person. Additional data can be specified
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later by calling methods in the class. One method can print the data. Other meth-
ods can register additional telephone numbers and an email address. In addition we
initialize some of the data attributes in a constructor method. The attributes that
are not initialized when constructing a Person instance can be added later by call-
ing appropriate methods. For example, adding an office number is done by calling
add_office_number.

Class Person may look as

class Person(object):
def __init__(self, name,

mobile_phone=None, office_phone=None,
private_phone=None, email=None):

self.name = name
self.mobile = mobile_phone
self.office = office_phone
self.private = private_phone
self.email = email

def add_mobile_phone(self, number):
self.mobile = number

def add_office_phone(self, number):
self.office = number

def add_private_phone(self, number):
self.private = number

def add_email(self, address):
self.email = address

Note the use of None as default value for various data attributes: the object None
is commonly used to indicate that a variable or attribute is defined, but yet not with
a sensible value.

A quick demo session of class Person may go as follows:

>>> p1 = Person(’Hans Hanson’,
... office_phone=’767828283’, email=’h@hanshanson.com’)
>>> p2 = Person(’Ole Olsen’, office_phone=’767828292’)
>>> p2.add_email(’olsen@somemail.net’)
>>> phone_book = [p1, p2]

It can be handy to add a method for printing the contents of a Person instance in
a nice fashion:

class Person(object):
...
def dump(self):

s = self.name + ’\n’
if self.mobile is not None:

s += ’mobile phone: %s\n’ % self.mobile
if self.office is not None:

s += ’office phone: %s\n’ % self.office
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if self.private is not None:
s += ’private phone: %s\n’ % self.private

if self.email is not None:
s += ’email address: %s\n’ % self.email

print s

With this method we can easily print the phone book:

>>> for person in phone_book:
... person.dump()
...
Hans Hanson
office phone: 767828283
email address: h@hanshanson.com

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

A phone book can be a list of Person instances, as indicated in the examples
above. However, if we quickly want to look up the phone numbers or email address
for a given name, it would be more convenient to store the Person instances in
a dictionary with the name as key:

>>> phone_book = {’Hanson’: p1, ’Olsen’: p2}
>>> for person in sorted(phone_book): # alphabetic order
... phone_book[person].dump()

The current example of Person objects is extended in Sect. 7.3.5.

7.2.3 A Circle

Geometric figures, such as a circle, are other candidates for classes in a program.
A circle is uniquely defined by its center point .x0; y0/ and its radius R. We can
collect these three numbers as data attributes in a class. The values of x0, y0,
and R are naturally initialized in the constructor. Other methods can be area and
circumference for calculating the area �R2 and the circumference 2�R:

class Circle(object):
def __init__(self, x0, y0, R):

self.x0, self.y0, self.R = x0, y0, R

def area(self):
return pi*self.R**2

def circumference(self):
return 2*pi*self.R
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An example of using class Circle goes as follows:

>>> c = Circle(2, -1, 5)
>>> print ’A circle with radius %g at (%g, %g) has area %g’ % \
... (c.R, c.x0, c.y0, c.area())
A circle with radius 5 at (2, -1) has area 78.5398

The ideas of class Circle can be applied to other geometric objects as well:
rectangles, triangles, ellipses, boxes, spheres, etc. Exercise 7.4 tests if you are able
to adapt class Circle to a rectangle and a triangle.

Verification We should include a test function for checking that the implementa-
tion of class Circle is correct:

def test_Circle():
R = 2.5
c = Circle(7.4, -8.1, R)

from math import pi
expected_area = pi*R**2
computed_area = c.area()
diff = abs(expected_area - computed_area)
tol = 1E-14
assert diff < tol, ’bug in Circle.area, diff=%s’ % diff

expected_circumference = 2*pi*R
computed_circumference = c.circumference()
diff = abs(expected_circumference - computed_circumference)
assert diff < tol, ’bug in Circle.circumference, diff=%s’ % diff

The test_Circle function is written in a way that it can be used in a pytest or
nose testing framework (see Sect. H.9, or the brief examples in Sects. 3.3.3, 3.4.2,
and 4.9.4). The necessary conventions are that the function name starts with test_,
the function takes no arguments, and all tests are of the form assert success or
assert success, msg where success is a boolean condition for the test and msg
is an optional message to be written if the test fails (success is False). It is a good
habit to write such test functions to verify the implementation of classes.

Remark There are usually many solutions to a programming problem. Represent-
ing a circle is no exception. Instead of using a class, we could collect x0, y0, and R

in a list and create global functions area and circumference that take such a list
as argument:

x0, y0, R = 2, -1, 5
circle = [x0, y0, R]

def area(c):
R = c[2]
return pi*R**2

def circumference(c):
R = c[2]
return 2*pi*R
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Alternatively, the circle could be represented by a dictionary with keys ’center’
and ’radius’:

circle = {’center’: (2, -1), ’radius’: 5}

def area(c):
R = c[’radius’]
return pi*R**2

def circumference(c):
R = c[’radius’]
return 2*pi*R

7.3 Special Methods

Some class methods have names starting and ending with a double underscore.
These methods allow a special syntax in the program and are called special methods.
The constructor __init__ is one example. This method is automatically called
when an instance is created (by calling the class as a function), but we do not need
to explicitly write __init__. Other special methods make it possible to perform
arithmetic operations with instances, to compare instances with >, >=, !=, etc., to
call instances as we call ordinary functions, and to test if an instance evaluates to
True or False, to mention some possibilities.

7.3.1 The Call Special Method

Computing the value of the mathematical function represented by class Y from
Sect. 7.1.2, with y as the name of the instance, is performed by writing y.value(t).
If we could write just y(t), the y instance would look as an ordinary function. Such
a syntax is indeed possible and offered by the special method named __call__.
Writing y(t) implies a call

y.__call__(t)

if class Y has the method __call__ defined. We may easily add this special method:

class Y(object):
...
def __call__(self, t):

return self.v0*t - 0.5*self.g*t**2

The previous value method is now redundant. A good programming convention
is to include a __call__ method in all classes that represent a mathematical func-
tion. Instances with __call__ methods are said to be callable objects, just as plain
functions are callable objects as well. The call syntax for callable objects is the
same, regardless of whether the object is a function or a class instance. Given an
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object a,

if callable(a):

tests whether a behaves as a callable, i.e., if a is a Python function or an instance
with a __call__ method.

In particular, an instance of class Y can be passed as the f argument to the diff
function from Sect. 7.1.1:

y = Y(v0=5)
dydt = diff(y, 0.1)

Inside diff, we can test that f is not a function but an instance of class Y. However,
we only use f in calls, like f(x), and for this purpose an instance with a __call__
method works as a plain function. This feature is very convenient.

The next section demonstrates a neat application of the call operator __call__
in a numerical algorithm.

7.3.2 Example: Automagic Differentiation

Problem Given a Python implementation f(x) of a mathematical function f .x/,
we want to create an object that behaves as a Python function for computing the
derivative f 0.x/. For example, if this object is of type Derivative, we should be
able to write something like

>>> def f(x):
return x**3

...
>>> dfdx = Derivative(f)
>>> x = 2
>>> dfdx(x)
12.000000992884452

That is, dfdx behaves as a straight Python function for implementing the derivative
3x2 of x3 (well, the answer is only approximate, with an error in the 7th decimal,
but the approximation can easily be improved).

Maple, Mathematica, and many other software packages can do exact symbolic
mathematics, including differentiation and integration. The Python package sympy
for symbolic mathematics (see Sect. 1.7) makes it trivial to calculate the exact
derivative of a large class of functions f .x/ and turn the result into an ordinary
Python function. However, mathematical functions that are defined in an algo-
rithmic way (e.g., solution of another mathematical problem), or functions with
branches, random numbers, etc., pose fundamental problems to symbolic differ-
entiation, and then numerical differentiation is required. Therefore we base the
computation of derivatives in Derivative instances on finite difference formulas.
Use of exact symbolic differentiation via SymPy is also possible.
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Solution The most basic (but not the best) formula for a numerical derivative is

f 0.x/ � f .x C h/ � f .x/

h
: (7.2)

The idea is that we make a class to hold the function to be differentiated, call it f,
and a step size h to be used in (7.2). These variables can be set in the constructor.
The __call__ operator computes the derivative with aid of (7.1). All this can be
coded in a few lines:

class Derivative(object):
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h # make short forms
return (f(x+h) - f(x))/h

Note that we turn h into a float to avoid potential integer division.
Below follows an application of the class to differentiate two functions f .x/ D

sin x and g.t/ D t3:

>>> from math import sin, cos, pi
>>> df = Derivative(sin)
>>> x = pi
>>> df(x)
-1.000000082740371
>>> cos(x) # exact
-1.0
>>> def g(t):
... return t**3
...
>>> dg = Derivative(g)
>>> t = 1
>>> dg(t) # compare with 3 (exact)
3.000000248221113

The expressions df(x) and dg(t) look as ordinary Python functions that evaluate
the derivative of the functions sin(x) and g(t). Class Derivative works for
(almost) any function f .x/.

Verification It is a good programming habit to include a test function for verifying
the implementation of a class. We can construct a test based on the fact that the
approximate differentiation formula (7.2) is exact for linear functions:

def test_Derivative():
# The formula is exact for linear functions, regardless of h
f = lambda x: a*x + b
a = 3.5; b = 8
dfdx = Derivative(f, h=0.5)
diff = abs(dfdx(4.5) - a)
assert diff < 1E-14, ’bug in class Derivative, diff=%s’ % diff
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We have here used a lambda function for compactly defining a function f, see
Sect. 3.1.14. A special feature of f is that it remembers the variables a and b when
f is sent to class Derivative (it is a closure, see Sect. 7.1.7). Note that the test
function above follows the conventions for test functions outlined in Sect. 7.2.3.

Application: Newton’s method In what situations will it be convenient to au-
tomatically produce a Python function df(x) which is the derivative of another
Python function f(x)? One example arises when solving nonlinear algebraic equa-
tions f .x/ D 0 with Newton’s method and we, because of laziness, lack of time, or
lack of training do not manage to derive f 0.x/ by hand. Consider a function Newton
for solving f .x/ D 0: Newton(f, x, dfdx, epsilon=1.0E-7, N=100). Sec-
tion A.1.10 presents a specific implementation in a module file Newton.py. The
arguments are a Python function f for f .x/, a float x for the initial guess (start
value) of x, a Python function dfdx for f 0.x/, a float epsilon for the accuracy �

of the root: the algorithms iterates until jf .x/j < �, and an int N for the maximum
number of iterations that we allow. All arguments are easy to provide, except dfdx,
which requires computing f 0.x/ by hand then implementation of the formula in
a Python function. Suppose our target equation reads

f .x/ D 105.x � 0:9/2.x � 1:1/3 D 0 :

The function f .x/ is plotted in Fig. 7.2. The following session employs the
Derivative class to quickly make a derivative so we can call Newton’s method:

>>> from classes import Derivative
>>> from Newton import Newton
>>> def f(x):
... return 100000*(x - 0.9)**2 * (x - 1.1)**3
...
>>> df = Derivative(f)
>>> Newton(f, 1.01, df, epsilon=1E-5)
(1.0987610068093443, 8, -7.5139644257961411e-06)

The output 3-tuple holds the approximation to a root, the number of iterations, and
the value of f at the approximate root (a measure of the error in the equation).

The exact root is 1.1, and the convergence toward this value is very slow. (New-
ton’s method converges very slowly when the derivative of f is zero at the roots of
f . Even slower convergence appears when higher-order derivatives also are zero,
like in this example. Notice that the error in x is much larger than the error in the
equation (epsilon). For example, an epsilon tolerance of 10�10 requires 18 it-
erations with an error of 10�3.) Using an exact derivative gives almost the same
result:

>>> def df_exact(x):
... return 100000*(2*(x-0.9)*(x-1.1)**3 + \
... (x-0.9)**2*3*(x-1.1)**2)
...
>>> Newton(f, 1.01, df_exact, epsilon=1E-5)
(1.0987610065618421, 8, -7.5139689100699629e-06)

http://tinyurl.com/pwyasaa/diffeq/Newton.py


436 7 Introduction to Classes

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.9  0.95  1  1.05  1.1  1.15

Fig. 7.2 Plot of y D 105.x � 0:9/2.x � 1:1/3

This example indicates that there are hardly any drawbacks in using a "smart"
inexact general differentiation approach as in the Derivative class. The advan-
tages are many – most notably, Derivative avoids potential errors from possibly
incorrect manual coding of possibly lengthy expressions of possibly wrong hand-
calculations. The errors in the involved approximations can be made smaller, usu-
ally much smaller than other errors, like the tolerance in Newton’s method in this
example or the uncertainty in physical parameters in real-life problems.

Solution utilizing SymPy Class Derivative is based on numerical differentia-
tion, but it is possible to make an equally short class that can do exact differentiation.
In SymPy, one can perform symbolic differentiation of an expression e with respect
to a symbolic independent variable x by diff(e, x) (see Sect. 1.7.1). Assuming
that the user’s f function can be evaluated for a symbolic independent variable x,
we can call f(x) to get the SymPy expression for the formula in f and then use
diff to calculate the exact derivative. Thereafter, we turn the symbolic expression
of the derivative into an ordinary Python function (via lambdify) and define this
function as the __call__ method. The proper Python code is very short:

class Derivative_sympy(object):
def __init__(self, f):

from sympy import Symbol, diff, lambdify
x = Symbol(’x’)
sympy_f = f(x) # make sympy expression
sympy_dfdx = diff(sympy_f, x)
self.__call__ = lambdify([x], sympy_dfdx)

Note how the __call__ method is defined by assigning a function to it (even
though the function returned by lambdify is a function of x only, it works to call
obj(x) for an instance obj of type Derivative_sympy).
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Both demonstration of the class and verification of the implementation can be
placed in a test function:

def test_Derivative_sympy():
def g(t):

return t**3

dg = Derivative_sympy(g)
t = 2
exact = 3*t**2
computed = dg(t)
tol = 1E-14
assert abs(exact - computed) < tol

def h(y):
return exp(-y)*sin(2*y)

from sympy import exp, sin
dh = Derivative_sympy(h)
from math import pi, exp, sin, cos
y = pi
exact = -exp(-y)*sin(2*y) + exp(-y)*2*cos(2*y)
computed = dh(y)
assert abs(exact - computed) < tol

The example with the g(t) should be straightforward to understand. In the
constructor of class Derivative_sympy, we call g(x), with the symbol x, and g

returns the SymPy expression x**3. The __call__ method then becomes a func-
tion lambda x: 3*x**2.

The h(y) function, however, deserves more explanation. When then constructor
of class Derivative_sympymakes the call h(x), with the symbol x, the h function
will return the SymPy expression exp(-x)*sin(2*x), provided exp and sin are
SymPy functions. Since we do from sympy import exp, sin prior to calling
the constructor in class Derivative_sympy, the names exp and sin are defined
in the test function, and our local h function will have access to all local variables,
as it is a closure as mentioned above and in Sect. 7.1.7 (see also Sect. 9.2.6). This
means that h has access to sympy.sin and sympy.cos when the constructor in
class Derivative_sympy calls h. Thereafter, we want to do some numerical com-
puting and need exp, sin, and cos from the math module. If we had tried to do
Derivative_sympy(h) after the import from math, h would then call math.exp
and math.sin with a SymPy symbol as argument, and would cause a TypeError

since math.exp expects a float, not a Symbol object from SymPy.
Although the Derivative_sympy class is small and compact, its construction

and use as explained here bring up more advanced topics than class Derivative
and its plain numerical computations. However, it may be interesting to see that
a class for exact differentiation of a Python function can be realized in very few
lines.
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7.3.3 Example: Automagic Integration

We can apply the ideas from Sect. 7.3.2 to make a class for computing the integral
of a function numerically. Given a function f .x/, we want to compute

F.xI a/ D
x
Z

a

f .t/dt :

The computational technique consists of using the Trapezoidal rule with n intervals
(nC 1 points):

x
Z

a

f .t/dt D h

 

1

2
f .a/C

n�1
X

iD1

f .a C ih/C 1

2
f .x/

!

; (7.3)

where h D .x � a/=n. In an application program, we want to compute F.xI a/ by
a simple syntax like

def f(x):
return exp(-x**2)*sin(10*x)

a = 0; n = 200
F = Integral(f, a, n)
print F(x)

Here, f(x) is the Python function to be integrated, and F(x) behaves as a Python
function that calculates values of F.xI a/.

A simple implementation Consider a straightforward implementation of the
Trapezoidal rule in a Python function:

def trapezoidal(f, a, x, n):
h = (x-a)/float(n)
I = 0.5*f(a)
for i in range(1, n):

I += f(a + i*h)
I += 0.5*f(x)
I *= h
return I

Class Integral must have some data attributes and a __call__ method. Since
the latter method is supposed to take x as argument, the other parameters a, f, and
n must be data attributes. The implementation then becomes

class Integral(object):
def __init__(self, f, a, n=100):

self.f, self.a, self.n = f, a, n

def __call__(self, x):
return trapezoidal(self.f, self.a, x, self.n)
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Observe that we just reuse the trapezoidal function to perform the calculation.
We could alternatively have copied the body of the trapezoidal function into the
__call__ method. However, if we already have this algorithm implemented and
tested as a function, it is better to call the function. The class is then known as
a wrapper of the underlying function. A wrapper allows something to be called
with alternative syntax.

An application program computing
R 2�

0
sin x dx might look as follows:

from math import sin, pi

G = Integral(sin, 0, 200)
value = G(2*pi)

An equivalent calculation is

value = trapezoidal(sin, 0, 2*pi, 200)

Verification via symbolic computing We should always provide a test function
for verification of the implementation. To avoid dealing with unknown approxima-
tion errors of the Trapezoidal rule, we use the obvious fact that linear functions are
integrated exactly by the rule. Although it is really easy to pick a linear function,
integrate it, and figure out what an integral is, we can also demonstrate how to au-
tomate such a process by SymPy. Essentially, we define an expression in SymPy,
ask SymPy to integrate it, and then turn the resulting symbolic integral to a plain
Python function for computing:

>>> import sympy as sp
>>> x = sp.Symbol(’x’)
>>> f_expr = sp.cos(x) + 5*x
>>> f_expr
5*x + cos(x)
>>> F_expr = sp.integrate(f_expr, x)
>>> F_expr
5*x**2/2 + sin(x)
>>> F = sp.lambdify([x], F_expr) # turn f_expr to F(x) func.
>>> F(0)
0.0
>>> F(1)
3.3414709848078967

Using such functionality to do exact integration, we can write our test function as

def test_Integral():
# The Trapezoidal rule is exact for linear functions
import sympy as sp
x = sp.Symbol(’x’)
f_expr = 2*x + 5
# Turn sympy expression into plain Python function f(x)
f = sp.lambdify([x], f_expr)
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# Find integral of f_expr and turn into plain Python function F
F_expr = sp.integrate(f_expr, x)
F = sp.lambdify([x], F_expr)

a = 2
x = 6
exact = F(x) - F(a)
computed = Integral(f, a, n=4)
diff = abs(exact - computed)
tol = 1E-15
assert diff < tol, ’bug in class Integral, diff=%s’ % diff

If you think it is overkill to use SymPy for integrating linear functions, you
can equally well do it yourself and define f = lambda x: 2*x + 5 and F =

lambda x: x**2 + 5*x.

Remark Class Integral is inefficient (but probably more than fast enough) for
plotting F.xI a/ as a function x. Exercise 7.22 suggests to optimize the class for
this purpose.

7.3.4 Turning an Instance into a String

Another useful special method is __str__. It is called when a class instance needs
to be converted to a string. This happens when we say print a, and a is an in-
stance. Python will then look into the a instance for a __str__ method, which is
supposed to return a string. If such a special method is found, the returned string is
printed, otherwise just the name of the class is printed. An example will illustrate
the point. First we try to print an y instance of class Y from Sect. 7.1.2 (where there
is no __str__ method):

>>> print y
<__main__.Y instance at 0xb751238c>

This means that y is an Y instance in the __main__ module (the main program or
the interactive session). The output also contains an address telling where the y

instance is stored in the computer’s memory.
If we want print y to print out the y instance, we need to define the __str__

method in class Y:

class Y(object):
...
def __str__(self):

return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Typically, __str__ replaces our previous formulamethod and __call__ replaces
our previous value method. Python programmers with the experience that we now
have gained will therefore write class Y with special methods only:
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class Y(object):
def __init__(self, v0):

self.v0 = v0
self.g = 9.81

def __call__(self, t):
return self.v0*t - 0.5*self.g*t**2

def __str__(self):
return ’v0*t - 0.5*g*t**2; v0=%g’ % self.v0

Let us see the class in action:

>>> y = Y(1.5)
>>> y(0.2)
0.1038
>>> print y
v0*t - 0.5*g*t**2; v0=1.5

What have we gained by using special methods? Well, we can still only evaluate
the formula and write it out, but many users of the class will claim that the syntax
is more attractive since y(t) in code means y.t/ in mathematics, and we can do
a print y to view the formula. The bottom line of using special methods is to
achieve a more user-friendly syntax. The next sections illustrate this point further.

Note that the __str__ method is called whenever we do str(a), and print a

is effectively print str(a), i.e., print a.__str__().

7.3.5 Example: Phone Book with Special Methods

Let us reconsider class Person from Sect. 7.2.2. The dump method in that class is
better implemented as a __str__ special method. This is easy: we just change the
method name and replace print s by return s.

Storing Person instances in a dictionary to form a phone book is straightfor-
ward. However, we make the dictionary a bit easier to use if we wrap a class around
it. That is, we make a class PhoneBook which holds the dictionary as an attribute.
An add method can be used to add a new person:

class PhoneBook(object):
def __init__(self):

self.contacts = {} # dict of Person instances

def add(self, name, mobile=None, office=None,
private=None, email=None):

p = Person(name, mobile, office, private, email)
self.contacts[name] = p
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A __str__ can print the phone book in alphabetic order:

def __str__(self):
s = ’’
for p in sorted(self.contacts):

s += str(self.contacts[p]) + ’\n’
return s

To retrieve a Person instance, we use the __call__ with the person’s name as
argument:

def __call__(self, name):
return self.contacts[name]

The only advantage of this method is simpler syntax: for a PhoneBook b we can
get data about NN by calling b(’NN’) rather than accessing the internal dictionary
b.contacts[’NN’].

We can make a simple demo code for a phone book with three names:

b = PhoneBook()
b.add(’Ole Olsen’, office=’767828292’,

email=’olsen@somemail.net’)
b.add(’Hans Hanson’,

office=’767828283’, mobile=’995320221’)
b.add(’Per Person’, mobile=’906849781’)
print b(’Per Person’)
print b

The output becomes

Per Person
mobile phone: 906849781

Hans Hanson
mobile phone: 995320221
office phone: 767828283

Ole Olsen
office phone: 767828292
email address: olsen@somemail.net

Per Person
mobile phone: 906849781

You are strongly encouraged to work through this last demo program by hand and
simulate what the program does. That is, jump around in the code and write down
on a piece of paper what various variables contain after each statement. This is
an important and good exercise! You enjoy the happiness of mastering classes if
you get the same output as above. The complete program with classes Person

and PhoneBook and the test above is found in the file PhoneBook.py. You can

http://tinyurl.com/pwyasaa/class/PhoneBook.py
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run this program, statement by statement, either in the Online Python Tutor2 or in
a debugger (see Sect. F.1) to control that your understanding of the program flow is
correct.

Remark Note that the names are sorted with respect to the first names. The reason
is that strings are sorted after the first character, then the second character, and so
on. We can supply our own tailored sort function, as explained in Exercise 3.39.
One possibility is to split the name into words and use the last word for sorting:

def last_name_sort(name1, name2):
lastname1 = name1.split()[-1]
lastname2 = name2.split()[-1]
if lastname1 < lastname2:

return -1
elif lastname1 > lastname2:

return 1
else: # equality

return 0

for p in sorted(self.contacts, last_name_sort):
...

7.3.6 Adding Objects

Let a and b be instances of some class C. Does it make sense to write a + b? Yes,
this makes sense if class C has defined a special method __add__:

class C(object):
...
__add__(self, other):

...

The __add__method should add the instances self and other and return the result
as an instance. So when Python encounters a + b, it will check if class C has an
__add__method and interpret a + b as the call a.__add__(b). The next example
will hopefully clarify what this idea can be used for.

7.3.7 Example: Class for Polynomials

Let us create a class Polynomial for polynomials. The coefficients in the poly-
nomial can be given to the constructor as a list. Index number i in this list
represents the coefficients of the xi term in the polynomial. That is, writing
Polynomial([1,0,-1,2]) defines a polynomial

1C 0 � x � 1 � x2 C 2 � x3 D 1 � x2 C 2x3 :

2 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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Polynomials can be added (by just adding the coefficients corresponding to the same
powers) so our class may have an __add__ method. A __call__ method is natural
for evaluating the polynomial, given a value of x. The class is listed below and
explained afterwards.

class Polynomial(object):
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
"""Evaluate the polynomial."""
s = 0
for i in range(len(self.coeff)):

s += self.coeff[i]*x**i
return s

def __add__(self, other):
"""Return self + other as Polynomial object."""
# Two cases:
#
# self: X X X X X X X
# other: X X X
#
# or:
#
# self: X X X X X
# other: X X X X X X X X

# Start with the longest list and add in the other
if len(self.coeff) > len(other.coeff):

result_coeff = self.coeff[:] # copy!
for i in range(len(other.coeff)):

result_coeff[i] += other.coeff[i]
else:

result_coeff = other.coeff[:] # copy!
for i in range(len(self.coeff)):

result_coeff[i] += self.coeff[i]
return Polynomial(result_coeff)

Implementation Class Polynomial has one data attribute: the list of coefficients.
To evaluate the polynomial, we just sum up coefficient no. i times xi for i D 0 to
the number of coefficients in the list.

The __add__ method looks more advanced. The goal is to add the two lists
of coefficients. However, it may happen that the lists are of unequal length. We
therefore start with the longest list and add in the other list, element by element.
Observe that result_coeff starts out as a copy of self.coeff: if not, changes
in result_coeff as we compute the sum will be reflected in self.coeff. This
means that self would be the sum of itself and the other instance, or in other
words, adding two instances, p1+p2, changes p1 – this is not what we want! An
alternative implementation of class Polynomial is found in Exercise 7.24.

A subtraction method __sub__ can be implemented along the lines of __add__,
but is slightly more complicated and left as Exercise 7.25. You are strongly encour-
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aged to do this exercise as it will help increase the understanding of the interplay
between mathematics and programming in class Polynomial.

A more complicated operation on polynomials, from a mathematical point of
view, is the multiplication of two polynomials. Let p.x/ D

PM
iD0 ci x

i and q.x/ D
PN

jD0 dj xj be the two polynomials. The product becomes
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The double sum must be implemented as a double loop, but first the list for the
resulting polynomial must be created with length MCNC1 (the highest exponent is
MCN and then we need a constant term). The implementation of the multiplication
operator becomes

def __mul__(self, other):
c = self.coeff
d = other.coeff
M = len(c) - 1
N = len(d) - 1
result_coeff = numpy.zeros(M+N+1)
for i in range(0, M+1):

for j in range(0, N+1):
result_coeff[i+j] += c[i]*d[j]

return Polynomial(result_coeff)

We could also include a method for differentiating the polynomial according to
the formula

d

dx

n
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X

iD1

ici x
i�1 :

If ci is stored as a list c, the list representation of the derivative, say its name is dc,
fulfills dc[i-1] = i*c[i] for i running from 1 to the largest index in c. Note
that dc has one element less than c.

There are two different ways of implementing the differentiation functionality,
either by changing the polynomial coefficients, or by returning a new Polynomial

instance from the method such that the original polynomial instance is intact. We let
p.differentiate() be an implementation of the first approach, i.e., this method
does not return anything, but the coefficients in the Polynomial instance p are
altered. The other approach is implemented by p.derivative(), which returns
a new Polynomial object with coefficients corresponding to the derivative of p.

The complete implementation of the two methods is given below:

class Polynomial(object):
...
def differentiate(self):

"""Differentiate this polynomial in-place."""
for i in range(1, len(self.coeff)):

self.coeff[i-1] = i*self.coeff[i]
del self.coeff[-1]



446 7 Introduction to Classes

def derivative(self):
"""Copy this polynomial and return its derivative."""
dpdx = Polynomial(self.coeff[:]) # make a copy
dpdx.differentiate()
return dpdx

The Polynomial class with a differentiate method and not a derivative

method would be mutable (i.e., the object’s content can change) and allow in-
place changes of the data, while the Polynomial class with derivative and not
differentiatewould yield an immutable object where the polynomial initialized
in the constructor is never altered. (Technically, it is possible to grab the coeff

variable in a class instance and alter this list. By starting coeff with an under-
score, a Python programming convention tells programmers that this variable is
for internal use in the class only, and not to be altered by users of the instance,
see Sects. 7.2.1 and 7.5.2.) A good rule is to offer only one of these two func-
tions such that a Polynomial object is either mutable or immutable (if we leave
out differentiate, its function body must of course be copied into derivative

since derivative now relies on that code). However, since the main purpose of
this class is to illustrate various types of programming techniques, we keep both
versions.

Usage As a demonstration of the functionality of class Polynomial, we introduce
the two polynomials

p1.x/ D 1 � x; p2.x/ D x � 6x4 � x5 :

>>> p1 = Polynomial([1, -1])
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p3 = p1 + p2
>>> print p3.coeff
[1, 0, 0, 0, -6, -1]
>>> p4 = p1*p2
>>> print p4.coeff
[0, 1, -1, 0, -6, 5, 1]
>>> p5 = p2.derivative()
>>> print p5.coeff
[1, 0, 0, -24, -5]

One verification of the implementation may be to compare p3 at (e.g.) x D 1=2

with p1.x/C p2.x/:

>>> x = 0.5
>>> p1_plus_p2_value = p1(x) + p2(x)
>>> p3_value = p3(x)
>>> print p1_plus_p2_value - p3_value
0.0

Note that p1 + p2 is very different from p1(x) + p2(x). In the former case,
we add two instances of class Polynomial, while in the latter case we add two
instances of class float (since p1(x) and p2(x) imply calling __call__ and that
method returns a float object).
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Pretty print of polynomials The Polynomial class can also be equipped with
a __str__ method for printing the polynomial to the screen. A first, rough imple-
mentation could simply add up strings of the form + self.coeff[i]*x^i:

class Polynomial(object):
...
def __str__(self):

s = ’’
for i in range(len(self.coeff)):

s += ’ + %g*x^%d’ % (self.coeff[i], i)
return s

However, this implementation leads to ugly output from a mathematical viewpoint.
For instance, a polynomial with coefficients [1,0,0,-1,-6] gets printed as

+ 1*x^0 + 0*x^1 + 0*x^2 + -1*x^3 + -6*x^4

A more desired output would be

1 - x^3 - 6*x^4

That is, terms with a zero coefficient should be dropped; a part ’+ -’ of the out-
put string should be replaced by ’- ’; unit coefficients should be dropped, i.e., ’
1*’ should be replaced by space ’ ’; unit power should be dropped by replacing
’x^1 ’ by ’x ’; zero power should be dropped and replaced by 1, initial spaces
should be fixed, etc. These adjustments can be implemented using the replace

method in string objects and by composing slices of the strings. The new version
of the __str__ method below contains the necessary adjustments. If you find this
type of string manipulation tricky and difficult to understand, you may safely skip
further inspection of the improved __str__ code since the details are not essential
for your present learning about the class concept and special methods.

class Polynomial(object):
...
def __str__(self):

s = ’’
for i in range(0, len(self.coeff)):

if self.coeff[i] != 0:
s += ’ + %g*x^%d’ % (self.coeff[i], i)

# Fix layout
s = s.replace(’+ -’, ’- ’)
s = s.replace(’x^0’, ’1’)
s = s.replace(’ 1*’, ’ ’)
s = s.replace(’x^1 ’, ’x ’)
if s[0:3] == ’ + ’: # remove initial +

s = s[3:]
if s[0:3] == ’ - ’: # fix spaces for initial -

s = ’-’ + s[3:]
return s

Programming sometimes turns into coding (what one think is) a general solution
followed by a series of special cases to fix caveats in the “general” solution, just as
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we experienced with the __str__ method above. This situation often calls for ad-
ditional future fixes and is often a sign of a suboptimal solution to the programming
problem.

Pretty print of Polynomial instances can be demonstrated in an interactive ses-
sion:

>>> p1 = Polynomial([1, -1])
>>> print p1
1 - x^1
>>> p2 = Polynomial([0, 1, 0, 0, -6, -1])
>>> p2.differentiate()
>>> print p2
1 - 24*x^3 - 5*x^4

Verifying the implementation It is always a good habit to include a test function
test_Polynomial() for verifying the functionality in class Polynomial. To this
end, we construct some examples of addition, multiplication, and differentiation of
polynomials by hand and make tests that class Polynomial reproduces the correct
results. Testing the __str__ method is left as Exercise 7.26.

Rounding errors may be an issue in class Polynomial: __add__, derivative,
and differentiatewill lead to integer coefficients if the polynomials to be added
have integer coefficients, while __mul__ always results in a polynomial with the
coefficients stored in a numpy array with float elements. Integer coefficients in
lists can be compared using == for lists, while coefficients in numpy arrays must
be compared with a tolerance. One can either subtract the numpy arrays and use
the max method to find the largest deviation and compare this with a tolerance, or
one can use numpy.allclose(a, b, rtol=tol) for comparing the arrays a and
b with a (relative) tolerance tol.

Let us pick polynomials with integer coefficients as test cases such that __add__,
derivative, and differentiate can be verified by testing equality (==) of the
coeff lists. Multiplication in __mul__ must employ numpy.allclose.

We follow the convention that all tests are on the form assert success, where
success is a boolean expression for the test. (The actual version of the test func-
tion in the file Polynomial.py adds an error message msg to the test: assert

success, msg.) Another part of the convention is that the function starts with
test_ and the function takes no arguments.

Our test function now becomes

def test_Polynomial():
p1 = Polynomial([1, -1])
p2 = Polynomial([0, 1, 0, 0, -6, -1])

p3 = p1 + p2
p3_exact = Polynomial([1, 0, 0, 0, -6, -1])
assert p3.coeff == p3_exact.coeff

p4 = p1*p2
p4_exact = Polynomial(numpy.array([0, 1, -1, 0, -6, 5, 1]))
assert numpy.allclose(p4.coeff, p4_exact.coeff, rtol=1E-14)

http://tinyurl.com/pwyasaa/class/Polynomial.py
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p5 = p2.derivative()
p5_exact = Polynomial([1, 0, 0, -24, -5])
assert p5.coeff == p5_exact.coeff

p6 = Polynomial([0, 1, 0, 0, -6, -1]) # p2
p6.differentiate()
p6_exact = p5_exact
assert p6.coeff == p6_exact.coeff

7.3.8 Arithmetic Operations and Other Special Methods

Given two instances a and b, the standard binary arithmetic operations with a and
b are defined by the following special methods:

� a + b : a.__add__(b)
� a - b : a.__sub__(b)
� a*b : a.__mul__(b)
� a/b : a.__div__(b)
� a**b : a.__pow__(b)

Some other special methods are also often useful:

� the length of a, len(a): a.__len__()
� the absolute value of a, abs(a): a.__abs__()
� a == b : a.__eq__(b)
� a > b : a.__gt__(b)
� a >= b : a.__ge__(b)
� a < b : a.__lt__(b)
� a <= b : a.__le__(b)
� a != b : a.__ne__(b)
� -a : a.__neg__()
� evaluating a as a boolean expression (as in the test if a:) implies calling

the special method a.__bool__(), which must return True or False – if
__bool__ is not defined, __len__ is called to see if the length is zero (False)
or not (True)

We can implement such methods in class Polynomial, see Exercise 7.25. Sec-
tion 7.4 contains examples on implementing the special methods listed above.

7.3.9 Special Methods for String Conversion

Look at this class with a __str__ method:

>>> class MyClass(object):
... def __init__(self):
... self.data = 2
... def __str__(self):
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... return ’In __str__: %s’ % str(self.data)

...
>>> a = MyClass()
>>> print a
In __str__: 2

Hopefully, you understand well why we get this output (if not, go back to
Sect. 7.3.4).

But what will happen if we write just a at the command prompt in an interactive
shell?

>>> a
<__main__.MyClass instance at 0xb75125ac>

When writing just a in an interactive session, Python looks for a special method
__repr__ in a. This method is similar to __str__ in that it turns the instance
into a string, but there is a convention that __str__ is a pretty print of the instance
contents while __repr__ is a complete representation of the contents of the in-
stance. For a lot of Python classes, including int, float, complex, list, tuple,
and dict, __repr__ and __str__ give identical output. In our class MyClass the
__repr__ is missing, and we need to add it if we want

>>> a

to write the contents like print a does.
Given an instance a, str(a) implies calling a.__str__() and repr(a) implies

calling a.__repr__(). This means that

>>> a

is actually a repr(a) call and

>>> print a

is actually a print str(a) statement.
A simple remedy in class MyClass is to define

def __repr__(self):
return self.__str__() # or return str(self)

However, as we explain below, the __repr__ is best defined differently.

Recreating objects from strings The Python function eval(e) evaluates a valid
Python expression contained in the string e, see Sect. 4.3.1. It is a convention
that __repr__ returns a string such that eval applied to the string recreates the
instance. For example, in case of the Y class from Sect. 7.1.2, __repr__ should
return ’Y(10)’ if the v0 variable has the value 10. Then eval(’Y(10)’) will be
the same as if we had coded Y(10) directly in the program or an interactive session.
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Below we show examples of __repr__ methods in classes Y (Sect. 7.1.2),
Polynomial (Sect. 7.3.7), and MyClass (above):

class Y(object):
...
def __repr__(self):

return ’Y(v0=%s)’ % self.v0

class Polynomial(object):
...
def __repr__(self):

return ’Polynomial(coefficients=%s)’ % self.coeff

class MyClass(object):
...
def __repr__(self):

return ’MyClass()’

With these definitions, eval(repr(x)) recreates the object x if it is of one of the
three types above. In particular, we can write x to file and later recreate the x from
the file information:

# somefile is some file object
somefile.write(repr(x))
somefile.close()
...
data = somefile.readline()
x2 = eval(data) # recreate object

Now, x2 will be equal to x (x2 == x evaluates to True).

7.4 Example: Class for Vectors in the Plane

This section explains how to implement two-dimensional vectors in Python such
that these vectors act as objects we can add, subtract, form inner products with, and
do other mathematical operations on. To understand the forthcoming material, it is
necessary to have digested Sect. 7.3, in particular Sects. 7.3.6 and 7.3.8.

7.4.1 SomeMathematical Operations on Vectors

Vectors in the plane are described by a pair of real numbers, .a; b/. In Sect. 5.1.2
we present mathematical rules for adding and subtracting vectors, multiplying two
vectors (the inner or dot or scalar product), the length of a vector, and multiplication
by a scalar:

.a; b/C .c; d/ D .aC c; b C d/; (7.4)

.a; b/� .c; d/ D .a � c; b � d/; (7.5)
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.a; b/ � .c; d/ D ac C bd; (7.6)

jj.a; b/jj D
p

.a; b/ � .a; b/ : (7.7)

Moreover, two vectors .a; b/ and .c; d/ are equal if a D c and b D d .

7.4.2 Implementation

We may create a class for plane vectors where the above mathematical operations
are implemented by special methods. The class must contain two data attributes,
one for each component of the vector, called x and y below. We include special
methods for addition, subtraction, the scalar product (multiplication), the absolute
value (length), comparison of two vectors (== and !=), as well as a method for
printing out a vector.

class Vec2D(object):
def __init__(self, x, y):

self.x = x
self.y = y

def __add__(self, other):
return Vec2D(self.x + other.x, self.y + other.y)

def __sub__(self, other):
return Vec2D(self.x - other.x, self.y - other.y)

def __mul__(self, other):
return self.x*other.x + self.y*other.y

def __abs__(self):
return math.sqrt(self.x**2 + self.y**2)

def __eq__(self, other):
return self.x == other.x and self.y == other.y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

def __ne__(self, other):
return not self.__eq__(other) # reuse __eq__

The __add__, __sub__, __mul__, __abs__, and __eq__ methods should be quite
straightforward to understand from the previous mathematical definitions of these
operations. The last method deserves a comment: here we simply reuse the equality
operator __eq__, but precede it with a not. We could also have implemented this
method as

def __ne__(self, other):
return self.x != other.x or self.y != other.y

Nevertheless, this implementation requires us to write more, and it has the danger
of introducing an error in the logics of the boolean expressions. A more reliable
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approach, when we know that the __eq__ method works, is to reuse this method
and observe that a != b means not (a == b).

A word of warning is in place regarding our implementation of the equality op-
erator (== via __eq__). We test for equality of each component, which is correct
from a mathematical point of view. However, each vector component is a floating-
point number that may be subject to rounding errors both in the representation on
the computer and from previous (inexact) floating-point calculations. Two math-
ematically equal components may be different in their inexact representations on
the computer. The remedy for this problem is to avoid testing for equality, but in-
stead check that the difference between the components is sufficiently small. The
function numpy.allclose can be used for this purpose:

if a == b:

by

if numpy.allclose(a, b):

A more reliable equality operator can now be implemented:

class Vec2D(object):
...
def __eq__(self, other):

return numpy.allclose(self.x, other.x) and \
numpy.allclose(self.y, other.y)

As a rule of thumb, you should never apply the == test to two float objects.
The special method __len__ could be introduced as a synonym for __abs__,

i.e., for a Vec2D instance named v, len(v) is the same as abs(v), because the
absolute value of a vector is mathematically the same as the length of the vector.
However, if we implement

def __len__(self):
# Reuse implementation of __abs__
return abs(self) # equiv. to self.__abs__()

we will run into trouble when we compute len(v) and the answer is (as usual)
a float. Python will then complain and tell us that len(v) must return an int.
Therefore, __len__ cannot be used as a synonym for the length of the vector in our
application. On the other hand, we could let len(v) mean the number of compo-
nents in the vector:

def __len__(self):
return 2

This is not a very useful function, though, as we already know that all our Vec2D
vectors have just two components. For generalizations of the class to vectors with
n components, the __len__ method is of course useful.
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7.4.3 Usage

Let us play with some Vec2D objects:

>>> u = Vec2D(0,1)
>>> v = Vec2D(1,0)
>>> w = Vec2D(1,1)
>>> a = u + v
>>> print a
(1, 1)
>>> a == w
True
>>> a = u - v
>>> print a
(-1, 1)
>>> a = u*v
>>> print a
0
>>> print abs(u)
1.0
>>> u == v
False
>>> u != v
True

When you read through this interactive session, you should check that the calcu-
lation is mathematically correct, that the resulting object type of a calculation is
correct, and how each calculation is performed in the program. The latter topic is
investigated by following the program flow through the class methods. As an exam-
ple, let us consider the expression u != v. This is a boolean expression that is True
since u and v are different vectors. The resulting object type should be bool, with
values True or False. This is confirmed by the output in the interactive session
above. The Python calculation of u != v leads to a call to

u.__ne__(v)

which leads to a call to

u.__eq__(v)

The result of this last call is False, because the special method will evaluate the
boolean expression

0 == 1 and 1 == 0

which is obviously False. When going back to the __ne__ method, we end up
with a return of not False, which evaluates to True.

Comment For real computations with vectors in the plane, you would probably
just use a Numerical Python array of length 2. However, one thing such objects
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cannot do is evaluating u*v as a scalar product. The multiplication operator for
Numerical Python arrays is not defined as a scalar product (it is rather defined as
.a; b/�.c; d/ D .ac; bd/). Another difference between our Vec2D class and Numer-
ical Python arrays is the abs function, which computes the length of the vector in
class Vec2D, while it does something completely different with Numerical Python
arrays.

7.5 Example: Class for Complex Numbers

Imagine that Python did not already have complex numbers. We could then make
a class for such numbers and support the standard mathematical operations. This
exercise turns out to be a very good pedagogical example of programming with
classes and special methods, so we shall make our own class for complex numbers
and go through all the details of the implementation.

The class must contain two data attributes: the real and imaginary part of the
complex number. In addition, we would like to add, subtract, multiply, and divide
complex numbers. We would also like to write out a complex number in some
suitable format. A session involving our own complex numbers may take the form

>>> u = Complex(2,-1)
>>> v = Complex(1) # zero imaginary part
>>> w = u + v
>>> print w
(3, -1)
>>> w != u
True
>>> u*v
Complex(2, -1)
>>> u < v
illegal operation "<" for complex numbers
>>> print w + 4
(7, -1)
>>> print 4 - w
(1, 1)

We do not manage to use exactly the same syntax with j as imaginary unit as in
Python’s built-in complex numbers so to specify a complex number we must create
a Complex instance.

7.5.1 Implementation

Here is the complete implementation of our class for complex numbers:

class Complex(object):
def __init__(self, real, imag=0.0):

self.real = real
self.imag = imag
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def __add__(self, other):
return Complex(self.real + other.real,

self.imag + other.imag)

def __sub__(self, other):
return Complex(self.real - other.real,

self.imag - other.imag)

def __mul__(self, other):
return Complex(self.real*other.real - self.imag*other.imag,

self.imag*other.real + self.real*other.imag)

def __div__(self, other):
sr, si, or, oi = self.real, self.imag, \

other.real, other.imag # short forms
r = float(or**2 + oi**2)
return Complex((sr*or+si*oi)/r, (si*or-sr*oi)/r)

def __abs__(self):
return sqrt(self.real**2 + self.imag**2)

def __neg__(self): # defines -c (c is Complex)
return Complex(-self.real, -self.imag)

def __eq__(self, other):
return self.real == other.real and self.imag == other.imag

def __ne__(self, other):
return not self.__eq__(other)

def __str__(self):
return ’(%g, %g)’ % (self.real, self.imag)

def __repr__(self):
return ’Complex’ + str(self)

def __pow__(self, power):
raise NotImplementedError\

(’self**power is not yet impl. for Complex’)

The special methods for addition, subtraction, multiplication, division, and the ab-
solute value follow easily from the mathematical definitions of these operations for
complex numbers (see Sect. 1.6). What -c means when c is of type Complex, is
also easy to define and implement. The __eq__ method needs a word of caution:
the method is mathematically correct, but comparison of real numbers on a com-
puter should always employ a tolerance. The version of __eq__ shown above is
about compact code and equivalence to the mathematics. Any real-world numer-
ical computations should employ a test that abs(self.real - other.real) <

eps and abs(self.imag - other.imag) < eps, where eps is some small tol-
erance, say eps = 1E-14.

The final __pow__ method exemplifies a way to introduce a method in a class,
while we postpone its implementation. The simplest way to do this is by inserting
an empty function body using the pass ("do nothing") statement:



7.5 Example: Class for Complex Numbers 457

class Polynomial(object):
...
def __pow__(self, power):

# Postpone implementation of self**power
pass

However, the preferred method is to raise a NotImplementedError exception so
that users writing power expressions are notified that this operation is not available.
The simple pass will just silently bypass this serious fact!

7.5.2 Illegal Operations

Some mathematical operations, like the comparison operators >, >=, etc., do not
have a meaning for complex numbers. By default, Python allows us to use these
comparison operators for our Complex instances, but the boolean result will be
mathematical nonsense. Therefore, we should implement the corresponding special
methods and give a sensible error message that the operations are not available for
complex numbers. Since the messages are quite similar, we make a separate method
to gather common operations:

def _illegal(self, op):
print ’illegal operation "%s" for complex numbers’ % op

Note the underscore prefix: this is a Python convention telling that the _illegal

method is local to the class in the sense that it is not supposed to be used outside the
class, just by other class methods. In computer science terms, we say that names
starting with an underscore are not part of the application programming interface,
known as the API. Other programming languages, such as Java, C++, and C#, have
special keywords, like private and protected that can be used to technically hide
both data and methods from users of the class. Python will never restrict anybody
who tries to access data or methods that are considered private to the class, but the
leading underscore in the name reminds any user of the class that she now touches
parts of the class that are not meant to be used “from the outside”.

Various special methods for comparison operators can now call up _illegal to
issue the error message:

def __gt__(self, other): self._illegal(’>’)
def __ge__(self, other): self._illegal(’>=’)
def __lt__(self, other): self._illegal(’<’)
def __le__(self, other): self._illegal(’<=’)

7.5.3 Mixing Complex and Real Numbers

The implementation of class Complex is far from perfect. Suppose we add a com-
plex number and a real number, which is a mathematically perfectly valid operation:

w = u + 4.5
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This statement leads to an exception,

AttributeError: ’float’ object has no attribute ’real’

In this case, Python sees u + 4.5 and tries to use u.__add__(4.5), which
causes trouble because the other argument in the __add__ method is 4.5, i.e.,
a float object, and float objects do not contain an attribute with the name real
(other.real is used in our __add__ method, and accessing other.real is what
causes the error).

One idea for a remedy could be to set

other = Complex(other)

since this construction turns a real number other into a Complex object. How-
ever, when we add two Complex instances, other is of type Complex, and the
constructor simply stores this Complex instance as self.real (look at the method
__init__). This is not what we want!

A better idea is to test for the type of other and perform the right conversion to
Complex:

def __add__(self, other):
if isinstance(other, (float,int)):

other = Complex(other)
return Complex(self.real + other.real,

self.imag + other.imag)

We could alternatively drop the conversion of other and instead implement two
addition rules, depending on the type of other:

def __add__(self, other):
if isinstance(other, (float,int)):

return Complex(self.real + other, self.imag)
else:

return Complex(self.real + other.real,
self.imag + other.imag)

A third way is to look for what we require from the other object, and check
that this demand is fulfilled. Mathematically, we require other to be a complex or
real number, but from a programming point of view, all we demand (in the original
__add__ implementation) is that other has real and imag attributes. To check
if an object a has an attribute with name stored in the string attr, one can use the
function

hasattr(a, attr)

In our context, we need to perform the test

if hasattr(other, ’real’) and hasattr(other, ’imag’):
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Our third implementation of the __add__ method therefore becomes

def __add__(self, other):
if isinstance(other, (float,int)):

other = Complex(other)
elif not (hasattr(other, ’real’) and \

hasattr(other, ’imag’)):
raise TypeError(’other must have real and imag attr.’)

return Complex(self.real + other.real,
self.imag + other.imag)

The advantage with this third alternative is that we may add instances of class
Complex and Python’s own complex class (complex), since all we need is an object
with real and imag attributes.

7.5.4 Dynamic, Static, Strong, Weak, and Duck Typing

The presentations of alternative implementations of the __add__ actually touch
some very important computer science topics. In Python, function arguments can
refer to objects of any type, and the type of an argument can change during program
execution. This feature is known as dynamic typing and supported by languages
such as Python, Perl, Ruby, and Tcl. Many other languages, C, C++, Java, and C#
for instance, restrict a function argument to be of one type, which must be known
when we write the program. Any attempt to call the function with an argument
of another type is flagged as an error. One says that the language employs static

typing, since the type cannot change as in languages having dynamic typing. The
code snippet

a = 6 # a is integer
a = ’b’ # a is string

is valid in a language with dynamic typing, but not in a language with static typing.
Our next point is easiest illustrated through an example. Consider the code

a = 6
b = ’9’
c = a + b

The expression a + b adds an integer and a string, which is illegal in Python. How-
ever, since b is the string ’9’, it is natural to interpret a + b as 6 + 9. That is, if the
string b is converted to an integer, we may calculate a + b. Languages performing
this conversion automatically are said to employ weak typing, while languages that
require the programmer to explicit perform the conversion, as in

c = a + float(b)

are known to have strong typing. Python, Java, C, and C# are examples of lan-
guages with strong typing, while Perl and C++ allow weak typing. However, in our
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third implementation of the __add__ method, certain types – int and float – are
automatically converted to the right type Complex. The programmer has therefore
imposed a kind of weak typing in the behavior of the addition operation for complex
numbers.

There is also something called duck typing where the code only imposes a re-
quirement of some data or methods in the object, rather than demanding the object
to be of a particular type. The explanation of the term duck typing is the principle:
if it walks like a duck, and quacks like a duck, it’s a duck. An operation a + b may
be valid if a and b have certain properties that make it possible to add the objects,
regardless of the type of a or b. To enable a + b in our third implementation of
the __add__ method, it is sufficient that b has real and imag attributes. That is,
objects with real and imag look like Complex objects. Whether they really are of
type Complex is not considered important in this context.

There is a continuously ongoing debate in computer science which kind of typing
that is preferable: dynamic versus static, and weak versus strong. Static and strong
typing, as found in Java and C#, support coding safety and reliability at the expense
of long and sometimes repetitive code, while dynamic and weak typing support
programming flexibility and short code. Many will argue that short code is more
readable and reliable than long code, so there is no simple conclusion.

7.5.5 Special Methods for “Right” Operands

What happens if we add a float and a Complex in that order?

w = 4.5 + u

This statement causes the exception

TypeError: unsupported operand type(s) for +: ’float’ and ’instance’

This time Python cannot find any definition of what the plus operation means with
a float on the left-hand side and a Complex object on the right-hand side of the
plus sign. The float class was created many years ago without any knowledge
of our Complex objects, and we are not allowed to extend the __add__ method in
the float class to handle Complex instances. Nevertheless, Python has a special
method __radd__ for the case where the class instance (self) is on the right-hand
side of the operator and the other object is on the left-hand side. That is, we may
implement a possible float or int plus a Complex by

def __radd__(self, other): # defines other + self
return self.__add__(other) # other + self = self + other

Similar special methods exist for subtraction, multiplication, and division. For the
subtraction operator, observe that other - self, which is the operation assumed
to implemented in __rsub__, can be realized by other.__sub__(self). A pos-
sible implementation is
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def __sub__(self, other):
print ’in sub, self=%s, other=%s’ % (self, other)
if isinstance(other, (float,int)):

other = Complex(other)
return Complex(self.real - other.real,

self.imag - other.imag)

def __rsub__(self, other):
print ’in rsub, self=%s, other=%s’ % (self, other)
if isinstance(other, (float,int)):

other = Complex(other)
return other.__sub__(self)

The print statements are inserted to better understand how these methods are vis-
ited. A quick test demonstrates what happens:

>>> w = u - 4.5
in sub, self=(2, -1), other=4.5
>>> print w
(-2.5, -1)
>>> w = 4.5 - u
in rsub, self=(2, -1), other=4.5
in sub, self=(4.5, 0), other=(2, -1)
>>> print w
(2.5, 1)

Remark As you probably realize, there is quite some code to be implemented and
lots of considerations to be resolved before we have a class Complex for profes-
sional use in the real world. Fortunately, Python provides its complex class, which
offers everything we need for computing with complex numbers. This fact reminds
us that it is important to know what others already have implemented, so that we
avoid “reinventing the wheel”. In a learning process, however, it is a probably a very
good idea to look into the details of a class Complex as we did above.

7.5.6 Inspecting Instances

The purpose of this section is to explain how we can easily look at the contents of
a class instance, i.e., the data attributes and the methods. As usual, we look at an
example – this time involving a very simple class:

class A(object):
"""A class for demo purposes."""
def __init__(self, value):

self.v = value

def dump(self):
print self.__dict__

The self.__dict__ attribute is briefly mentioned in Sect. 7.1.6. Every instance is
automatically equipped with this attribute, which is a dictionary that stores all the
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ordinary attributes of the instance (the variable names are keys, and the object refer-
ences are values). In class A there is only one data attribute, so the self.__dict__
dictionary contains one key, ’v’:

>>> a = A([1,2])
>>> a.dump()
{’v’: [1, 2]}

Another way of inspecting what an instance a contains is to call dir(a). This
Python function writes out the names of all methods and variables (and more) of an
object:

>>> dir(a)
’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

The __doc__ variable is a docstring, similar to docstrings in functions (see
Sect. 3.1.11), i.e., a description of the class appearing as a first string right af-
ter the class headline:

>>> a.__doc__
’A class for demo purposes.’

The __module__ variable holds the name of the module in which the class is
defined. If the class is defined in the program itself and not in an imported module,
__module__ equals ’__main__’.

The rest of the entries in the list returned from dir(a) correspond to attribute
names defined by the programmer of the class, in this example the method attributes
__init__ and dump, and the data attribute v.

Now, let us try to add new variables to an existing instance:

>>> a.myvar = 10
>>> a.dump()
{’myvar’: 10, ’v’: [1, 2]}
>>> dir(a)
[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’myvar’, ’v’]

The output of a.dump() and dir(a) show that we were successful in adding a new
variable to this instance on the fly. If we make a new instance, it contains only the
variables and methods that we find in the definition of class A:

>>> b = A(-1)
>>> b.dump()
{’v’: -1}
>>> dir(b)
[’__doc__’, ’__init__’, ’__module__’, ’dump’, ’v’]

We may also add new methods to an instance, but this will not be shown here.
Adding or removing attributes may sound scary and highly illegal to C, C++,

and Java programmers, but more dynamic classes is natural and legal in many other
languages – and often useful.
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Python classes are dynamic and their contents can be inspected

As seen by the examples above,

1. a class instance is dynamic and allows attributes to be added or removed
while the program is running,

2. the contents of an instance can be inspected by the dir function, and the data
attributes are available through the __dict__ dictionary.

There is a special module, inspect, doing more detailed inspection of Python
objects. One can, for example, get the arguments of functions or methods and
even inspect the code of the object.

7.6 Static Methods and Attributes

Up to now, each instance has its own copy of data attributes. Sometimes it can be
natural to have data attributes that are shared among all instances. For example, we
may have an attribute that counts how many instances that have been made so far.
We can exemplify how to do this in a little class for points .x; y; z/ in space:

>>> class SpacePoint(object):
... counter = 0
... def __init__(self, x, y, z):
... self.p = (x, y, z)
... SpacePoint.counter += 1

The counter data attribute is initialized at the same indentation level as the meth-
ods in the class, and the attribute is not prefixed by self. Such attributes declared
outside methods are shared among all instances and called static attributes. To ac-
cess the counter attribute, we must prefix by the classname SpacePoint instead of
self: SpacePoint.counter. In the constructor we increase this common counter
by 1, i.e., every time a new instance is made the counter is updated to keep track of
how many objects we have created so far:

>>> p1 = SpacePoint(0,0,0)
>>> SpacePoint.counter
1
>>> for i in range(400):
... p = SpacePoint(i*0.5, i, i+1)
...
>>> SpacePoint.counter
401

The methods we have seen so far must be called through an instance, which is
fed in as the self variable in the method. We can also make class methods that
can be called without having an instance. The method is then similar to a plain
Python function, except that it is contained inside a class and the method name
must be prefixed by the classname. Such methods are known as static methods. Let
us illustrate the syntax by making a very simple class with just one static method
write:
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>>> class A(object):
... @staticmethod
... def write(message):
... print message
...
>>> A.write(’Hello!’)
Hello!

As demonstrated, we can call write without having any instance of class A, we just
prefix with the class name. Also note that write does not take a self argument.
Since this argument is missing inside the method, we can never access non-static
attributes since these always must be prefixed by an instance (i.e., self). However,
we can access static attributes, prefixed by the classname.

If desired, we can make an instance and call write through that instance too:

>>> a = A()
>>> a.write(’Hello again’)
Hello again

Static methods are used when you want a global function, but find it natural to let
the function belong to a class and be prefixed with the classname.

7.7 Summary

7.7.1 Chapter Topics

Classes A class contains attributes, which are variables (data attributes) and func-
tions (method attributes, also called just methods). A first rough overview of a class
can be to just list the attributes, e.g., in a UML diagram.

Below is a sample class with three data attributes (m, M, and G) and three methods
(a constructor, force, and visualize). The class represents the gravity force
between two masses. This force is computed by the force method, while the
visualizemethod plots the force as a function of the distance between the masses.

class Gravity(object):
"""Gravity force between two physical objects."""

def __init__(self, m, M):
self.m = m # mass of object 1
self.M = M # mass of object 2
self.G = 6.67428E-11 # gravity constant, m**3/kg/s**2

def force(self, r):
G, m, M = self.G, self.m, self.M
return G*m*M/r**2

def visualize(self, r_start, r_stop, n=100):
from scitools.std import plot, linspace
r = linspace(r_start, r_stop, n)
g = self.force(r)
title=’Gravity force: m=%g, M=%g’ % (self.m, self.M)
plot(r, g, title=title)
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Note that to access attributes inside the forcemethod, and to call the forcemethod
inside the visualizemethod, we must prefix with self. Also recall that all meth-
ods must take self, “this” instance, as first argument, but the argument is left out
in calls. The assignment of a data attributes to a local variable (e.g., G = self.G)
inside methods is not necessary, but here it makes the mathematical formula easier
to read and compare with standard mathematical notation.

This class (found in file Gravity.py) can be used to find the gravity force be-
tween the Moon and the Earth:

mass_moon = 7.35E+22; mass_earth = 5.97E+24
gravity = Gravity(mass_moon, mass_earth)
r = 3.85E+8 # Earth-Moon distance in meters
Fg = gravity.force(r)
print ’force:’, Fg

Special methods A collection of special methods, with two leading and trailing
underscores in the method names, offers special syntax in Python programs.

The table below provides an overview of the most important special methods.

Construction Meaning2
a.__init__(self, args) constructor: a = A(args)

a.__del__(self) destructor: del a

a.__call__(self, args) call as function: a(args)
a.__str__(self) pretty print: print a, str(a)
a.__repr__(self) representation: a = eval(repr(a))

a.__add__(self, b) a + b

a.__sub__(self, b) a - b

a.__mul__(self, b) a*b

a.__div__(self, b) a/b

a.__radd__(self, b) b + a

a.__rsub__(self, b) b - a

a.__rmul__(self, b) b*a

a.__rdiv__(self, b) b/a

a.__pow__(self, p) a**p

a.__lt__(self, b) a < b

a.__gt__(self, b) a > b

a.__le__(self, b) a <= b

a.__ge__(self, b) a => b

a.__eq__(self, b) a == b

a.__ne__(self, b) a != b

a.__bool__(self) boolean expression, as in if a:

a.__len__(self) length of a (int): len(a)
a.__abs__(self) abs(a)

Terminology The important computer science topics in this chapter are

� classes
� attributes
� methods

http://tinyurl.com/pwyasaa/class/Gravity.py
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� constructor (__init__)
� special methods (__add__, __str__, __ne__, etc.)

7.7.2 Example: Interval Arithmetic

Input data to mathematical formulas are often subject to uncertainty, usually be-
cause physical measurements of many quantities involve measurement errors, or
because it is difficult to measure a parameter and one is forced to make a qualified
guess of the value instead. In such cases it could be more natural to specify an input
parameter by an interval Œa; b�, which is guaranteed to contain the true value of the
parameter. The size of the interval expresses the uncertainty in this parameter. Sup-
pose all input parameters are specified as intervals, what will be the interval, i.e.,
the uncertainty, of the output data from the formula? This section develops a tool
for computing this output uncertainty in the cases where the overall computation
consists of the standard arithmetic operations.

To be specific, consider measuring the acceleration of gravity by dropping a ball
and recording the time it takes to reach the ground. Let the ground correspond to
y D 0 and let the ball be dropped from y D y0. The position of the ball, y.t/, is
then

y.t/ D y0 �
1

2
gt2 :

If T is the time it takes to reach the ground, we have that y.T / D 0, which gives
the equation 1

2
gT 2 D y0, with solution

g D 2y0T
�2 :

In such experiments we always introduce some measurement error in the start po-
sition y0 and in the time taking (T ). Suppose y0 is known to lie in Œ0:99; 1:01� m
and T in Œ0:43; 0:47� s, reflecting a 2 % measurement error in position and a 10 %
error from using a stop watch. What is the error in g? With the tool to be developed
below, we can find that there is a 22 % error in g.

Problem Assume that two numbers p and q are guaranteed to lie inside intervals,

p D Œa; b�; q D Œc; d � :

The sum p C q is then guaranteed to lie inside an interval Œs; t � where s D a C c

and t D b C d . Below we list the rules of interval arithmetic, i.e., the rules for
addition, subtraction, multiplication, and division of two intervals:

� p C q D ŒaC c; b C d�

� p � q D Œa � d; b � c�

� pq D Œmin.ac; ad; bc; bd/; max.ac; ad; bc; bd/�

� p=q D Œmin.a=c; a=d; b=c; b=d/; max.a=c; a=d; b=c; b=d/� provided that
Œc; d � does not contain zero
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For doing these calculations in a program, it would be natural to have a new type
for quantities specified by intervals. This new type should support the operators +,
-, *, and / according to the rules above. The task is hence to implement a class for
interval arithmetics with special methods for the listed operators. Using the class,
we should be able to estimate the uncertainty of two formulas:

� The acceleration of gravity, g D 2y0T �2, given a 2 % uncertainty in y0: y0 D
Œ0:99; 1:01�, and a 10 % uncertainty in T : T D ŒTm � 0:95; Tm � 1:05�, with
Tm D 0:45.

� The volume of a sphere, V D 4
3
�R3, given a 20 % uncertainty in R: R D

ŒRm � 0:9; Rm � 1:1�, with Rm D 6.

Solution The new type is naturally realized as a class IntervalMath whose data
consist of the lower and upper bound of the interval. Special methods are used
to implement arithmetic operations and printing of the object. Having understood
class Vec2D from Sect. 7.4, it should be straightforward to understand the class
below:

class IntervalMath(object):
def __init__(self, lower, upper):

self.lo = float(lower)
self.up = float(upper)

def __add__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a + c, b + d)

def __sub__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(a - d, b - c)

def __mul__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

def __div__(self, other):
a, b, c, d = self.lo, self.up, other.lo, other.up
# [c,d] cannot contain zero:
if c*d <= 0:

raise ValueError\
(’Interval %s cannot be denominator because ’\
’it contains zero’ % other)

return IntervalMath(min(a/c, a/d, b/c, b/d),
max(a/c, a/d, b/c, b/d))

def __str__(self):
return ’[%g, %g]’ % (self.lo, self.up)

The code of this class is found in the file IntervalMath.py. A quick demo of the
class can go as

http://tinyurl.com/pwyasaa/class/IntervalMath.py
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I = IntervalMath
a = I(-3,-2)
b = I(4,5)
expr = ’a+b’, ’a-b’, ’a*b’, ’a/b’
for e in expr:

print ’%s =’ % e, eval(e)

The output becomes

a+b = [1, 3]
a-b = [-8, -6]
a*b = [-15, -8]
a/b = [-0.75, -0.4]

This gives the impression that with very short code we can provide a new type that
enables computations with interval arithmetic and thereby with uncertain quantities.
However, the class above has severe limitations as shown next.

Consider computing the uncertainty of aq if a is expressed as an interval Œ4; 5�

and q is a number (float):

a = I(4,5)
q = 2
b = a*q

This does not work so well:

File "IntervalMath.py", line 15, in __mul__
a, b, c, d = self.lo, self.up, other.lo, other.up

AttributeError: ’float’ object has no attribute ’lo’

The problem is that a*q is a multiplication between an IntervalMath object a
and a float object q. The __mul__ method in class IntervalMath is invoked,
but the code there tries to extract the lo attribute of q, which does not exist since q
is a float.

We can extend the __mul__ method and the other methods for arithmetic oper-
ations to allow for a number as operand – we just convert the number to an interval
with the same lower and upper bounds:

def __mul__(self, other):
if isinstance(other, (int, float)):

other = IntervalMath(other, other)
a, b, c, d = self.lo, self.up, other.lo, other.up
return IntervalMath(min(a*c, a*d, b*c, b*d),

max(a*c, a*d, b*c, b*d))

Looking at the formula g D 2y0T
�2, we run into a related problem: now

we want to multiply 2 (int) with y0, and if y0 is an interval, this multiplica-
tion is not defined among int objects. To handle this case, we need to imple-
ment an __rmul__(self, other) method for doing other*self, as explained
in Sect. 7.5.5:
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def __rmul__(self, other):
if isinstance(other, (int, float)):

other = IntervalMath(other, other)
return other*self

Similar methods for addition, subtraction, and division must also be included in the
class.

Returning to g D 2y0T
�2, we also have a problem with T �2 when T is an

interval. The expression T**(-2) invokes the power operator (at least if we do
not rewrite the expression as 1/(T*T)), which requires a __pow__ method in class
IntervalMath. We limit the possibility to have integer powers, since this is easy
to compute by repeated multiplications:

def __pow__(self, exponent):
if isinstance(exponent, int):

p = 1
if exponent > 0:

for i in range(exponent):
p = p*self

elif exponent < 0:
for i in range(-exponent):

p = p*self
p = 1/p

else: # exponent == 0
p = IntervalMath(1, 1)

return p
else:

raise TypeError(’exponent must int’)

Another natural extension of the class is the possibility to convert an interval to
a number by choosing the midpoint of the interval:

>>> a = IntervalMath(5,7)
>>> float(a)
6

float(a) calls a.__float__(), which we implement as

def __float__(self):
return 0.5*(self.lo + self.up)

A __repr__ method returning the right syntax for recreating the present instance
is also natural to include in any class:

def __repr__(self):
return ’%s(%g, %g)’ % \

(self.__class__.__name__, self.lo, self.up)

We are now in a position to test out the extended class IntervalMath.
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>>> g = 9.81
>>> y_0 = I(0.99, 1.01) # 2% uncertainty
>>> Tm = 0.45 # mean T
>>> T = I(Tm*0.95, Tm*1.05) # 10% uncertainty
>>> print T
[0.4275, 0.4725]
>>> g = 2*y_0*T**(-2)
>>> g
IntervalMath(8.86873, 11.053)
>>> # Compute with mean values
>>> T = float(T)
>>> y = 1
>>> g = 2*y_0*T**(-2)
>>> print ’%.2f’ % g
9.88

Another formula, the volume V D 4
3
�R3 of a sphere, shows great sensitivity to

uncertainties in R:

>>> Rm = 6
>>> R = I(Rm*0.9, Rm*1.1) # 20 % error
>>> V = (4./3)*pi*R**3
>>> V
IntervalMath(659.584, 1204.26)
>>> print V
[659.584, 1204.26]
>>> print float(V)
931.922044761
>>> # Compute with mean values
>>> R = float(R)
>>> V = (4./3)*pi*R**3
>>> print V
904.778684234

Here, a 20 % uncertainty in R gives almost 60 % uncertainty in V , and the mean of
the V interval is significantly different from computing the volume with the mean
of R.

The complete code of class IntervalMath is found in IntervalMath.py.
Compared to the implementations shown above, the real implementation in the file
employs some ingenious constructions and help methods to save typing and repeat-
ing code in the special methods for arithmetic operations. You can read more about
interval arithmetics on Wikipedia3.

7.8 Exercises

Exercise 7.1: Make a function class

Make a class F that implements the function

f .xI a; w/ D e�ax sin.wx/ :

3 http://en.wikipedia.org/wiki/Interval_arithmetic

http://en.wikipedia.org/wiki/Interval_arithmetic
http://en.wikipedia.org/wiki/Interval_arithmetic
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A value(x) method computes values of f , while a and w are data attributes. Test
the class in an interactive session:

>>> from F import F
>>> f = F(a=1.0, w=0.1)
>>> from math import pi
>>> print f.value(x=pi)
0.013353835137
>>> f.a = 2
>>> print f.value(pi)
0.00057707154012

Filename: F.

Exercise 7.2: Add a data attribute to a class

Add a data attribute transactions to the Account class from Sect. 7.2.1. The
new attribute counts the number of transactions done in the deposit and withdraw
methods. Print the total number of transactions in the dump method. Write a test
function test_Account() for testing that the implementation of the extended class
Account is correct.
Filename: Account2.

Exercise 7.3: Add functionality to a class

In class AccountP from Sect. 7.2.1, introduce a list self._transactions, where
each element holds a dictionary with the amount of a transaction and the point of
time the transaction took place. Remove the _balance attribute and use instead the
_transactions list to compute the balance in the method get_balance. Print out
a nicely formatted table of all transactions, their amounts, and their time in a method
print_transactions.

Hint Use the time or datetime module to get the date and local time.
Filename: Account3.

Remarks Observe that the computation of the balance is implemented in a different
way in the present version of class AccountP compared to the version in Sect. 7.2.1,
but the usage of the class, especially the get_balance method, remains the same.
This is one of the great advantages of class programming: users are supposed to
use the methods only, and the implementation of data structures and computational
techniques inside methods can be changed without affecting existing programs that
just call the methods.

Exercise 7.4: Make classes for a rectangle and a triangle

The purpose of this exercise is to create classes like class Circle from Sect. 7.2.3
for representing other geometric figures: a rectangle with width W , height H ,
and lower left corner .x0; y0/; and a general triangle specified by its three vertices
.x0; y0/, .x1; y1/, and .x2; y2/ as explained in Exercise 3.16. Provide three meth-
ods: __init__ (to initialize the geometric data), area, and perimeter. Write test
functions test_Rectangle() and test_Triangle() for checking that the results
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produced by area and perimeter coincide with exact values within a small toler-
ance.
Filename: geometric_shapes.

Exercise 7.5: Make a class for quadratic functions

Consider a quadratic function f .xI a; b; c/ D ax2 C bx C c. Make a class
Quadratic for representing f , where a, b, and c are data attributes, and the
methods are

� __init__ for storing the attributes a, b, and c,
� value for computing a value of f at a point x,
� table for writing out a table of x and f values for n x values in the interval

ŒL; R�,
� roots for computing the two roots.

The file with class Quadratic and corresponding demonstrations and/or tests
should be organized as a module such that other programs can do a from

Quadratic import Quadratic to use the class. Also equip the file with a test
function for verifying the implementation of value and roots.
Filename: Quadratic.

Exercise 7.6: Make a class for straight lines

Make a class Linewhose constructor takes two points p1 and p2 (2-tuples or 2-lists)
as input. The line goes through these two points (see function line in Sect. 3.1.11
for the relevant formula of the line). A value(x) method computes a value on the
line at the point x. Also make a function test_Line() for verifying the implemen-
tation. Here is a demo in an interactive session:

>>> from Line import Line, test_Line
>>> line = Line((0,-1), (2,4))
>>> print line.value(0.5), line.value(0), line.value(1)
0.25 -1.0 1.5
>>> test_Line()

Filename: Line.

Exercise 7.7: Flexible handling of function arguments

The constructor in class Line in Exercise 7.6 takes two points as arguments. Now
we want to have more flexibility in the way we specify a straight line: we can give
two points, a point and a slope, or a slope and the line’s interception with the y

axis. Write this extended class and a test function for checking that the increased
flexibility does work.

Hint Let the constructor take two arguments p1 and p2 as before, and test with
isinstance whether the arguments are float versus tuple or list to determine
what kind of data the user supplies:
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if isinstance(p1, (tuple,list)) and isinstance(p2, (float,int)):
# p1 is a point and p2 is slope
self.a = p2
self.b = p1[1] - p2*p1[0]

elif ...

Filename: Line2.

Exercise 7.8: Wrap functions in a class

The purpose of this exercise is to make a class interface to an already existing set of
functions implementing Lagrange’s interpolation method from Exercise 5.25. We
want to construct a class LagrangeInterpolationwith a typical usage like:

import numpy as np
# Compute some interpolation points along y=sin(x)
xp = np.linspace(0, np.pi, 5)
yp = np.sin(xp)

# Lagrange’s interpolation polynomial
p_L = LagrangeInterpolation(xp, yp)
x = 1.2
print ’p_L(%g)=%g’ % (x, p_L(x)),
print ’sin(%g)=%g’ % (x, np.sin(x))
p_L.plot() # show graph of p_L

The plot method visualizes pL.x/ for x between the first and last interpolation
point (xp[0] and xp[-1]). In addition to writing the class itself, you should write
code to verify the implementation.

Hint The class does not need much code as it can call the functions p_L from
Exercise 5.25 and graph from Exercise 5.26, available in the Lagrange_poly2

module made in the latter exercise.
Filename: Lagrange_poly3.

Exercise 7.9: Flexible handling of function arguments

Instead of manually computing the interpolation points, as demonstrated in Exer-
cise 7.8, we now want the constructor in class LagrangeInterpolation to also
accept some Python function f(x) for computing the interpolation points. Typi-
cally, we would like to write this code:

from numpy import exp, sin, pi

def myfunction(x):
return exp(-x/2.0)*sin(x)

p_L = LagrangeInterpolation(myfunction, x=[0, pi], n=11)

With such a code, n D 11 uniformly distributed x points between 0 and � are
computed, and the corresponding y values are obtained by calling myfunction.
The Lagrange interpolation polynomial is then constructed from these points. Note
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that the previous types of calls, LangrangeInterpolation(xp, yp), must still
be valid.

Hint The constructor in class LagrangeInterpolationmust now accept two dif-
ferent sets of arguments: xp, yp vs. f, x, n. You can use the isinstance(a,

t) function to test if object a is of type t. Declare the constructor with three
arguments arg1, arg2, and arg3=None. Test if arg1 and arg2 are arrays
(isinstance(arg1, numpy.ndarray)), and in that case, set xp=arg1 and
yp=arg2. On the other hand, if arg1 is a function (callable(arg1) is True),
arg2 is a list or tuple (isinstance(arg2, (list,tuple))), and arg3 is an
integer, set f=arg1, x=arg2, and n=arg3.
Filename: Lagrange_poly4.

Exercise 7.10: Deduce a class implementation

Write a class Hello that behaves as illustrated in the following session:

>>> a = Hello()
>>> print a(’students’)
Hello, students!
>>> print a
Hello, World!

Filename: Hello.

Exercise 7.11: Implement special methods in a class

Modify the class from Exercise 7.1 such that the following interactive session can
be run:

>>> from F import F
>>> f = F(a=1.0, w=0.1)
>>> from math import pi
>>> print f(x=pi)
0.013353835137
>>> f.a = 2
>>> print f(pi)
0.00057707154012
>>> print f
exp(-a*x)*sin(w*x)

Filename: F2.

Exercise 7.12: Make a class for summation of series

The task in this exercise is to calculate a sum S.x/ D
PN

kDM fk.x/, where fk.x/

is some user-given formula for the terms in the sum. The following snippet demon-
strates the typical use and functionality of a class Sum for computing S.x/ D
PN

kD0.�x/k :
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def term(k, x):
return (-x)**k

S = Sum(term, M=0, N=3)
x = 0.5
print S(x)
print S.term(k=4, x=x) # (-0.5)**4

a) Implement class Sum such that the code snippet above works.
b) Implement a test function test_Sum() for verifying the results of the various

methods in class Sum for a specific choice of fk.x/.
c) Apply class Sum to compute the Taylor polynomial approximation to sin x for

x D � and some chosen x and N .

Filename: Sum.

Exercise 7.13: Apply a numerical differentiation class

Isolate class Derivative from Sect. 7.3.2 in a module file. Also isolate class Y

from Sect. 7.1.2 in a module file. Make a program that imports class Derivative
and class Y and applies the former to differentiate the function y.t/ D v0t � 1

2
gt2

represented by class Y. Compare the computed derivative with the exact value for
t D 0; 1

2
v0=g; v0=g.

Filenames: dYdt.py, Derivative.py, Y.py.

Exercise 7.14: Implement an addition operator

An anthropologist was asking a primitive tribesman about arithmetic. When the
anthropologist asked, What does two and two make? the tribesman replied, Five.

Asked to explain, the tribesman said, If I have a rope with two knots, and another

rope with two knots, and I join the ropes together, then I have five knots.

a) Make a class Rope for representing a rope with a given number of knots. Imple-
ment the addition operator in this class such that we can join two ropes together
in the way the tribesman described:

>>> from Rope import Rope
>>> rope1 = Rope(2)
>>> rope2 = Rope(2)
>>> rope3 = rope1 + rope2
>>> print rope3
5

As seen, the class also features a __str__ method for returning the number of
knots on the rope.

b) Equip the module file with a test function for verifying the implementation of
the addition operator.

Filename: Rope.py.
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Exercise 7.15: Implement in-place += and -= operators

As alternatives to the deposit and withdrawmethods in class Account class from
Sect. 7.2.1, we could use the operation += for deposit and -= for withdraw. Im-
plement the += and -= operators, a __str__ method, and preferably a __repr__

method in class Account. Write a test_Account() function to verify the imple-
mentation of all functionality in class Account.

Hint The special methods __iadd__ and __isub__ implement the += and -= op-
erators, respectively. For instance, a -= p implies a call to a.__isub__(p). One
important feature of __iadd__ and __isub__ is that they must return self to work
properly, see the documentation of these methods in Chapter 3 of the Python Lan-
guage Reference4.
Filename: Account4.

Exercise 7.16: Implement a class for numerical differentiation

A widely used formula for numerical differentiation of a function f .x/ takes the
form

f 0.x/ � f .x C h/ � f .x � h/

2h
: (7.8)

This formula usually gives more accurate derivatives than (7.1) because it applies
a centered, rather than a one-sided, difference.

The goal of this exercise is to use the formula (7.8) to automatically differenti-
ate a mathematical function f .x/ implemented as a Python function f(x). More
precisely, the following code should work:

def f(x):
return 0.25*x**4

df = Central(f) # make function-like object df
# df(x) computes the derivative of f(x) approximately
x = 2
print ’df(%g)=%g’ % (x, df(x))
print ’exact:’, x**3

a) Implement class Central and test that the code above works. Include an op-
tional argument h to the constructor in class Central so that h in the approxi-
mation (7.8) can be specified.

b) Write a test function test_Central() to verify the implementation. Utilize the
fact that the formula (7.8) is exact for quadratic polynomials (provided h is not
too small, then rounding errors in (7.8) require use of a (much) larger tolerance
than the expected machine precision).

c) Write a function table(f, x, h=1E-5) that prints a table of errors in the nu-
merical derivative (7.8) applied to a function f at some points x. The argument
f is a sympy expression for a function. This f object can be transformed to
a Python function and fed to the constructor of class Central, and f can be
used to compute the exact derivative symbolically. The argument x is a list or
array of points x, and h is the h in (7.8).

4 http://docs.python.org/2/reference/

http://docs.python.org/2/reference/
http://docs.python.org/2/reference/
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Hint The following session demonstrates how sympy can differentiate a mathemat-
ical expression and turn the result into a Python function:

>>> import sympy
>>> x = sympy.Symbol(’x’)
>>> f_expr = ’x*sin(2*x)’
>>> df_expr = sympy.diff(f_expr)
>>> df_expr
2*x*cos(2*x) + sin(2*x)
>>> df = sympy.lambdify([x], df_expr) # make Python function
>>> df(0)
0.0

d) Organize the file with the class and functions such that it can be used a module.

Filename: Central.

Exercise 7.17: Examine a program

Consider this program file for computing a backward difference approximation to
the derivative of a function f(x):

from math import *

class Backward(object):
def __init__(self, f, h=e-9):

self.f, self.h = f, h
def __call__(self, x):

h, f = self.h, self.f
return (f(x) - f(x-h))/h # finite difference

dsin = Backward(sin)
e = dsin(0) - cos(0); print ’error:’, e
dexp = Backward(exp, h=e-7)
e = dexp(0) - exp(0); print ’error:’, e

The output becomes

error: -1.00023355634
error: 371.570909212

Is the approximation that bad, or are there bugs in the program?
Filename: find_errors_class.

Exercise 7.18: Modify a class for numerical differentiation

Make the two data attributes h and f of class Derivative from Sect. 7.3.2 pro-
tected as explained in Sect. 7.2.1. That is, prefix h and f with an underscore to
tell users that these attributes should not be accessed directly. Add two methods
get_precision() and set_precision(h) for reading and changing h. Make
a separate test function for checking that the new class works as intended.
Filename: Derivative_protected.
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Exercise 7.19: Make a class for the Heaviside function

a) Use a class to implement the discontinuous Heaviside function (3.25) from Ex-
ercise 3.29 and the smoothed continuous version (3.26) from Exercise 3.30 such
that the following code works:

H = Heaviside() # original discontinous Heaviside function
print H(0.1)
H = Heaviside(eps=0.8) # smoothed continuous Heaviside function
print H(0.1)

b) Extend class Heaviside such that array arguments are allowed:

H = Heaviside() # original discontinous Heaviside function
x = numpy.linspace(-1, 1, 11)
print H(x)
H = Heaviside(eps=0.8) # smoothed Heaviside function
print H(x)

Hint Use ideas from Sect. 5.5.2.

c) Extend class Heaviside such that it supports plotting:

H = Heaviside()
x, y = H.plot(xmin=-4, xmax=4) # x in [-4, 4]
from matplotlib.pyplot import plot
plot(x, y)

H = Heaviside(eps=1)
x, y = H.plot(xmin=-4, xmax=4)
plot(x, y)

Hint Techniques from Sect. 5.4.1 must in the first case be used to return arrays
x and y such that the discontinuity is exactly reproduced. In the continuous
(smoothed) case, one needs to compute a sufficiently fine resolution (x) based on
the eps parameter, e.g., 201/� points in the interval Œ��; ��, with a coarser set of
coordinates outside this interval where the smoothed Heaviside function is almost
constant, 0 or 1.

d) Write a test function test_Heaviside() for verifying the result of the various
methods in class Heaviside.

Filename: Heaviside_class.

Exercise 7.20: Make a class for the indicator function

The purpose of this exercise is the make a class implementation of the indicator
function from Exercise 3.31. Let the implementation be based on expressing the
indicator function in terms of Heaviside functions. Allow for an � parameter in the
calls to the Heaviside function, such that we can easily choose between a discontin-
uous and a smoothed, continuous version of the indicator function:
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I = Indicator(a, b) # indicator function on [a,b]
print I(b+0.1), I((a+b)/2.0)
I = Indicator(0, 2, eps=1) # smoothed indicator function on [0,2]
print I(0), I(1), I(1.9)

Note that if you build on the version of class Heaviside in Exercise 7.19b, any
Indicator instance will accept array arguments too.
Filename: Indicator.

Exercise 7.21: Make a class for piecewise constant functions

The purpose of this exercise is to make a class implementation of a piecewise con-
stant function, as defined in Exercise 3.32.

a) Implement the minimum functionality such that the following code works:

f = PiecewiseConstant([(0.4, 1), (0.2, 1.5), (0.1, 3)], xmax=4)
print f(1.5), f(1.75), f(4)

x = np.linspace(0, 4, 21)
print f(x)

b) Add a plot method to class PiecewiseConstant such that we can easily plot
the graph of the function:

x, y = f.plot()
from matplotlib.pyplot import plot
plot(x, y)

Filename: PiecewiseConstant.

Exercise 7.22: Speed up repeated integral calculations

The observant reader may have noticed that our Integral class from Sect. 7.3.3 is
very inefficient if we want to tabulate or plot a function F.x/ D

R x

a
f .x/ for several

consecutive values of x: x0 < x1 < � � � < xm. Requesting F.xk/ will recompute
the integral computed for F.xk�1/, and this is of course waste of computer work.
Use the ideas from Sect. A.1.7 to modify the __call__ method such that if x is
an array, assumed to contain coordinates of increasing value: x0 < x1 < � � � <

xm, the method returns an array with F.x0/; F.x1/; : : : ; F .xm/ with the minimum
computational work. Also write a test function to verify that the implementation is
correct.

Hint The n (n) parameter in the constructor of the Integral class can be taken as
the total number of trapezoids (intervals) that are to be used to compute the final
F.xm/ value. The integral over an interval Œxk; xkC1� can then be computed by
the trapezoidal function (or an Integral object) using an appropriate fraction
of the n total trapezoids. This fraction can be .xkC1 � xk/=.xm � a/ (i.e., nk D
n.xkC1 � xk/=.xm � a/) or one may simply use a constant nk D n=m number of
trapezoids for all the integrals over Œxk; xkC1�, k D 0; : : : ; m � 1.
Filename: Integral_eff.
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Exercise 7.23: Apply a class for polynomials

The Taylor polynomial of degree N for the exponential function ex is given by

p.x/ D
N
X

kD0

xk

kŠ
:

Make a program that (i) imports class Polynomial from Sect. 7.3.7, (ii) reads x

and a series of N values from the command line, (iii) creates a Polynomial object
for each N value for computing with the given Taylor polynomial, and (iv) prints
the values of p.x/ for all the given N values as well as the exact value ex . Try the
program out with x D 0:5; 3; 10 and N D 2; 5; 10; 15; 25.
Filename: Polynomial_exp.

Exercise 7.24: Find a bug in a class for polynomials

Go through this alternative implementation of class Polynomial from Sect. 7.3.7
and explain each line in detail:

class Polynomial(object):
def __init__(self, coefficients):

self.coeff = coefficients

def __call__(self, x):
return sum([c*x**i for i, c in enumerate(self.coeff)])

def __add__(self, other):
maxlength = max(len(self), len(other))
# Extend both lists with zeros to this maxlength
self.coeff += [0]*(maxlength - len(self.coeff))
other.coeff += [0]*(maxlength - len(other.coeff))
result_coeff = self.coeff
for i in range(maxlength):

result_coeff[i] += other.coeff[i]
return Polynomial(result_coeff)

The enumerate function, used in the __call__ method, enables us to iterate over
a list somelist with both list indices and list elements: for index, element

in enumerate(somelist). Write the code above in a file, and demonstrate that
adding two polynomials does not work. Find the bug and correct it.
Filename: Polynomial_error.

Exercise 7.25: Implement subtraction of polynomials

Implement the special method __sub__ in class Polynomial from Sect. 7.3.7. Add
a test for this functionality in function test_Polynomial.

Hint Study the __add__ method in class Polynomial and treat the two cases,
where the lengths of the lists in the polynomials differs, separately.
Filename: Polynomial_sub.

Exercise 7.26: Test the functionality of pretty print of polynomials

Verify the functionality of the __str__ method in class Polynomial from
Sect. 7.3.7 by writing a new test function test_Polynomial_str().
Filename: Polynomial_test_str.
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Exercise 7.27: Vectorize a class for polynomials

Introducing an array instead of a list in class Polynomial does not enhance the
efficiency of the implementation unless the mathematical computations are also
vectorized. That is, all explicit Python loops must be substituted by vectorized
expressions.

a) Go through class Polynomial.py and make sure the coeff attribute is always
a numpy array with float elements.

b) Update the test function test_Polynomial to make use of the fact that
the coeff attribute is always a numpy array with float elements. Run
test_Polynomial to check that the new implementation is correct.

c) Vectorize the __add__ method by adding the common parts of the coefficients
arrays and then appending the rest of the longest array to the result.

Hint Appending an array a to an array b can be done by concatenate(a, b).

d) Vectorize the __call__ method by observing that evaluation of a polynomial,
Pn�1

iD0 ci x
i , can be computed as the inner product of two arrays: .c0; : : : ; cn�1/

and .x0; x1; : : : ; xn�1/. The latter array can be computed by x**p, where p is
an array with powers 0; 1; : : : ; n � 1, and x is a scalar.

e) The differentiatemethod can be vectorized by the statements

n = len(self.coeff)
self.coeff[:-1] = linspace(1, n-1, n-1)*self.coeff[1:]
self.coeff = self.coeff[:-1]

Show by hand calculations in a case where n is 3 that the vectorized statements
produce the same result as the original differentiatemethod.

Filename: Polynomial_vec.

Remarks The __mul__ method is more challenging to vectorize so you may leave
this unaltered. Check that the vectorized versions of __add__, __call__, and
differentiate work as intended by calling the test_Polynomial function.

Exercise 7.28: Use a dict to hold polynomial coefficients

Use a dictionary (instead of a list) for the coeff attribute in class Polynomial from
Sect. 7.3.7 such that self.coeff[k] holds the coefficient of the xk term. The
advantage with a dictionary is that only the nonzero coefficients in a polynomial
need to be stored.

a) Implement a constructor and the __call__ method for evaluating the polyno-
mial. The following demonstration code should work:

from Polynomial_dict import Polynomial
p1_dict = {4: 1, 2: -2, 0: 3} # polynomial x^4 - 2*x^2 + 3
p1 = Polynomial(p1_dict)
print p1(2) # prints 11 (16-8+3)
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b) Implement the __add__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3
p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x
p3 = p1 + p2 # x^4 - 2*x^2 + 3*x + 7
print p3.coeff # prints {0: 7, 1: 3, 2: -2, 4: 1}

Hint The structure of __add__ may be

class Polynomial(object):
...
def __add__(self, other):

"""Return self + other as a Polynomial object."""
result = self.coeff.copy()
for exponent in result:

if exponent in other.coeff:
# add other’s term to result’s term

else:
result[exponent] = other[exponent]

# return Polynomial object based on result dict

c) Implement the __sub__ method. The following demonstration code should
work:

p1 = Polynomial({4: 1, 2: -2, 0: 3}) # x^4 - 2*x^2 + 3
p2 = Polynomial({0: 4, 1: 3} # 4 + 3*x
p3 = p1 - p2 # x^4 - 2*x^2 - 3*x - 1
print p3.coeff # prints {0: -1, 1: -3, 2: -2, 4: 1}

d) Implement the __mul__ method. The following demonstration code should
work:

p1 = Polynomial({0: 1, 3: 1}) # 1 + x^3
p2 = Polynomial({1: -2, 2: 3}) # -2*x + 3*x^2
p3 = p1*p3
print p3.coeff # prints {1: -2, 2: 3, 4: -2, 5: 3}

Hint Study the __mul__ method in class Polynomial based on a list representa-
tion of the data in the polynomial and adapt to a dictionary representation.

e) Write a test function for each of the methods __call__, __add__, and
__mul__.

Filename: Polynomial_dict.

Exercise 7.29: Extend class Vec2D to work with lists/tuples

The Vec2D class from Sect. 7.4 supports addition and subtraction, but only addition
and subtraction of two Vec2D objects. Sometimes we would like to add or subtract
a point that is represented by a list or a tuple:
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u = Vec2D(-2, 4)
v = u + (1,1.5)
w = [-3, 2] - v

That is, a list or a tuple must be allowed in the right or left operand. Implement
such an extension of class Vec2D.

Hint Ideas are found in Sects. 7.5.3 and 7.5.5.
Filename: Vec2D_lists.

Exercise 7.30: Extend class Vec2D to 3D vectors

Extend the implementation of class Vec2D from Sect. 7.4 to a class Vec3D for vec-
tors in three-dimensional space. Add a method cross for computing the cross
product of two 3D vectors.
Filename: Vec3D.

Exercise 7.31: Use NumPy arrays in class Vec2D

The internal code in class Vec2D from Sect. 7.4 can be valid for vectors in any
space dimension if we represent the vector as a NumPy array in the class instead of
separate variables x and y for the vector components. Make a new class Vec where
you apply NumPy functionality in the methods. The constructor should be able to
treat all the following ways of initializing a vector:

a = array([1, -1, 4], float) # numpy array
v = Vec(a)
v = Vec([1, -1, 4]) # list
v = Vec((1, -1, 4)) # tuple
v = Vec(1, -1) # coordinates

Hint In the constructor, use variable number of arguments as described in Sect. H.7.
All arguments are then available as a tuple, and if there is only one element in
the tuple, it should be an array, list, or tuple you can send through asarray to
get a NumPy array. If there are many arguments, these are coordinates, and the
tuple of arguments can be transformed by array to a NumPy array. Assume in
all operations that the involved vectors have equal dimension (typically that other
has the same dimension as self). Recall to return Vec objects from all arithmetic
operations, not NumPy arrays, because the next operation with the vector will then
not take place in Vec but in NumPy. If self.v is the attribute holding the vector as
a NumPy array, the addition operator will typically be implemented as

class Vec(object):
...
def __add__(self, other):

return Vec(selv.v + other.v)

Filename: Vec.
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Exercise 7.32: Impreciseness of interval arithmetics

Consider the function f .x/ D x=.1 C x/ on Œ1; 2�. Find the variation of f over
Œ1; 2�. Use interval arithmetics from Sect. 7.7.2 to compute the variation of f when
x 2 Œ1; 2�.
Filename: interval_arithmetics.

Remarks In this case, interval arithmetics overestimates the variation in f . The
reason is that x occurs more than once in the formula for f (the so-called depen-
dency problem5).

Exercise 7.33: Make classes for students and courses

Use classes to reimplement the summarizing problem in Sect. 6.7.2. More precisely,
introduce a class Student and a class Course. Find appropriate attributes. The
classes should have a __str__ method for pretty-printing of the contents.
Filename: Student_Course.

Exercise 7.34: Find local and global extrema of a function

Extreme points of a function f .x/ are normally found by solving f 0.x/ D 0.
A much simpler method is to evaluate f .x/ for a set of discrete points in the in-
terval Œa; b� and look for local minima and maxima among these points. We work
with n C 1 equally spaced points a D x0 < x1 < � � � < xn D b, xi D a C ih,
h D .b � a/=n.

First we find all local extreme points in the interior of the domain. Local minima
are recognized by

f .xi�1/ > f .xi / < f .xiC1/; i D 1; : : : ; n � 1 :

Similarly, at a local maximum point xi we have

f .xi�1/ < f .xi / > f .xiC1/; i D 1; : : : ; n � 1 :

Let Pmin be the set of x values for local minima and Fmin the set of the corresponding
f .x/ values at these minima. Two sets Pmax and Fmax are defined correspondingly
for the maxima.

The boundary points x D a and x D b are for algorithmic simplicity also defined
as local extreme points: x D a is a local minimum if f .a/ < f .x1/, and a local
maximum otherwise. Similarly, x D b is a local minimum if f .b/ < f .xn�1/, and
a local maximum otherwise. The end points a and b and the corresponding function
values must be added to the sets Pmin; Pmax; Fmin; Fmax.

The global maximum point is defined as the x value corresponding to the maxi-
mum value in Fmax. The global minimum point is the x value corresponding to the
minimum value in Fmin.

a) Make a class MinMax with the following functionality:
� __init__ takes f .x/, a, b, and n as arguments, and calls a method

_find_extrema to compute the local and global extreme points.

5 http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem

http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
http://en.wikipedia.org/wiki/Interval_arithmetic#Dependency_problem
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� _find_extrema implements the algorithm above for finding local and global
extreme points, and stores the sets Pmin; Pmax; Fmin; Fmax as list attributes in
the (self) instance.

� get_global_minimum returns the global minimum point as a pair .x; f .x//.
� get_global_maximum returns the global maximum point as a pair .x; f .x//.
� get_all_minima returns a list or array of all .x; f .x// minima.
� get_all_maxima returns a list or array of all .x; f .x// maxima.
� __str__ returns a string where a nicely formatted table of all the min/max

points are listed, plus the global extreme points.
Here is a sample code using class MinMax:

def f(x):
return x**2*exp(-0.2*x)*sin(2*pi*x)

m = MinMax(f, 0, 4, 5001)
print m

The output becomes

All minima: 0.8056, 1.7736, 2.7632, 3.7584, 0
All maxima: 0.3616, 1.284, 2.2672, 3.2608, 4
Global minimum: 3.7584
Global maximum: 3.2608

Make sure that the program also works for functions without local extrema, e.g.,
linear functions f .x/ D ax C b.

b) The algorithm sketched above finds local extreme points xi , but all we know
is that the true extreme point is in the interval .xi�1; xiC1/. A more accu-
rate algorithm may take this interval as a starting point and run a Bisection
method (see Sect. 4.11.2) to find the extreme point Nx such that f 0. Nx/ D 0. Add
a method _refine_extrema in class MinMax, which goes through all the inte-
rior local minima and maxima and solves f 0. Nx/ D 0. Compute f 0.x/ using the
Derivative class (Sect. 7.3.2 with h� xiC1 � xi�1.

Filename: minmaxf.

Exercise 7.35: Find the optimal production for a company

The company PROD produces two different products, P1 and P2, based on three
different raw materials, M1, M2 and M3. The following table shows how much of
each raw material Mi that is required to produce a single unit of each product Pj :

P1 P2

M1 2 1
M2 5 3
M3 0 4

For instance, to produce one unit of P2 one needs 1 unit of M1, 3 units of M2 and
4 units of M3. Furthermore, PROD has available 100, 80 and 150 units of material
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M1, M2 and M3 respectively (for the time period considered). The revenue per
produced unit of product P1 is 150 NOK, and for one unit of P2 it is 175 NOK. On
the other hand the raw materials M1, M2 and M3 cost 10, 17 and 25 NOK per unit,
respectively. The question is: how much should PROD produce of each product?
We here assume that PROD wants to maximize its net revenue (which is revenue
minus costs).

a) Let x and y be the number of units produced of product P1 and P2, respectively.
Explain why the total revenue f .x; y/ is given by

f .x; y/ D 150x � .10 � 2C 17 � 5/x C 175y � .10 � 1C 17 � 3C 25 � 4/y

and simplify this expression. The function f .x; y/ is linear in x and y (make
sure you know what linearity means).

b) Explain why PROD’s problem may be stated mathematically as follows:

maximize f .x; y/

subject to

2x C y � 100

5x C 3y � 80

4y � 150

x � 0; y � 0:

(7.9)

This is an example of a linear optimization problem.

c) The production .x; y/ may be considered as a point in the plane. Illustrate
geometrically the set T of all such points that satisfy the constraints in model
(7.9). Every point in this set is called a feasible point.

Hint For every inequality determine first the straight line obtained by replacing the
inequality by equality. Then, find the points satisfying the inequality (a half-plane),
and finally, intersect these half-planes.

d) Make a program for drawing the straight lines defined by the inequalities. Each
line can be written as ax C by D c. Let the program read each line from
the command line as a list of the a, b, and c values. In the present case the
command-line arguments will be

’[2,1,100]’ ’[5,3,80]’ ’[0,4,150]’ ’[1,0,0]’ ’[0,1,0]’

Hint Perform an eval on the elements of sys.argv[1:] to get a, b, and c for
each line as a list in the program.

e) Let ˛ be a positive number and consider the level set of the function f , defined
as the set

L˛ D f.x; y/ 2 T W f .x; y/ D ˛g:
This set consists of all feasible points having the same net revenue ˛. Extend the
program with two new command-line arguments holding p and q for a function
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f .x; y/ D px C qy. Use this information to compute the level set lines y D
˛=q � px=q, and plot the level set lines for some different values of ˛ (use the
˛ value in the legend for each line).

f) Use what you saw in e) to solve the problem (7.9) geometrically. This solution
is called an optimal solution.

Hint How large can you choose ˛ such that L˛ is nonempty?

g) Assume that we have other values on the revenues and costs than the actual
numbers in a). Explain why (7.9), with these new parameter values, still has an
optimal solution lying in a corner point of T . Extend the program to calculate all
the corner points of a region T in the plane determined by the linear inequalities
like those listed above. Moreover, the program shall compute the maximum of
a given linear function f .x; y/ D ax C by over T by calculating the function
values in the corner points and finding the smallest function value.

Filename: optimization.
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Random numbers have many applications in science and computer programming,
especially when there are significant uncertainties in a phenomenon of interest. The
purpose of this chapter is to look at some practical problems involving random num-
bers and learn how to program with such numbers. We shall make several games
and also look into how random numbers can be used in physics. You need to be fa-
miliar with basic programming concepts such as loops, lists, arrays, vectorization,
curve plotting, and command-line arguments in order to study the present chapter.
This means that Chaps. 1–5 of the present book should be digested. A few examples
and exercises will require familiarity with the class concept from Chap. 7.

The key idea in computer simulations with random numbers is first to formulate
an algorithmic description of the phenomenon we want to study. This descrip-
tion frequently maps directly onto a quite simple and short Python program, where
we use random numbers to mimic the uncertain features of the phenomenon. The
program needs to perform a large number of repeated calculations, and the final an-
swers are “only” approximate, but the accuracy can usually be made good enough
for practical purposes. Most programs related to the present chapter produce their
results within a few seconds. In cases where the execution times become large, we
can vectorize the code. Vectorized computations with random numbers is definitely
the most demanding topic in this chapter, but is not mandatory for seeing the power
of mathematical modeling via random numbers.

All files associated with the examples in this chapter are found in the folder
src/random1.

8.1 Drawing RandomNumbers

Python has a module random for generating random numbers. The function call
random.random() generates a random number in the half open interval Œ0; 1/ (re-
call that in the half open interval Œ0; 1/ the lower limit is included, but the upper
limit is not). We can try it out:

1 http://tinyurl.com/pwyasaa/random
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>>> import random
>>> random.random()
0.81550546885338104
>>> random.random()
0.44913326809029852
>>> random.random()
0.88320653116367454

All computations of random numbers are based on deterministic algorithms (see
Exercise 8.20 for an example), so the sequence of numbers cannot be truly random.
However, the sequence of numbers appears to lack any pattern, and we can therefore
view the numbers as random.

8.1.1 The Seed

Every time we import random, the subsequent sequence of random.random()calls
will yield different numbers. For debugging purposes it is useful to get the same
sequence of random numbers every time we run the program. This functionality is
obtained by setting a seed before we start generating numbers. With a given value
of the seed, one and only one sequence of numbers is generated. The seed is an
integer and set by the random.seed function:

>>> random.seed(121)

Let us generate two series of random numbers at once, using a list comprehension
and a format with two decimals only:

>>> random.seed(2)
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.96’, ’0.95’, ’0.06’, ’0.08’, ’0.84’, ’0.74’, ’0.67’]
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.31’, ’0.61’, ’0.61’, ’0.58’, ’0.16’, ’0.43’, ’0.39’]

If we set the seed to 2 again, the sequence of numbers is regenerated:

>>> random.seed(2)
>>> [’%.2f’ % random.random() for i in range(7)]
[’0.96’, ’0.95’, ’0.06’, ’0.08’, ’0.84’, ’0.74’, ’0.67’]

If we do not give a seed, the randommodule sets a seed based on the current time.
That is, the seed will be different each time we run the program and consequently
the sequence of random numbers will also be different from run to run. This is
what we want in most applications. However, we always recommend setting a seed
during program development to simplify debugging and verification.
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8.1.2 Uniformly Distributed RandomNumbers

The numbers generated by random.random() tend to be equally distributed be-
tween 0 and 1, which means that there is no part of the interval Œ0; 1/ with more
random numbers than other parts. We say that the distribution of random numbers
in this case is uniform. The function random.uniform(a,b) generates uniform
random numbers in the half open interval Œa; b/, where the user can specify a and b.
With the following program (in file uniform_numbers0.py) we may generate lots
of random numbers in the interval Œ�1; 1/ and visualize how they are distributed:

import random
random.seed(42)
N = 500 # no of samples
x = range(N)
y = [random.uniform(-1,1) for i in x]

import scitools.std as st
st.plot(x, y, ’+’, axis=[0,N-1,-1.2,1.2])

Figure 8.1 shows the values of these 500 numbers, and as seen, the numbers
appear to be random and uniformly distributed between �1 and 1.

-1
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Fig. 8.1 The values of 500 random numbers drawn from the uniform distribution on Œ�1; 1/

http://tinyurl.com/pwyasaa/random/uniform_numbers0.py
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8.1.3 Visualizing the Distribution

It is of interest to see how N random numbers in an interval Œa; b� are distributed
throughout the interval, especially as N ! 1. For example, when drawing num-
bers from the uniform distribution, we expect that no parts of the interval get more
numbers than others. To visualize the distribution, we can divide the interval into
subintervals and display how many numbers there are in each subinterval.

Let us formulate this method more precisely. We divide the interval Œa; b/ into n

equally sized subintervals, each of length h D .b � a/=n. These subintervals are
called bins. We can then draw N random numbers by calling random.random()

N times. Let OH.i/ be the number of random numbers that fall in bin no. i , Œa C
ih; a C .i C 1/h�, i D 0; : : : ; n � 1. If N is small, the value of OH.i/ can be quite
different for the different bins, but as N grows, we expect that OH.i/ varies little
with i .

Ideally, we would be interested in how the random numbers are distributed as
N ! 1 and n ! 1. One major disadvantage is that OH.i/ increases as N

increases, and it decreases with n. The quantity OH.i/=N , called the frequency
count, will reach a finite limit as N ! 1. However, OH.i/=N will be smaller
and smaller as we increase the number of bins. The quantity H.i/ D OH.i/=.N h/

reaches a finite limit as N; n ! 1. The probability that a random number lies
inside subinterval no. i is then OH.i/=N D H.i/h.

We can visualize H.i/ as a bar diagram (see Fig. 8.2), called a normalized

histogram. We can also define a piecewise constant function p.x/ from H.i/:
p.x/ D H.i/ for x 2 Œa C ih; a C .i C 1/h/, i D 0; : : : ; n � 1. As n; N ! 1,
p.x/ approaches the probability density function of the distribution in question. For
example, random.uniform(a,b) draws numbers from the uniform distribution on
Œa; b/, and the probability density function is constant, equal to 1=.b � a/. As we
increase n and N , we therefore expect p.x/ to approach the constant 1=.b � a/.

The function compute_histogram from scitools.std returns two arrays x

and y such that plot(x,y) plots the piecewise constant function p.x/. The plot is
hence the histogram of the set of random samples. The program below exemplifies
the usage:

from scitools.std import plot, compute_histogram
import random
samples = [random.random() for i in range(100000)]
x, y = compute_histogram(samples, nbins=20)
plot(x, y)

Figure 8.2 shows two plots corresponding to N taken as 103 and 106. For small N ,
we see that some intervals get more random numbers than others, but as N grows,
the distribution of the random numbers becomes more and more equal among the
intervals. In the limit N !1, p.x/! 1, which is illustrated by the plot.
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Fig. 8.2 The histogram of uniformly distributed random numbers in 20 bins

8.1.4 Vectorized Drawing of RandomNumbers

There is a random module in the Numerical Python package, which can be used to
efficiently draw a possibly large array of random numbers:

import numpy as np
r = np.random.random() # one number between 0 and 1
r = np.random.random(size=10000) # array with 10000 numbers
r = np.random.uniform(-1, 10) # one number between -1 and 10
r = np.random.uniform(-1, 10, size=10000) # array

There are thus two random modules to be aware of: one in the standard Python
library and one in numpy. For drawing uniformly distributed numbers, the two
random modules have the same interface, except that the functions from numpy’s
random module has an extra size parameter. Both modules also have a seed

function for fixing the seed.
Vectorized drawing of random numbers using numpy’s random module is effi-

cient because all the numbers are drawn “at once” in fast C code. You can measure
the efficiency gain with the time.clock() function as explained in Sect. 8.5.3
and H.8.1.

Warning It is easy to do an import random followed by a from numpy import

* or maybe from scitools.std import * without realizing that the latter two
import statements import a name random from numpy that overwrites the same
name that was imported in import random. The result is that the effective random
module becomes the one from numpy. A possible solution to this problem is to
introduce a different name for Python’s random module, say

import random as random_number

Another solution is to do import numpy as np and work explicitly with np.

random.
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8.1.5 Computing theMean and Standard Deviation

You probably know the formula for the mean or average of a set of n numbers
x0; x1; : : : ; xn�1:

xm D
1

n

n�1
X

jD0

xj : (8.1)

The amount of spreading of the xi values around the mean xm can be measured by
the variance,

xv D
1

n

n�1
X

jD0

.xj � xm/2 : (8.2)

Textbooks in statistics teach you that it is more appropriate to divide by n�1 instead
of n, but we are not going to worry about that fact in this book. A variant of (8.2)
reads

xv D
1

n

0

@

n�1
X

jD0

x2
j

1

A� x2
m : (8.3)

The good thing with this latter formula is that one can, as a statistical experiment
progresses and n increases, record the sums

sm D
q�1
X

jD0

xj ; sv D
q�1
X

jD0

x2
j (8.4)

and then, when desired, efficiently compute the most recent estimate on the mean
value and the variance after q samples by

xm D sm=q; xv D sv=q � s2
m=q2 : (8.5)

The standard deviation

xs D
p

xv (8.6)

is often used as an alternative to the variance, because the standard deviation has
the same unit as the measurement itself. A common way to express an uncertain
quantity x, based on a data set x0; : : : ; xn�1, from simulations or physical measure-
ments, is xm ˙ xs . This means that x has an uncertainty of one standard deviation
xs to either side of the mean value xm. With probability theory and statistics one
can provide many other, more precise measures of the uncertainty, but that is the
topic of a different course.

Below is an example where we draw numbers from the uniform distribution on
Œ�1; 1/ and compute the evolution of the mean and standard deviation 10 times
during the experiment, using the formulas (8.1) and (8.3)–(8.6):
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import sys
N = int(sys.argv[1])
import random
from math import sqrt
sm = 0; sv = 0
for q in range(1, N+1):

x = random.uniform(-1, 1)
sm += x
sv += x**2

# Write out mean and st.dev. 10 times in this loop
if q % (N/10) == 0:

xm = sm/q
xs = sqrt(sv/q - xm**2)
print ’%10d mean: %12.5e stdev: %12.5e’ % (q, xm, xs)

The if test applies the mod function, see Sect. 3.4.2, for checking if a number can
be divided by another without any remainder. The particular if test here is True
when i equals 0, N/10, 2*N/10, : : :, N, i.e., 10 times during the execution of the
loop. The program is available in the file mean_stdev_uniform1.py. A run with
N D 106 gives the output

100000 mean: 1.86276e-03 stdev: 5.77101e-01
200000 mean: 8.60276e-04 stdev: 5.77779e-01
300000 mean: 7.71621e-04 stdev: 5.77753e-01
400000 mean: 6.38626e-04 stdev: 5.77944e-01
500000 mean: -1.19830e-04 stdev: 5.77752e-01
600000 mean: 4.36091e-05 stdev: 5.77809e-01
700000 mean: -1.45486e-04 stdev: 5.77623e-01
800000 mean: 5.18499e-05 stdev: 5.77633e-01
900000 mean: 3.85897e-05 stdev: 5.77574e-01

1000000 mean: -1.44821e-05 stdev: 5.77616e-01

We see that the mean is getting smaller and approaching zero as expected since
we generate numbers between �1 and 1. The theoretical value of the standard
deviation, as N !1, equals

p

1=3 � 0:57735.
We have also made a corresponding vectorized version of the code above using

numpy’s random module and the ready-made functions mean, var, and std for
computing the mean, variance, and standard deviation (respectively) of an array of
numbers:

import sys
N = int(sys.argv[1])
import numpy as np
x = np.random.uniform(-1, 1, size=N)
xm = np.mean(x)
xv = np.var(x)
xs = np.std(x)
print ’%10d mean: %12.5e stdev: %12.5e’ % (N, xm, xs)

This program can be found in the file mean_stdev_uniform2.py.
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8.1.6 The Gaussian or Normal Distribution

In some applications we want random numbers to cluster around a specific value m.
This means that it is more probable to generate a number close to m than far away
from m. A widely used distribution with this qualitative property is the Gaussian
or normal distribution. For example, the statistical distribution of the height or
the blood pressure among adults of one gender are well described by a normal
distribution. The normal distribution has two parameters: the mean value m and the
standard deviation s. The latter measures the width of the distribution, in the sense
that a small s makes it less likely to draw a number far from the mean value, and
a large s makes more likely to draw a number far from the mean value.

Single random numbers from the normal distribution can be generated by

import random
r = random.normalvariate(m, s)

while efficient generation of an array of length N is enabled by

import numpy as np
r = np.random.normal(m, s, size=N)
r = np.random.randn(N) # mean=0, std.dev.=1

The following program draws N random numbers from the normal distribution,
computes the mean and standard deviation, and plots the histogram:

import sys
N = int(sys.argv[1])
m = float(sys.argv[2])
s = float(sys.argv[3])

import numpy as np
np.random.seed(12)
samples = np.random.normal(m, s, N)
print np.mean(samples), np.std(samples)

import scitools.std as st
x, y = st.compute_histogram(samples, 20, piecewise_constant=True)
st.plot(x, y, savefig=’tmp.pdf’,

title =’%d samples of Gaussian/normal numbers on (0,1)’ % N)

The corresponding program file is normal_numbers1.py, which gives a mean of
�0:00253 and a standard deviation of 0.99970 when run with N as 1 million, m
as 0, and s equal to 1. Figure 8.3 shows that the random numbers cluster around
the mean m D 0 in a histogram. This normalized histogram will, as N goes to
infinity, approach the famous, bell-shaped, normal distribution probability density
function2.

2 http://en.wikipedia.org/wiki/Normal_distribution

http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
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Fig. 8.3 Normalized histogram of 1 million random numbers drawn from the normal distribution

8.2 Drawing Integers

Suppose we want to draw a random integer among the values 1, 2, 3, and 4, and that
each of the four values is equally probable. One possibility is to draw real numbers
from the uniform distribution on, e.g., Œ0; 1/ and divide this interval into four equal
subintervals:

import random
r = random.random()
if 0 <= r < 0.25:

r = 1
elif 0.25 <= r < 0.5:

r = 2
elif 0.5 <= r < 0.75:

r = 3
else:

r = 4

Nevertheless, the need for drawing uniformly distributed integers occurs quite
frequently, so there are special functions for returning random integers in a specified
interval Œa; b�.
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8.2.1 Random Integer Functions

Python’s random module has a built-in function randint(a,b) for drawing an
integer in Œa; b�, i.e., the return value is among the numbers a, a+1, : : :, b-1, b.

import random
r = random.randint(a, b)

The numpy.random.randint(a, b, N) function has a similar functionality
for vectorized drawing of an array of length N of random integers in Œa; b/. The
upper limit b is not among the drawn numbers, so if we want to draw from a, a+1,
: : :, b-1, b, we must write

import numpy as np
r = np.random.randint(a, b+1, N)

Another function, random_integers(a, b, N), also in numpy.random, includes
the upper limit b in the possible set of random integers:

r = np.random.random_integers(a, b, N)

8.2.2 Example: Throwing a Die

Scalar version We can make a function that lets the computer throw a die N times
and returns the fraction of the throws the die shows six eyes:

def six_eyes(N):
M = 0 # no of times we get 6 eyes
for i in xrange(N):

outcome = random.randint(1, 6)
if outcome == 6:

M += 1
return float(M)/N

We use xrange instead of range because the former avoids storing N numbers in
memory, which can be an important feature when N is large.

Vectorized version Too speed up the experiments, we can vectorize the drawing
of the random numbers and the counting of the number successful experiments:

import numpy as np

def six_eyes_vec(N):
eyes = np.random.randint(1, 7, N)
success = eyes == 6 # True/False array
M = np.sum(success) # treats True as 1, False as 0
return float(M)/N



8.2 Drawing Integers 499

The eyes == 6 construction results in an array with True or False values, and
np.sum applied to this array treats True as 1 and False as 0 (the integer equivalents
to the boolean values), so the sum is the number of elements in eyes that equals
6. A very important point here for computational efficiency is to use np.sum and
not the standard sum function that is available in standard Python. With np.sum

function, the vectorized version runs about 60 times faster than the scalar version.
With Python’s standard sum function, the vectorized versions is in fact twice as
slow as the scalar version (!). We can illustrate the gain and loss in efficiency by the
follow IPython session:

In [1]: from roll_die import six_eyes, six_eyes_vec

In [2]: %timeit six_eyes(100000)
1 loops, best of 3: 250 ms per loop

In [3]: %timeit six_eyes_vec(100000)
100 loops, best of 3: 4.11 ms per loop

In [4]: 250/4.11 # performance fraction
Out[4]: 60.8272506082725

In [5]: from roll_die import np

In [6]: np.sum = sum # fool numpy to use built-in Python sum

In [7]: %timeit six_eyes_vec(100000)
1 loops, best of 3: 543 ms per loop

(Note how we can bind Python’s built-in sum function to the np.sum name such
that np.sum in six_eyes_vec applies Python’s sum function instead of the original
np.sum.)

Vectorized version with batches The disadvantage with the vectorized version is
that all the random numbers must be stored in the computer’s memory. A large
N may cause the program to run out of memory and raise a MemoryError. In-
stead of drawing all random numbers at once, we can draw them in batches of
size arraysize. There will be N//arraysize such batches, plus a rest. Note the
double slash in N//arraysize: here we indeed want integer division, which is ex-
plicitly instructed in Python by the double forward slash. The rest is obtained by
the mod operator: rest = N % arraysize. The size of the batches can be stored
in a list:

rest = N % arraysize
batch_sizes = [arraysize]*(N//arraysize) + [rest]

We can now make one batch of random numbers at a time and count how many
times we get six:
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def six_eyes_vec2(N, arraysize=1000000):
# Split all experiments into batches of size arraysize,
# plus a final batch of size rest
# (note: N//arraysize is integer division)
rest = N % arraysize
batch_sizes = [arraysize]*(N//arraysize) + [rest]

M = 0
for batch_size in batch_sizes:

eyes = np.random.randint(1, 7, batch_size)
success = eyes == 6 # True/False array
M += np.sum(success) # treats True as 1, False as 0

return float(M)/N

Because we fix the seed, the computed f will always be the same in this function.

Verification of the scalar version Verifying computations with random numbers
requires the seed to be fixed. When we believe the scalar version in function
six_eyes is correct, mainly by observing that the return value approaches 1/6 as
the number of experiments, N, grows, we can call the function with a small N and
record the return value for use in a test function:

def test_scalar():
random.seed(3)
f = six_eyes(100)
f_exact = 0.26
assert abs(f_exact - f) < 1E-15

Verification of all versions Since we have three alternative functions for com-
puting the same quantity, a verification can be based on comparing the output
of all three functions. This is somewhat problematic since the scalar and vec-
torized versions apply different random number generators. Fixing the seed of
Python’s random module and numpy.random does not help as these two tools
will generate different sequences of random integers. Nevertheless, we can fool
the scalar version in the six_eyes function to use np.random.randint instead
of random.randit: this is just a matter of setting random = np.random (with
a declaration global random) before calling six_eyes. The problem is that the
call np.random.randint(1, 6) in six_eyes will then generate the numbers up
to but not including 6, so M will always be zero. A little trick, can solve the problem:
we redefine random.randit to be a function that calls np.random.randint:

random.randint = lambda a, b: np.random.randint(a, b+1, 1)[0]

The call random.randint(1, 6) in six_eyes now becomes np.random.

randint(1, 7, 1)[0], i.e., we generate an array of 1 random integer and extract
the first element so the result is a scalar number as before.

A test function can call all three functions, with the same fixed seed, and compare
the returned values:
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def test_all():
# Use np.random as random number generator for all three
# functions and make sure all of them applies the same seed
N = 100
arraysize = 40
random.randint = lambda a, b: np.random.randint(a, b+1, 1)[0]
tol = 1E-15

np.random.seed(3)
f_scalar = six_eyes(N)
np.random.seed(3)
f_vec = six_eyes_vec(N)
assert abs(f_scalar - f_vec) < tol

np.random.seed(3)
f_vec2 = six_eyes_vec2(N, arraysize=80)
assert abs(f_vec - f_vec2) < tol

All the functions above are found in the file roll_die.py3.

8.2.3 Drawing a Random Element from a List

Given a list a, the statement

re = random.choice(a)

picks out an element of a at random, and re refers to this element. The shown call
to random.choice is the same as

re = a[random.randint(0, len(a)-1)]

There is also a function shuffle that performs a random permutation of the list
elements:

random.shuffle(a)

Picking now a[0], for instance, has the same effect as random.choice on the
original, unshuffled list. Note that shuffle changes the list given as argument.

The numpy.random module has also a shuffle function with the same func-
tionality.

A small session illustrates the various methods for picking a random element
from a list:

>>> awards = [’car’, ’computer’, ’ball’, ’pen’]
>>> import random
>>> random.choice(awards)
’car’

3 http://tinyurl.com/pwyasaa/random/roll_die

http://tinyurl.com/pwyasaa/random/roll_die
http://tinyurl.com/pwyasaa/random/roll_die
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>>> awards[random.randint(0, len(awards)-1)]
’pen’
>>> random.shuffle(awards)
>>> awards[0]
’computer’

8.2.4 Example: Drawing Cards from a Deck

The following function creates a deck of cards, where each card is represented as
a string, and the deck is a list of such strings:

def make_deck():
ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]
suits = [’C’, ’D’, ’H’, ’S’]
deck = []
for s in suits:

for r in ranks:
deck.append(s + r)

random.shuffle(deck)
return deck

Here, ’A’ means an ace, ’J’ represents a jack, ’Q’ represents a queen, ’K’ repre-
sents a king, ’C’ stands for clubs, ’D’ stands for diamonds, ’H’ means hearts, and
’S’ means spades. The computation of the list deck can alternatively (and more
compactly) be done by a one-line list comprehension:

deck = [s+r for s in suits for r in ranks]

We can draw a card at random by

deck = make_deck()
card = deck[0]
del deck[0]
# or better:
card = deck.pop(0) # return and remove element with index 0

Drawing a hand of n cards from a shuffled deck is accomplished by

def deal_hand(n, deck):
hand = [deck[i] for i in range(n)]
del deck[:n]
return hand, deck

Note that we must return deck to the calling code since this list is changed. Also
note that the n first cards of the deck are random cards if the deck is shuffled (and
any deck made by make_deck is shuffled).
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The following function deals cards to a set of players:

def deal(cards_per_hand, no_of_players):
deck = make_deck()
hands = []
for i in range(no_of_players):

hand, deck = deal_hand(cards_per_hand, deck)
hands.append(hand)

return hands

players = deal(5, 4)
import pprint; pprint.pprint(players)

The players list may look like

[[’D4’, ’CQ’, ’H10’, ’DK’, ’CK’],
[’D7’, ’D6’, ’SJ’, ’S4’, ’C5’],
[’C3’, ’DQ’, ’S3’, ’C9’, ’DJ’],
[’H6’, ’H9’, ’C6’, ’D5’, ’S6’]]

The next step is to analyze a hand. Of particular interest is the number of pairs,
three of a kind, four of a kind, etc. That is, how many combinations there are of
n_of_a_kind cards of the same rank (e.g., n_of_a_kind=2 finds the number of
pairs):

def same_rank(hand, n_of_a_kind):
ranks = [card[1:] for card in hand]
counter = 0
already_counted = []
for rank in ranks:

if rank not in already_counted and \
ranks.count(rank) == n_of_a_kind:

counter += 1
already_counted.append(rank)

return counter

Note how convenient the count method in list objects is for counting how many
copies there are of one element in the list.

Another analysis of the hand is to count how many cards there are of each suit.
A dictionary with the suit as key and the number of cards with that suit as value,
seems appropriate to return. We pay attention only to suits that occur more than
once:

def same_suit(hand):
suits = [card[0] for card in hand]
counter = {} # counter[suit] = how many cards of suit
for suit in suits:

count = suits.count(suit)
if count > 1:

counter[suit] = count
return counter
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For a set of players we can now analyze their hands:

for hand in players:
print """\

The hand %s
has %d pairs, %s 3-of-a-kind and %s cards of the same suit."""%\
(’, ’.join(hand), same_rank(hand, 2),
same_rank(hand, 3),
’+’.join([str(s) for s in same_suit(hand).values()]))

The values we feed into the printf string undergo some massage: we join the card
values with comma and put a plus in between the counts of cards with the same suit.
(The join function requires a string argument. That is why the integer counters of
cards with the same suit, returned from same_suit, must be converted to strings.)
The output of the for loop becomes

The hand D4, CQ, H10, DK, CK
has 1 pairs, 0 3-of-a-kind and 2+2 cards of the same suit.

The hand D7, D6, SJ, S4, C5
has 0 pairs, 0 3-of-a-kind and 2+2 cards of the same suit.

The hand C3, DQ, S3, C9, DJ
has 1 pairs, 0 3-of-a-kind and 2+2 cards of the same suit.

The hand H6, H9, C6, D5, S6
has 0 pairs, 1 3-of-a-kind and 2 cards of the same suit.

The file cards.py contains the functions make_deck, hand, same_rank,
same_suit, and the test snippets above. With the cards.py file one can start
to implement real card games.

8.2.5 Example: Class Implementation of a Deck

To work with a deck of cards with the code from the previous section one needs
to shuffle a global variable deck in and out of functions. A set of functions that
update global variables (like deck) is a primary candidate for a class: the global
variables are stored as data attributes and the functions become class methods. This
means that the code from the previous section is better implemented as a class. We
introduce class Deck with a list of cards, deck, as data attribute, and methods for
dealing one or several hands and for putting back a card:

class Deck(object):
def __init__(self):

ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]

suits = [’C’, ’D’, ’H’, ’S’]
self.deck = [s+r for s in suits for r in ranks]
random.shuffle(self.deck)

http://tinyurl.com/pwyasaa/random/cards.py
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def hand(self, n=1):
"""Deal n cards. Return hand as list."""
hand = [self.deck[i] for i in range(n)] # pick cards
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of lists."""
return [self.hand(cards_per_hand) \

for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):
return str(self.deck)

This class is found in the module file Deck.py. Dealing a hand of five cards to p

players is coded as

from Deck import Deck
deck = Deck()
print deck
players = deck.deal(5, 4)

Here, players become a nested list as shown in Sect. 8.2.4.
One can go a step further and make more classes for assisting card games. For

example, a card has so far been represented by a plain string, but we may well put
that string in a class Card:

class Card(object):
"""Representation of a card as a string (suit+rank)."""
def __init__(self, suit, rank):

self.card = suit + str(rank)

def __str__(self): return self.card
def __repr__(self): return str(self)

Note that str(self) is equivalent to self.__str__().
A Hand contains a set of Card instances and is another natural abstraction, and

hence a candidate for a class:

class Hand(object):
"""Representation of a hand as a list of Card objects."""
def __init__(self, list_of_cards):

self.hand = list_of_cards

def __str__(self): return str(self.hand)
def __repr__(self): return str(self)

http://tinyurl.com/pwyasaa/random/Deck.py
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With the aid of classes Card and Hand, class Deck can be reimplemented as

class Deck(object):
"""Representation of a deck as a list of Card objects."""

def __init__(self):
ranks = [’A’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,

’8’, ’9’, ’10’, ’J’, ’Q’, ’K’]
suits = [’C’, ’D’, ’H’, ’S’]
self.deck = [Card(s,r) for s in suits for r in ranks]
random.shuffle(self.deck)

def hand(self, n=1):
"""Deal n cards. Return hand as a Hand object."""
hand = Hand([self.deck[i] for i in range(n)])
del self.deck[:n] # remove cards
return hand

def deal(self, cards_per_hand, no_of_players):
"""Deal no_of_players hands. Return list of Hand obj."""
return [self.hand(cards_per_hand) \

for i in range(no_of_players)]

def putback(self, card):
"""Put back a card under the rest."""
self.deck.append(card)

def __str__(self):
return str(self.deck)

def __repr__(self):
return str(self)

def __len__(self):
return len(self.deck)

The module file Deck2.py contains this implementation. The usage of the two
Deck classes is the same,

from Deck2 import Deck
deck = Deck()
players = deck.deal(5, 4)

with the exception that players in the last case holds a list of Hand instances, and
each Hand instance holds a list of Card instances.

We stated in Sect. 7.3.9 that the __repr__ method should return a string such
that one can recreate the object from this string by the aid of eval. However, we did
not follow this rule in the implementation of classes Card, Hand, and Deck. Why?
The reason is that we want to print a Deck instance. Python’s print or pprint
on a list applies repr(e) to print an element e in the list. Therefore, if we had
implemented

http://tinyurl.com/pwyasaa/random/Deck2.py
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class Card(object):
...
def __repr__(self):

return "Card(’%s’, %s)" % (self.card[0], self.card[1:])

class Hand(object):
...
def __repr__(self): return ’Hand(%s)’ % repr(self.hand)

a plain printing of the deck list of Hand instances would lead to output like

[Hand([Card(’C’, ’10’), Card(’C’, ’4’), Card(’H’, ’K’), ...]),
...,
Hand([Card(’D’, ’7’), Card(’C’, ’5’), ..., Card(’D’, ’9’)])]

This output is harder to read than

[[C10, C4, HK, DQ, HQ],
[SA, S8, H3, H10, C2],
[HJ, C7, S2, CQ, DK],
[D7, C5, DJ, S3, D9]]

That is why we let __repr__ in classes Card and Hand return the same pretty print
string as __str__, obtained by returning str(self).

8.3 Computing Probabilities

With the mathematical rules from probability theory one may compute the probabil-
ity that a certain event happens, say the probability that you get one black ball when
drawing three balls from a hat with four black balls, six white balls, and three green
balls. Unfortunately, theoretical calculations of probabilities may soon become hard
or impossible if the problem is slightly changed. There is a simple numerical way
of computing probabilities that is generally applicable to problems with uncertainty.
The principal ideas of this approximate technique is explained below, followed by
three examples of increasing complexity.

8.3.1 Principles of Monte Carlo Simulation

Assume that we perform N experiments where the outcome of each experiment is
random. Suppose that some event takes place M times in these N experiments. An
estimate of the probability of the event is then M=N . The estimate becomes more
accurate as N is increased, and the exact probability is assumed to be reached in the
limit as N !1. (Note that in this limit, M !1 too, so for rare events, where M

may be small in a program, one must increase N such that M is sufficiently large
for M=N to become a good approximation to the probability.)
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Programs that run a large number of experiments and record the outcome of
events are often called simulation programs. (Note that this term is also applied
for programs that solve equations arising in mathematical models in general, but it
is even more common to use the term when random numbers are used to estimate
probabilities.) The mathematical technique of letting the computer perform lots of
experiments based on drawing random numbers is commonly called Monte Carlo

simulation. This technique has proven to be extremely useful throughout science
and industry in problems where there is uncertain or random behavior is involved.

As far as the laws of mathematics refer to reality, they are not certain, as far as they are

certain, they do not refer to reality. Albert Einstein, physicist, 1879–1955.

For example, in finance the stock market has a random variation that must be
taken into account when trying to optimize investments. In offshore engineering,
environmental loads from wind, currents, and waves show random behavior. In nu-
clear and particle physics, random behavior is fundamental according to quantum
mechanics and statistical physics. Many probabilistic problems can be calculated
exactly by mathematics from probability theory, but very often Monte Carlo sim-
ulation is the only way to solve statistical problems. Sections 8.3.2–8.3.5 applies
examples to explain the essence of Monte Carlo simulation in problems with in-
herent uncertainty. However, also deterministic problems, such as integration of
functions, can be computed by Monte Carlo simulation (see Sect. 8.5).

It appears that Monte Carlo simulation programmed in pure Python is a compu-
tationally feasible approach, even on small laptops, in all the forthcoming examples.
Significant speed-up can be achieved by vectorizing the code, which is explained in
detail for many of the examples. However, large-scale Monte Carlo simulations and
other heavy computations run slowly in pure Python, and the core of the computa-
tions should be moved to a compiled language such as C. In Appendix G, you can
find a Monte Carlo application that is implemented in pure Python, in vectorized
numpy Python, in the extended (and very closely related) Cython language, as well
as in pure C code. Various ways of combining Python with C are also illustrated.

8.3.2 Example: Throwing Dice

You throw two dice, one black and one green. What is the probability that the
number of eyes on the black die is larger than the number of eyes on the green die?

Straightforward solution We can simulate N throws of two dice in a program.
For each throw we see if the event is successful, and if so, increase M by one:

import sys
N = int(sys.argv[1]) # no of experiments

import random
M = 0 # no of successful events
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for i in range(N):
black = random.randint(1, 6) # throw black
green = random.randint(1, 6) # throw brown
if black > green: # success?

M += 1
p = float(M)/N
print ’probability:’, p

This program is named black_gt_green.py.

Vectorization Although the black_gt_green.py program runs N D 106 in
a few seconds, Monte Carlo simulation programs can quickly require quite some
simulation time so speeding up the algorithm by vectorization is often desired. Let
us vectorize the code shown above. The idea is to draw all the random numbers
(2N ) at once. We make an array of random numbers between 1 and 6 with 2 rows
and N columns. The first row can be taken as the number of eyes on the black
die in all the experiments, while the second row are the corresponding eyes on the
green die:

r = np.random.random_integers(1, 6, size=(2, N))
black = r[0,:] # eyes for all throws with black
green = r[1,:] # eyes for all throws with green

The condition black > green results in an array of length N of boolean val-
ues: True when the element in black is greater than the corresponding element
in green, and False if not. The number of True elements in the boolean array
black > green is then M . This number can be computed by summing up all
the boolean values. In arithmetic operations, True is 1 and False i 0, so the sum
equals M . Fast summation of arrays requires np.sum and not Python’s standard
sum function. The code goes like

success = black > green # success[i] is true if black[i]>green[i]
M = np.sum(success) # sum up all successes
p = float(M)/N
print ’probability:’, p

The code, found in the file black_gt_green_vec.py, runs over 10 times faster
than the corresponding scalar code in black_gt_green.py.

Exact solution In this simple example we can quite easily compute the exact solu-
tion. To this end, we set up all the outcomes of the experiment, i.e., all the possible
combinations of eyes on two dice:

combinations = [(black, green)
for black in range(1, 7)
for green in range(1, 7)]

Then we count how many of the (black, green) pairs that have the property
black > green:

http://tinyurl.com/pwyasaa/random/black_gt_green.py
http://tinyurl.com/pwyasaa/random/black_gt_green_vec.py
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success = [black > green for black, green in combinations]
M = sum(success)

It turns out that M is 15, giving a probability 15=36 � 0:41667 since there are
36 combinations in total. Running the Monte Carlo simulations with N D 106

typically gives probabilities in Œ0:416; 0:417�.

A game Suppose a games is constructed such that you have to pay 1 euro to throw
the two dice. You win 2 euros if there are more eyes on the black than on the green
die. Should you play this game? We can easily simulate the game directly (file
black_gt_green_game.py):

import sys
N = int(sys.argv[1]) # no of experiments

import random
start_capital = 10
money = start_capital
for i in range(N):

money -= 1 # pay for the game
black = random.randint(1, 6) # throw black
green = random.randint(1, 6) # throw brown
if black > green: # success?

money += 2 # get award

net_profit_total = money - start_capital
net_profit_per_game = net_profit_total/float(N)
print ’Net profit per game in the long run:’, net_profit_per_game

Experimenting with a few N shows that the net profit per game is always nega-
tive. That is, you should not play this game.

A vectorized version is beneficial of efficiency reasons (the corresponding file is
black_gt_green_game_vec.py):

import sys
N = int(sys.argv[1]) # no of experiments

import numpy as np
r = np.random.random_integers(1, 6, size=(2, N))

money = 10 - N # capital after N throws
black = r[0,:] # eyes for all throws with black
green = r[1,:] # eyes for all throws with green
success = black > green # success[i] is true if black[i]>green[i]
M = np.sum(success) # sum up all successes
money += 2*M # add all awards for winning
print ’Net profit per game in the long run:’, (money-10)/float(N)

Decide if a game is fair Suppose the cost of playing a game once is q and that
the award for winning is r . The net income in a winning game is r � q. Winning

http://tinyurl.com/pwyasaa/random/black_gt_green_game.py
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M out of N games means that the cost is Nq and the income is M r , making a net
profit s D M r � Nq. Now p D M=N is the probability of winning the game so
s D .pr � q/N . A fair game means that we neither win nor lose in the long run:
s D 0, which implies that r D q=p. That is, given the cost q and the probability p

of winning, the award paid for winning the game must be r D q=p in a fair game.
When somebody comes up with a game you can use Monte Carlo simulation to

estimate p and then conclude that you should not play the game of r < q=p. The
example above has p D 15=36 (exact) and q D 1, so r D 2:4 makes a fair game.

The reasoning above is based on common sense and an intuitive interpretation of
probability. More precise reasoning from probability theory will introduce the game
as an experiment with two outcomes, either you win with probability p and or lose
with probability 1 � p. The expected payment is then the sum of the probabilities
times the corresponding net income for each event: �q.1 � p/C .r � q/p (recall
that the net income in a winning game is r � q). A fair game has zero expected
payment, which leads to r D q=p.

8.3.3 Example: Drawing Balls from a Hat

Suppose there are 12 balls in a hat: four black, four red, and four blue. We want
to make a program that draws three balls at random from the hat. It is natural to
represent the collection of balls as a list. Each list element can be an integer 1, 2, or
3, since we have three different types of balls, but it would be easier to work with
the program if the balls could have a color instead of an integer number. This is
easily accomplished by defining color names:

colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:

for i in range(4):
hat.append(color)

Drawing a ball at random is performed by

import random
color = random.choice(hat)
print color

Drawing n balls without replacing the drawn balls requires us to remove an element
from the hat when it is drawn. There are three ways to implement the procedure:
(i) we perform a hat.remove(color), (ii) we draw a random index with randint

from the set of legal indices in the hat list, and then we do a del hat[index] to
remove the element, or (iii) we can compress the code in (ii) to hat.pop(index).

def draw_ball(hat):
color = random.choice(hat)
hat.remove(color)
return color, hat
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def draw_ball(hat):
index = random.randint(0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball(hat):
index = random.randint(0, len(hat)-1)
color = hat.pop(index)
return color, hat

# Draw n balls from the hat
balls = []
for i in range(n):

color, hat = draw_ball(hat)
balls.append(color)

print ’Got the balls’, balls

We can extend the experiment above and ask the question: what is the probability
of drawing two or more black balls from a hat with 12 balls, four black, four red, and
four blue? To this end, we perform N experiments, count how many times M we
get two or more black balls, and estimate the probability as M=N . Each experiment
consists of making the hat list, drawing a number of balls, and counting how many
black balls we got. The latter task is easy with the count method in list objects:
hat.count(’black’) counts how many elements with value ’black’ we have in
the list hat. A complete program for this task is listed below. The program appears
in the file balls_in_hat.py.

import random

def draw_ball(hat):
"""Draw a ball using list index."""
index = random.randint(0, len(hat)-1)
color = hat.pop(index)
return color, hat

def draw_ball(hat):
"""Draw a ball using list index."""
index = random.randint(0, len(hat)-1)
color = hat[index]
del hat[index]
return color, hat

def draw_ball(hat):
"""Draw a ball using list element."""
color = random.choice(hat)
hat.remove(color)
return color, hat

http://tinyurl.com/pwyasaa/random/balls_in_hat.py


8.3 Computing Probabilities 513

def new_hat():
colors = ’black’, ’red’, ’blue’ # (tuple of strings)
hat = []
for color in colors:

for i in range(4):
hat.append(color)

return hat

n = int(raw_input(’How many balls are to be drawn? ’))
N = int(raw_input(’How many experiments? ’))

# Run experiments
M = 0 # no of successes
for e in range(N):

hat = new_hat()
balls = [] # the n balls we draw
for i in range(n):

color, hat = draw_ball(hat)
balls.append(color)

if balls.count(’black’) >= 2: # at least two black balls?
M += 1

print ’Probability:’, float(M)/N

Running the program with n D 5 (drawing 5 balls each time) and N D 4000

gives a probability of 0.57. Drawing only 2 balls at a time reduces the probability
to about 0.09.

One can with the aid of probability theory derive theoretical expressions for such
probabilities, but it is much simpler to let the computer perform a large number of
experiments to estimate an approximate probability.

A class version of the code in this section is better than the code presented,
because we avoid shuffling the hat variable in and out of functions. Exercise 8.21
asks you to design and implement a class Hat.

8.3.4 RandomMutations of Genes

A simple mutation model A fundamental principle of biological evolution is that
DNA undergoes mutation. Since DNA can be represented as a string consisting
of the letters A, C, G, and T, as explained in Sect. 3.3, mutation of DNA is eas-
ily modeled by replacing the letter in a randomly chosen position of the DNA by
a randomly chosen letter from the alphabet A, C, G, and T. A function for replacing
the letter in a randomly selected position (index) by a random letter among A, C,
G, and T is most straightforwardly implemented by converting the DNA string to
a list of letters, since changing a character in a Python string is impossible without
constructing a new string. However, an element in a list can be changed in-place:
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import random

def mutate_v1(dna):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
dna_list[mutation_site] = random.choice(list(’ATCG’))
return ’’.join(dna_list)

Using get_base_frequencies_v2 and format_frequencies from Sect.
6.5.3, we can easily mutate a gene a number of times and see how the frequencies
of the bases A, C, G, and T change:

dna = ’ACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

nmutations = 10000
for i in range(nmutations):

dna = mutate_v1(dna)

print ’DNA after %d mutations:’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

Here is the output from a run:

Starting DNA: ACGGAGATTTCGGTATGCAT
A: 0.25, C: 0.15, T: 0.30, G: 0.30
DNA after 10000 mutations: AACCAATCCGACGAGGAGTG
A: 0.35, C: 0.25, T: 0.10, G: 0.30

Vectorized version The efficiency of the mutate_v1 function with its surrounding
loop can be significantly increased up by performing all the mutations at once using
numpy arrays. This speed-up is of interest for long dna strings and many mutations.
The idea is to draw all the mutation sites at once, and also all the new bases at
these sites at once. The np.random module provides functions for drawing several
random numbers at a time, but only integers and real numbers can be drawn, not
characters from the alphabet A, C, G, and T. We therefore have to simulate these
four characters by the numbers (say) 0, 1, 2, and 3. Afterwards we can translate the
integers to letters by some clever vectorized indexing.

Drawing N mutation sites is a matter of drawing N random integers among the
legal indices:

import numpy as np
mutation_sites = np.random.random_integers(0, len(dna)-1, size=N)

Drawing N bases, represented as the integers 0–3, is similarly done by

new_bases_i = np.random.random_integers(0, 3, N)
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Converting say the integers 1 to the base symbol C is done by picking out the indices
(in a boolean array) where new_bases_i equals 1, and inserting the character ’C’
in a companion array of characters:

new_bases_c = np.zeros(N, dtype=’c’)
indices = new_bases_i == 1
new_bases_c[indices] = ’C’

We must do this integer-to-letter conversion for all four integers/letters. Thereafter,
new_bases_c must be inserted in dna for all the indices corresponding to the ran-
domly drawn mutation sites,

dna[mutation_sites] = new_bases_c

The final step is to convert the numpy array of characters dna back to a stan-
dard string by first converting dna to a list and then joining the list elements:
”.join(dna.tolist()).

The complete vectorized function can now be expressed as follows:

import numpy as np
# Use integers in random numpy arrays and map these
# to characters according to
i2c = {0: ’A’, 1: ’C’, 2: ’G’, 3: ’T’}

def mutate_v2(dna, N):
dna = np.array(dna, dtype=’c’) # array of characters
mutation_sites = np.random.random_integers(

0, len(dna) - 1, size=N)
# Must draw bases as integers
new_bases_i = np.random.random_integers(0, 3, size=N)
# Translate integers to characters
new_bases_c = np.zeros(N, dtype=’c’)
for i in i2c:

new_bases_c[new_bases_i == i] = i2c[i]
dna[mutation_sites] = new_bases_c
return ’’.join(dna.tolist())

It is of interest to time mutate_v2 versus mutate_v1. For this purpose we need
a long test string. A straightforward generation of random letters is

def generate_string_v1(N, alphabet=’ACGT’):
return ’’.join([random.choice(alphabet) for i in xrange(N)])

A vectorized version of this function can also be made, using the ideas explored
above for the mutate_v2 function:

def generate_string_v2(N, alphabet=’ACGT’):
# Draw random integers 0,1,2,3 to represent bases
dna_i = np.random.random_integers(0, 3, N)
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# Translate integers to characters
dna = np.zeros(N, dtype=’c’)
for i in i2c:

dna[dna_i == i] = i2c[i]
return ’’.join(dna.tolist())

The time_mutate function in the file mutate.py performs timing of the gener-
ation of test strings and the mutations. To generate a DNA string of length 100,000
the vectorized function is about 8 times faster. When performing 10,000 mutations
on this string, the vectorized version is almost 3000 times faster! These numbers
stay approximately the same also for larger strings and more mutations. Hence,
this case study on vectorization is a striking example on the fact that a straightfor-
ward and convenient function like mutate_v1 might occasionally be very slow for
large-scale computations.

A Markov chain mutation model The observed rate at which mutations occur at
a given position in the genome is not independent of the type of nucleotide (base)
at that position, as was assumed in the previous simple mutation model. We should
therefore take into account that the rate of transition depends on the base.

There are a number of reasons why the observed mutation rates vary between
different nucleotides. One reason is that there are different mechanisms generating
transitions from one base to another. Another reason is that there are extensive
repair process in living cells, and the efficiency of this repair mechanism varies for
different nucleotides.

Mutation of nucleotides may be modeled using distinct probabilities for the tran-
sitions from each nucleotide to every other nucleotide. For example, the probability
of replacing A by C may be prescribed as (say) 0.2. In total we need 4�4 probabil-
ities since each nucleotide can transform into itself (no change) or three others. The
sum of all four transition probabilities for a given nucleotide must sum up to one.
Such statistical evolution, based on probabilities for transitioning from one state to
another, is known as a Markov process or Markov chain.

First we need to set up the probability matrix, i.e., the 4� 4 table of probabilities
where each row corresponds to the transition of A, C, G, or T into A, C, G, or T.
Say the probability transition from A to A is 0.2, from A to C is 0.1, from A to G is
0.3, and from A to T is 0.4.

Rather than just prescribing some arbitrary transition probabilities for test pur-
poses, we can use random numbers for these probabilities. To this end, we generate
three random numbers to divide the interval Œ0; 1� into four intervals correspond-
ing to the four possible transitions. The lengths of the intervals give the transition
probabilities, and their sum is ensured to be 1. The interval limits, 0, 1, and three
random numbers must be sorted in ascending order to form the intervals. We use
the function random.random() to generate random numbers in Œ0; 1/:

slice_points = sorted(
[0] + [random.random() for i in range(3)] + [1])

transition_probabilities = [slice_points[i+1] - slice_points[i]
for i in range(4)]

http://tinyurl.com/pwyasaa/random/mutate.py
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The transition probabilities are handy to have available as a dictionary:

markov_chain[’A’] = {’A’: ..., ’C’: ..., ’G’: ..., ’T’: ...}

which can be computed by

markov_chain[’A’] = {base: p for base, p in
zip(’ACGT’, transition_probabilities)}

To select a transition, we need to draw a random letter (A, C, G, or T) according
to the probabilities markov_chain[b] where b is the base at the current position.
Actually, this is a very common operation, namely drawing a random value from
a discrete probability distribution (markov_chain[b]). The natural approach is
therefore write a general function for drawing from any discrete probability distri-
bution given as a dictionary:

def draw(discrete_probdist):
"""
Draw random value from discrete probability distribution
represented as a dict: P(x=value) = discrete_probdist[value].
"""
# Method:
# http://en.wikipedia.org/wiki/Pseudo-random_number_sampling
limit = 0
r = random.random()
for value in discrete_probdist:

limit += discrete_probdist[value]
if r < limit:

return value

Basically, the algorithm divides Œ0; 1� into intervals of lengths equal to the prob-
abilities of the various outcomes and checks which interval is hit by a random
variable in Œ0; 1�. The corresponding value is the random choice.

A complete function creating all the transition probabilities and storing them in
a dictionary of dictionaries takes the form

def create_markov_chain():
markov_chain = {}
for from_base in ’ATGC’:

# Generate random transition probabilities by dividing
# [0,1] into four intervals of random length

slice_points = sorted(
[0] + [random.random()for i in range(3)] + [1])

transition_probabilities = \
[slice_points[i+1] - slice_points[i] for i in range(4)]

markov_chain[from_base] = {base: p for base, p
in zip(’ATGC’, transition_probabilities)}

return markov_chain

mc = create_markov_chain()
print mc
print mc[’A’][’T’] # probability of transition from A to T
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It is natural to develop a function for checking that the generated probabilities are
consistent. The transition from a particular base into one of the four bases happens
with probability 1, which means that the probabilities in a row must sum up to 1:

def check_transition_probabilities(markov_chain):
for from_base in ’ATGC’:

s = sum(markov_chain[from_base][to_base]
for to_base in ’ATGC’)

if abs(s - 1) > 1E-15:
raise ValueError(’Wrong sum: %s for "%s"’ % \

(s, from_base))

Another test is to check that draw actually draws random values in accordance
with the underlying probabilities. To this end, we draw a large number of values, N,
count the frequencies of the various values, divide by N and compare the empirical
normalized frequencies with the probabilities:

def check_draw_approx(discrete_probdist, N=1000000):
"""
See if draw results in frequencies approx equal to
the probability distribution.
"""
frequencies = {value: 0 for value in discrete_probdist}
for i in range(N):

value = draw(discrete_probdist)
frequencies[value] += 1

for value in frequencies:
frequencies[value] /= float(N)

print ’, ’.join([’%s: %.4f (exact %.4f)’ % \
(v, frequencies[v], discrete_probdist[v])
for v in frequencies])

This test is only approximate, but does bring evidence to the correctness of the
implementation of the draw function.

A vectorized version of draw can also be made. We refer to the source code file
mutate.py for details (the function is relatively complicated).

Now we have all the tools needed to run the Markov chain of transitions for
a randomly selected position in a DNA sequence:

def mutate_via_markov_chain(dna, markov_chain):
dna_list = list(dna)
mutation_site = random.randint(0, len(dna_list) - 1)
from_base = dna[mutation_site]
to_base = draw(markov_chain[from_base])
dna_list[mutation_site] = to_base
return ’’.join(dna_list)

Exercise 8.47 suggests some efficiency enhancements of simulating mutations via
these functions.

http://tinyurl.com/pwyasaa/random/mutate.py
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Here is a simulation of mutations using the method based on Markov chains:

dna = ’TTACGGAGATTTCGGTATGCAT’
print ’Starting DNA:’, dna
print format_frequencies(get_base_frequencies_v2(dna))

mc = create_markov_chain()
import pprint
print ’Transition probabilities:\n’, pprint.pformat(mc)
nmutations = 10000
for i in range(nmutations):

dna = mutate_via_markov_chain(dna, mc)

print ’DNA after %d mutations (Markov chain):’ % nmutations, dna
print format_frequencies(get_base_frequencies_v2(dna))

The output will differ each time the program is run unless random.seed(i)

is called in the beginning of the program for some integer i. This call makes the
sequence of random numbers the same every time the program is run and is very
useful for debugging. An example on the output may look like

Starting DNA: TTACGGAGATTTCGGTATGCAT
A: 0.23, C: 0.14, T: 0.36, G: 0.27
Transition probabilities:
{’A’: {’A’: 0.4288890546751146,

’C’: 0.4219086988655296,
’G’: 0.00668870644455688,
’T’: 0.14251354001479888},

’C’: {’A’: 0.24999667668640035,
’C’: 0.04718309085408834,
’G’: 0.6250440975238185,
’T’: 0.0777761349356928},

’G’: {’A’: 0.16022955651881965,
’C’: 0.34652746609882423,
’G’: 0.1328031742612512,
’T’: 0.3604398031211049},

’T’: {’A’: 0.20609823213950174,
’C’: 0.17641112746655452,
’G’: 0.010267621176125452,
’T’: 0.6072230192178183}}

DNA after 10000 mutations (Markov chain): GGTTTAAGTCAGCTATGATTCT
A: 0.23, C: 0.14, T: 0.41, G: 0.23

The various functions performing mutations are located in the file mutate.py.

8.3.5 Example: Policies for Limiting Population Growth

China has for many years officially allowed only one child per couple. However,
the success of the policy has been somewhat limited. One challenge is the current
over-representation of males in the population (families have favored sons to live
up). An alternative policy is to allow each couple to continue getting children until
they get a son. We can simulate both policies and see how a population will develop

http://tinyurl.com/pwyasaa/random/mutate.py
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under the one child and the one son policies. Since we expect to work with a large
population over several generations, we aim at vectorized code at once.

Suppose we have a collection of n individuals, called parents, consisting of
males and females randomly drawn such that a certain portion (male_portion)
constitutes males. The parents array holds integer values, 1 for male and 2 for
females. We can introduce constants, MALE=1 and FEMALE=2, to make the code
easier to read. Our task is to see how the parents array develop from one gener-
ation to the next under the two policies. Let us first show how to draw the random
integer array parents where there is a probability male_portion of getting the
value MALE:

import numpy as np
r = np.random.random(n)
parents = np.zeros(n, int)
MALE = 1; FEMALE = 2
parents[r < male_portion] = MALE
parents[r >= male_portion] = FEMALE

The number of potential couples is the minimum of males and females. However,
only a fraction (fertility) of the couples will actually get a child. Under the
perfect one child policy, these couples can have one child each:

males = len(parents[parents==MALE])
females = len(parents) - males
couples = min(males, females)
n = int(fertility*couples) # couples that get a child

# The next generation, one child per couple
r = random.random(n)
children = np.zeros(n, int)
children[r < male_portion] = MALE
children[r >= male_portion] = FEMALE

The code for generating a new population will be needed in every generation.
Therefore, it is natural to collect the last statements in a separate function such
that we can repeat the statements when needed.

def get_children(n, male_portion, fertility):
n = int(fertility*n)
r = random.random(n)
children = zeros(n, int)
children[r < male_portion] = MALE
children[r >= male_portion] = FEMALE
return children

Under the one son policy, the families can continue getting a new child until they
get the first son:

# First try
children = get_children(couples, male_portion, fertility)
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# Continue with getting a new child for each daughter
daughters = children[children == FEMALE]
while len(daughters) > 0:

new_children = get_children(len(daughters),
male_portion, fertility)

children = np.concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]

The program birth_policy.py organizes the code segments above for the two
policies into a function advance_generation, which we can call repeatedly to
see the evolution of the population.

def advance_generation(parents, policy=’one child’,
male_portion=0.5, fertility=1.0):

males = len(parents[parents==MALE])
females = len(parents) - males
couples = min(males, females)

if policy == ’one child’:
children = get_children(couples, male_portion, fertility)

elif policy == ’one son’:
# First try at getting a child
children = get_children(couples, male_portion, fertility)
# Continue with getting a new child for each daughter
daughters = children[children == FEMALE]
while len(daughters) > 0:

new_children = get_children(len(daughters),
male_portion, fertility)

children = np.concatenate((children, new_children))
daughters = new_children[new_children == FEMALE]

return children

The simulation is then a matter of repeated calls to advance_generation:

N = 1000000 # population size
male_portion = 0.51
fertility = 0.92
# Start with a "perfect" generation of parents
parents = get_children(N, male_portion=0.5, fertility=1.0)
print ’one son policy, start: %d’ % len(parents)
for i in range(10):

parents = advance_generation(parents, ’one son’,
male_portion, fertility)

print ’%3d: %d’ % (i+1, len(parents))

Under ideal conditions with unit fertility and a male_portion of 0.5, the
program predicts that the one child policy halves the population from one gener-
ation to the next, while the one son policy, where we expect each couple to get
one daughter and one son on average, keeps the population constant. Increasing
male_portion slightly and decreasing fertility, which corresponds more to
reality, will in both cases lead to a reduction of the population. You can try the
program out with various values of these input parameters.

An obvious extension is to incorporate the effect that a portion of the popu-
lation does not follow the policy and get c children on average. The program

http://tinyurl.com/pwyasaa/random/birth_policy.py


522 8 Random Numbers and Simple Games

birth_policy.py can account for the effect, which is quite dramatic: if a frac-
tion 0.01 of the population does not follow the one son policy and get 4 children on
average, the population grows with a factor 1.5 over 10 generations (male_portion
and fertility kept at the ideal values 0.5 and 1, respectively).

Normally, simple models like the difference equations (A.9) and (A.12), from
Sects. A.1.4 and A.1.5, or the differential equations (C.11) or (C.23), are used to
model population growth. However, these models track the number of individuals
through time with a very simple growth factor from one generation to the next. The
model above tracks each individual in the population and applies rules involving
random actions to each individual. Such a detailed and much more computer-time
consuming model can be used to see the effect of different policies. Using the re-
sults of this detailed model, we can (sometimes) estimate growth factors for simpler
models so that these mimic the overall effect on the population size. Exercise 8.26
asks you to investigate if a certain realization of the one son policy leads to simple
exponential growth.

8.4 Simple Games

This section presents the implementation of some simple games based on drawing
random numbers. The games can be played by two humans, but here we consider
a human versus the computer.

8.4.1 Guessing a Number

The game The computer determines a secret number, and the player shall guess
the number. For each guess, the computer tells if the number is too high or too low.

The implementation We let the computer draw a random integer in an interval
known to the player, let us say Œ1; 100�. In a while loop the program prompts the
player for a guess, reads the guess, and checks if the guess is higher or lower than
the drawn number. An appropriate message is written to the screen. We think the
algorithm can be expressed directly as executable Python code:

import random
number = random.randint(1, 100)
attempts = 0 # count no of attempts to guess the number
guess = 0
while guess != number:

guess = eval(raw_input(’Guess a number: ’))
attempts += 1
if guess == number:

print ’Correct! You used’, attempts, ’attempts!’
break

elif guess < number:
print ’Go higher!’

else:
print ’Go lower!’
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The program is available as the file guess_number.py. Try it out! Can you come
up with a strategy for reducing the number of attempts? See Exercise 8.27 for an
automatic investigation of two possible strategies.

8.4.2 Rolling Two Dice

The game The player is supposed to roll two dice, and beforehand guess the sum
of the eyes. If the guess on the sum is n and it turns out to be right, the player
earns n euros. Otherwise, the player must pay 1 euro. The machine plays in the
same way, but the machine’s guess of the number of eyes is a uniformly distributed
number between 2 and 12. The player determines the number of rounds, r , to play,
and receives r euros as initial capital. The winner is the one that has the largest
amount of euros after r rounds, or the one that avoids to lose all the money.

The implementation There are three actions that we can naturally implement as
functions: (i) roll two dice and compute the sum; (ii) ask the player to guess the
number of eyes; (iii) draw the computer’s guess of the number of eyes. One soon
realizes that it is as easy to implement this game for an arbitrary number of dice as
it is for two dice. Consequently we can introduce ndice as the number of dice. The
three functions take the following forms:

import random

def roll_dice_and_compute_sum(ndice):
return sum([random.randint(1, 6) \

for i in range(ndice)])

def computer_guess(ndice):
return random.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes ’\

’in the next throw: ’)

We can now implement one round in the game for the player or the computer. The
round starts with a capital, a guess is performed by calling the right function for
guessing, and the capital is updated:

def play_one_round(ndice, capital, guess_function):
guess = guess_function(ndice)
throw = roll_dice_and_compute_sum(ndice)
if guess == throw:

capital += guess
else:

capital -= 1
return capital, throw, guess

Here, guess_function is either computer_guess or player_guess.
With the play_one_round function we can run a number of rounds involving

both players:

http://tinyurl.com/pwyasaa/random/guess_number.py
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def play(nrounds, ndice=2):
player_capital = computer_capital = nrounds # start capital

for i in range(nrounds):
player_capital, throw, guess = \

play_one_round(ndice, player_capital, player_guess)
print ’YOU guessed %d, got %d’ % (guess, throw)

computer_capital, throw, guess = \
play_one_round(ndice, computer_capital, computer_guess)

print ’Machine guessed %d, got %d’ % (guess, throw)

print ’Status: you have %d euros, machine has %d euros’ % \
(player_capital, computer_capital)

if player_capital == 0 or computer_capital == 0:
break

if computer_capital > player_capital:
winner = ’Machine’

else:
winner = ’You’

print winner, ’won!’

The name of the program is ndice.py.

Example Here is a session (with a fixed seed of 20):

Guess the sum of the no of eyes in the next throw: 7
YOU guessed 7, got 11
Machine guessed 10, got 8
Status: you have 9 euros, machine has 9 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 10
Machine guessed 11, got 6
Status: you have 8 euros, machine has 8 euros

Guess the sum of the no of eyes in the next throw: 9
YOU guessed 9, got 9
Machine guessed 3, got 8
Status: you have 17 euros, machine has 7 euros

Exercise 8.12 asks you to perform simulations to determine whether a certain strat-
egy can make the player win over the computer in the long run.

A class version We can cast the previous code segment in a class. Many will argue
that a class-based implementation is closer to the problem being modeled and hence
easier to modify or extend.

http://tinyurl.com/pwyasaa/random/ndice.py
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A natural class is Dice, which can throw n dice:

class Dice(object):
def __init__(self, n=1):

self.n = n # no of dice

def throw(self):
return [random.randint(1,6) \

for i in range(self.n)]

Another natural class is Player, which can perform the actions of a player. Func-
tions can then make use of Player to set up a game. A Player has a name, an
initial capital, a set of dice, and a Dice object to throw the object:

class Player(object):
def __init__(self, name, capital, guess_function, ndice):

self.name = name
self.capital = capital
self.guess_function = guess_function
self.dice = Dice(ndice)

def play_one_round(self):
self.guess = self.guess_function(self.dice.n)
self.throw = sum(self.dice.throw())
if self.guess == self.throw:

self.capital += self.guess
else:

self.capital -= 1
self.message()
self.broke()

def message(self):
print ’%s guessed %d, got %d’ % \

(self.name, self.guess, self.throw)

def broke(self):
if self.capital == 0:

print ’%s lost!’ % self.name
sys.exit(0) # end the program

The guesses of the computer and the player are specified by functions:

def computer_guess(ndice):
# All guesses have the same probability
return random.randint(ndice, 6*ndice)

def player_guess(ndice):
return input(’Guess the sum of the no of eyes ’\

’in the next throw: ’)

The key function to play the whole game, utilizing the Player class for the com-
puter and the user, can be expressed as
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def play(nrounds, ndice=2):
player = Player(’YOU’, nrounds, player_guess, ndice)
computer = Player(’Computer’, nrounds, computer_guess, ndice)

for i in range(nrounds):
player.play_one_round()
computer.play_one_round()
print ’Status: user has %d euro, machine has %d euro\n’ % \

(player.capital, computer.capital)

if computer.capital > player.capital:
winner = ’Machine’

else:
winner = ’You’

print winner, ’won!’

The complete code is found in the file ndice2.py. There is no new functionality
compared to the ndice.py implementation, just a new and better structuring of the
code.

8.5 Monte Carlo Integration

One of the earliest applications of random numbers was numerical computation
of integrals, which is actually non-random (deterministic) problem. Computing
integrals with the aid of random numbers is known as Monte Carlo integration and
is one of the most powerful and widely used mathematical technique throughout
science and engineering.

Our main focus here will be integrals of the type
R b

a f .x/dx for which the Monte
Carlo integration is not a competitive technique compared to simple methods such
as the Trapezoidal method, the Midpoint method, or Simpson’s method. How-
ever, for integration of functions of many variables, the Monte Carlo approach is
the best method we have. Such integrals arise all the time in quantum physics,
financial engineering, and when estimating the uncertainty of mathematical compu-
tations. What you learn about Monte Carlo integration of functions of one variable
(
R b

a
f .x/dx) is directly transferable to the important application cases where there

are many variables involved.

8.5.1 Derivation ofMonte Carlo Integration

There are two ways to introduce Monte Carlo integration, one based on calculus and
one based on probability theory. The goal is to compute a numerical approximation
to

b
Z

a

f .x/dx :

http://tinyurl.com/pwyasaa/random/ndice2.py
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The calculus approach via the mean-value theorem The mean-value theorem
from calculus states that

b
Z

a

f .x/dx D .b � a/ Nf ; (8.7)

where Nf is the mean value of f , defined as

Nf D 1

b � a

b
Z

a

f .x/dx :

One way of using (8.7) to define a numerical method for integration is to approxi-
mate Nf by taking the average of f at n points x0; : : : ; xn�1:

Nf � 1

n

n�1
X

iD0

f .xi / : (8.8)

(We let the numbering of the points go from 0 to n � 1 because these numbers will
later be indices in Python arrays, which have to start at 0.)

There is freedom in how to choose the points x0; : : : ; xn�1. We could, for ex-
ample, make them uniformly spaced in the interval Œa; b�. The particular choice

x0 D aC ihC 1

2
h; i D 0; : : : ; n � 1; h D b � a

n � 1
;

correspond to the famous Midpoint rule for numerical integration. Intuitively, we
anticipate that the more points we use, the better is the approximation 1

n

P

i f .xi /

to the exact mean value Nf . For the Midpoint rule one can show mathematically, or
numerically estimate through examples, that the error in the approximation depends
on n as n�2. That is, doubling the number of points reduces the error by a factor
1/4.

A slightly different set of uniformly distributed points is

xi D aC ih; i D 0; : : : ; n � 1; : : : ; h D b � 1

n � 2
:

These points might look more intuitive to many since they start at a and end at b

(x0 D a, xn�1 D b), but the error in the integration rule now goes as n�1: doubling
the number of points just halves the error. That is, computing more function values
to get a better integration estimate is less effective with this set points than with the
slight displaced points used in the Midpoint rule.

One could also throw in the idea of using a set of random points, uniformly dis-
tributed in Œa; b�. This is the Monte Carlo integration technique. The error now
goes like n�1=2, which means that many more points and corresponding function
evaluations are needed to reduce the error compared to using the Midpoint method.
The surprising fact, however, is that using random points for many variables (in
high-dimensional vector spaces) yields a very effective integration technique, dra-
matically more effective than extending the ideas of the Midpoint rule to many
variables.
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The probability theory approach People who are into probability theory usually
like to interpret integrals as mathematical expectations of a random variable. (If you
are not one of those, you can safely jump to Sect. 8.5.2 where we just program the
simple sum in the Monte Carlo integration method.) More precisely, the integral
R b

a
f .x/dx can be expressed as a mathematical expectation of f .x/ if x is a uni-

formly distributed random variable on Œa; b�. This expectation can be estimated
by the average of random samples, which results in the Monte Carlo integration
method. To see this, we start with the formula for the probability density function
for a uniformly distributed random variable X on Œa; b�:

p.x/ D
(

.b � a/�1; x 2 Œa; b�

0; otherwise

Now we can write the standard formula for the mathematical expectation E.f .X//:

E.f .X// D
1
Z

�1

f .x/p.x/dx D
b
Z

a

f .x/
1

b � a
dx D .b � a/

b
Z

a

f .x/dx :

The last integral is exactly what we want to compute. An expectation is usually
estimated from a lot of samples, in this case uniformly distributed random numbers
x0; : : : ; xn�1 in Œa; b�, and computing the sample mean:

E.f .X// � 1

n

n�1
X

iD0

f .xi / :

The integral can therefore be estimated by

b
Z

a

f .x/dx � .b � a/
1

n

n�1
X

iD0

f .xi /;

which is nothing but the Monte Carlo integration method.

8.5.2 Implementation of StandardMonte Carlo Integration

To summarize, Monte Carlo integration consists in generating n uniformly dis-
tributed random numbers xi in Œa; b� and then compute

.b � a/
1

n

n�1
X

iD0

f .xi / : (8.9)

We can implement (8.9) in a small function:
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import random

def MCint(f, a, b, n):
s = 0
for i in xrange(n):

x = random.uniform(a, b)
s += f(x)

I = (float(b-a)/n)*s
return I

One normally needs a large n to obtain good results with this method, so a faster
vectorized version of the MCint function is very useful:

import numpy as np

def MCint_vec(f, a, b, n):
x = np.random.uniform(a, b, n)
s = np.sum(f(x))
I = (float(b-a)/n)*s
return I

The functions above are available in the module file MCint.py. We can test the
gain in efficiency with %timeit in an IPython session:

In [1]: from MCint import MCint, MCint_vec

In [2]: from math import sin, pi

In [3]: %timeit MCint(sin, 0, pi, 1000000)
1 loops, best of 3: 1.19 s per loop

In [4]: from numpy import sin

In [5]: %timeit MCint_vec(sin, 0, pi, 1000000)
1 loops, best of 3: 173 ms per loop

In [6]: 1.19/0.173 # relative performance
Out[6]: 6.878612716763006

Note that we use sin from math in the scalar function MCint because this function
is significantly faster than sin from numpy:

In [7]: from math import sin

In [8]: %timeit sin(1.2)
10000000 loops, best of 3: 179 ns per loop

In [9]: from numpy import sin

In [10]: %timeit sin(1.2)
100000 loops, best of 3: 3.22 microsec per loop

In [11]: 3.22E-6/179E-9 # relative performance
Out[11]: 17.988826815642458

http://tinyurl.com/pwyasaa/random/MCint.py
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(A similar test reveals that math.sin is 1.3 times slower calling sin without
a prefix. The differences are much smaller between numpy.sin and the same func-
tion without the prefix.)

The increase in efficiency by using MCint_vec instead of MCint is in the test
above a factor of 6–7, which is not dramatic. Moreover, the vectorized version needs
to store n random numbers and n function values in memory. A better vectorized
implementation for large n is to split the x and f(x) arrays into chunks of a given
size arraysize such that we can control the memory usage. Mathematically, it
means to split the sum 1

n

P

i f .xi / into a sum of smaller sums. An appropriate
implementation reads

def MCint_vec2(f, a, b, n, arraysize=1000000):
s = 0
# Split sum into batches of size arraysize
# + a sum of size rest (note: n//arraysize is integer division)
rest = n % arraysize
batch_sizes = [arraysize]*(n//arraysize) + [rest]
for batch_size in batch_sizes:

x = np.random.uniform(a, b, batch_size)
s += np.sum(f(x))

I = (float(b-a)/n)*s
return I

With 100 million points, MCint_vec2 is about 10 faster than MCint. (Note that
the latter function must use xrange and not range for so large n, otherwise the
array returned by range may become to large to be stored in memory in a small
computer. The xrange function generates one i at a time without the need to store
all the i values.)

Example Let us try the Monte Carlo integration method on a simple linear function
f .x/ D 2C 3x, integrated from 1 to 2. Most other numerical integration methods
will integrate such a linear function exactly, regardless of the number of function
evaluations. This is not the case with Monte Carlo integration.

It would be interesting to see how the quality of the Monte Carlo approximation
increases with n. To plot the evolution of the integral approximation we must store
intermediate I values. This requires a slightly modified MCint method:

def MCint2(f, a, b, n):
s = 0
# Store the intermediate integral approximations in an
# array I, where I[k-1] corresponds to k function evals.
I = np.zeros(n)
for k in range(1, n+1):

x = random.uniform(a, b)
s += f(x)
I[k-1] = (float(b-a)/k)*s

return I

Note that we let k go from 1 to n, such that k reflects the actual number of points
used in the method. Since n can be very large, the I array may consume more
memory than what we have on the computer. Therefore, we decide to store only
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every N values of the approximation. Determining if a value is to be stored or not
can be computed by the mod function: k % N gives the remainder when k is divided
by N. In our case we can store when this reminder is zero,

for k in range(1, n+1):
...
if k % N == 0:

# store

This recipe of doing something every N -th pass in long loops has lots of applica-
tions in scientific computing! The complete function now takes the following form:

def MCint3(f, a, b, n, N=100):
s = 0
# Store every N intermediate integral approximations in an
# array I and record the corresponding k value.
I_values = []
k_values = []
for k in range(1, n+1):

x = random.uniform(a, b)
s += f(x)
if k % N == 0:

I = (float(b-a)/k)*s
I_values.append(I)
k_values.append(k)

return k_values, I_values

def demo():

Our sample application goes like

def f1(x):
return 2 + 3*x

k, I = MCint3(f1, 1, 2, 1000000, N=10000)
error = 6.5 - np.array(I)

Figure 8.4 shows a plot of error versus the number of function evaluation k.

Remark We claimed that the Monte Carlo method is slow for integration functions
of one variable. There are, however, many techniques that apply smarter ways
of drawing random numbers, so called variance reduction techniques, and thereby
increase the computational efficiency.

8.5.3 Area Computing by Throwing Random Points

Think of some geometric region G in the plane and a surrounding bounding box B

with geometry ŒxL; xH �� ŒyL; yH �. One way of computing the area of G is to draw
N random points inside B and count how many of them, M , that lie inside G. The
area of G is then the fraction M=N (G’s fraction of B’s area) times the area of B ,
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Fig. 8.4 The convergence of Monte Carlo integration applied to
R 2

1 .2C 3x/dx

.xH � xL/.yH � yL/. Phrased differently, this method is a kind of dart game where
you record how many hits there are inside G if every throw hits uniformly within
B .

Let us formulate this method for computing the integral
R b

a
f .x/dx. The impor-

tant observation is that this integral is the area under the curve y D f .x/ and above
the x axis, between x D a and x D b. We introduce a rectangle B ,

B D f.x; y/ j a � x � b; 0 � y � mg;

where m � maxx2Œa;b� f .x/. The algorithm for computing the area under the curve
is to draw N random points inside B and count how many of them, M , that are
above the x axis and below the y D f .x/ curve, see Fig. 8.5. The area or integral
is then estimated by

M

N
m.b � a/ :

First we implement the “dart method” by a simple loop over points:

def MCint_area(f, a, b, n, m):
below = 0 # counter for no of points below the curve
for i in range(n):

x = random.uniform(a, b)
y = random.uniform(0, m)
if y <= f(x):

below += 1
area = below/float(n)*m*(b-a)
return area
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Fig. 8.5 The “dart” method for computing integrals. When M out of N random points in the
rectangle Œ0; 2� � Œ0; 2:4� lie under the curve, the area under the curve is estimated as the M=N

fraction of the area of the rectangle, i.e., .M=N /2 � 2:4

Note that this method draws twice as many random numbers as the previous
method.

A vectorized implementation reads

import numpy as np

def MCint_area_vec(f, a, b, n, m):
x = np.random.uniform(a, b, n)
y = np.random.uniform(0, m, n)
below = np.sum(y < f(x))
area = below/float(n)*m*(b-a)
return area

The only non-trivial line here is the expression y[y < f(x)], which applies
boolean indexing (Sect. 5.5.2) to extract the y values that are below the f(x) curve.
The sum of the boolean values (interpreted as 0 and 1) in y < f(x) gives the
number of points below the curve.

Even for 2 million random numbers the plain loop version is not that slow as
it executes within some seconds on a slow laptop. Nevertheless, if you need the
integration being repeated many times inside another calculation, the superior effi-
ciency of the vectorized version may be important. We can quantify the efficiency
gain by the aid of the timer time.clock() in the following way (see Sect. H.8.1):
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import time
t0 = time.clock()
print MCint_area(f1, a, b, n, fmax)
t1 = time.clock() # time of MCint_area is t1-t0
print MCint_area_vec(f1, a, b, n, fmax)
t2 = time.clock() # time of MCint_area_vec is t2-t1
print ’loop/vectorized fraction:’, (t1-t0)/(t2-t1)

With n D 106 the author achieved a factor of about 8 in favor of the vectorized
version.

8.6 RandomWalk in One Space Dimension

In this section we shall simulate a collection of particles that move around in a ran-
dom fashion. This type of simulations are fundamental in physics, biology, chem-
istry as well as other sciences and can be used to describe many phenomena. Some
application areas include molecular motion, heat conduction, quantum mechanics,
polymer chains, population genetics, brain research, hazard games, and pricing of
financial instruments.

Imagine that we have some particles that perform random moves, either to the
right or to the left. We may flip a coin to decide the movement of each particle, say
head implies movement to the right and tail means movement to the left. Each move
is one unit length. Physicists use the term random walk for this type of movement
of a particle. You may try this yourself: flip the coin and make one step to the left
or right, and repeat this process.

The movement is also known as drunkard’s walk. You may have experienced
this after a very wet night on a pub: you step forward and backward in a random
fashion. Since these movements on average make you stand still, and since you
know that you normally reach home within reasonable time, the model is not good
for a real walk. We need to add a drift to the walk, so the probability is greater for
going forward than backward. This is an easy adjustment, see Exercise 8.32. What
may come as a surprise is the following fact: even when there is equal probability of
going forward and backward, one can prove mathematically that the drunkard will
always reach his home. Or more precisely, he will get home in finite time (“almost
surely” as the mathematicians must add to this statement). Exercise 8.33 asks you to
experiment with this fact. For many practical purposes, “finite time” does not help
much as there might be more steps involved than the time it takes to get sufficiently
sober to remove the completely random component of the walk.

8.6.1 Basic Implementation

How can we implement ns random steps of np particles in a program? Let us
introduce a coordinate system where all movements are along the x axis. An array
of x values then holds the positions of all particles. We draw random numbers to
simulate flipping a coin, say we draw from the integers 1 and 2, where 1 means
head (movement to the right) and 2 means tail (movement to the left). We think the
algorithm is conveniently expressed directly as a complete Python program:
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import random
import numpy
np = 4 # no of particles
ns = 100 # no of steps
positions = numpy.zeros(np) # all particles start at x=0
HEAD = 1; TAIL = 2 # constants

for step in range(ns):
for p in range(np):

coin = random.randint(1,2) # flip coin
if coin == HEAD:

positions[p] += 1 # one unit length to the right
elif coin == TAIL:

positions[p] -= 1 # one unit length to the left

This program is found in the file walk1D.py.

8.6.2 Visualization

We may add some visualization of the movements by inserting a plot command
at the end of the step loop and a little pause to better separate the frames in the
animation:

plot(positions, y, ’ko3’, axis=[xmin, xmax, -0.2, 0.2])
time.sleep(0.2) # pause

These two statements require from scitools.std import plot and import

time.
It is very important that the extent of the axis are kept fixed in animations, oth-

erwise one gets a wrong visual impression. We know that in ns steps, no particle
can move longer than ns unit lengths to the right or to the left so the extent of the x

axis becomes Œ�ns; ns �. However, the probability of reaching these lower or upper
limit is very small. To be specific, the probability is 2�ns , which becomes about
10�9 for 30 steps. Most of the movements will take place in the center of the plot.
We may therefore shrink the extent of the axis to better view the movements. It is
known that the expected extent of the particles is of the order

p
ns , so we may take

the maximum and minimum values in the plot as˙2
p

ns . However, if a position of
a particle exceeds these values, we extend xmax and xmin by 2

p
ns in positive and

negative x direction, respectively.
The y positions of the particles are taken as zero, but it is necessary to have some

extent of the y axis, otherwise the coordinate system collapses and most plotting
packages will refuse to draw the plot. Here we have just chosen the y axis to go
from -0.2 to 0.2. You can find the complete program in walk1Dp.py. The np and
ns parameters can be set as the first two command-line arguments:

Terminal

walk1Dp.py 6 200

http://tinyurl.com/pwyasaa/random/walk1D.py
http://tinyurl.com/pwyasaa/random/walk1Dp.py
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It is hard to claim that this program has astonishing graphics. In Sect. 8.7, where
we let the particles move in two space dimensions, the graphics gets much more
exciting.

8.6.3 RandomWalk as a Difference Equation

The random walk process can easily be expressed in terms of a difference equa-
tion (see Appendix A for an introduction to difference equations). Let xn be the
position of the particle at time n. This position is an evolution from time n � 1,
obtained by adding a random variable s to the previous position xn�1, where s D 1

has probability 1/2 and s D �1 has probability 1/2. In statistics, the expression
probability of event A is written P.A/. We can therefore write P.s D 1/ D 1=2 and
P.s D �1/ D 1=2. The difference equation can now be expressed mathematically
as

xn D xn�1 C s; x0 D 0; P.s D 1/ D P.s D �1/ D 1=2 : (8.10)

This equation governs the motion of one particle. For a collection m of particles we
introduce x

.i/
n as the position of the i -th particle at the n-th time step. Each x

.i/
n is

governed by (8.10), and all the s values in each of the m difference equations are
independent of each other.

8.6.4 Computing Statistics of the Particle Positions

Scientists interested in random walks are in general not interested in the graphics of
our walk1D.py program, but more in the statistics of the positions of the particles at
each step. We may therefore, at each step, compute a histogram of the distribution
of the particles along the x axis, plus estimate the mean position and the standard
deviation. These mathematical operations are easily accomplished by letting the
SciTools function compute_histogram and the numpy functions mean and std

operate on the positions array (see Sect. 8.1.5):

mean_pos = numpy.mean(positions)
stdev_pos = numpy.std(positions)
pos, freq = compute_histogram(positions, nbins=int(xmax),

piecewise_constant=True)

The number of bins in the histogram is just based on the extent of the particles. It
could also have been a fixed number.

We can plot the particles as circles, as before, and add the histogram and vertical
lines for the mean and the positive and negative standard deviation (the latter indi-
cates the “width” of the distribution of particles). The vertical lines can be defined
by the six lists

xmean, ymean = [mean_pos, mean_pos], [yminv, ymaxv]
xstdv1, ystdv1 = [stdev_pos, stdev_pos], [yminv, ymaxv]
xstdv2, ystdv2 = [-stdev_pos, -stdev_pos], [yminv, ymaxv]
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where yminv and ymaxv are the minimum and maximum y values of the vertical
lines. The following command plots the position of every particle as circles, the
histogram as a curve, and the vertical lines with a thicker line:

plot(positions, y, ’ko3’, # particles as circles
pos, freq, ’r’, # histogram
xmean, ymean, ’r2’, # mean position as thick line
xstdv1, ystdv1, ’b2’, # +1 standard dev.
xstdv2, ystdv2, ’b2’, # -1 standard dev.
axis=[xmin, xmax, ymin, ymax],
title=’random walk of %d particles after %d steps’ %

(np, step+1))

This plot is then created at every step in the random walk. By observing the graph-
ics, one will soon realize that the computation of the extent of the y axis in the plot
needs some considerations. We have found it convenient to base ymax on the max-
imum value of the histogram (max(freq)), plus some space (chosen as 10 percent
of max(freq)). However, we do not change the ymax value unless it is more than
0.1 different from the previous ymax value (otherwise the axis “jumps” too often).
The minimum value, ymin, is set to ymin=-0.1*ymax every time we change the
ymax value. The complete code is found in the file walk1Ds.py. If you try out
2000 particles and 30 steps, the final graphics becomes like that in Fig. 8.6. As the
number of steps is increased, the particles are dispersed in the positive and negative
x direction, and the histogram gets flatter and flatter. Letting OH.i/ be the histogram
value in interval number i , and each interval having width �x, the probability of
finding a particle in interval i is OH.i/�x. It can be shown mathematically that
the histogram is an approximation to the probability density function of the normal
distribution with mean zero and standard deviation s � pn, where n is the step
number.

8.6.5 Vectorized Implementation

There is no problem with the speed of our one-dimensional random walkers in
the walk1Dp.py or walk1Ds.py programs, but in real-life applications of such
simulation models, we often have a very large number of particles performing a very
large number of steps. It is then important to make the implementation as efficient
as possible. Two loops over all particles and all steps, as we have in the programs
above, become very slow compared to a vectorized implementation.

A vectorized implementation of a one-dimensional walk should utilize the func-
tions randint or random_integers from numpy’s random module. A first idea
may be to draw steps for all particles at a step simultaneously. Then we repeat this
process in a loop from 0 to ns � 1. However, these repetitions are just new vectors
of random numbers, and we may avoid the loop if we draw np�ns random numbers
at once:

moves = numpy.random.randint(1, 3, size=np*ns)
# or
moves = numpy.random.random_integers(1, 2, size=np*ns)

http://tinyurl.com/pwyasaa/random/walk1Ds.py
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Fig. 8.6 Particle positions (circles), histogram (piecewise constant curve), and vertical lines indi-
cating the mean value and the standard deviation from the mean after a one-dimensional random
walk of 2000 particles for 30 steps

The values are now either 1 or 2, but we want �1 or 1. A simple scaling and
translation of the numbers transform the 1 and 2 values to �1 and 1 values:

moves = 2*moves - 3

Then we can create a two-dimensional array out of moves such that moves[i,j] is
the i-th step of particle number j:

moves.shape = (ns, np)

It does not make sense to plot the evolution of the particles and the histogram
in the vectorized version of the code, because the point with vectorization is to
speed up the calculations, and the visualization takes much more time than draw-
ing random numbers, even in the walk1Dp.py and walk1Ds.py programs from
Sect. 8.6.4. We therefore just compute the positions of the particles inside a loop
over the steps and some simple statistics. At the end, after ns steps, we plot the
histogram of the particle distribution along with circles for the positions of the par-
ticles. The rest of the program, found in the file walk1Dv.py, looks as follows:

positions = numpy.zeros(np)
for step in range(ns):

positions += moves[step, :]

http://tinyurl.com/pwyasaa/random/walk1Dv.py
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mean_pos = numpy.mean(positions)
stdev_pos = numpy.std(positions)
print mean_pos, stdev_pos

nbins = int(3*sqrt(ns)) # no of intervals in histogram
pos, freq = compute_histogram(positions, nbins,

piecewise_constant=True)

plot(positions, zeros(np), ’ko3’,
pos, freq, ’r’,
axis=[min(positions), max(positions), -0.01, 1.1*max(freq)],
savefig=’tmp.pdf’)

8.7 RandomWalk in Two Space Dimensions

A random walk in two dimensions performs a step either to the north, south, west,
or east, each one with probability 1=4. To demonstrate this process, we introduce x

and y coordinates of np particles and draw random numbers among 1, 2, 3, or 4 to
determine the move. The positions of the particles can easily be visualized as small
circles in an xy coordinate system.

8.7.1 Basic Implementation

The algorithm described above is conveniently expressed directly as a complete
working program:

def random_walk_2D(np, ns, plot_step):
xpositions = numpy.zeros(np)
ypositions = numpy.zeros(np)
# extent of the axis in the plot:
xymax = 3*numpy.sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
for i in range(np):

direction = random.randint(1, 4)
if direction == NORTH:

ypositions[i] += 1
elif direction == SOUTH:

ypositions[i] -= 1
elif direction == EAST:

xpositions[i] += 1
elif direction == WEST:

xpositions[i] -= 1

# Plot just every plot_step steps
if (step+1) % plot_step == 0:

plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
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Fig. 8.7 Location of 3000 particles starting at the origin and performing a random walk, with 40
steps (left) and 400 steps (right)

title=’%d particles after %d steps’ %
(np, step+1),

savefig=’tmp_%03d.pdf’ % (step+1))
return xpositions, ypositions

# main program:
import random
random.seed(10)
import sys
import numpy
from scitools.std import plot

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot every plot_step steps
x, y = random_walk_2D(np, ns, plot_step)

The program is found in the file walk2D.py. Figure 8.7 shows two snapshots of the
distribution of 3000 particles after 40 and 400 steps. These plots were generated
with command-line arguments 3000 400 20, the latter implying that we visualize
the particles every 20 time steps only.

To get a feeling for the two-dimensional random walk you can try out only 30
particles for 400 steps and let each step be visualized (i.e., command-line arguments
30 400 1). The update of the movements is now fast.

The walk2D.py program dumps the plots to PDF files with names of the form
tmp_xxx.pdf, where xxx is the step number. We can create a movie out of these
individual files using the program convert from the ImageMagick suite:

Terminal

Terminal> convert -delay 50 -loop 1000 tmp_*.pdf movie.gif

All the plots are now put after each other as frames in a movie, with a delay of 50 ms
between each frame. The movie will run in a loop 1000 times. The resulting movie
file is named movie.gif, which can be viewed by the animate program (also
from the ImageMagick program suite), just write animate movie.gif. Making

http://tinyurl.com/pwyasaa/random/walk2D.py
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and showing the movie are slow processes if a large number of steps are included
in the movie. The alternative is to make a true video file in, e.g., the Flash format:

Terminal

Terminal> avconv -r 5 -i tmp_%04d.png -c:v flv movie.flv

This requires the plot files to be in PNG format.

8.7.2 Vectorized Implementation

The walk2D.py program is quite slow. Now the visualization is much faster than
the movement of the particles. Vectorization may speed up the walk2D.py program
significantly. As in the one-dimensional phase, we draw all the movements at once
and then invoke a loop over the steps to update the x and y coordinates. We draw
ns � np numbers among 1, 2, 3, and 4. We then reshape the vector of random num-
bers to a two-dimensional array moves[i, j], where i counts the steps, j counts
the particles. The if test on whether the current move is to the north, south, east,
or west can be vectorized using the where function. For example, if the random
numbers for all particles in the current step are accessible in an array this_move,
we could update the x positions by

xpositions += np.where(this_move == EAST, 1, 0)
xpositions -= np.where(this_move == WEST, 1, 0)

provided EAST and WEST are constants, equal to 3 and 4, respectively. A similar
construction can be used for the y moves.

The complete program is listed below:

def random_walk_2D(np, ns, plot_step):
xpositions = numpy.zeros(np)
ypositions = numpy.zeros(np)
moves = numpy.random.random_integers(1, 4, size=ns*np)
moves.shape = (ns, np)

# Estimate max and min positions
xymax = 3*numpy.sqrt(ns); xymin = -xymax

NORTH = 1; SOUTH = 2; WEST = 3; EAST = 4 # constants

for step in range(ns):
this_move = moves[step,:]
ypositions += numpy.where(this_move == NORTH, 1, 0)
ypositions -= numpy.where(this_move == SOUTH, 1, 0)
xpositions += numpy.where(this_move == EAST, 1, 0)
xpositions -= numpy.where(this_move == WEST, 1, 0)
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# Just plot every plot_step steps
if (step+1) % plot_step == 0:

plot(xpositions, ypositions, ’ko’,
axis=[xymin, xymax, xymin, xymax],
title=’%d particles after %d steps’ %

(np, step+1),
savefig=’tmp_%03d.pdf’ % (step+1))

return xpositions, ypositions

# Main program
from scitools.std import plot
import numpy, sys
numpy.random.seed(11)

np = int(sys.argv[1]) # number of particles
ns = int(sys.argv[2]) # number of steps
plot_step = int(sys.argv[3]) # plot each plot_step step
x, y = random_walk_2D(np, ns, plot_step)

You will easily experience that this program, found in the file walk2Dv.py, runs
significantly faster than the walk2D.py program.

8.8 Summary

8.8.1 Chapter Topics

Drawing random numbers Random numbers can be scattered throughout an in-
terval in various ways, specified by the distribution of the numbers. We have
considered a uniform distribution (Sect. 8.1.2) and a normal (or Gaussian) distri-
bution (Sect. 8.1.6).

The table below shows the syntax for generating random numbers of these two
distributions, using either the standard scalar random module in Python or the vec-
torized numpy.random module. Here, N is the array length in vectorized drawing,
while m and s represent the mean and standard deviation values of a normal distri-
bution. Functions from the standard random module appear in the middle column,
while the corresponding functions from numpy.random are listed in the right col-
umn.

Functionality Python’s random numpy.random

uniform numbers in Œ0; 1/ random() random(N)

uniform numbers in Œa; b/ uniform(a, b) uniform(a, b, N)

integers in Œa; b� randint(a, b) randint(a, b+1, N)

integers in Œa; b� random_integers(a, b, N)

Gaussian numbers gauss(m, s) normal(m, s, N)

set seed (i) seed(i) seed(i)

shuffle list in-place shuffle(a) shuffle(a)

choose a random element in list choice(a)

http://tinyurl.com/pwyasaa/random/walk2Dc.py
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Typical probability computation via Monte Carlo simulation Many programs
performing probability computations draw a large number N of random numbers and
count how many times M a random number leads to some true condition (success):

import random
M = 0
for i in xrange(N):

r = random.randint(a, b)
if success:

M += 1
print ’Probability estimate:’, float(M)/N

For example, if we seek the probability that we get at least four eyes when throwing
a dice, we choose the random number to be the number of eyes, i.e., an integer in
the interval Œ1; 6� (a=1, b=6) and success becomes r >= 4.

For large N we can speed up such programs by vectorization, i.e., drawing all
random numbers at once in a big array and use operations on the array to find M .
The similar vectorized version of the program above looks like

import numpy as np
r = np.random.uniform(a, b, N)
M = np.sum(condition)
# or
M = np.sum(where(condition, 1, 0))
print ’Probability estimate:’, float(M)/N

(Combinations of boolean expressions in the condition argument to where

requires special constructs as outlined in Exercise 8.17.) Make sure you use np.sum
when operating on large arrays and not the much slower built-in sum function in
Python.

Statistical measures Given an array of random numbers, the following code com-
putes the mean, variance, and standard deviation of the numbers and finally displays
a plot of the histogram, which reflects how the numbers are statistically distributed:

from scitools.std import compute_histogram, plot
import numpy as np
m = np.mean(numbers)
v = np.var(numbers)
s = np.std(numbers)
x, y = compute_histogram(numbers, 50, piecewise_constant=True)
plot(x, y)

Terminology The important topics in this chapter are

� random numbers
� random number distribution
� Monte Carlo simulation
� Monte Carlo integration
� random walk
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8.8.2 Example: RandomGrowth

Section A.1.1 presents simple mathematical models for how an investment grows
when there is an interest rate being added to the investment at certain intervals.
The models can easily allow for a time-varying interest rate, but for forecasting
the growth of an investment, it is difficult to predict the future interest rate. One
commonly used method is to build a probabilistic model for the development of
the interest rate, where the rate is chosen randomly at random times. This gives
a random growth of the investment, but by simulating many random scenarios we
can compute the mean growth and use the standard deviation as a measure of the
uncertainty of the predictions.

Problem Let p be the annual interest rate in a bank in percent. Suppose the interest
is added to the investment q times per year. The new value of the investment, xn, is
given by the previous value of the investment, xn�1, plus the p=q percent interest:

xn D xn�1 C
p

100q
xn�1 :

Normally, the interest is added daily (q D 360 and n counts days), but for efficiency
in the computations later we shall assume that the interest is added monthly, so
q D 12 and n counts months.

The basic assumption now is that p is random and varies with time. Suppose p

increases with a random amount 
 from one month to the next:

pn D pn�1 C 
 :

A typical size of p adjustments is 0:5. However, the central bank does not adjust
the interest every month. Instead this happens every M months on average. The
probability of a 
 ¤ 0 can therefore be taken as 1=M . In a month where 
 ¤ 0,
we may say that 
 D m with probability 1/2 or 
 D �m with probability 1/2 if it
is equally likely that the rate goes up as down (this is not a good assumption, but
a more complicated change in 
 is postponed now).

Solution First we must develop the precise formulas to be implemented. The dif-
ference equations for xn and pn are simple in the present case, but the details of
computing 
 must be worked out.

In a program, we can draw two random numbers to estimate 
 : one for deciding
if 
 ¤ 0 and the other for determining the sign of the change. Since the probability
for 
 ¤ 0 is 1=M , we can draw a number r1 among the integers 1; : : : ; M and if
r1 D 1 we continue with drawing a second number r2 among the integers 1 and 2.
If r2 D 1 we set 
 D m, and if r2 D 2 we set 
 D �m. We must also assure that pn

does not take on unreasonable values, so we choose pn < 1 and pn > 15 as cases
where pn is not changed.

The mathematical model for the investment must track both xn and pn. Below we
express with precise mathematics the equations for xn and pn and the computation
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of the random 
 quantity:

xn D xn�1 C
pn�1

12 � 100
xn�1; i D 1; : : : ; N (8.11)

r1 D random integer in Œ1; M � (8.12)

r2 D random integer in Œ1; 2� (8.13)


 D

8

ˆ

<

ˆ

:

m; if r1 D 1 and r2 D 1;

�m; if r1 D 1 and r2 D 2;

0; if r1 ¤ 1

(8.14)

pn D pn�1 C
(


; if pn�1 C 
 2 Œ1; 15�;

0; otherwise
(8.15)

We remark that the evolution of pn is much like a random walk process
(Sect. 8.6), the only differences is that the plus/minus steps are taken at some ran-
dom points among the times 0; 1; 2; : : : ; N rather than at all times 0; 1; 2; : : : ; N .
The random walk for pn also has barriers at p D 1 and p D 15, but that is common
in a standard random walk too.

Each time we calculate the xn sequence in the present application, we get a dif-
ferent development because of the random numbers involved. We say that one
development of x0; : : : ; xn is a path (or realization, but since the realization can be
viewed as a curve xn or pn versus n in this case, it is common to use the word
path). Our Monte Carlo simulation approach consists of computing a large number
of paths, as well as the sum of the path and the sum of the paths squared. From the
latter two sums we can compute the mean and standard deviation of the paths to see
the average development of the investment and the uncertainty of this development.
Since we are interested in complete paths, we need to store the complete sequence
of xn for each path. We may also be interested in the statistics of the interest rate so
we store the complete sequence pn too.

Programs should be built in pieces so that we can test each piece before testing
the whole program. In the present case, a natural piece is a function that computes
one path of xn and pn with N steps, given M , m, and the initial conditions x0 and
p0. We can then test this function before moving on to calling the function a large
number of times. An appropriate code may be

def simulate_one_path(N, x0, p0, M, m):
x = np.zeros(N+1)
p = np.zeros(N+1)
index_set = range(0, N+1)

x[0] = x0
p[0] = p0

for n in index_set[1:]:
x[n] = x[n-1] + p[n-1]/(100.0*12)*x[n-1]
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# Update interest rate p
r = random.randint(1, M)
if r == 1:

# Adjust gamma
r = random.randint(1, 2)
gamma = m if r == 1 else -m

else:
gamma = 0

pn = p[n-1] + gamma
p[n] = pn if 1 <= pn <= 15 else p[n-1]

return x, p

Testing such a function is challenging because the result is different each time be-
cause of the random numbers. A first step in verifying the implementation is to turn
off the randomness (m D 0) and check that the deterministic parts of the difference
equations are correctly computed:

x, p = simulate_one_path(3, 1, 10, 1, 0)
print x

The output becomes

[ 1. 1.00833333 1.01673611 1.02520891]

These numbers can quickly be checked against the famous formula

xn D x0

�

1C p

12 � 100

�n

in an interactive session:

>>> def g(x0, n, p):
... return x0*(1 + p/(12.*100))**n
...
>>> g(1, 1, 10)
1.0083333333333333
>>> g(1, 2, 10)
1.0167361111111111
>>> g(1, 3, 10)
1.0252089120370369

We can conclude that our function works well when there is no randomness. A next
step is to carefully examine the code that computes gamma and compare with the
mathematical formulas.

Simulating many paths and computing the average development of xn and pn

is a matter of calling simulate_one_path repeatedly, use two arrays xm and pm

to collect the sum of x and p, respectively, and finally obtain the average path by
dividing xm and pm by the number of paths we have computed:
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def simulate_n_paths(n, N, L, p0, M, m):
xm = np.zeros(N+1)
pm = np.zeros(N+1)
for i in range(n):

x, p = simulate_one_path(N, L, p0, M, m)
# Accumulate paths
xm += x
pm += p

# Compute average
xm /= float(n)
pm /= float(n)
return xm, pm

We can also compute the standard deviation of the paths using formulas (8.3)
and (8.6), with xj as either an x or a p array. It might happen that small rounding
errors generate a small negative variance, which mathematically should have been
slightly greater than zero. Taking the square root will then generate complex arrays
and problems with plotting. To avoid this problem, we therefore replace all negative
elements by zeros in the variance arrays before taking the square root. The new lines
for computing the standard deviation arrays xs and ps are indicated below:

def simulate_n_paths(n, N, x0, p0, M, m):
...
xs = np.zeros(N+1) # standard deviation of x
ps = np.zeros(N+1) # standard deviation of p
for i in range(n):

x, p = simulate_one_path(N, x0, p0, M, m)
# Accumulate paths
xm += x
pm += p
xs += x**2
ps += p**2

...
# Compute standard deviation
xs = xs/float(n) - xm*xm # variance
ps = ps/float(n) - pm*pm # variance
# Remove small negative numbers (round off errors)
xs[xs < 0] = 0
ps[ps < 0] = 0
xs = np.sqrt(xs)
ps = np.sqrt(ps)
return xm, xs, pm, ps

A remark regarding the efficiency of array operations is appropriate here. The
statement xs += x**2 could equally well, from a mathematical point of view, be
written as xs = xs + x**2. However, in this latter statement, two extra arrays are
created (one for the squaring and one for the sum), while in the former only one
array (x**2) is made. Since the paths can be long and we make many simulations,
such optimizations can be important.

One may wonder whether x**2 is wise in the sense that squaring is detected and
computed as x*x, not as a general (slow) power function. This is indeed the case



548 8 Random Numbers and Simple Games

for arrays, as we have investigated in the little test program smart_power.py. This
program applies time measurement methods from Sect. H.8.2.

Our simulate_n_paths function generates four arrays that are natural to visu-
alize. Having a mean and a standard deviation curve, it is often common to plot the
mean curve with one color or linetype and then two curves, corresponding to plus
one and minus one standard deviation, with another less visible color. This gives an
indication of the mean development and the uncertainty of the underlying process.
We therefore make two plots: one with xm, xm+xs, and xm-xs, and one with pm,
pm+ps, and pm-ps.

Both for debugging and curiosity it is handy to have some plots of a few actual
paths. We may pick out 5 paths from the simulations and visualize these:

def simulate_n_paths(n, N, x0, p0, M, m):
...
for i in range(n):

...
# Show 5 random sample paths
if i % (n/5) == 0:

figure(1)
plot(x, title=’sample paths of investment’)
hold(’on’)
figure(2)
plot(p, title=’sample paths of interest rate’)
hold(’on’)

figure(1); savefig(’tmp_sample_paths_investment.pdf’)
figure(2); savefig(’tmp_sample_paths_interestrate.pdf’)
...
return ...

Note the use of figure: we need to hold on both figures to add new plots and
switch between the figures, both for screen plotting and calls to savefig.

After the visualization of sample paths we make the mean ˙ standard deviation
plots by this code:

xm, xs, pm, ps = simulate_n_paths(n, N, x0, p0, M, m)
figure(3)
months = range(len(xm)) # indices along the x axis
plot(months, xm, ’r’,

months, xm-xs, ’y’,
months, xm+xs, ’y’,
title=’Mean +/- 1 st.dev. of investment’,
savefig=’tmp_mean_investment.pdf’)

figure(4)
plot(months, pm, ’r’,

months, pm-ps, ’y’,
months, pm+ps, ’y’,
title=’Mean +/- 1 st.dev. of annual interest rate’,
savefig=’tmp_mean_interestrate.pdf’)

The complete program for simulating the investment development is found in the
file growth_random.py.

http://tinyurl.com/pwyasaa/random/smart_power.py
http://tinyurl.com/pwyasaa/random/growth_random.py
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Fig. 8.8 Development of an investment with random jumps of the interest rate at random points
of time. Top left: mean value of investment ˙ one standard deviation. Top right: mean value of
the interest rate ˙ one standard deviation. Bottom left: five paths of the investment development.
Bottom right: five paths of the interest rate development

Running the program with the input data

x0 = 1 # initial investment
p0 = 5 # initial interest rate
N = 10*12 # number of months
M = 3 # p changes (on average) every M months
n = 1000 # number of simulations
m = 0.5 # adjustment of p

and initializing the seed of the random generator to 1, we get four plots, which are
shown in Fig. 8.8.

8.9 Exercises

Exercise 8.1: Flip a coin times

Make a program that simulates flipping a coin N times. Print out tail or head for
each flip and let the program count and print the number of heads.

Hint Use r = random.random() and define head as r <= 0.5, or draw an in-
teger among f0; 1g with r = random.randint(0,1) and define head when r is
0.
Filename: flip_coin.



550 8 Random Numbers and Simple Games

Exercise 8.2: Compute a probability

What is the probability of getting a number between 0.5 and 0.6 when drawing
uniformly distributed random numbers from the interval Œ0; 1/? To answer this
question empirically, let a program draw N such random numbers using Python’s
standard random module, count how many of them, M , that fall in the interval
Œ0:5; 0:6�, and compute the probability as M=N . Run the program with the four
values N D 10i for i D 1; 2; 3; 6.
Filename: compute_prob.

Exercise 8.3: Choose random colors

Suppose we have eight different colors. Make a program that chooses one of these
colors at random and writes out the color.

Hint Use a list of color names and use the choice function in the random module
to pick a list element.
Filename: choose_color.

Exercise 8.4: Draw balls from a hat

Suppose there are 40 balls in a hat, of which 10 are red, 10 are blue, 10 are yellow,
and 10 are purple. What is the probability of getting two blue and two purple balls
when drawing 10 balls at random from the hat?
Filename: draw_10balls.

Exercise 8.5: Computing probabilities of rolling dice

This exercise deals with four questions:

1. You throw a die. What is the probability of getting a 6?
2. You throw a die four times in a row. What is the probability of getting 6 all the

times?
3. Suppose you have thrown the die three times with 6 coming up all times. What

is the probability of getting a 6 in the fourth throw?
4. Suppose you have thrown the die 100 times and experienced a 6 in every throw.

What do you think about the probability of getting a 6 in the next throw?

First try to solve the questions from a theoretical or common sense point of view.
Thereafter, make functions for simulating cases 1, 2, and 3.
Filename: rolling_dice.

Exercise 8.6: Estimate the probability in a dice game

Make a program for estimating the probability of getting at least one die with six
eyes when throwing n dice. Read n and the number of experiments from the com-
mand line.

As a partial verification, compare the Monte Carlo simulation results to the exact
answer 11/36 for n D 2 and observe that the approximate probabilities approach
the exact probability as the number of simulations grow.
Filename: one6_ndice.
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Exercise 8.7: Compute the probability of hands of cards

Use the Deck.py module (see Sect. 8.2.5) and the same_rank and same_suit

functions from the cards module (see Sect. 8.2.4) to compute the following prob-
abilities by Monte Carlo simulation:

� exactly two pairs among five cards,
� four or five cards of the same suit among five cards,
� four-of-a-kind among five cards.

Filename: card_hands.

Exercise 8.8: Decide if a dice game is fair

Somebody suggests the following game. You pay 1 euro and are allowed to throw
four dice. If the sum of the eyes on the dice is less than 9, you get paid r euros back,
otherwise you lose the 1 euro investment. Assume r D 10. Will you then in the
long run win or lose money by playing this game? Answer the question by making
a program that simulates the game. Read r and the number of experiments N from
the command line.
Filename: sum_4dice.

Exercise 8.9: Adjust a game to make it fair

It turns out that the game in Exercise 8.8 is not fair, since you lose money in the
long run. The purpose of this exercise is to adjust the winning award so that the
game becomes fair, i.e., that you neither lose nor win money in the long run.

Make a Python function that computes the probability p of getting a sum less
than s when rolling n dice. Use the reasoning in Sect. 8.3.2 to find the award per
game, r , that makes the game fair. Run the program from Exercise 8.8 with this r

on the command line and verify that the game is now (approximately) fair.
Filename: sum_ndice_fair.

Exercise 8.10: Make a test function for Monte Carlo simulation

We consider the Python function in Exercise 8.9 for computing a probability p that
the sum of the eyes on n dice is less than s. The aim is to write a test function for
verifying the computation of p.

a) Find some combinations of n and s that must result in p D 0 and p D 1 and
make the appropriate code in the test function.

b) Fix the seed of the random number generator and record the first eight random
numbers to 16 digits. Set n D 2, perform four experiments, and compute by
hand what the probability estimate becomes (choose any appropriate s). Write
the necessary code in the test function to compare this manually calculated result
with the what is produced by the function from Exercise 8.9.

Filename: test_sum_ndice.

Exercise 8.11: Generalize a game

Consider the game in Sect. 8.3.2. A generalization is to think as follows: you throw
one die until the number of eyes is less than or equal to the previous throw. Let m

be the number of throws in a game.

http://tinyurl.com/pwyasaa/random/Deck.py
http://tinyurl.com/pwyasaa/random/cards.py
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a) Use Monte Carlo simulation to compute the probability of getting m D
2; 3; 4; : : :.

Hint For m � 6 the throws must be exactly 1; 2; 3; 4; 5; 6; 6; 6; : : :, and the proba-
bility of each is 1/6, giving the total probability 6�m. Use N D 106 experiments as
this should suffice to estimate the probabilities for m � 5, and beyond that we have
the analytical expression.

b) If you pay 1 euro to play this game, what is the fair amount to get paid when
win? Answer this question for each of the cases m D 2; 3; 4; 5.

Filename: incr_eyes.

Exercise 8.12: Compare two playing strategies

Suggest a player strategy for the game in Sect. 8.4.2. Remove the question in the
player_guess function in the file ndice2.py, and implement the chosen strategy
instead. Let the program play a large number of games, and record the number of
times the computer wins. Which strategy is best in the long run: the computer’s or
yours?
Filename: simulate_strategies1.

Exercise 8.13: Investigate strategies in a game

Extend the program from Exercise 8.12 such that the computer and the player can
use a different number of dice. Let the computer choose a random number of dice
between 2 and 20. Experiment to find out if there is a favorable number of dice for
the player.
Filename: simulate_strategies2.

Exercise 8.14: Investigate the winning chances of some games

An amusement park offers the following game. A hat contains 20 balls: 5 red, 5
yellow, 3 green, and 7 brown. At a cost of 2n euros you can draw 4 � n � 10 balls
at random from the hat (without putting them back). Before you are allowed to look
at the drawn balls, you must choose one of the following options:

1. win 60 euros if you have drawn exactly three red balls
2. win 7C 5

p
n euros if you have drawn at least three brown balls

3. win n3� 26 euros if you have drawn exactly one yellow ball and one brown ball
4. win 23 euros if you have drawn at least one ball of each color

For each of the 4n different types of games you can play, compute the net income
(per play) and the probability of winning. Is there any of the games (i.e., any com-
binations of n and the four options above) where you will win money in the long
run?
Filename: draw_balls.

http://tinyurl.com/pwyasaa/random/ndice2.py
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Exercise 8.15: Compute probabilities of throwing two dice

Throw two dice a large number of times in a program. Record the sum of the
eyes each time and count how many times each of the possibilities for the sum
(2, 3, : : :, 12) appear. Compute the corresponding probabilities and compare them
with the exact values. (To find the exact probabilities, set up all the 6 � 6 possible
outcomes of throwing two dice, and then count how many of them that has a sum s

for s D 2; 3; : : : ; 12.)
Filename: freq_2dice.

Exercise 8.16: Vectorize flipping a coin

Simulate flipping a coin N times and write out the number of tails. The code should
be vectorized, i.e., there must be no loops in Python.

Hint Constructions like numpy.where(r<=0.5, 1, 0) combined with numpy.

sum, or r[r<=0.5].size, are useful, where r is an array of random numbers be-
tween 0 and 1.
Filename: flip_coin_vec.

Exercise 8.17: Vectorize a probablility computation

The purpose of this exercise is to speed up the code in Exercise 8.2 by vectorization.

Hint For an array r of uniformly distributed random numbers on Œ0; 1/, make use of
r1 = r[r>0.5] and r1[r1<0.6]. An alternative is numpy.where combine with
a compound boolean expression with numpy.logical_and(0.5>=r, r<=0.6).
See the discussion of this topic in Sect. 5.5.3.
Filename: compute_prob_vec.

Exercise 8.18: Throw dice and compute a small probability

Use Monte Carlo simulation to compute the probability of getting 6 eyes on all dice
when rolling 7 dice.

Hint You need a large number of experiments in this case because of the small
probability (see the first paragraph of Sect. 8.3), so a vectorized implementation
may be important.
Filename: roll_7dice.

Exercise 8.19: Is democracy reliable as a decision maker?

A democracy takes decisions based on majority votes. We shall investigate if this is
a good idea or if a single person would produce better decisions.

We shall ask about pure facts, not opinions. This means that the question to
be answered by a population has a definite “yes” or “no” answer. For example,
“Can Python lists contain tuples as elements?” The correct answer is “yes”. Asking
a population such a question and relying on the majority of votes, is a reliable
procedure if the competence level in the population is sufficiently high.

a) Assume that the competence level in a population can be modeled by a proba-
bility p such that if you ask N people a question, M D pN of them will give
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the correct answer (as N !1). Here we make the questionable assumption of
a homogeneous population, in the sense that p is the same for every individual.
Make a function homogeneous(p, N) for simulating whether the majority
vote of a population of N individuals arrives at the right answer, if the prob-
ability of answering correctly is p for an individual. Make another function
homogeneous_ex() that runs 10 tests the specific case of N D 5 (as when
relying on the majority of a student group) and 10 tests when asking a whole
city of N D 1; 000; 000 voters. Try p D 0:49, p D 0:51, and p D 0:8. Are the
results as you would expect from intuition?

Hint Asking one individual is like flipping a biased coin that has probability p of
giving head (right answer) and probability 1 � p of giving tail (wrong answer).

b) The problem in a) can be exactly solved, since each question is a Bernoulli trial
with success probability p, and the probability of a correct majority vote is the
same as the probability of getting N=2 or more successes in N trials. For large
N , the probability of M successes in N trials can be well approximated by
a normal (Gaussian) density function:

g.M / D .
p

2�Np.1 � p//�1 exp .�1

2
.M �Np/2=.Np.1 � p/// :

The majority vote is correct when M > N=2, and the probability of this event is
given by 1�˚.N=2/, where ˚ is the cumulative normal distribution with mean
Np and variance Np.1 � p/.
Plot the probability of being right against p.
Say 5 questions are of importance. What competence level p does a king need
to have all 5 right compared to the population having all 5 right.

c) We shall now simulate voting in a heterogeneous population. The probability
that an individual no. i answers correctly is pi , where pi is drawn from a nor-
mal (Gaussian) probability density with mean p and standard deviation s. The
competence level varies between individuals, with s expressing the spreading of
knowledge and p the mean competence level.
Make function heterogeneous(p, N, s) for returning whether the majority
vote is right or wrong in the heterogeneous case. Rerun the examples from a)
with s D 0:2.

d) With a somewhat large variation of the population, i.e., s somewhat large, there
will be some individuals that always provide wrong or right answers according
to this model. To learn about reasonable values s we can investigate unreason-
able large amounts of people who are always right or wrong.
The probability of always being wrong is the probability of pi < 0. This
is given by ˚.�p=s/, where ˚ is the cumulative normal distribution with
mean zero and unit standard deviation. It can be reached in Python as
scipy.stats.norm.cdf. The probability of always being right is the proba-
bility of pi > 1, which can be computed as 1 � ˚..1 � p/=s/. Plot curves of
the probability of always being right and always wrong against s 2 Œ0:1; 0:6�.
Perform this curve plotting in a function extremes(p).

Filename: democracy.
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Exercise 8.20: Difference equation for random numbers

Simple random number generators are based on simulating difference equations.
Here is a typical set of two equations:

xn D .axn�1 C c/ mod m; (8.16)

yn D xn=m; (8.17)

for n D 1; 2; : : :. A seed x0 must be given to start the sequence. The numbers
y1; y2; : : : represent the random numbers and x0; x1; : : : are “help” numbers. Al-
though yn is completely deterministic from (8.16)–(8.17), the sequence yn appears

random. The mathematical expression p mod q is coded as p % q in Python.
Use a D 8121, c D 28411, and m D 134456. Solve the system (8.16)–(8.17) in

a function to generate N random numbers. Make a histogram to examine the dis-
tribution of the numbers (the yn numbers are uniformly distributed if the histogram
is approximately flat).
Filename: diffeq_random.

Exercise 8.21: Make a class for drawing balls from a hat

Consider the example about drawing colored balls from a hat in Sect. 8.3.3. It could
be handy to have an object that acts as a hat:

hat = Hat(red=3, blue=4, green=6)
balls = hat.draw(3)
if balls.count(’red’) == 1 and balls.count(’green’) == 2:

...

a) Write such a class Hat with the shown functionality.

Hint 1 The flexible syntax in the constructor, where the colors of the balls and
the number of balls of each color are freely specified, requires use of a dictionary
(**kwargs) for handling a variable number of keyword arguments, see Sect. H.7.2.

Hint 2 You can borrow useful code from the balls_in_hat.pyprogram and ideas
from Sect. 8.2.5.

b) Apply class Hat to compute the probability of getting 2 brown and 2 blue galls
when drawing 6 balls from a hat with 6 blue, 8 brown, and 3 green balls.

Filename: Hat.

Exercise 8.22: Independent versus dependent random numbers

a) Generate a sequence of N independent random variables with values 0 or
1 and print out this sequence without space between the numbers (i.e., as
001011010110111010).

b) The purpose now is to generate random zeros and ones that are dependent. If
the last generated number was 0, the probability of generating a new 0 is p and
a new 1 is 1 � p. Conversely, if the last generated was 1, the probability of

http://tinyurl.com/pwyasaa/random/balls_in_hat.py


556 8 Random Numbers and Simple Games

generating a new 1 is p and a new 0 is 1 � p. Since the new value depends on
the last one, we say the variables are dependent. Implement this algorithm in
a function returning an array of N zeros and ones. Print out this array in the
condense format as described above.

c) Choose N D 80 and try the probabilities p D 0:5, p D 0:8 and p D 0:9.
Can you by visual inspection of the output characterize the differences between
sequences of independent and dependent random variables?

Filename: dependent_random_numbers.

Exercise 8.23: Compute the probability of flipping a coin

a) Simulate flipping a coin N times.

Hint Draw N random integers 0 and 1 using numpy.random.randint.

b) Look at a subset N1 � N of the experiments in a) and compute the probability
of getting a head (M1=N1, where M1 is the number of heads in N1 experiments).
Choose N D 1000 and print out the probability for N1 D 10; 100; 500; 1000.
Generate just N numbers once in the program. How do you think the accuracy
of the computed probability vary with N1? Is the output compatible with this
expectation?

c) Now we want to study the probability of getting a head, p, as a function of N1,
i.e., for N1 D 1; : : : ; N . A first try to compute the probability array for p is

import numpy as np
h = np.where(r <= 0.5, 1, 0)
p = np.zeros(N)
for i in range(N):

p[i] = np.sum(h[:i+1])/float(i+1)

Implement these computations in a function.
d) An array q[i] = np.sum(h([:i])) reflects a cumulative sum and can be effi-

ciently generated by np.cumsum: q = np.cumsum(h). Thereafter we can com-
pute p by q/I, where I[i]=i+1 and I can be computed by np.arange(1,N+1)
or r_[1:N+1] (integers 1, 2, : : :, up to but not including N+1). Use cumsum to
make an alternative vectorized version of the function in c).

e) Write a test function that verifies that the implementations in c) and d) give the
same results.

Hint Use numpy.allclose to compare two arrays.

f) Make a function that applies the time module to measure the relative efficiency
of the implementations in c) and d).

g) Plot p against I for the case where N D 10000. Annotate the axis and the plot
with relevant text.

Filename: flip_coin_prob.
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Exercise 8.24: Simulate binomial experiments

Exercise 4.24 describes some problems that can be solved exactly using the formula
(4.8), but we can also simulate these problems and find approximate numbers for
the probabilities. That is the task of this exercise.

Make a general function simulate_binomial(p, n, x) for running n exper-
iments, where each experiment have two outcomes, with probabilities p and 1� p.
The n experiments constitute a success if the outcome with probability p occurs
exactly x times. The simulate_binomial function must repeat the n experiments
N times. If M is the number of successes in the N experiments, the probability
estimate is M=N . Let the function return this probability estimate together with the
error (the exact result is (4.8)). Simulate the three cases in Exercise 4.24 using this
function.
Filename: simulate_binomial.

Exercise 8.25: Simulate a poker game

Make a program for simulating the development of a poker (or simplified poker)
game among n players. Use ideas from Sect. 8.2.4.
Filename: poker.

Exercise 8.26: Estimate growth in a simulation model

The simulation model in Sect. 8.3.5 predicts the number of individuals from gener-
ation to generation. Make a simulation of the one son policy with 10 generations,
a male portion of 0.51 among newborn babies, set the fertility to 0.92, and assume
that a fraction 0.06 of the population will break the law and want 6 children in
a family. These parameters implies a significant growth of the population. See if
you can find a factor r such that the number of individuals in generation n fulfills
the difference equation

xn D .1C r/xn�1 :

Hint Compute r for two consecutive generations xn�1 and xn (r D xn=xn�1 � 1)
and see if r is approximately constant as n increases.
Filename: estimate_growth.

Exercise 8.27: Investigate guessing strategies

In the game from Sect. 8.4.1 it is smart to use the feedback from the program to
track an interval Œp; q� that must contain the secret number. Start with p D 1 and
q D 100. If the user guesses at some number n, update p to nC 1 if n is less than
the secret number (no need to care about numbers smaller than nC 1), or update q

to n � 1 if n is larger than the secret number (no need to care about numbers larger
than n � 1).

Are there any smart strategies to pick a new guess s 2 Œp; q�? To answer this
question, investigate two possible strategies: s as the midpoint in the interval Œp; q�,
or s as a uniformly distributed random integer in Œp; q�. Make a program that imple-
ments both strategies, i.e., the player is not prompted for a guess but the computer
computes the guess based on the chosen strategy. Let the program run a large num-
ber of games and see if one of the strategies can be considered as superior in the
long run.
Filename: strategies4guess.
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Exercise 8.28: Vectorize a dice game

Vectorize the simulation program from Exercise 8.8 with the aid of the module
numpy.random and the numpy.sum function.
Filename: sum9_4dice_vec.

Exercise 8.29: Compute � by a Monte Carlo method

Use the method in Sect. 8.5.3 to compute � by computing the area of a circle.
Choose G as the circle with its center at the origin and with unit radius, and choose
B as the rectangle Œ�1; 1� � Œ�1; 1�. A point .x; y/ lies within G if x2 C y2 < 1.
Compare the approximate � with math.pi.
Filename: MC_pi.

Exercise 8.30: Compute � by a Monte Carlo method

This exercise has the same purpose of computing � as in Exercise 8.29, but this
time you should choose G as a circle with center at .2; 1/ and radius 4. Select an
appropriate rectangle B . A point .x; y/ lies within a circle with center at .xc; yc/

and with radius R if .x � xc/
2 C .y � yc/2 < R2.

Filename: MC_pi2.

Exercise 8.31: Compute � by a random sum

a) Let x0; : : : ; xN be N C 1 uniformly distributed random numbers between 0 and
1. Explain why the random sum SN D .N C 1/�1

PN
iD0 2.1 � x2

i /�1=2 is an
approximation to � .

Hint Interpret the sum as Monte Carlo integration and compute the corresponding
integral by hand or sympy.

b) Compute S0; S1; : : : ; SN (using just one set of N C 1 random numbers). Plot
this sequence versus N . Also plot the horizontal line corresponding to the value
of � . Choose N large, e.g., N D 106.

Filename: MC_pi_plot.

Exercise 8.32: 1D random walk with drift

Modify the walk1D.py program such that the probability of going to the right is r

and the probability of going to the left is 1 � r (draw numbers in Œ0; 1/ rather than
integers in f1; 2g). Compute the average position of np particles after 100 steps,
where np is read from the command line. Mathematically one can show that the
average position approaches rns � .1 � r/ns as np ! 1 (ns is the number of
walks). Write out this exact result together with the computed mean position with
a finite number of particles.
Filename: walk1D_drift.

Exercise 8.33: 1D random walk until a point is hit

Set np=1 in the walk1Dv.py program and modify the program to measure how
many steps it takes for one particle to reach a given point x D xp. Give xp on the
command line. Report results for xp D 5; 50; 5000; 50000.
Filename: walk1Dv_hit_point.

http://tinyurl.com/pwyasaa/random/walk1D.py
http://tinyurl.com/pwyasaa/random/walk1Dv.py
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Exercise 8.34: Simulate making a fortune from gaming

A man plays a game where the probability of winning is p and that of losing is
consequently 1 � p. When winning he earns 1 euro and when losing he loses 1
euro. Let xi be the man’s fortune from playing this game i number of times. The
starting fortune is x0. We assume that the man gets a necessary loan if xi < 0 such
that the gaming can continue. The target is a fortune F , meaning that the playing
stops when x D F is reached.

a) Explain why xi is a 1D random walk.
b) Modify one of the 1D random walk programs to simulate the average number

of games it takes to reach the target fortune x D F . This average must be
computed by running a large number of random walks that start at x0 and reach
F . Use x0 D 10, F D 100, and p D 0:49 as example.

c) Suppose the average number of games to reach x D F is proportional to
.F � x0/

r , where r is some exponent. Try to find r by experimenting with the
program. The r value indicates how difficult it is to make a substantial fortune
by playing this game. Note that the expected earning is negative when p < 0:5,
but there is still a small probability for hitting x D F .

Filename: game_as_walk1D.

Exercise 8.35: Simulate pollen movements as a 2D random walk

The motion of single particles can often be described as random walks. On a water
surface, 1000 grains of pollen are placed in a single point. The movement of the
pollen grains can be modeled by a random walk model, where for each second
each grain will move a random distance, along a two-dimensional vector, whose
two components are independently normally distributed with expectation 0 mm and
standard deviation 0.05 mm.

a) Make a function that implements this kind of 2D random walk. Return an array
with the position of each grain for each step.

b) Make a movie that shows the position of the pollen grains from 0 to 100 seconds.
c) Make a plot of the mean distance from the origin versus time. What do you see?

Filename: pollen.

Exercise 8.36: Make classes for 2D random walk

The purpose of this exercise is to reimplement the walk2D.py program from
Sect. 8.7.1 with the aid of classes.

a) Make a class Particle with the coordinates .x; y/ and the time step number
of a particle as data attributes. A method move moves the particle in one of the
four directions and updates the .x; y/ coordinates. Another class, Particles,
holds a list of Particle objects and a plotstep parameter (as in walk2D.py).
A method move moves all the particles one step, a method plot can make a plot
of all particles, while a method moves performs a loop over time steps and calls
move and plot in each step.

http://tinyurl.com/pwyasaa/random/walk2D.py
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b) Equip the Particle and Particles classes with print functionality such that
one can print out all particles in a nice way by saying print p (for a Particles
instance p) or print self (inside a method).

Hint In __str__, apply the pformat function from the pprint module to the list
of particles, and make sure that __repr__ just reuse __str__ in both classes so the
output looks nice.

c) Make a test function that compares the first three positions of four particles with
the corresponding results computed by the walk2D.py program. The seed of
the random number generator must of course be fixed identically in the two
programs.

d) Organize the complete code as a module such that the classes Particle and
Particles can be reused in other programs. The test block should read the
number of particles from the command line and perform a simulation.

e) Compare the efficiency of the class version against the vectorized version in
walk2Dv.py, using the techniques in Sect. H.8.1.

f) The program developed above cannot be vectorized as long as we base the im-
plementation on class Particle. However, if we remove that class and focus
on class Particles, the latter can employ arrays for holding the positions of
all particles and vectorized updates of these positions in the moves method.
Use ideas from the walk2Dv.py program to make a new class Particles_vec
which vectorizes Particles.

g) Verify the code against the walk2Dv.py program as explained in c). Automate
the verification in a test function.

h) Write a Python function that measures the computational efficiency the vector-
ized class Particles_vec and the scalar class Particles.

Filename: walk2D_class.

Exercise 8.37: 2D random walk with walls; scalar version

Modify the walk2D.py or walk2Dc.py programs from Exercise 8.36 so that the
walkers cannot walk outside a rectangular area A D ŒxL; xH � � ŒyL; yH �. Do not
move the particle if its new position is outside A.
Filename: walk2D_barrier.

Exercise 8.38: 2D random walk with walls; vectorized version

Modify the walk2Dv.py program so that the walkers cannot walk outside a rectan-
gular area A D ŒxL; xH � � ŒyL; yH �.

Hint First perform the moves of one direction. Then test if new positions are out-
side A. Such a test returns a boolean array that can be used as index in the position
arrays to pick out the indices of the particles that have moved outside A and move
them back to the relevant boundary of A.
Filename: walk2Dv_barrier.

http://tinyurl.com/pwyasaa/random/walk2Dv.py
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Exercise 8.39: Simulate mixing of gas molecules

Suppose we have a box with a wall dividing the box into two equally sized parts. In
one part we have a gas where the molecules are uniformly distributed in a random
fashion. At t D 0 we remove the wall. The gas molecules will now move around
and eventually fill the whole box.

This physical process can be simulated by a 2D random walk inside a fixed
area A as introduced in Exercises 8.37 and 8.38 (in reality the motion is three-
dimensional, but we only simulate the two-dimensional part of it since we already
have programs for doing this). Use the program from either Exercises 8.37 or 8.38
to simulate the process for A D Œ0; 1� � Œ0; 1�. Initially, place 10000 particles at
uniformly distributed random positions in Œ0; 1=2� � Œ0; 1�. Then start the random
walk and visualize what happens. Simulate for a long time and make a hardcopy of
the animation (an animated GIF file, for instance). Is the end result what you would
expect?
Filename: disorder1.

Remarks Molecules tend to move randomly because of collisions and forces be-
tween molecules. We do not model collisions between particles in the random
walk, but the nature of this walk, with random movements, simulates the effect
of collisions. Therefore, the random walk can be used to model molecular motion
in many simple cases. In particular, the random walk can be used to investigate how
a quite ordered system, where one gas fills one half of a box, evolves through time
to a more disordered system.

Exercise 8.40: Simulate slow mixing of gas molecules

Solve Exercise 8.39 when the wall dividing the box is not completely removed, but
instead has a small hole.
Filename: disorder2.

Exercise 8.41: Guess beer brands

You are presented n glasses of beer, each containing a different brand. You are
informed that there are m � n possible brands in total, and the names of all brands
are given. For each glass, you can pay p euros to taste the beer, and if you guess
the right brand, you get q � p euros back. Suppose you have done this before and
experienced that you typically manage to guess the right brand T times out of 100,
so that your probability of guessing the right brand is b D T=100.

Make a function simulate(m, n, p, q, b) for simulating the beer tasting
process. Let the function return the amount of money earned and how many correct
guesses (� n) you made. Call simulate a large number of times and compute the
average earnings and the probability of getting full score in the case m D n D 4,
p D 3, q D 6, and b D 1=m (i.e., four glasses with four brands, completely random
guessing, and a payback of twice as much as the cost). How much more can you
earn from this game if your ability to guess the right brand is better, say b D 1=2?
Filename: simulate_beer_tasting.
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Exercise 8.42: Simulate stock prices

A common mathematical model for the evolution of stock prices can be formulated
as a difference equation

xn D xn�1 C�t�xn�1 C �xn�1

p
�trn�1; (8.18)

where xn is the stock price at time tn, �t is the time interval between two time
levels (�t D tn � tn�1), � is the growth rate of the stock price, � is the volatility
of the stock price, and r0; : : : ; rn�1 are normally distributed random numbers with
mean zero and unit standard deviation. An initial stock price x0 must be prescribed
together with the input data �, � , and �t .

We can make a remark that (8.18) is a Forward Euler discretization of a stochastic
differential equation for a continuous price function x.t/:

dx

dt
D �x C �N.t/;

where N.t/ is a so-called white noise random time series signal. Such equations
play a central role in modeling of stock prices.

Make R realizations of (8.18) for n D 0; : : : ; N for N D 5000 steps over a time
period of T D 180 days with a step size �t D T=N .
Filename: stock_prices.

Exercise 8.43: Compute with option prices in finance

In this exercise we are going to consider the pricing of so-called Asian options.
An Asian option is a financial contract where the owner earns money when certain
market conditions are satisfied.

The contract is specified by a strike price K and a maturity time T . It is written
on the average price of the underlying stock, and if this average is bigger than the
strike K, the owner of the option will earn the difference. If, on the other hand,
the average becomes less, the owner receives nothing, and the option matures in the
value zero. The average is calculated from the last trading price of the stock for
each day.

From the theory of options in finance, the price of the Asian option will be the
expected present value of the payoff. We assume the stock price dynamics given as,

S.t C 1/ D .1C r/S.t/C �S.t/�.t/; (8.19)

where r is the interest-rate, and � is the volatility of the stock price. The time t

is supposed to be measured in days, t D 0; 1; 2; : : :, while �.t/ are independent
identically distributed normal random variables with mean zero and unit standard
deviation. To find the option price, we must calculate the expectation

p D .1C r/�T E

"

max

 

1

T

T
X

tD1

S.t/ �K; 0

!#

: (8.20)

The price is thus given as the expected discounted payoff. We will use Monte Carlo
simulations to estimate the expectation. Typically, r and � can be set to r D 0:0002

and � D 0:015. Assume further S.0/ D 100.
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a) Make a function that simulates a path of S.t/, that is, the function computes
S.t/ for t D 1; : : : ; T for a given T based on the recursive definition in (8.19).
The function should return the path as an array.

b) Create a function that finds the average of S.t/ from t D 1 to t D T . Make an-
other function that calculates the price of the Asian option based on N simulated
averages. You may choose T D 100 days and K D 102.

c) Plot the price p as a function of N . You may start with N D 1000.
d) Plot the error in the price estimation as a function N (assume that the p value

corresponding to the largest N value is the “right” price). Try to fit a curve of
the form c=

p
N for some c to this error plot. The purpose is to show that the

error is reduced as 1=
p

N .

Filename: option_price.

Remarks If you wonder where the values for r and � come from, you will find
the explanation in the following. A reasonable level for the yearly interest-rate
is around 5 percent, which corresponds to a daily rate 0:05=250 D 0:0002. The
number 250 is chosen because a stock exchange is on average open this amount of
days for trading. The value for � is calculated as the volatility of the stock price,
corresponding to the standard deviation of the daily returns of the stock defined as
.S.t C 1/ � S.t//=S.t/. “Normally”, the volatility is around 1.5 percent a day.
Finally, there are theoretical reasons why we assume that the stock price dynamics
is driven by r , meaning that we consider the risk-neutral dynamics of the stock price
when pricing options. There is an exciting theory explaining the appearance of r

in the dynamics of the stock price. If we want to simulate a stock price dynamics
mimicing what we see in the market, r in (8.19) must be substituted with �, the
expected return of the stock. Usually, � is higher than r .

Exercise 8.44: Differentiate noise measurements

In a laboratory experiment waves are generated through the impact of a model slide
into a wave tank. (The intention of the experiment is to model a future tsunami event
in a fjord, generated by loose rocks that fall into the fjord.) At a certain location,
the elevation of the surface, denoted by �, is measured at discrete points in time
using an ultra-sound wave gauge. The result is a time series of vertical positions of
the water surface elevations in meter: �.t0/; �.t1/; �.t2/; : : : ; �.tn/. There are 300
observations per second, meaning that the time difference between two neighboring
measurement values �.ti / and �.tiC1/ is h D 1=300 second.

a) Read the � values in the file gauge.dat4 into an array eta. Read h from the
command line.

b) Plot eta versus the time values.
c) Compute the velocity v of the surface by the formula

vi � .�iC1 � �i�1/=.2h/; i D 1; : : : ; n � 1 :

Plot v versus time values in a separate plot.

4 http://tinyurl.com/pwyasaa/random/gauge.dat

http://tinyurl.com/pwyasaa/random/gauge.dat
http://tinyurl.com/pwyasaa/random/gauge.dat
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d) Compute the acceleration a of the surface by the formula

ai � .�iC1 � 2�i C �i�1/=h2; i D 1; : : : ; n � 1:

Plot a versus the time values in a separate plot.
e) If we have a noisy signal �i , where i D 0; : : : ; n counts time levels, the noise can

be reduced by computing a new signal where the value at a point is a weighted
average of the values at that point and the neighboring points at each side. More
precisely, given the signal �i , i D 0; : : : ; n, we compute a filtered (averaged)
signal with values �

.1/
i by the formula

�
.1/
i D

1

4
.�iC1 C 2�i C �i�1/; i D 1; : : : ; n � 1; �

.1/
0 D �0; �.1/

n D �n :

(8.21)
Make a function filter that takes the �i values in an array eta as input and
returns the filtered �

.1/
i values in an array.

f) Let �
.k/
i be the signal arising by applying the filtered function k times to

the same signal. Make a plot with curves �i and the filtered �
.k/
i values for

k D 1; 10; 100. Make similar plots for the velocity and acceleration where
these are made from both the original, measured � data and the filtered data.
Discuss the results.

Filename: labstunami.

Exercise 8.45: Differentiate noisy signals

The purpose of this exercise is to look into numerical differentiation of time se-
ries signals that contain measurement errors. This insight might be helpful when
analyzing the noise in real data from a laboratory experiment in Exercise 8.44.

a) Compute a signal

N�i D A sin.
2�

T
ti /; ti D i

T

40
; i D 0; : : : ; 200 :

Display N�i versus time ti in a plot. Choose A D 1 and T D 2� . Store the N�
values in an array etabar.

b) Compute a signal with random noise Ei ,

�i D N�i CEi ;

Ei is drawn from the normal distribution with mean zero and standard deviation
� D 0:04A. Plot this �i signal as circles in the same plot as N�i . Store the Ei in
an array E for later use.

c) Compute the first derivative of N�i by the formula

N�iC1 � N�i�1

2h
; i D 1; : : : ; n � 1;

and store the values in an array detabar. Display the graph.
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d) Compute the first derivative of the error term by the formula

EiC1 � Ei�1

2h
; i D 1; : : : ; n � 1;

and store the values in an array dE. Calculate the mean and the standard devia-
tion of dE.

e) Plot detabar and detabar + dE. Use the result of the standard deviation cal-
culations to explain the qualitative features of the graphs.

f) The second derivative of a time signal �i can be computed by

�iC1 � 2�i C �i�1

h2
; i D 1; : : : ; n � 1 :

Use this formula on the etabar data and save the result in d2etabar. Also
apply the formula to the E data and save the result in d2E. Plot d2etabar and
d2etabar + d2E. Compute the standard deviation of d2E and compare with
the standard deviation of dE and E. Discuss the plot in light of these standard
deviations.

Filename: sine_noise.

Exercise 8.46: Model noise in a time signal

We assume that the measured data can be modeled as a smooth time signal N�.t/ plus
a random variation E.t/. Computing the velocity of � D N�CE results in a smooth
velocity from the N� term and a noisy signal from the E term.

a) We can estimate the level of noise in the first derivative of E as follows. The
random numbers E.ti / are assumed to be independent and normally distributed
with mean zero and standard deviation � . It can then be shown that

EiC1 � Ei�1

2h

produces numbers that come from a normal distribution with mean zero and
standard deviation 2�1=2h�1� . How much is the original noise, reflected by � ,
magnified when we use this numerical approximation of the velocity?

b) The fraction
EiC1 � 2Ei CEi�1

h2

will also generate numbers from a normal distribution with mean zero, but this
time with standard deviation 2h�2� . Find out how much the noise is magnified
in the computed acceleration signal.

c) The numbers in the gauge.dat file in Exercise 8.44 are given with 5 digits.
This is no certain indication of the accuracy of the measurements, but as a test
we may assume � is of the order 10�4. Check if the visual results for the velocity
and acceleration are consistent with the standard deviation of the noise in these
signals as modeled above.
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Exercise 8.47: Speed up Markov chain mutation

The functions transition and mutate_via_markov_chain from Sect. 8.3.4
were made for being easy to read and understand. Upon closer inspection, we
realize that the transition function constructs the interval_limits every time
a random transition is to be computed, and we want to run a large number of
transitions. By merging the two functions, pre-computing interval limits for each
from_base, and adding a loop over N mutations, one can reduce the computation
of interval limits to a minimum. Perform such an efficiency enhancement. Mea-
sure the CPU time of this new function versus the mutate_via_markov_chain

function for 1 million mutations.
Filename: markov_chain_mutation2.
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This chapter introduces the basic ideas of object-oriented programming. Different
people put different meanings into the term object-oriented programming: some
use the term for programming with objects in general, while others use the term
for programming with class hierarchies. The author applies the second meaning,
which is the most widely accepted one in computer science. The first meaning is
better named object-based programming. Since everything in Python is an object,
we do object-based programming all the time, yet one usually reserves this term for
the case when classes different from Python’s basic types (int, float, str, list,
tuple, dict) are involved.

Necessary background for the present chapter includes basic knowledge about
classes in Python, at least concepts such as attributes (method attributes, data
attributes), methods, constructors, the self object, and the __call__ special
method. Suitable material for this background is Sects. 7.1, 7.2, and 7.3.1. For
Sects. 9.2 and 9.3 one must know the most basic methods for numerical differentia-
tion and integration, for example from Appendix B. During an initial reading of the
chapter, it can be beneficial to skip the more advanced material in Sects. 9.2.4–9.2.7.

All the programs associated with this chapter are found in the folder src/oo1.

9.1 Inheritance and Class Hierarchies

Most of this chapter tells you how to put related classes together in families such that
the family can be viewed as one unit. This idea helps to hide details in a program,
and makes it easier to modify or extend the program.

A family of classes is known as a class hierarchy. As in a biological family, there
are parent classes and child classes. Child classes can inherit data and methods from
parent classes, they can modify these data and methods, and they can add their own
data and methods. This means that if we have a class with some functionality, we
can extend this class by creating a child class and simply add the functionality we
need. The original class is still available and the separate child class is small, since
it does not need to repeat the code in the parent class.

1 http://tinyurl.com/pwyasaa/oo
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The magic of object-oriented programming is that other parts of the code do not
need to distinguish whether an object is the parent or the child – all generations
in a family tree can be treated as a unified object. In other words, one piece of
code can work with all members in a class family or hierarchy. This principle has
revolutionized the development of large computer systems. As an illustration, two
of the most widely used computer languages today are Java and C#, and both of
them force programs to be written in an object-oriented style.

The concepts of classes and object-oriented programming first appeared in the
Simula programming language in the 1960s. Simula was invented by the Norwe-
gian computer scientists Ole-Johan Dahl and Kristen Nygaard, and the impact of
the language is particularly evident in C++, Java, and C#, three of the most domi-
nating programming languages in the world today. The invention of object-oriented
programming was a remarkable achievement, and the professors Dahl and Nygaard
received two very prestigious prizes: the von Neumann medal and the Turing prize
(popularly known as the Nobel prize of computer science).

A parent class is usually called base class or superclass, while the child class
is known as a subclass or derived class. We shall use the terms superclass and
subclass from now on.

9.1.1 A Class for Straight Lines

Assume that we have written a class for straight lines, y D c0 C c1x:

class Line(object):
def __init__(self, c0, c1):

self.c0 = c0
self.c1 = c1

def __call__(self, x):
return self.c0 + self.c1*x

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

The constructor __init__ initializes the coefficients c0 and c1 in the expression for
the straight line: y D c0 C c1x. The call operator __call__ evaluates the function
c1x C c0, while the table method samples the function at n points and creates
a table of x and y values.
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9.1.2 A First Try on a Class for Parabolas

A parabola y D c0C c1x C c2x
2 contains a straight line as a special case (c2 D 0).

A class for parabolas will therefore be similar to a class for straight lines. All we
have do to is to add the new term c2x2 in the function evaluation and store c2 in the
constructor:

class Parabola(object):
def __init__(self, c0, c1, c2):

self.c0 = c0
self.c1 = c1
self.c2 = c2

def __call__(self, x):
return self.c2*x**2 + self.c1*x + self.c0

def table(self, L, R, n):
"""Return a table with n points for L <= x <= R."""
s = ’’
import numpy as np
for x in np.linspace(L, R, n):

y = self(x)
s += ’%12g %12g\n’ % (x, y)

return s

Observe that we can copy the table method from class Line without any modifi-
cations.

9.1.3 A Class for Parabolas Using Inheritance

Python and other languages that support object-oriented programming have a spe-
cial construct, so that class Parabola does not need to repeat the code that we have
already written in class Line. We can specify that class Parabola inherits all code
from class Line by adding (Line) in the class headline:

class Parabola(Line):

Class Parabola now automatically gets all the code from class Line. Exercise 9.1
asks you to explicitly demonstrate the validity of this assertion. We say that class
Parabola is derived from class Line, or equivalently, that class Parabola is a sub-
class of its superclass Line.

Now, class Parabola should not be identical to class Line: it needs to add data
in the constructor (for the new term) and to modify the call operator (because of
the new term), but the table method can be inherited as it is. If we implement the
constructor and the call operator in class Parabola, these will override the inher-
ited versions from class Line. If we do not implement a table method, the one
inherited from class Line is available as if it were coded visibly in class Parabola.

Class Parabola must first have the statements from the class Line methods
__call__ and __init__, and then add extra code in these methods. An important
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Line

__init__
__call__
table

c0
c1

Parabola

__init__
__call__

c0
c1
c2

Fig. 9.1 UML diagram for the class hierarchy with superclass Line and subclass Parabola

principle in computer programming is to avoid repeating code. We should therefore
call up functionality in class Line instead of copying statements from class Line
methods to Parabola methods. Any method in the superclass Line can be called
using the syntax

Line.methodname(self, arg1, arg2, ...)
# or
super(Parabola, self).methodname(arg1, arg2, ...)

The latter construction only works if the super class is derived from Python’s gen-
eral super class object (i.e., class Line must be a new-style class).

Let us now show how to write class Parabola as a subclass of class Line, and
implement just the new additional code that we need and that is not already written
in the superclass:

class Parabola(Line):
def __init__(self, c0, c1, c2):

Line.__init__(self, c0, c1) # let Line store c0 and c1
self.c2 = c2

def __call__(self, x):
return Line.__call__(self, x) + self.c2*x**2

This short implementation of class Parabola provides exactly the same functional-
ity as the first version of class Parabola that we showed in Sect. 9.1.2 and that did
not inherit from class Line. Figure 9.1 shows the class hierarchy in UML fashion.
The arrow from one class to another indicates inheritance.

A quick demo of the Parabola class in a main program,

p = Parabola(1, -2, 2)
p1 = p(x=2.5)
print p1
print p.table(0, 1, 3)

gives this output:

8.5
0 1

0.5 0.5
1 1
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Program flow The program flow can be somewhat complicated when we work
with class hierarchies. Consider the code segment

p = Parabola(1, -1, 2)
p1 = p(x=2.5)

Let us explain the program flow in detail for these two statements. As always, you
can monitor the program flow in a debugger as explained in Sect. F.1 or you can
invoke the very illustrative Online Python Tutor2.

Calling Parabola(1, -1, 2) leads to a call to the constructor method
__init__, where the arguments c0, c1, and c2 in this case are int objects with
values 1, -1, and 2. The self argument in the constructor is the object that will be
returned and referred to by the variable p. Inside the constructor in class Parabola
we call the constructor in class Line. In this latter method, we create two data
attributes in the self object. Printing out dir(self) will explicitly demonstrate
what self contains so far in the construction process. Back in class Parabola’s
constructor, we add a third attribute c2 to the same self object. Then the self

object is invisibly returned and referred to by p.
The other statement, p1 = p(x=2.5), has a similar program flow. First we enter

the p.__call__ method with self as p and x as a float object with value 2.5.
The program flow jumps to the __call__ method in class Line for evaluating the
linear part c1xCc0 of the expression for the parabola, and then the flow jumps back
to the __call__ method in class Parabola where we add the new quadratic term.

9.1.4 Checking the Class Type

Python has the function isinstance(i,t) for checking if an instance i is of class
type t:

>>> l = Line(-1, 1)
>>> isinstance(l, Line)
True
>>> isinstance(l, Parabola)
False

A Line is not a Parabola, but is a Parabola a Line?

>>> p = Parabola(-1, 0, 10)
>>> isinstance(p, Parabola)
True
>>> isinstance(p, Line)
True

Yes, from a class hierarchy perspective, a Parabola instance is regarded as a Line
instance too, since it contains everything that a Line instance contains.

2 http://www.pythontutor.com/

http://www.pythontutor.com/
http://www.pythontutor.com/
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Every instance has an attribute __class__ that holds the type of class:

>>> p.__class__
<class __main__.Parabola at 0xb68f108c>
>>> p.__class__ == Parabola
True
>>> p.__class__.__name__ # string version of the class name
’Parabola’

Note that p.__class__ is a class object (or class definition one may say), while
p.__class__.__name__ is a string. These two variables can be used as an alter-
native test for the class type:

if p.__class__.__name__ == ’Parabola’:
...

# or
if p.__class__ == Parabola:

...

However, isinstance(p, Parabola) is the recommended programming style
for checking the type of an object.

A function issubclass(c1, c2) tests if class c1 is a subclass of class c2, e.g.,

>>> issubclass(Parabola, Line)
True
>>> issubclass(Line, Parabola)
False

The superclasses of a class are stored as a tuple in the __bases__ attribute of the
class object:

>>> p.__class__.__bases__
(<class __main__.Line at 0xb7c5d2fc>,)
>>> p.__class__.__bases__[0].__name__ # extract name as string
’Line’

9.1.5 Attribute vs Inheritance: has-a vs is-a Relationship

Instead of letting class Parabola inherit from a class Line, we may let it contain

a class Line instance as a data attribute:

class Parabola(object):
def __init__(self, c0, c1, c2):

self.line = Line(c0, c1) # let Line store c0 and c1
self.c2 = c2

def __call__(self, x):
return self.line(x) + self.c2*x**2

Whether to use inheritance or an attribute depends on the problem being solved.
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If it is natural to say that class Parabola is a Line object, we say that Parabola
has an is-a relationship with class Line. Alternatively, if it is natural to think that
class Parabola has a Line object, we speak about a has-a relationship with class
Line. In the present example, we may argue that technically the expression for the
parabola is a straight line plus another term and hence claim an is-a relationship,
but we can also view a parabola as a quantity that has a line plus an extra term,
which makes the has-a relationship relevant.

From a mathematical point of view, many will say that a parabola is not a line,
but that a line is a special case of a parabola. Adopting this reasoning reverses
the dependency of the classes: now it is more natural to let Line is a subclass of
Parabola (Line is a Parabola). This easy, and all we have to do is

class Parabola(object):
def __init__(self, c0, c1, c2):

self.c0, self.c1, self.c2 = c0, c2, c2

def __call__(self, x):
return self.c0 + self.c1*x + self.c2*x**2

def table(self, L, R, n): # implemented as shown above

class Line(Parabola):
def __init__(self, c0, c1):

Parabola.__init__(self, c0, c1, 0)

The inherited __call__ method from class Parabola will work since the c2 co-
efficient is zero. Exercises 9.4 suggests deriving Parabola from a general class
Polynomial and asks you to discuss the alternative class designs.

Extension and restriction of a superclass

In the example where Parabola as a subclass of Line, we used inheritance to
extend the functionality of the superclass. The case where Line is a subclass of
Parabola is an example on restricting the superclass functionality in a subclass.

How classes depend on each other is influenced by two factors: sharing of code
and logical relations. From a sharing of code perspective, many will say that class
Parabola is naturally a subclass of Line, the former adds code to the latter. On
the other hand, Line is naturally a subclass of Parabola from the logical relations
in mathematics. Computational efficiency is a third perspective when we imple-
ment mathematics. When Line is a subclass of Parabola we always evaluate the
c2x2 term in the parabola although this term is zero. Nevertheless, when Parabola

is a subclass of Line, we call Line.__call__ to evaluate the linear part of the
second-degree polynomial, and this call is costly in Python. From a pure efficiency
point of view, we would reprogram the linear part in Parabola.__call__ (which
is against the programming habit we have been arguing for!). This little discus-
sion here highlights the many different considerations that come into play when
establishing class relations.



574 9 Object-Oriented Programming

9.1.6 Superclass for Defining an Interface

As another example of class hierarchies, we now want to represent functions by
classes, as described in Sect. 7.1.2, but in addition to the __call__ method, we
also want to provide methods for the first and second derivative. The class can be
sketched as

class SomeFunc(object):
def __init__(self, parameter1, parameter2, ...)

# Store parameters
def __call__(self, x):

# Evaluate function
def df(self, x):

# Evaluate the first derivative
def ddf(self, x):

# Evaluate the second derivative

For a given function, the analytical expressions for first and second derivative must
be manually coded. However, we could think of inheriting general functions for
computing these derivatives numerically, such that the only thing we must always
implement is the function itself. To realize this idea, we create a superclass

class FuncWithDerivatives(object):
def __init__(self, h=1.0E-5):

self.h = h # spacing for numerical derivatives

def __call__(self, x):
raise NotImplementedError\
(’___call__ missing in class %s’ % self.__class__.__name__)

def df(self, x):
"""Return the 1st derivative of self.f."""
# Compute first derivative by a finite difference
h = self.h
return (self(x+h) - self(x-h))/(2.0*h)

def ddf(self, x):
"""Return the 2nd derivative of self.f."""
# Compute second derivative by a finite difference:
h = self.h
return (self(x+h) - 2*self(x) + self(x-h))/(float(h)**2)

This class is only meant as a superclass of other classes. For a particular function,
say f .x/ D cos.ax/C x3, we represent it by a subclass:

class MyFunc(FuncWithDerivatives):
def __init__(self, a):

self.a = a

def __call__(self, x):
return cos(self.a*x) + x**3
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def df(self, x):
a = self.a
return -a*sin(a*x) + 3*x**2

def ddf(self, x):
a = self.a
return -a*a*cos(a*x) + 6*x

The superclass constructor is never called, hence h is never initialized, and there
are no possibilities for using numerical approximations via the superclass methods
df and ddf. Instead, we override all the inherited methods and implement our own
versions.

Tip

Many think it is a good programming style to always call the superclass con-
structor in a subclass constructor, even in simple classes where we do not need
the functionality of the superclass constructor.

For a more complicated function, e.g., f .x/ D ln jp tanh.qx cos rx/j, we may
skip the analytical derivation of the derivatives, and just code f .x/ and rely on the
difference approximations inherited from the superclass to compute the derivatives:

class MyComplicatedFunc(FuncWithDerivatives):
def __init__(self, p, q, r, h=1.0E-5):

FuncWithDerivatives.__init__(self, h)
self.p, self.q, self.r = p, q, r

def __call__(self, x):
return log(abs(self.p*tanh(self.q*x*cos(self.r*x))))

That’s it! We are now ready to use this class:

>>> f = MyComplicatedFunc(1, 1, 1)
>>> x = pi/2
>>> f(x)
-36.880306514638988
>>> f.df(x)
-60.593693618216086
>>> f.ddf(x)
3.3217246931444789e+19

Class MyComplicatedFunc inherits the df and ddf methods from the superclass
FuncWithDerivatives. These methods compute the first and second derivatives
approximately, provided that we have defined a __call__ method. If we fail
to define this method, we will inherit __call__ from the superclass, which just
raises an exception, saying that the method is not properly implemented in class
MyComplicatedFunc.

The important message in this subsection is that we introduced a super class to
mainly define an interface, i.e., the operations (in terms of methods) that one can do
with a class in this class hierarchy. The superclass itself is of no direct use, since it
does not implement any function evaluation in the __call__ method. However, it
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stores a variable common to all subclasses (h), and it implements general methods
df and ddf that any subclass can make use of. A specific mathematical function
must be represented as a subclass, where the programmer can decide whether ana-
lytical derivatives are to be used, or if the more lazy approach of inheriting general
functionality (df and ddf) for computing numerical derivatives is satisfactory.

In object-oriented programming, the superclass very often defines an interface,
and instances of the superclass have no applications on their own – only instances
of subclasses can do anything useful.

To digest the present material on inheritance, we recommend doing Exer-
cises 9.1–9.4 before reading the next section.

9.2 Class Hierarchy for Numerical Differentiation

Section 7.3.2 presents a class Derivative that (approximately) differentiate any
mathematical function represented by a callable Python object. The class employs
the simplest possible numerical derivative. There are a lot of other numerical for-
mulas for computing approximations to f 0.x/:

f 0.x/ D f .x C h/ � f .x/

h
CO.h/; (1st-order forward diff.) (9.1)

f 0.x/ D f .x/ � f .x � h/

h
CO.h/; (1st-order backward diff.) (9.2)

f 0.x/ D f .x C h/ � f .x � h/

2h
CO.h2/; (2nd-order central diff.) (9.3)

f 0.x/ D 4

3

f .x C h/ � f .x � h/

2h
� 1

3

f .x C 2h/ � f .x � 2h/

4h
CO.h4/;

(4th-order central diff.) (9.4)

f 0.x/ D 3

2

f .x C h/ � f .x � h/

2h
� 3

5

f .x C 2h/ � f .x � 2h/

4h
C

1

10

f .x C 3h/ � f .x � 3h/

6h
C O.h6/;

(6th-order central diff.) (9.5)

f 0.x/ D 1

h

�

�1

6
f .x C 2h/C f .x C h/� 1

2
f .x/ � 1

3
f .x � h/

�

CO.h3/;

(3rd-order forward diff.) (9.6)

The key ideas about the implementation of such a family of formulas are explained
in Sect. 9.2.1. For the interested reader, Sects. 9.2.4–9.2.7 contains more advanced
additional material that can well be skipped in a first reading. However, the addi-
tional material puts the basic solution in Sect. 9.2.1 into a wider perspective, which
may increase the understanding of object orientation.
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9.2.1 Classes for Differentiation

It is argued in Sect. 7.3.2 that it is wise to implement a numerical differentiation for-
mula as a class where f .x/ and h are data attributes and a __call__method makes
class instances behave as ordinary Python functions. Hence, when we have a collec-
tion of different numerical differentiation formulas, like (9.1)–(9.6), it makes sense
to implement each one of them as a class.

Doing this implementation (see Exercise 7.16), we realize that the constructors
are identical because their task in the present case to store f and h. Object-
orientation is now a natural next step: we can avoid duplicating the constructors by
letting all the classes inherit the common constructor code. To this end, we intro-
duce a superclass Diff and implement the different numerical differentiation rules
in subclasses of Diff. Since the subclasses inherit their constructor, all they have
to do is to provide a __call__ method that implements the relevant differentiation
formula.

Let us show what the superclass Diff looks like and how three subclasses im-
plement the formulas (9.1)–(9.3):

class Diff(object):
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

class Forward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

class Backward1(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x) - f(x-h))/h

class Central2(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

These small classes demonstrates an important feature of object-orientation:
code common to many different classes are placed in a superclass, and the sub-
classes add just the code that differs among the classes.

We can easily implement the formulas (9.4)–(9.6) by following the same method:

class Central4(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (4./3)*(f(x+h) - f(x-h)) /(2*h) - \

(1./3)*(f(x+2*h) - f(x-2*h))/(4*h)
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class Central6(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (3./2) *(f(x+h) - f(x-h)) /(2*h) - \

(3./5) *(f(x+2*h) - f(x-2*h))/(4*h) + \
(1./10)*(f(x+3*h) - f(x-3*h))/(6*h)

class Forward3(Diff):
def __call__(self, x):

f, h = self.f, self.h
return (-(1./6)*f(x+2*h) + f(x+h) - 0.5*f(x) - \

(1./3)*f(x-h))/h

We have placed all the classes in a module file Diff.py. Here is a short interac-
tive example using the module to numerically differentiate the sine function:

>>> from Diff import *
>>> from math import sin
>>> mycos = Central4(sin)
>>> mycos(pi) # compute sin’(pi)
-1.000000082740371

Instead of a plain Python function we may use an object with a __call__

method, here exemplified through the function f .t I a; b; c/ D at2 C bt C c:

class Poly2(object):
def __init__(self, a, b, c):

self.a, self.b, self.c = a, b, c
def __call__(self, t):

return self.a*t**2 + self.b*t + self.c

f = Poly2(1, 0, 1)
dfdt = Central4(f)
t = 2
print "f’(%g)=%g" % (t, dfdt(t))

Let us examine the program flow. When Python encounters dfdt = Central4(f),
it looks for the constructor in class Central4, but there is no constructor in that
class. Python then examines the superclasses of Central4, listed in Central4.

__bases__. The superclass Diff contains a constructor, and this method is called.
When Python meets the dfdt(t) call, it looks for __call__ in class Central4

and finds it, so there is no need to examine the superclass. This process of looking
up methods of a class is called dynamic binding.

Computer science remark Dynamic binding means that a name is bound to
a function while the program is running. Normally, in computer languages, a func-
tion name is static in the sense that it is hardcoded as part of the function body and
will not change during the execution of the program. This principle is known as
static binding of function/method names. Object orientation offers the technical
means to associate different functions with the same name, which yields a kind of
magic for increased flexibility in programs. The particular function that the name

http://tinyurl.com/pwyasaa/oo/Diff.py
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refers to can be set at run-time, i.e., when the program is running, and therefore
known as dynamic binding.

In Python, dynamic binding is a natural feature since names (variables) can refer
to functions and therefore be dynamically bound during execution, just as any ordi-
nary variable. To illustrate this point, let func1 and func2 be two Python functions
of one argument, and consider the code

if input == ’func1’:
f = func1

elif input == ’func2’:
f = func2

y = f(x)

Here, the name f is bound to one of the func1 and func2 function objects while
the program is running. This is a result of two features: (i) dynamic typing (so the
contents of f can change), and (ii) functions being ordinary objects. The bottom
line is that dynamic binding comes natural in Python, while it appears more like
convenient magic in languages like C++, Java, and C#.

9.2.2 Verification

We have several alternative numerical methods for differentiation implemented in
the Diff hierarchy, and the Diff module should contain one or more test functions
for verifying the implementations. The fundamental problem is that even if we
know the exact derivative of a function, we do not know what the numerical error in
one of the subclass methods is. This fact prevents us from comparing the numerical
and the exact derivative.

Fortunately, numerical differentiation formulas of the type we have encountered
above are able to differentiate lower order polynomials exactly. All of them are
capable of computing f 0.x/ D a, where f .x/ D ax C b, without approximation
errors for any h. We can use this knowledge to construct a test function:

def test_Central2():
def f(x):

return a*x + b

def df_exact(x):
return a

a = 0.2; b = -4
df = Central2(f, h=0.55)
x = 6.2
msg = ’method Central2 failed: df/dx=%g != %g’ % \

(df(x), df_exact(x))
tol = 1E-14
assert abs(df_exact(x) - df(x)) < tol

It will be boring to write such a test function for each class in the hierarchy.
Therefore, we parameterize the class name and rewrite test_Central such that it
can be reused for any class in the Diff hierarchy:
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def _test_one_method(method):
"""Test method in string ‘method‘ on a linear function."""
f = lambda x: a*x + b
df_exact = lambda x: a
a = 0.2; b = -4
df = eval(method)(f, h=0.55)
x = 6.2
msg = ’method %s failed: df/dx=%g != %g’ % \

(method, df(x), df_exact(x))
tol = 1E-14
assert abs(df_exact(x) - df(x)) < tol

Some comments are needed to explain this function:

� All our test functions are intended for the pytest and nose testing frameworks.
(See Sect. H.9 for more information on such test functions.) The function name
must then start with test_ and no arguments are allowed. For the helper func-
tion _test_one_methodwith an argument, the function name cannot start with
test, and that is why an underscore is added.

� Lambda functions (see Sect. 3.1.14) are used to save code in the definitions of f
and df_exact.

� The subclass to be tested is given as a string method. Calling the constructor
must then be done by eval(method)(f).

It remains to make a loop over all the implemented subclasses and call _test_
one_method for each of them. As always, we try to find a way to automate boring
work, which here consists of listing all the subclasses (and remembering to update
the list when new subclasses are added). All global variables in a file is available
from the dictionary returned by globals(). The key is a variable name and the
value is the corresponding object. For example, print globals() reveals that all
the defined classes are in globals(), e.g.,

’Central2’: <class Diff.Central2 at 0x1a87c80>,
’Central4’: <class Diff.Central4 at 0x1a87f58>,
’Diff’: <class Diff.Diff at 0x1a870b8>,

To find all the relevant classes to test, we grab all names from the globals()

dictionary, look for names that starts with upper case, and find the names that corre-
spond to a subclass of Diff (drop Diff itself as this class cannot compute anything
and therefore cannot be tested). Translating this algorithm to code gives us a test
function that can test all subclasses in the Diff hierarchy:

def test_all_methods():
"""Call _test_one_method for all subclasses of Diff."""
print globals()
names = list(globals().keys()) # all names in this module
for name in names:

if name[0].isupper():
if issubclass(eval(name), Diff):

if name != ’Diff’:
_test_one_method(name)
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9.2.3 A flexible Main Program

As a demonstration of the power of Python programming, we shall now write a main
program for our Diff module that accepts a function on the command-line, together
with information about the difference type (centered, backward, or forward), the
order of the approximation, and a value of the independent variable. The corre-
sponding output is the derivative of the given function. An example of the usage of
the program goes like this:

Terminal

Diff.py ’exp(sin(x))’ Central 2 3.1
-1.04155573055

Here, we asked the program to differentiate f .x/ D esin x at x D 3:1 with a central
scheme of order 2 (using the Central2 class in the Diff hierarchy).

We can provide any expression with x as input and request any scheme from the
Diff hierarchy, and the derivative will be (approximately) computed. One great
thing with Python is that the code is very short:

from math import * # make all math functions available to main

def main():
from scitools.StringFunction import StringFunction
import sys

try:
formula = sys.argv[1]
difftype = sys.argv[2]
difforder = sys.argv[3]
x = float(sys.argv[4])

except IndexError:
print ’Usage: Diff.py formula difftype difforder x’
print ’Example: Diff.py "sin(x)*exp(-x)" Central 4 3.14’
sys.exit(1)

classname = difftype + difforder
f = StringFunction(formula)
df = eval(classname)(f)
print df(x)

if __name__ == ’__main__’:
main()

Read the code line by line, and convince yourself that you understand what is
going on. You may need to review Sects. 4.3.1 and 4.3.3.

One disadvantage is that the code above is limited to x as the name of the inde-
pendent variable. If we allow a 5th command-line argument with the name of the
independent variable, we can pass this name on to the StringFunction construc-
tor, and suddenly our program works with any name for the independent variable!

varname = sys.argv[5]
f = StringFunction(formula, independent_variables=varname)



582 9 Object-Oriented Programming

Of course, the program crashes if we do not provide five command-line arguments,
and the program does not work properly if we are not careful with ordering of the
command-line arguments. There is some way to go before the program is really
user friendly, but that is beyond the scope of this chapter.

Many other popular programming languages (C++, Java, C#) cannot perform
the eval operation while the program is running. The result is that one needs if
tests to turn the information in difftype and difforder into creation of subclass
instances. Such type of code would look like this in Python:

if classname == ’Forward1’:
df = Forward1(f)

elif classname == ’Backward1’:
df = Backward1(f)

...

and so forth. This piece of code is very common in object-oriented systems and
often put in a function that is referred to as a factory function. Thanks to eval in
Python, factory functions are usually only a matter of applying eval to a string.

9.2.4 Extensions

The great advantage of sharing code via inheritance becomes obvious when we
want to extend the functionality of a class hierarchy. It is possible to do this by
adding more code to the superclass only. Suppose we want to be able to assess the
accuracy of the numerical approximation to the derivative by comparing with the
exact derivative, if available. All we need to do is to allow an extra argument in the
constructor and provide an additional superclass method that computes the error in
the numerical derivative. We may add this code to class Diff, or we may add it
in a subclass Diff2 and let the other classes for various numerical differentiation
formulas inherit from class Diff2. We follow the latter approach:

class Diff2(Diff):
def __init__(self, f, h=1E-5, dfdx_exact=None):

Diff.__init__(self, f, h)
self.exact = dfdx_exact

def error(self, x):
if self.exact is not None:

df_numerical = self(x)
df_exact = self.exact(x)
return df_exact - df_numerical

class Forward1(Diff2):
def __call__(self, x):

f, h = self.f, self.h
return (f(x+h) - f(x))/h

The other subclasses, Backward1, Central2, and so on, must also be derived
from Diff2 to equip all subclasses with new functionality for perfectly assessing
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Fig. 9.2 UML diagram of the Diff hierarchy for a series of differentiation formulas
(Backward1, Central2, etc.)

the accuracy of the approximation. No other modifications are necessary in this ex-
ample, since all the subclasses can inherit the superclass constructor and the error
method. Figure 9.2 shows a UML diagram of the new Diff class hierarchy.
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Here is an example of usage:

mycos = Forward1(sin, dfdx_exact=cos)
print ’Error in derivative is’, mycos.error(x=pi)

The program flow of the mycos.error(x=pi) call can be interesting to follow.
We first enter the error method in class Diff2, which then calls self(x), i.e.,
the __call__ method in class Forward1, which jumps out to the self.f function,
i.e., the sin function in the math module in the present case. After returning to the
error method, the next call is to self.exact, which is the cos function (from
math) in our case.

Application We can apply the methods in the Diff2 hierarchy to get some insight
into the accuracy of various difference formulas. Let us write out a table where
the rows correspond to different h values, and the columns correspond to different
approximation methods (except the first column, which reflects the h value). The
values in the table can be the numerically computed f 0.x/ or the error in this ap-
proximation if the exact derivative is known. The following function writes such
a table:

def table(f, x, h_values, methods, dfdx=None):
# Print headline (h and class names for the methods)
print ’ h ’,
for method in methods:

print ’%-15s’ % method.__name__,
print # newline
# Print table
for h in h_values:

print ’%10.2E’ % h,
for method in methods:

if dfdx is not None: # write error
d = method(f, h, dfdx)
output = d.error(x)

else: # write value
d = method(f, h)
output = d(x)

print ’%15.8E’ % output,
print # newline

The next lines tries three approximation methods on f .x/ D e�10x for x D 0 and
with h D 1; 1=2; 1=4; 1=16; : : : ; 1=512:

from Diff2 import *
from math import exp

def f1(x):
return exp(-10*x)

def df1dx(x):
return -10*exp(-10*x)

table(f1, 0, [2**(-k) for k in range(10)],
[Forward1, Central2, Central4], df1dx)
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Note how convenient it is to make a list of class names – class names can be used as
ordinary variables, and to print the class name as a string we just use the __name__
attribute. The output of the main program above becomes

h Forward1 Central2 Central4
1.00E+00 -9.00004540E+00 1.10032329E+04 -4.04157586E+07
5.00E-01 -8.01347589E+00 1.38406421E+02 -3.48320240E+03
2.50E-01 -6.32833999E+00 1.42008179E+01 -2.72010498E+01
1.25E-01 -4.29203837E+00 2.81535264E+00 -9.79802452E-01
6.25E-02 -2.56418286E+00 6.63876231E-01 -5.32825724E-02
3.12E-02 -1.41170013E+00 1.63556996E-01 -3.21608292E-03
1.56E-02 -7.42100948E-01 4.07398036E-02 -1.99260429E-04
7.81E-03 -3.80648092E-01 1.01756309E-02 -1.24266603E-05
3.91E-03 -1.92794011E-01 2.54332554E-03 -7.76243120E-07
1.95E-03 -9.70235594E-02 6.35795004E-04 -4.85085874E-08

From one row to the next, h is halved, and from about the 5th row and onwards,
the Forward1 errors are also halved, which is consistent with the error O.h/ of this
method. Looking at the 2nd column, we see that the errors are reduced to 1/4 when
going from one row to the next, at least after the 5th row. This is also according
to the theory since the error is proportional to h2. For the last row with a 4th-order
scheme, the error is reduced by 1/16, which again is what we expect when the error
term is O.h4/. What is also interesting to observe, is the benefit of using a higher-
order scheme like Central4: with, for example, h D 1=128 the Forward1 scheme
gives an error of �0:7, Central2 improves this to 0:04, while Central4 has an
error of �0:0002. More accurate formulas definitely give better results. (Strictly
speaking, it is the fraction of the work and the accuracy that counts: Central4

needs four function evaluations, while Central2 and Forward1 only needs two.)
The test example shown here is found in the file Diff2_examples.py.

9.2.5 Alternative Implementation via Functions

Could we implement the functionality offered by the Diff hierarchy of objects by
using plain functions and no object orientation? The answer is “yes, almost”. What
we have to pay for a pure function-based solution is a less friendly user interface to
the differentiation functionality: more arguments must be supplied in function calls,
because each difference formula, now coded as a straight Python function, must get
f .x/, x, and h as arguments. In the class version we first store f and h as data
attributes in the constructor, and every time we want to compute the derivative, we
just supply x as argument.

A Python function for implementing numerical differentiation reads

def central2_func(f, x, h=1.0E-5):
return (f(x+h) - f(x-h))/(2*h)

The usage demonstrates the difference from the class solution:

mycos = central2_func(sin, pi, 1E-6)
# Compute sin’(pi):
print "g’(%g)=%g (exact value is %g)" % (pi, mycos, cos(pi))

http://tinyurl.com/pwyasaa/oo/Diff2_examples.py
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Now, mycos is a number, not a callable object. The nice thing with the class solution
is that mycos appeared to be a standard Python function whose mathematical values
equal the derivative of the Python function sin(x). But does it matter whether
mycos is a function or a number? Yes, it matters if we want to apply the difference
formula twice to compute the second-order derivative. When mycos is a callable
object of type Central2, we just write

mysin = Central2(mycos)
# or
mysin = Central2(Central2(sin))

# Compute g’’(pi):
print "g’’(%g)=%g" % (pi, mysin(pi))

With the central2_func function, this composition will not work. Moreover,
when the derivative is an object, we can send this object to any algorithm that ex-
pects a mathematical function, and such algorithms include numerical integration,
differentiation, interpolation, ordinary differential equation solvers, and finding ze-
ros of equations, so the applications are many.

9.2.6 Alternative Implementation via Functional Programming

As a conclusion of the previous section, the great benefit of the object-oriented
solution in Sect. 9.2.1 is that one can have some subclass instance d from the Diff
(or Diff2) hierarchy and write d(x) to evaluate the derivative at a point x. The
d(x) call behaves as if d were a standard Python function containing a manually
coded expression for the derivative.

The d(x) interface to the derivative can also be obtained by other and per-
haps more direct means than object-oriented programming. In programming
languages where functions are ordinary objects that can be referred to by vari-
ables, as in Python, one can make a function that returns the right d(x) function
according to the chosen numerical derivation rule. The code looks as this (see
Diff_functional.py for the complete code):

def differentiate(f, method, h=1.0E-5):
h = float(h) # avoid integer division

if method == ’Forward1’:
def Forward1(x):

return (f(x+h) - f(x))/h
return Forward1

elif method == ’Backward1’:
def Backward1(x):

return (f(x) - f(x-h))/h
return Backward1
...

http://tinyurl.com/pwyasaa/oo/Diff_functional.py
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And the usage goes like

mycos = differentiate(sin, ’Forward1’)
mysin = differentiate(mycos, ’Forward1’)
x = pi
print mycos(x), cos(x), mysin, -sin(x)

The surprising thing is that when we call mycos(x) we provide only x, while the
function itself looks like

def Forward1(x):
return (f(x+h) - f(x))/h

return Forward1

How do the parameters f and h get their values when we call mycos(x)? There is
some magic attached to the Forward1 function, or literally, there are some variables
attached to Forward1: this function remembers the values of f and h that existed as
local variables in the differentiate function when the Forward1 function was
defined.

In computer science terms, Forward1 always has access to variables in the scope

in which the function was defined. The Forward1 function is call a closure and
explained in Sect. 7.1.7. Closures are much used in a programming style called
functional programming. Two key features of functional programming is operations
on lists (like list comprehensions) and returning functions from functions. Python
supports functional programming, but we will not consider this programming style
further in this book.

9.2.7 Alternative Implementation via a Single Class

Instead of making many classes or functions for the many different differentiation
schemes, the basic information about the schemes can be stored in one table. With
a single method in one single class can use the table information, and for a given
scheme, compute the derivative. To do this, we need to reformulate the mathemati-
cal problem (actually by using ideas from Sect. 9.3.1).

A family of numerical differentiation schemes can be written

f 0.x/ � h�1

r
X

iD�r

wi f .xi /; (9.7)

where wi are weights and xi are points. The 2r C 1 points are symmetric around
some point x:

xi D x C ih; i D �r; : : : ; r :

The weights depend on the differentiation scheme. For example, the Midpoint
scheme (9.3) has

w�1 D �1; w0 D 0; w1 D 1 :
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The table below lists the values of wi for different difference formulas. The type
of difference is abbreviated with c for central, f for forward, and b for backward.
The number after the nature of a scheme denotes the order of the schemes (for
example, “c 2” is a central difference of 2nd order). We have set r D 4, which is
sufficient for the schemes written up in this book.

x � 4h x � 3h x � 2h x � h x x C h x C 2h x C 3h x C 4h

c 2 0 0 0 � 1
2

0 1
2

0 0 0

c 4 0 0 1
12

� 2
3

0 2
3

� 1
12

0 0

c 6 0 � 1
60

3
20

� 3
4

0 3
4

� 3
20

1
60

0

c 8 1
280

� 4
105

12
60

� 4
5

0 4
5

� 12
60

4
105

� 1
280

f 1 0 0 0 0 1 1 0 0 0

f 3 0 0 0 � 2
6

� 1
2

1 � 1
6

0 0

b 1 0 0 0 �1 1 0 0 0 0

Given a table of the wi values, we can use (9.7) to compute the derivative.
A faster, vectorized computation can have the xi , wi , and f .xi / values as stored
in three vectors. Then h�1

P

i wi f .xi / can be interpreted as a dot product between
the two vectors with components wi and f .xi /, respectively.

A class with the table of weights as a static variable, a constructor, and
a __call__ method for evaluating the derivative via h�1

P

i wi f .xi / looks as
follows:

class Diff3(object):
table = {
(’forward’, 1):
[0, 0, 0, 0, 1, 1, 0, 0, 0],
(’central’, 2):
[0, 0, 0, -1./2, 0, 1./2, 0, 0, 0],
(’central’, 4):
[ 0, 0, 1./12, -2./3, 0, 2./3, -1./12, 0, 0],
...
}
def __init__(self, f, h=1.0E-5, type=’central’, order=2):

self.f, self.h, self.type, self.order = f, h, type, order
self.weights = np.array(Diff2.table[(type, order)])

def __call__(self, x):
f_values = np.array([f(self.x+i*self.h) \

for i in range(-4,5)])
return np.dot(self.weights, f_values)/self.h

Here we used numpy’s dot(x, y) function for computing the inner or dot product
between two arrays x and y.

Class Diff3 can be found in the file Diff3.py. Using class Diff3 to differen-
tiate the sine function goes like this:

import Diff3
mycos = Diff3.Diff3(sin, type=’central’, order=4)
print "sin’(pi):", mycos(pi)

http://tinyurl.com/pwyasaa/oo/Diff3.py
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Remark The downside of class Diff3, compared with the other implementation
techniques, is that the sum h�1

P

i wi f .xi / contains many multiplications by zero
for lower-order schemes. These multiplications are known to yield zero in advance
so we waste computer resources on trivial calculations. Once upon a time, program-
mers would have been extremely careful to avoid wasting multiplications this way,
but today arithmetic operations are quite cheap, especially compared to fetching
data from the computer’s memory. Lots of other factors also influence the compu-
tational efficiency of a program, but this is beyond the scope of this book.

9.3 Class Hierarchy for Numerical Integration

There are many different numerical methods for integrating a mathematical func-
tion, just as there are many different methods for differentiating a function. It is thus
obvious that the idea of object-oriented programming and class hierarchies can be
applied to numerical integration formulas in the same manner as we did in Sect. 9.2.

9.3.1 Numerical IntegrationMethods

First, we list some different methods for integrating
R b

a
f .x/dx using n evaluation

points. All the methods can be written as

b
Z

a

f .x/dx �
n�1
X

iD0

wi f .xi /; (9.8)

where wi are weights and xi are evaluation points, i D 0; : : : ; n� 1. The Midpoint
method has

xi D aC h

2
C ih; wi D h; h D b � a

n
; i D 0; : : : ; n � 1 : (9.9)

The Trapezoidal method has the points

xi D aC ih; h D b � a

n � 1
; i D 0; : : : ; n � 1; (9.10)

and the weights

w0 D wn�1 D
h

2
; wi D h; i D 1; : : : ; n � 2 : (9.11)

Simpson’s rule has the same evaluation points as the Trapezoidal rule, but

h D 2
b � a

n � 1
; w0 D wn�1 D

h

6
; (9.12)

wi D
h

3
for i D 2; 4; : : : ; n � 3; (9.13)

wi D
2h

3
for i D 1; 3; 5; : : : ; n � 2 : (9.14)
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Fig. 9.3 Illustration of the distribution of points for various numerical integration methods. The
Gauss-Legendre method has 10 points, while the other methods have 11 points in Œ0; 10�

Note that n must be odd in Simpson’s rule. A Two-Point Gauss-Legendre method
takes the form

xi D aC
�

i C 1

2

�

h � 1p
3

h

2
for i D 0; 2; 4; : : : ; n � 2; (9.15)

xi D aC
�

i C 1

2

�

hC 1p
3

h

2
for i D 1; 3; 5; : : : ; n � 1; (9.16)

with h D 2.b � a/=n. Here n must be even. All the weights have the same value:
wi D h=2, i D 0; : : : ; n � 1. Figure 9.3 illustrates how the points in various
integration rules are distributed over a few intervals.

9.3.2 Classes for Integration

We may store xi and wi in two NumPy arrays and compute the integral as
Pn�1

iD0 wi f .xi /. This operation can also be vectorized as a dot (inner) product
between the wi vector and the f .xi / vector, provided f .x/ is implemented in
a vectorizable form.

We argued in Sect. 7.3.3 that it pays off to implement a numerical integration
formula as a class. If we do so with the different methods from the previous section,
a typical class looks like this:
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class SomeIntegrationMethod(object):
def __init__(self, a, b, n):

# Compute self.points and self.weights

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

Making such classes for many different integration methods soon reveals that all
the classes contain common code, namely the integrate method for computing
Pn�1

iD0 wi f .xi /. Therefore, this common code can be placed in a superclass, and
subclasses can just add the code that is specific to a certain numerical integration
formula, namely the definition of the weights wi and the points xi .

Let us start with the superclass:

class Integrator(object):
def __init__(self, a, b, n):

self.a, self.b, self.n = a, b, n
self.points, self.weights = self.construct_method()

def construct_method(self):
raise NotImplementedError(’no rule in class %s’ %

self.__class__.__name__)

def integrate(self, f):
s = 0
for i in range(len(self.weights)):

s += self.weights[i]*f(self.points[i])
return s

As we have seen, we store the a, b, and n data about the integration method
in the constructor. Moreover, we compute arrays or lists self.points for the xi

points and self.weights for the wi weights. All this code can now be inherited
by all subclasses.

The initialization of points and weights is put in a separate method, construct_
method, which is supposed to be implemented in each subclass, but the superclass
provides a default implementation, which tells the user that the method is not im-
plemented. What happens is that when subclasses redefine a method, that method
overrides the method inherited from the superclass. Hence, if we forget to redefine
construct_method in a subclass, we will inherit the one from the superclass, and
this method issues an error message. The construction of this error message is quite
clever in the sense that it will tell in which class the construct_method method
is missing (self will be the subclass instance and its __class__.__name__ is
a string with the corresponding subclass name).

In computer science one usually speaks about overloading a method in a sub-
class, but the words redefining and overriding are also used. A method that is
overloaded is said to be polymorphic. A related term, polymorphism, refers to cod-
ing with polymorphic methods. Very often, a superclass provides some default
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implementation of a method, and a subclass overloads the method with the purpose
of tailoring the method to a particular application.

The integrate method is common for all integration rules, i.e., for all sub-
classes, so it can be inherited as it is. A vectorized version can also be added in the
superclass to make it automatically available also in all subclasses:

def vectorized_integrate(self, f):
return np.dot(self.weights, f(self.points))

Let us then implement a subclass. Only the construct_method method needs
to be written. For the Midpoint rule, this is a matter of translating the formulas in
(9.9) to Python:

class Midpoint(Integrator):
def construct_method(self):

a, b, n = self.a, self.b, self.n # quick forms
h = (b-a)/float(n)
x = np.linspace(a + 0.5*h, b - 0.5*h, n)
w = np.zeros(len(x)) + h
return x, w

Observe that we implemented directly a vectorized code. We could also have used
(slow) loops and explicit indexing:

x = np.zeros(n)
w = np.zeros(n)
for i in range(n):

x[i] = a + 0.5*h + i*h
w[i] = h

Before we continue with other subclasses for other numerical integration formu-
las, we will have a look at the program flow when we use class Midpoint. Suppose
we want to integrate

R 2

0
x2dx using 101 points:

def f(x): return x*x
m = Midpoint(0, 2, 101)
print m.integrate(f)

How is the program flow? The assignment to m invokes the constructor in class
Midpoint. Since this class has no constructor, we invoke the inherited one
from the superclass Integrator. Here data attributes are stored, and then the
construct_method method is called. Since self is a Midpoint instance, it
is the construct_method in the Midpoint class that is invoked, even if there
is a method with the same name in the superclass. Class Midpoint overloads
construct_method in the superclass. In a way, we “jump down” from the con-
structor in class Integrator to the construct_method in the Midpoint class.
The next statement, m.integrate(f), just calls the inherited integral method
that is common to all subclasses.

The points and weights for a Trapezoidal rule can be implemented in a vectorized
way in another subclass with name Trapezoidal:
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class Trapezoidal(Integrator):
def construct_method(self):

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)
w = np.zeros(len(x)) + h
w[0] /= 2
w[-1] /= 2
return x, w

Observe how we divide the first and last weight by 2, using index 0 (the first) and
-1 (the last) and the /= operator (a /= b is equivalent to a = a/b). We could also
have implemented a scalar version with loops. The relevant code is in function
trapezoidal in Sect. 7.3.3.

Class Simpson has a slightly more demanding rule, at least if we want to vector-
ize the expression, since the weights are of two types.

class Simpson(Integrator):
def construct_method(self):

if self.n % 2 != 1:
print ’n=%d must be odd, 1 is added’ % self.n
self.n += 1

x = np.linspace(self.a, self.b, self.n)
h = (self.b - self.a)/float(self.n - 1)*2
w = np.zeros(len(x))
w[0:self.n:2] = h*1.0/3
w[1:self.n-1:2] = h*2.0/3
w[0] /= 2
w[-1] /= 2
return x, w

We first control that we have an odd number of points, by checking that the re-
mainder of self.n divided by two is 1. If not, an exception could be raised, but
for smooth operation of the class, we simply increase n so it becomes odd. Such
automatic adjustments of input is not a rule to be followed in general. Wrong input
is best notified explicitly. However, sometimes it is user friendly to make small ad-
justments of the input, as we do here, to achieve a smooth and successful operation.
(In cases like this, a user might become uncertain whether the answer can be trusted
if she (later) understands that the input should not yield a correct result. Therefore,
do the adjusted computation, and provide a notification to the user about what has
taken place.)

The computation of the weights w in class Simpson applies slices with stride
(jump/step) 2 such that the operation is vectorized for speed. Recall that the upper
limit of a slice is not included in the set, so self.n-1 is the largest index in the first
case, and self.n-2 is the largest index in the second case. Instead of the vectorized
operation of slices for computing w, we could use (slower) straight loops:

for i in range(0, self.n, 2):
w[i] = h*1.0/3

for i in range(1, self.n-1, 2):
w[i] = h*2.0/3
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The points in the Two-Point Gauss-Legendre rule are slightly more complicated
to calculate, so here we apply straight loops to make a safe first implementation:

class GaussLegendre2(Integrator):
def construct_method(self):

if self.n % 2 != 0:
print ’n=%d must be even, 1 is subtracted’ % self.n
self.n -= 1

nintervals = int(self.n/2.0)
h = (self.b - self.a)/float(nintervals)
x = np.zeros(self.n)
sqrt3 = 1.0/math.sqrt(3)

for i in range(nintervals):
x[2*i] = self.a + (i+0.5)*h - 0.5*sqrt3*h
x[2*i+1] = self.a + (i+0.5)*h + 0.5*sqrt3*h

w = np.zeros(len(x)) + h/2.0
return x, w

A vectorized calculation of x is possible by observing that the (i+0.5)*h ex-
pression can be computed by np.linspace, and then we can add the remaining
two terms:

m = np.linspace(0.5*h, (nintervals-1+0.5)*h, nintervals)
x[0:self.n-1:2] = m + self.a - 0.5*sqrt3*h
x[1:self.n:2] = m + self.a + 0.5*sqrt3*h

The array on the right-hand side has half the length of x (n=2), but the length
matches exactly the slice with stride 2 on the left-hand side.

The code snippets above are found in the module file integrate.py.

9.3.3 Verification

To verify the implementation we use the fact that all the subclasses implement meth-
ods that can integrate a linear function exactly. A suitable test function is therefore

def test_Integrate():
"""Check that linear functions are integrated exactly."""
def f(x):

return x + 2

def F(x):
"""Integral of f."""
return 0.5*x**2 + 2*x

a = 2; b = 3; n = 4 # test data
I_exact = F(b) - F(a)
tol = 1E-15

http://tinyurl.com/pwyasaa/oo/integrate.py
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methods = [Midpoint, Trapezoidal, Simpson, GaussLegendre2,
GaussLegendre2_vec]

for method in methods:
integrator = method(a, b, n)

I = integrator.integrate(f)
assert abs(I_exact - I) < tol

I_vec = integrator.vectorized_integrate(f)
assert abs(I_exact - I_vec) < tol

A stronger method of verification is to compute how the error varies with n.
Exercise 9.15 explains the details.

9.3.4 Using the Class Hierarchy

To verify the implementation, we first try to integrate a linear function. All methods
should compute the correct integral value regardless of the number of evaluation
points:

def f(x):
return x + 2

a = 2; b = 3; n = 4
for Method in Midpoint, Trapezoidal, Simpson, GaussLegendre2:

m = Method(a, b, n)
print m.__class__.__name__, m.integrate(f)

Observe how we simply list the class names as a tuple (comma-separated objects),
and Method will in the for loop attain the values Midpoint, Trapezoidal, and so
forth. For example, in the first pass of the loop, Method(a, b, n) is identical to
Midpoint(a, b, n).

The output of the test above becomes

Midpoint 4.5
Trapezoidal 4.5
n=4 must be odd, 1 is added
Simpson 4.5
GaussLegendre2 4.5

Since
R 3

2
.x C 2/dx D 9

2
D 4:5, all methods passed this simple test.

A more challenging integral, from a numerical point of view, is

1
Z

0

�

1C 1

m

�

t
1
m dt D 1 :

To use any subclass in the Integrator hierarchy, the integrand must be a function
of one variable only. For the present integrand, which depends on t and m, we use
a class to represent it:
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class F(object):
def __init__(self, m):

self.m = float(m)

def __call__(self, t):
m = self.m
return (1 + 1/m)*t**(1/m)

We now ask the question: how much is the error in the integral reduced as we
increase the number of integration points (n)? It appears that the error decreases
exponentially with n, so if we want to plot the errors versus n, it is best to plot the
logarithm of the error versus ln n. We expect this graph to be a straight line, and
the steeper the line is, the faster the error goes to zero as n increases. A common
conception is to regard one numerical method as better than another if the error goes
faster to zero as we increase the computational work (here n).

For a given m and method, the following function computes two lists containing
the logarithm of the n values, and the logarithm of the corresponding errors in
a series of experiments:

def error_vs_n(f, exact, n_values, Method, a, b):
log_n = [] # log of actual n values (Method may adjust n)
log_e = [] # log of corresponding errors
for n_value in n_values:

method = Method(a, b, n_value)
error = abs(exact - method.integrate(f))
log_n.append(log(method.n))
log_e.append(log(error))

return log_n, log_e

We can plot the error versus n for several methods in the same plot and make one
plot for each m value. The loop over m below makes such plots:

n_values = [10, 20, 40, 80, 160, 320, 640]
for m in 1./4, 1./8., 2, 4, 16:

f = F(m)
figure()
for Method in Midpoint, Trapezoidal, \

Simpson, GaussLegendre2:
n, e = error_vs_n(f, 1, n_values, Method, 0, 1)
plot(n, e); legend(Method.__name__); hold(’on’)

title(’m=%g’ % m); xlabel(’ln(n)’); ylabel(’ln(error)’)

The code snippets above are collected in a function test in the integrate.pyfile.
The plots for m > 1 look very similar. The plots for 0 < m < 1 are also similar,

but different from the m > 1 cases. Let us have a look at the results for m D 1=4

and m D 2. The first, m D 1=4, corresponds to
R 1

0 5x4dx. Figure 9.4 shows that the
error curves for the Trapezoidal and Midpoint methods converge more slowly com-
pared to the error curves for Simpson’s rule and the Gauss-Legendre method. This
is the usual situation for these methods, and mathematical analysis of the methods
can confirm the results in Fig. 9.4.
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Fig. 9.4 The logarithm of the error versus the logarithm of integration points for integral 5x4

computed by the Trapezoidal and Midpoint methods (upper two lines), and Simpson’s rule and the
Gauss-Legendre methods (lower two lines)

However, when we consider the integral
R 1

0
3
2

p
xdx, (m D 2) and m > 1 in

general, all the methods converge with the same speed, as shown in Fig. 9.5. Our
integral is difficult to compute numerically when m > 1, and the theoretically better
methods (Simpson’s rule and the Gauss-Legendre method) do not converge faster
than the simpler methods. The difficulty is due to the infinite slope (derivative) of
the integrand at x D 0.

9.3.5 About Object-Oriented Programming

From an implementational point of view, the advantage of class hierarchies in
Python is that we can save coding by inheriting functionality from a superclass.
In programming languages where each variable must be specified with a fixed type,
class hierarchies are particularly useful because a function argument with a special
type also works with all subclasses of that type. Suppose we have a function where
we need to integrate:

def do_math(arg1, arg2, integrator):
...
I = integrator.integrate(myfunc)
...
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computed by the Trapezoidal method and Simpson’s rule (upper two lines), and Midpoint and
Gauss-Legendre methods (lower two lines)

That is, integrator must be an instance of some class, or a module, such that
the syntax integrator.integrate(myfunc) corresponds to a function call, but
nothing more (like having a particular type) is demanded.

This Python code will run as long as integrator has a method integrate

taking one argument. In other languages, the function arguments are specified with
a type, say in Java we would write

void do_math(double arg1, int arg2, Simpson integrator)

A compiler will examine all calls to do_math and control that the arguments are of
the right type. Instead of specifying the integration method to be of type Simpson,
one can in Java and other object-oriented languages specify integrator to be of
the superclass type Integrator:

void do_math(double arg1, int arg2, Integrator integrator)

Now it is allowed to pass an object of any subclass type of Integrator as the
third argument. That is, this method works with integrator of type Midpoint,
Trapezoidal, Simpson, etc., not just one of them. Class hierarchies and object-
oriented programming are therefore important means for parameterizing away types
in languages like Java, C++, and C#. We do not need to parameterize types in
Python, since arguments are not declared with a fixed type. Object-oriented pro-
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gramming is hence not so technically important in Python as in other languages for
providing increased flexibility in programs.

Is there then any use for object-oriented programming beyond inheritance? The
answer is yes! For many code developers object-oriented programming is not just
a technical way of sharing code, but it is more a way of modeling the world, and
understanding the problem that the program is supposed to solve. In mathematical
applications we already have objects, defined by the mathematics, and standard
programming concepts such as functions, arrays, lists, and loops are often sufficient
for solving simpler problems. In the non-mathematical world the concept of objects
is very useful because it helps to structure the problem to be solved. As an example,
think of the phone book and message list software in a mobile phone. Class Person
can be introduced to hold the data about one person in the phone book, while class
Message can hold data related to an SMS message. Clearly, we need to know who
sent a message so a Message object will have an associated Person object, or just
a phone number if the number is not registered in the phone book. Classes help
to structure both the problem and the program. The impact of classes and object-
oriented programming on modern software development can hardly be exaggerated.

A good, real-world, pedagogical example on inheritance is the class hierarchy
for numerical methods for ordinary differential equations described in Sect. E.2.

9.4 Class Hierarchy for Making Drawings

Implementing a drawing program provides a very good example on the usefulness
of object-oriented programming. In the following we shall develop the simpler
parts of a relatively small and compact drawing program for making sketches of
the type shown in Fig. 9.6. This is a typical principal sketch of a physics problem,
here involving a rolling wheel on an inclined plane. The sketch is made up many
individual elements: a rectangle filled with a pattern (the inclined plane), a hollow
circle with color (the wheel), arrows with labels (the N and Mg forces, and the x

axis), an angle with symbol � , and a dashed line indicating the starting location of
the wheel.

Drawing software and plotting programs can produce such figures quite easily in
principle, but the amount of details the user needs to control with the mouse can be
substantial. Software more tailored to producing sketches of this type would work
with more convenient abstractions, such as circle, wall, angle, force arrow, axis, and
so forth. And as soon we start programming to construct the figure we get a range
of other powerful tools at disposal. For example, we can easily translate and rotate
parts of the figure and make an animation that illustrates the physics of the problem.
Programming as a superior alternative to interactive drawing is the mantra of this
section.

Classes are very suitable for implementing the various components that build
up a sketch. In particular, we shall demonstrate that as soon as some classes are
established, more are easily added. Enhanced functionality for all the classes is
also easy to implement in common, generic code that can immediately be shared by
all present and future classes.

The fundamental data structure involved in this case study is a hierarchical tree,
and much of the material on implementation issues targets how to traverse tree
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Fig. 9.6 Sketch of a physics problem

structures with recursive function calls. This topic is of key relevance in a wide
range of other applications as well.

9.4.1 Using the Object Collection

We start by demonstrating a convenient user interface for making sketches of the
type in Fig. 9.6. However, it is more appropriate to start with a significantly simpler
example as depicted in Fig. 9.7. This toy sketch consists of several elements: two
circles, two rectangles, and a “ground” element.

Basic drawing A typical program creating these five elements is shown next. After
importing the pysketcher package, the first task is always to define a coordinate
system:

from pysketcher import *

drawing_tool.set_coordinate_system(
xmin=0, xmax=10, ymin=-1, ymax=8)

Fig. 9.7 Sketch of a simple figure
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Instead of working with lengths expressed by specific numbers it is highly recom-
mended to use variables to parameterize lengths as this makes it easier to change
dimensions later. Here we introduce some key lengths for the radius of the wheels,
distance between the wheels, etc.:

R = 1 # radius of wheel
L = 4 # distance between wheels
H = 2 # height of vehicle body
w_1 = 5 # position of front wheel
drawing_tool.set_coordinate_system(xmin=0, xmax=w_1 + 2*L + 3*R,

ymin=-1, ymax=2*R + 3*H)

With the drawing area in place we can make the first Circle object in an intuitive
fashion:

wheel1 = Circle(center=(w_1, R), radius=R)

to change dimensions later.
To translate the geometric information about the wheel1 object to instructions

for the plotting engine (in this case Matplotlib), one calls the wheel1.draw().
To display all drawn objects, one issues drawing_tool.display(). The typical
steps are hence:

wheel1 = Circle(center=(w_1, R), radius=R)
wheel1.draw()

# Define other objects and call their draw() methods
drawing_tool.display()
drawing_tool.savefig(’tmp.png’) # store picture

The next wheel can be made by taking a copy of wheel1 and translating the
object to the right according to a displacement vector .L; 0/:

wheel2 = wheel1.copy()
wheel2.translate((L,0))

The two rectangles are also made in an intuitive way:

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2*R + L + 2*R, height=H)

over = Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5*R, height=1.25*H)

Groups of objects Instead of calling the draw method of every object, we can
group objects and call draw, or perform other operations, for the whole group. For
example, we may collect the two wheels in a wheels group and the over and under
rectangles in a body group. The whole vehicle is a composition of its wheels and
body groups. The code goes like
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wheels = Composition({’wheel1’: wheel1, ’wheel2’: wheel2})
body = Composition({’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})

The ground is illustrated by an object of type Wall, mostly used to indicate walls
in sketches of mechanical systems. A Wall takes the x and y coordinates of some
curve, and a thickness parameter, and creates a thick curve filled with a simple
pattern. In this case the curve is just a flat line so the construction is made of two
points on the ground line (.w1 � L; 0/ and .w1 C 3L; 0/):

ground = Wall(x=[w_1 - L, w_1 + 3*L], y=[0, 0], thickness=-0.3*R)

The negative thickness makes the pattern-filled rectangle appear below the defined
line, otherwise it appears above.

We may now collect all the objects in a “top” object that contains the whole
figure:

fig = Composition({’vehicle’: vehicle, ’ground’: ground})
fig.draw() # send all figures to plotting backend
drawing_tool.display()
drawing_tool.savefig(’tmp.png’)

The fig.draw() call will visit all subgroups, their subgroups, and so forth in the
hierarchical tree structure of figure elements, and call draw for every object.

Changing line styles and colors Controlling the line style, line color, and line
width is fundamental when designing figures. The pysketcher package allows the
user to control such properties in single objects, but also set global properties that
are used if the object has no particular specification of the properties. Setting the
global properties are done like

drawing_tool.set_linestyle(’dashed’)
drawing_tool.set_linecolor(’black’)
drawing_tool.set_linewidth(4)

At the object level the properties are specified in a similar way:

wheels.set_linestyle(’solid’)
wheels.set_linecolor(’red’)

and so on.
Geometric figures can be specified as filled, either with a color or with a special

visual pattern:

# Set filling of all curves
drawing_tool.set_filled_curves(color=’blue’, pattern=’/’)

# Turn off filling of all curves
drawing_tool.set_filled_curves(False)
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# Fill the wheel with red color
wheel1.set_filled_curves(’red’)

The figure composition as an object hierarchy The composition of objects mak-
ing up the figure is hierarchical, similar to a family, where each object has a parent
and a number of children. Do a print fig to display the relations:

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The indentation reflects how deep down in the hierarchy (family) we are. This
output is to be interpreted as follows:

� fig contains two objects, ground and vehicle

� ground contains an object wall
� vehicle contains two objects, body and wheels

� body contains two objects, over and under

� wheels contains two objects, wheel1 and wheel2

In this listing there are also objects not defined by the programmer: rectangle

and arc. These are of type Curve and automatically generated by the classes
Rectangle and Circle.

More detailed information can be printed by

print fig.show_hierarchy(’std’)

yielding the output

ground (Wall):
wall (Curve): 4 coords fillcolor=’white’ fillpattern=’/’

vehicle (Composition):
body (Composition):

over (Rectangle):
rectangle (Curve): 5 coords

under (Rectangle):
rectangle (Curve): 5 coords

wheels (Composition):
wheel1 (Circle):

arc (Curve): 181 coords
wheel2 (Circle):

arc (Curve): 181 coords
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Fig. 9.8 Hierarchical relation between figure objects

Here we can see the class type for each figure object, how many coordinates that
are involved in basic figures (Curve objects), and special settings of the basic figure
(fillcolor, line types, etc.). For example, wheel2 is a Circle object consisting of
an arc, which is a Curve object consisting of 181 coordinates (the points needed
to draw a smooth circle). The Curve objects are the only objects that really holds
specific coordinates to be drawn. The other object types are just compositions used
to group parts of the complete figure.

One can also get a graphical overview of the hierarchy of figure objects that build
up a particular figure fig. Just call fig.graphviz_dot(’fig’) to produce a file
fig.dot in the dot format. This file contains relations between parent and child
objects in the figure and can be turned into an image, as in Fig. 9.8, by running the
dot program:

Terminal

Terminal> dot -Tpng -o fig.png fig.dot

The call fig.graphviz_dot(’fig’, classname=True) makes a fig.dot

file where the class type of each object is also visible, see Fig. 9.9. The ability
to write out the object hierarchy or view it graphically can be of great help when
working with complex figures that involve layers of subfigures.

Any of the objects can in the program be reached through their names, e.g.,

fig[’vehicle’]
fig[’vehicle’][’wheels’]
fig[’vehicle’][’wheels’][’wheel2’]
fig[’vehicle’][’wheels’][’wheel2’][’arc’]
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Fig. 9.9 Hierarchical relation between figure objects, including their class names

fig[’vehicle’][’wheels’][’wheel2’][’arc’].x # x coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].y # y coords
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linestyle
fig[’vehicle’][’wheels’][’wheel2’][’arc’].linetype

Grabbing a part of the figure this way is handy for changing properties of that part,
for example, colors, line styles (see Fig. 9.10):

fig[’vehicle’][’wheels’].set_filled_curves(’blue’)
fig[’vehicle’][’wheels’].set_linewidth(6)
fig[’vehicle’][’wheels’].set_linecolor(’black’)

fig[’vehicle’][’body’][’under’].set_filled_curves(’red’)

fig[’vehicle’][’body’][’over’].set_filled_curves(pattern=’/’)
fig[’vehicle’][’body’][’over’].set_linewidth(14)
fig[’vehicle’][’body’][’over’][’rectangle’].linewidth = 4

The last line accesses the Curve object directly, while the line above, accesses the
Rectangle object, which will then set the linewidth of its Curve object, and other
objects if it had any. The result of the actions above is shown in Fig. 9.10.

We can also change position of parts of the figure and thereby make animations,
as shown next.
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Fig. 9.10 Left: Basic line-based drawing. Right: Thicker lines and filled parts

Animation: translating the vehicle Can we make our little vehicle roll? A first
attempt will be to fake rolling by just displacing all parts of the vehicle. The rel-
evant parts constitute the fig[’vehicle’] object. This part of the figure can be
translated, rotated, and scaled. A translation along the ground means a translation
in x direction, say a length L to the right:

fig[’vehicle’].translate((L,0))

You need to erase, draw, and display to see the movement:

drawing_tool.erase()
fig.draw()
drawing_tool.display()

Without erasing, the old drawing of the vehicle will remain in the figure so you get
two vehicles. Without fig.draw() the new coordinates of the vehicle will not be
communicated to the drawing tool, and without calling display the updated drawing
will not be visible.

A figure that moves in time is conveniently realized by the function animate:

animate(fig, tp, action)

Here, fig is the entire figure, tp is an array of time points, and action is a user-
specified function that changes fig at a specific time point. Typically, action will
move parts of fig.

In the present case we can define the movement through a velocity function v(t)
and displace the figure v(t)*dt for small time intervals dt. A possible velocity
function is

def v(t):
return -8*R*t*(1 - t/(2*R))

Our action function for horizontal displacements v(t)*dt becomes

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

Since our velocity is negative for t 2 Œ0; 2R� the displacement is to the left.
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The animate function will for each time point t in tp erase the drawing, call
action(t, fig), and show the new figure by fig.draw() and drawing_tool.

display(). Here we choose a resolution of the animation corresponding to 25 time
points in the time interval Œ0; 2R�:

import numpy
tp = numpy.linspace(0, 2*R, 25)
dt = tp[1] - tp[0] # time step

animate(fig, tp, move, pause_per_frame=0.2)

The pause_per_frame adds a pause, here 0.2 seconds, between each frame in the
animation.

We can also ask animate to store each frame in a file:

files = animate(fig, tp, move_vehicle, moviefiles=True,
pause_per_frame=0.2)

The files variable, here ’tmp_frame_%04d.png’, is the printf-specification used
to generate the individual plot files. We can use this specification to make a video
file via ffmpeg (or avconv on Debian-based Linux systems such as Ubuntu).
Videos in the Flash and WebM formats can be created by

Terminal

Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec flv mov.flv
Terminal> ffmpeg -r 12 -i tmp_frame_%04d.png -vcodec libvpx mov.webm

An animated GIF movie can also be made using the convert program from the
ImageMagick software suite:

Terminal

Terminal> convert -delay 20 tmp_frame*.png mov.gif
Terminal> animate mov.gif # play movie

The delay between frames, in units of 1/100 s, governs the speed of the movie. To
play the animated GIF file in a web page, simply insert <img src="mov.gif"> in
the HTML code.

The individual PNG frames can be directly played in a web browser by running

Terminal

Terminal> scitools movie output_file=mov.html fps=5 tmp_frame*

or calling

from scitools.std import movie
movie(files, encoder=’html’, output_file=’mov.html’)



608 9 Object-Oriented Programming

Fig. 9.11 Wheels with spokes to illustrate rolling

in Python. Load the resulting file mov.html into a web browser to play the movie.
Try to run vehicle0.py and then load mov.html into a browser, or play one of

the mov.* video files. Alternatively, you can view a ready-made movie3.

Animation: rolling the wheels It is time to show rolling wheels. To this end,
we add spokes to the wheels, formed by two crossing lines, see Fig. 9.11. The
construction of the wheels will now involve a circle and two lines:

wheel1 = Composition({
’wheel’: Circle(center=(w_1, R), radius=R),
’cross’: Composition({’cross1’: Line((w_1,0), (w_1,2*R)),

’cross2’: Line((w_1-R,R), (w_1+R,R))})})
wheel2 = wheel1.copy()
wheel2.translate((L,0))

Observe that wheel1.copy() copies all the objects that make up the first wheel,
and wheel2.translate translates all the copied objects.

The move function now needs to displace all the objects in the entire vehicle
and also rotate the cross1 and cross2 objects in both wheels. The rotation angle
follows from the fact that the arc length of a rolling wheel equals the displacement
of the center of the wheel, leading to a rotation angle

angle = - x_displacement/R

With w_1 tracking the x coordinate of the center of the front wheel, we can rotate
that wheel by

w1 = fig[’vehicle’][’wheels’][’wheel1’]
from math import degrees
w1.rotate(degrees(angle), center=(w_1, R))

The rotate function takes two parameters: the rotation angle (in degrees) and the
center point of the rotation, which is the center of the wheel in this case. The other
wheel is rotated by

3 http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html

http://tinyurl.com/pwyasaa/oo/vehicle0.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html
http://tinyurl.com/oou9lp7/mov-tut/vehicle0.html
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w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

That is, the angle is the same, but the rotation point is different. The update of the
center point is done by w_1 += x_displacement. The complete move function
with translation of the entire vehicle and rotation of the wheels then becomes

w_1 = w_1 + L # start position

def move(t, fig):
x_displacement = dt*v(t)
fig[’vehicle’].translate((x_displacement, 0))

# Rotate wheels
global w_1
w_1 += x_displacement
# R*angle = -x_displacement
angle = - x_displacement/R
w1 = fig[’vehicle’][’wheels’][’wheel1’]
w1.rotate(degrees(angle), center=(w_1, R))
w2 = fig[’vehicle’][’wheels’][’wheel2’]
w2.rotate(degrees(angle), center=(w_1 + L, R))

The complete example is found in the file vehicle1.py. You may run this file or
watch a ready-made movie4.

The advantages with making figures this way, through programming rather than
using interactive drawing programs, are numerous. For example, the objects are pa-
rameterized by variables so that various dimensions can easily be changed. Subparts
of the figure, possible involving a lot of figure objects, can change color, linetype,
filling or other properties through a single function call. Subparts of the figure can
be rotated, translated, or scaled. Subparts of the figure can also be copied and moved
to other parts of the drawing area. However, the single most important feature is
probably the ability to make animations governed by mathematical formulas or data
coming from physics simulations of the problem, as shown in the example above.

9.4.2 Example of Classes for Geometric Objects

We shall now explain how we can, quite easily, realize software with the capabilities
demonstrated in the previous examples. Each object in the figure is represented as
a class in a class hierarchy. Using inheritance, classes can inherit properties from
parent classes and add new geometric features.

We introduce class Shape as superclass for all specialized objects in a figure.
This class does not store any data, but provides a series of functions that add func-
tionality to all the subclasses. This will be shown later.

Simple geometric objects One simple subclass is Rectangle, specified by the
coordinates of the lower left corner and its width and height:

4 http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html

http://tinyurl.com/pwyasaa/oo/vehicle1.py
http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html
http://tinyurl.com/oou9lp7/mov-tut/vehicle1.html
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class Rectangle(Shape):
def __init__(self, lower_left_corner, width, height):

p = lower_left_corner # short form
x = [p[0], p[0] + width,

p[0] + width, p[0], p[0]]
y = [p[1], p[1], p[1] + height,

p[1] + height, p[1]]
self.shapes = {’rectangle’: Curve(x,y)}

Any subclass of Shape will have a constructor that takes geometric information
about the shape of the object and creates a dictionary self.shapes with the shape
built of simpler shapes. The most fundamental shape is Curve, which is just a col-
lection of .x; y/ coordinates in two arrays x and y. Drawing the Curve object is
a matter of plotting y versus x. For class Rectangle the x and y arrays contain
the corner points of the rectangle in counterclockwise direction, starting and ending
with in the lower left corner.

Class Line is also a simple class:

class Line(Shape):
def __init__(self, start, end):

x = [start[0], end[0]]
y = [start[1], end[1]]
self.shapes = {’line’: Curve(x, y)}

Here we only need two points, the start and end point on the line. However, we may
want to add some useful functionality, e.g., the ability to give an x coordinate and
have the class calculate the corresponding y coordinate:

def __call__(self, x):
"""Given x, return y on the line."""
x, y = self.shapes[’line’].x, self.shapes[’line’].y
self.a = (y[1] - y[0])/(x[1] - x[0])
self.b = y[0] - self.a*x[0]
return self.a*x + self.b

Unfortunately, this is too simplistic because vertical lines cannot be handled (in-
finite self.a). The true source code of Line therefore provides a more general
solution at the cost of significantly longer code with more tests.

A circle implies a somewhat increased complexity. Again we represent the ge-
ometric object by a Curve object, but this time the Curve object needs to store
a large number of points on the curve such that a plotting program produces a vi-
sually smooth curve. The points on the circle must be calculated manually in the
constructor of class Circle. The formulas for points .x; y/ on a curve with radius
R and center at .x0; y0/ are given by

x D x0 C R cos.t/;

y D y0 CR sin.t/;

where t 2 Œ0; 2��. A discrete set of t values in this interval gives the corresponding
set of .x; y/ coordinates on the circle. The user must specify the resolution as the
number of t values. The circle’s radius and center must of course also be specified.
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We can write the Circle class as

class Circle(Shape):
def __init__(self, center, radius, resolution=180):

self.center, self.radius = center, radius
self.resolution = resolution

t = linspace(0, 2*pi, resolution+1)
x0 = center[0]; y0 = center[1]
R = radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’circle’: Curve(x, y)}

As in class Line we can offer the possibility to give an angle � (equivalent to t in
the formulas above) and then get the corresponding x and y coordinates:

def __call__(self, theta):
"""Return (x, y) point corresponding to angle theta."""
return self.center[0] + self.radius*cos(theta), \

self.center[1] + self.radius*sin(theta)

There is one flaw with this method: it yields illegal values after a translation, scal-
ing, or rotation of the circle.

A part of a circle, an arc, is a frequent geometric object when drawing mechani-
cal systems. The arc is constructed much like a circle, but t runs in Œ�s; �sC�a�. Giv-
ing �s and �a the slightly more descriptive names start_angle and arc_angle,
the code looks like this:

class Arc(Shape):
def __init__(self, center, radius,

start_angle, arc_angle,
resolution=180):

self.start_angle = radians(start_angle)
self.arc_angle = radians(arc_angle)

t = linspace(self.start_angle,
self.start_angle + self.arc_angle,
resolution+1)

x0 = center[0]; y0 = center[1]
R = radius
x = x0 + R*cos(t)
y = y0 + R*sin(t)
self.shapes = {’arc’: Curve(x, y)}

Having the Arc class, a Circle can alternatively be defined as a subclass spe-
cializing the arc to a circle:

class Circle(Arc):
def __init__(self, center, radius, resolution=180):

Arc.__init__(self, center, radius, 0, 360, resolution)
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Class curve Class Curve sits on the coordinates to be drawn, but how is that done?
The constructor of class Curve just stores the coordinates, while a method draw

sends the coordinates to the plotting program to make a graph. Or more precisely,
to avoid a lot of (e.g.) Matplotlib-specific plotting commands in class Curve we
have created a small layer with a simple programming interface to plotting pro-
grams. This makes it straightforward to change from Matplotlib to another plotting
program. The programming interface is represented by the drawing_tool object
and has a few functions:

� plot_curve for sending a curve in terms of x and y coordinates to the plotting
program,

� set_coordinate_system for specifying the graphics area,
� erase for deleting all elements of the graph,
� set_grid for turning on a grid (convenient while constructing the figure),
� set_instruction_file for creating a separate file with all plotting commands

(Matplotlib commands in our case),
� a series of set_X functions where X is some property like linecolor,

linestyle, linewidth, filled_curves.

This is basically all we need to communicate to a plotting program.
Any class in the Shape hierarchy inherits set_X functions for setting proper-

ties of curves. This information is propagated to all other shape objects in the
self.shapes dictionary. Class Curve stores the line properties together with
the coordinates of its curve and propagates this information to the plotting pro-
gram. When saying vehicle.set_linewidth(10), all objects that make up the
vehicle object will get a set_linewidth(10) call, but only the Curve object at
the end of the chain will actually store the information and send it to the plotting
program.

A rough sketch of class Curve reads

class Curve(Shape):
"""General curve as a sequence of (x,y) coordintes."""
def __init__(self, x, y):

self.x = asarray(x, dtype=float)
self.y = asarray(y, dtype=float)

def draw(self):
drawing_tool.plot_curve(

self.x, self.y,
self.linestyle, self.linewidth, self.linecolor, ...)

def set_linewidth(self, width):
self.linewidth = width

det set_linestyle(self, style):
self.linestyle = style

...

Compound geometric objects The simple classes Line, Arc, and Circle could
can the geometric shape through just one Curve object. More complicated shapes
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are built from instances of various subclasses of Shape. Classes used for profes-
sional drawings soon get quite complex in composition and have a lot of geometric
details, so here we prefer to make a very simple composition: the already drawn ve-
hicle from Fig. 9.7. That is, instead of composing the drawing in a Python program
as shown above, we make a subclass Vehicle0 in the Shape hierarchy for doing
the same thing.

The Shape hierarchy is found in the pysketcher package, so to use these
classes or derive a new one, we need to import pysketcher. The constructor of
class Vehicle0 performs approximately the same statements as in the example
program we developed for making the drawing in Fig. 9.7.

from pysketcher import *

class Vehicle0(Shape):
def __init__(self, w_1, R, L, H):

wheel1 = Circle(center=(w_1, R), radius=R)
wheel2 = wheel1.copy()
wheel2.translate((L,0))

under = Rectangle(lower_left_corner=(w_1-2*R, 2*R),
width=2*R + L + 2*R, height=H)

over = Rectangle(lower_left_corner=(w_1, 2*R + H),
width=2.5*R, height=1.25*H)

wheels = Composition(
{’wheel1’: wheel1, ’wheel2’: wheel2})

body = Composition(
{’under’: under, ’over’: over})

vehicle = Composition({’wheels’: wheels, ’body’: body})
xmax = w_1 + 2*L + 3*R
ground = Wall(x=[R, xmax], y=[0, 0], thickness=-0.3*R)

self.shapes = {’vehicle’: vehicle, ’ground’: ground}

Any subclass of Shape must define the shapes attribute, otherwise the inherited
draw method (and a lot of other methods too) will not work.

The painting of the vehicle, as shown in the right part of Fig. 9.10, could in class
Vehicle0 be offered by a method:

def colorful(self):
wheels = self.shapes[’vehicle’][’wheels’]
wheels.set_filled_curves(’blue’)
wheels.set_linewidth(6)
wheels.set_linecolor(’black’)
under = self.shapes[’vehicle’][’body’][’under’]
under.set_filled_curves(’red’)
over = self.shapes[’vehicle’][’body’][’over’]
over.set_filled_curves(pattern=’/’)
over.set_linewidth(14)

The usage of the class is simple: after having set up an appropriate coordinate
system as previously shown, we can do
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vehicle = Vehicle0(w_1, R, L, H)
vehicle.draw()
drawing_tool.display()

and go on the make a painted version by

drawing_tool.erase()
vehicle.colorful()
vehicle.draw()
drawing_tool.display()

A complete code defining and using class Vehicle0 is found in the file vehicle2.
py.

The pysketcher package contains a wide range of classes for various geomet-
rical objects, particularly those that are frequently used in drawings of mechanical
systems.

9.4.3 Adding Functionality via Recursion

The really powerful feature of our class hierarchy is that we can add much function-
ality to the superclass Shape and to the “bottom” class Curve, and then all other
classes for various types of geometrical shapes immediately get the new function-
ality. To explain the idea we may look at the draw method, which all classes in the
Shape hierarchy must have. The inner workings of the draw method explain the
secrets of how a series of other useful operations on figures can be implemented.

Basic principles of recursion Note that we work with two types of hierarchies in
the present documentation: one Python class hierarchy, with Shape as superclass,
and one object hierarchy of figure elements in a specific figure. A subclass of
Shape stores its figure in the self.shapes dictionary. This dictionary represents
the object hierarchy of figure elements for that class. We want to make one draw call
for an instance, say our class Vehicle0, and then we want this call to be propagated
to all objects that are contained in self.shapes and all is nested subdictionaries.
How is this done?

The natural starting point is to call draw for each Shape object in the self.

shapes dictionary:

def draw(self):
for shape in self.shapes:

self.shapes[shape].draw()

This general method can be provided by class Shape and inherited in subclasses
like Vehicle0. Let v be a Vehicle0 instance. Seemingly, a call v.draw() just
calls

v.shapes[’vehicle’].draw()
v.shapes[’ground’].draw()

http://tinyurl.com/pwyasaa/oo/vehicle2.py
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However, in the former call we call the draw method of a Composition ob-
ject whose self.shapes attributed has two elements: wheels and body. Since
class Composition inherits the same draw method, this method will run through
self.shapes and call wheels.draw() and body.draw(). Now, the wheels

object is also a Composition with the same draw method, which will run through
self.shapes, now containing the wheel1 and wheel2 objects. The wheel1

object is a Circle, so calling wheel1.draw() calls the draw method in class
Circle, but this is the same draw method as shown above. This method will
therefore traverse the circle’s shapes dictionary, which we have seen consists of
one Curve element.

The Curve object holds the coordinates to be plotted so here draw really needs
to do something “physical”, namely send the coordinates to the plotting program.
The draw method is outlined in the short listing of class Curve shown previously.

We can go to any of the other shape objects that appear in the figure hierarchy
and follow their draw calls in the similar way. Every time, a draw call will invoke
a new draw call, until we eventually hit a Curve object at the “bottom” of the figure
hierarchy, and then that part of the figure is really plotted (or more precisely, the
coordinates are sent to a plotting program).

When a method calls itself, such as draw does, the calls are known as recursive

and the programming principle is referred to as recursion. This technique is very
often used to traverse hierarchical structures like the figure structures we work with
here. Even though the hierarchy of objects building up a figure are of different types,
they all inherit the same draw method and therefore exhibit the same behavior with
respect to drawing. Only the Curve object has a different draw method, which does
not lead to more recursion.

Explaining recursion Understanding recursion is usually a challenge. To get
a better idea of how recursion works, we have equipped class Shape with a method
recurse that just visits all the objects in the shapes dictionary and prints out
a message for each object. This feature allows us to trace the execution and see
exactly where we are in the hierarchy and which objects that are visited.

The recurse method is very similar to draw:

def recurse(self, name, indent=0):
# print message where we are (name is where we come from)
for shape in self.shapes:

# print message about which object to visit
self.shapes[shape].recurse(indent+2, shape)

The indent parameter governs how much the message from this recurse method
is intended. We increase indent by 2 for every level in the hierarchy, i.e., every
row of objects in Fig. 9.12. This indentation makes it easy to see on the printout
how far down in the hierarchy we are.

A typical message written by recurse when name is ’body’ and the shapes

dictionary has the keys ’over’ and ’under’, will be

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)
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The number of leading blanks on each line corresponds to the value of indent. The
code printing out such messages looks like

def recurse(self, name, indent=0):
space = ’ ’*indent
print space, ’%s: %s.shapes has entries’ % \

(self.__class__.__name__, name), \
str(list(self.shapes.keys()))[1:-1]

for shape in self.shapes:
print space,
print ’call %s.shapes["%s"].recurse("%s", %d)’ % \

(name, shape, shape, indent+2)
self.shapes[shape].recurse(shape, indent+2)

Let us follow a v.recurse(’vehicle’) call in detail, v being a Vehicle0

instance. Before looking into the output from recurse, let us get an overview of
the figure hierarchy in the v object (as produced by print v)

ground
wall

vehicle
body

over
rectangle

under
rectangle

wheels
wheel1

arc
wheel2

arc

The recurse method performs the same kind of traversal of the hierarchy, but
writes out and explains a lot more.

The data structure represented by v.shapes is known as a tree. As in physical
trees, there is a root, here the v.shapes dictionary. A graphical illustration of the
tree (upside down) is shown in Fig. 9.12. From the root there are one or more
branches, here two: ground and vehicle. Following the vehicle branch, it has
two new branches, body and wheels. Relationships as in family trees are often
used to describe the relations in object trees too: we say that vehicle is the parent
of body and that body is a child of vehicle. The term node is also often used to
describe an element in a tree. A node may have several other nodes as descendants.

Recursion is the principal programming technique to traverse tree structures.
Any object in the tree can be viewed as a root of a subtree. For example, wheels is
the root of a subtree that branches into wheel1 and wheel2. So when processing an
object in the tree, we imagine we process the root and then recurse into a subtree,
but the first object we recurse into can be viewed as the root of the subtree, so the
processing procedure of the parent object can be repeated.

A recommended next step is to simulate the recurse method by hand and care-
fully check that what happens in the visits to recurse is consistent with the output
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Fig. 9.12 Hierarchy of figure elements in an instance of class Vehicle0

listed below. Although tedious, this is a major exercise that guaranteed will help to
demystify recursion.

A part of the printout of v.recurse(’vehicle’) looks like

Vehicle0: vehicle.shapes has entries ’ground’, ’vehicle’
call vehicle.shapes["ground"].recurse("ground", 2)

Wall: ground.shapes has entries ’wall’
call ground.shapes["wall"].recurse("wall", 4)

reached "bottom" object Curve
call vehicle.shapes["vehicle"].recurse("vehicle", 2)

Composition: vehicle.shapes has entries ’body’, ’wheels’
call vehicle.shapes["body"].recurse("body", 4)

Composition: body.shapes has entries ’over’, ’under’
call body.shapes["over"].recurse("over", 6)

Rectangle: over.shapes has entries ’rectangle’
call over.shapes["rectangle"].recurse("rectangle", 8)

reached "bottom" object Curve
call body.shapes["under"].recurse("under", 6)

Rectangle: under.shapes has entries ’rectangle’
call under.shapes["rectangle"].recurse("rectangle", 8)

reached "bottom" object Curve
...

This example should clearly demonstrate the principle that we can start at any object
in the tree and do a recursive set of calls with that object as root.
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9.4.4 Scaling, Translating, and Rotating a Figure

With recursion, as explained in the previous section, we can within minutes equip
all classes in the Shape hierarchy, both present and future ones, with the ability to
scale the figure, translate it, or rotate it. This added functionality requires only a few
lines of code.

Scaling We start with the simplest of the three geometric transformations, namely
scaling. For a Curve instance containing a set of n coordinates .xi ; yi / that make
up a curve, scaling by a factor a means that we multiply all the x and y coordinates
by a:

xi  axi ; yi  ayi ; i D 0; : : : ; n � 1 :

Here we apply the arrow as an assignment operator. The corresponding Python
implementation in class Curve reads

class Curve:
...
def scale(self, factor):

self.x = factor*self.x
self.y = factor*self.y

Note here that self.x and self.y are Numerical Python arrays, so that multipli-
cation by a scalar number factor is a vectorized operation.

An even more efficient implementation is to make use of in-place multiplication
in the arrays,

class Curve:
...
def scale(self, factor):

self.x *= factor
self.y *= factor

as this saves the creation of temporary arrays like factor*self.x.
In an instance of a subclass of Shape, the meaning of a method scale is to

run through all objects in the dictionary shapes and ask each object to scale itself.
This is the same delegation of actions to subclass instances as we do in the draw

(or recurse) method. All objects, except Curve instances, can share the same
implementation of the scale method. Therefore, we place the scale method in
the superclass Shape such that all subclasses inherit the method. Since scale and
draw are so similar, we can easily implement the scale method in class Shape by
copying and editing the draw method:

class Shape:
...
def scale(self, factor):

for shape in self.shapes:
self.shapes[shape].scale(factor)
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This is all we have to do in order to equip all subclasses of Shape with scaling
functionality! Any piece of the figure will scale itself, in the same manner as it can
draw itself.

Translation A set of coordinates .xi ; yi / can be translated v0 units in the x direc-
tion and v1 units in the y direction using the formulas

xi  xi C v0; yi  yi C v1; i D 0; : : : ; n � 1 :

The natural specification of the translation is in terms of the vector v D .v0; v1/.
The corresponding Python implementation in class Curve becomes

class Curve:
...
def translate(self, v):

self.x += v[0]
self.y += v[1]

The translation operation for a shape object is very similar to the scaling and draw-
ing operations. This means that we can implement a common method translate

in the superclass Shape. The code is parallel to the scale method:

class Shape:
....
def translate(self, v):

for shape in self.shapes:
self.shapes[shape].translate(v)

Rotation Rotating a figure is more complicated than scaling and translating.
A counter clockwise rotation of � degrees for a set of coordinates .xi ; yi / is given
by

Nxi  xi cos � � yi sin �;

Nyi  xi sin � C yi cos � :

This rotation is performed around the origin. If we want the figure to be rotated
with respect to a general point .x; y/, we need to extend the formulas above:

Nxi  x C .xi � x/ cos � � .yi � y/ sin �;

Nyi  y C .xi � x/ sin � C .yi � y/ cos � :

The Python implementation in class Curve, assuming that � is given in degrees and
not in radians, becomes

def rotate(self, angle, center):
angle = radians(angle)
x, y = center
c = cos(angle); s = sin(angle)
xnew = x + (self.x - x)*c - (self.y - y)*s
ynew = y + (self.x - x)*s + (self.y - y)*c
self.x = xnew
self.y = ynew
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The rotate method in class Shape follows the principle of the draw, scale, and
translate methods.

We have already seen the rotate method in action when animating the rolling
wheel at the end of Sect. 9.4.1.

9.5 Classes for DNA Analysis

We shall here exemplify the use of classes for performing DNA analysis as ex-
plained in Sects. 3.3.1, 6.5.1, 6.5.2, 6.5.3, 6.5.4, 6.5.5, and 8.3.4. Basically, we
create a class Gene to represent a DNA sequence (string) and a class Region to
represent a subsequence (substring), typically an exon or intron.

9.5.1 Class for Regions

The class for representing a region of a DNA string is quite simple:

class Region(object):
def __init__(self, dna, start, end):

self._region = dna[start:end]

def get_region(self):
return self._region

def __len__(self):
return len(self._region)

def __eq__(self, other):
"""Check if two Region instances are equal."""
return self._region == other._region

def __add__(self, other):
"""Add Region instances: self + other"""
return self._region + other._region

def __iadd__(self, other):
"""Increment Region instance: self += other"""
self._region += other._region
return self

Besides storing the substring and giving access to it through get_region, we have
also included the possibility to

� say len(r) if r is a Region instance
� check if two Region instances are equal
� write r1 + r2 for two instances r1 and r2 of type Region
� perform r1 += r2

The latter two operations are convenient for making one large string out of all exon
or intron regions.
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9.5.2 Class for Genes

The class for gene will be longer and more complex than class Region. We already
have a bunch of functions performing various types of analysis. The idea of the
Gene class is that these functions are methods in the class operating on the DNA
string and the exon regions stored in the class. Rather than recoding all the functions
as methods in the class we shall just let the class “wrap” the functions. That is,
the class methods call up the functions we already have. This approach has two
advantages: users can either choose the function-based or the class-based interface,
and the programmer can reuse all the ready-made functions when implementing the
class-based interface.

The selection of functions include

� generate_string for generating a random string from some alphabet
� download and read_dnafile (version read_dnafile_v1) for downloading

data from the Internet and reading from file
� read_exon_regions (version read_exon_regions_v2) for reading exon re-

gions from file
� tofile_with_line_sep (version tofile_with_line_sep_v2) for writing

strings to file
� read_genetic_code (version read_genetic_code_v2) for loading the map-

ping from triplet codes to 1-letter symbols for amino acids
� get_base_frequencies (version get_base_frequencies_v2) for finding

frequencies of each base
� format_frequencies for formatting base frequencies with two decimals
� create_mRNA for computing an mRNA string from DNA and exon regions
� mutate for mutating a base at a random position
� create_markov_chain, transition, and mutate_via_markov_chain for

mutating a base at a random position according to randomly generated transition
probabilities

� create_protein_fixed for proper creation of a protein sequence (string)

The set of plain functions for DNA analysis is found in the file dna_functions.py,
while dna_classes.py contains the implementations of classes Gene and Region.

Basic features of class gene Class Gene is supposed to hold the DNA sequence
and the associated exon regions. A simple constructor expects the exon regions to
be specified as a list of (start, end) tuples indicating the start and end of each region:

class Gene(object):
def __init__(self, dna, exon_regions):

self._dna = dna

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

http://tinyurl.com/pwyasaa/oo/dna_functions.py
http://tinyurl.com/pwyasaa/oo/dna_classes.py
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# Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

self._introns.append(Region(dna, prev_end, start))
prev_end = end

self._introns.append(Region(dna, end, len(dna)))

The methods in class Gene are trivial to implement when we already have the
functionality in stand-alone functions. Here are a few examples on methods:

from dna_functions import *

class Gene(object):
...

def write(self, filename, chars_per_line=70):
"""Write DNA sequence to file with name filename."""
tofile_with_line_sep(self._dna, filename, chars_per_line)

def count(self, base):
"""Return no of occurrences of base in DNA."""
return self._dna.count(base)

def get_base_frequencies(self):
"""Return dict of base frequencies in DNA."""
return get_base_frequencies(self._dna)

def format_base_frequencies(self):
"""Return base frequencies formatted with two decimals."""
return format_frequencies(self.get_base_frequencies())

Flexible constructor The constructor can be made more flexible. First, the exon
regions may not be known so we should allow None as value and in fact use that
as default value. Second, exon regions at the start and/or end of the DNA string
will lead to empty intron Region objects so a proper test on nonzero length of the
introns must be inserted. Third, the data for the DNA string and the exon regions
can either be passed as arguments or downloaded and read from file. Two different
initializations of Gene objects are therefore

g1 = Gene(dna, exon_regions) # user has read data from file
g2 = Gene((urlbase, dna_file), (urlbase, exon_file)) # download

One can pass None for urlbase if the files are already at the computer. The flex-
ible constructor has, not surprisingly, much longer code than the first version. The
implementation illustrates well how the concept of overloaded constructors in other
languages, like C++ and Java, are dealt with in Python (overloaded constructors
take different types of arguments to initialize an instance):



9.5 Classes for DNA Analysis 623

class Gene(object):
def __init__(self, dna, exon_regions):

"""
dna: string or (urlbase,filename) tuple
exon_regions: None, list of (start,end) tuples

or (urlbase,filename) tuple
In case of (urlbase,filename) tuple the file
is downloaded and read.
"""
if isinstance(dna, (list,tuple)) and \

len(dna) == 2 and isinstance(dna[0], str) and \
isinstance(dna[1], str):
download(urlbase=dna[0], filename=dna[1])
dna = read_dnafile(dna[1])

elif isinstance(dna, str):
pass # ok type (the other possibility)

else:
raise TypeError(

’dna=%s %s is not string or (urlbase,filename) ’\
’tuple’ % (dna, type(dna)))

self._dna = dna

er = exon_regions
if er is None:

self._exons = None
self._introns = None

else:
if isinstance(er, (list,tuple)) and \

len(er) == 2 and isinstance(er[0], str) and \
isinstance(er[1], str):
download(urlbase=er[0], filename=er[1])
exon_regions = read_exon_regions(er[1])

elif isinstance(er, (list,tuple)) and \
isinstance(er[0], (list,tuple)) and \
isinstance(er[0][0], int) and \
isinstance(er[0][1], int):
pass # ok type (the other possibility)

else:
raise TypeError(

’exon_regions=%s %s is not list of (int,int) ’
’or (urlbase,filename) tuple’ % (er, type(era)))

self._exon_regions = exon_regions
self._exons = []
for start, end in exon_regions:

self._exons.append(Region(dna, start, end))

# Compute the introns (regions between the exons)
self._introns = []
prev_end = 0
for start, end in exon_regions:

if start - prev_end > 0:
self._introns.append(

Region(dna, prev_end, start))
prev_end = end

if len(dna) - end > 0:
self._introns.append(Region(dna, end, len(dna)))
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Note that we perform quite detailed testing of the object type of the data struc-
tures supplied as the dna and exon_regions arguments. This can well be done to
ensure safe use also when there is only one allowed type per argument.

Other methods A create_mRNA method, returning the mRNA as a string, can be
coded as

def create_mRNA(self):
"""Return string for mRNA."""
if self._exons is not None:

return create_mRNA(self._dna, self._exon_regions)
else:

raise ValueError(
’Cannot create mRNA for gene with no exon regions’)

Also here we rely on calling an already implemented function, but include some
testing whether asking for mRNA is appropriate.

Methods for creating a mutated gene are also included:

def mutate_pos(self, pos, base):
"""Return Gene with a mutation to base at position pos."""
dna = self._dna[:pos] + base + self._dna[pos+1:]
return Gene(dna, self._exon_regions)

def mutate_random(self, n=1):
"""
Return Gene with n mutations at a random position.
All mutations are equally probable.
"""
mutated_dna = self._dna
for i in range(n):

mutated_dna = mutate(mutated_dna)
return Gene(mutated_dna, self._exon_regions)

def mutate_via_markov_chain(markov_chain):
"""
Return Gene with a mutation at a random position.
Mutation into new base based on transition
probabilities in the markov_chain dict of dicts.
"""
mutated_dna = mutate_via_markov_chain(

self._dna, markov_chain)
return Gene(mutated_dna, self._exon_regions)

Some “get” methods that give access to the fundamental attributes of the class
can be included:

def get_dna(self):
return self._dna

def get_exons(self):
return self._exons
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def get_introns(self):
return self._introns

Alternatively, one could access the attributes directly: gene._dna, gene._exons,
etc. In that case we should remove the leading underscore as this underscore signals
that these attributes are considered “protected”, i.e., not to be directly accessed by
the user. The “protection” in “get” functions is more mental than actual since we
anyway give the data structures in the hands of the user and she can do whatever
she wants (even delete them).

Special methods for the length of a gene, adding genes, checking if two genes
are identical, and printing of compact gene information are relevant to add:

def __len__(self):
return len(self._dna)

def __add__(self, other):
"""self + other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

return Gene(self._dna + other._dna, None)
else:

raise ValueError(
’cannot do Gene + Gene with exon regions’)

def __iadd__(self, other):
"""self += other: append other to self (DNA string)."""
if self._exons is None and other._exons is None:

self._dna += other._dna
return self

else:
raise ValueError(

’cannot do Gene += Gene with exon regions’)

def __eq__(self, other):
"""Check if two Gene instances are equal."""
return self._dna == other._dna and \

self._exons == other._exons

def __str__(self):
"""Pretty print (condensed info)."""
s = ’Gene: ’ + self._dna[:6] + ’...’ + self._dna[-6:] + \

’, length=%d’ % len(self._dna)
if self._exons is not None:

s += ’, %d exon regions’ % len(self._exons)
return s

Here is an interactive session demonstrating how we can work with class Gene
objects:

>>> from dna_classes import Gene
>>> g1 = Gene(’ATCCGTAATTGCGCA’, [(2,4), (6,9)])
>>> print g1
Gene: ATCCGT...TGCGCA, length=15, 2 exon regions
>>> g2 = g1.mutate_random(10)
>>> print g2
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Gene: ATCCGT...TGTGCT, length=15, 2 exon regions
>>> g1 == g2
False
>>> g1 += g2 # expect exception
Traceback (most recent call last):
...
ValueError: cannot do Gene += Gene with exon regions
>>> g1b = Gene(g1.get_dna(), None)
>>> g2b = Gene(g2.get_dna(), None)
>>> print g1b
Gene: ATCCGT...TGCGCA, length=15
>>> g3 = g1b + g2b
>>> g3.format_base_frequencies()
’A: 0.17, C: 0.23, T: 0.33, G: 0.27’

9.5.3 Subclasses

There are two fundamental types of genes: the most common type that codes for
proteins (indirectly via mRNA) and the type that only codes for RNA (without being
further processed to proteins). The product of a gene, mRNA or protein, depends
on the type of gene we have. It is then natural to create two subclasses for the two
types of gene and have a method get_product which returns the product of that
type of gene.

The get_product method can be declared in class Gene:

def get_product(self):
raise NotImplementedError(

’Subclass %s must implement get_product’ % \
self.__class__.__name__)

The exception here will be triggered by an instance (self) of any subclass that just
inherits get_product from class Gene without implementing a subclass version of
this method.

The two subclasses of Gene may take this simple form:

class RNACodingGene(Gene):
def get_product(self):

return self.create_mRNA()

class ProteinCodingGene(Gene):
def __init__(self, dna, exon_positions):

Gene.__init__(self, dna, exon_positions)
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
genetic_code_file = ’genetic_code.tsv’
download(urlbase, genetic_code_file)
code = read_genetic_code(genetic_code_file)
self.genetic_code = code

def get_product(self):
return create_protein_fixed(self.create_mRNA(),

self.genetic_code)
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A demonstration of how to load the lactase gene and create the lactase protein is
done with

def test_lactase_gene():
urlbase = ’http://hplgit.github.com/bioinf-py/data/’
lactase_gene_file = ’lactase_gene.txt’
lactase_exon_file = ’lactase_exon.tsv’
lactase_gene = ProteinCodingGene(

(urlbase, lactase_gene_file),
(urlbase, lactase_exon_file))

protein = lactase_gene.get_product()
tofile_with_line_sep(protein, ’output’, ’lactase_protein.txt’)

Now, envision that the Lactase gene would instead have been an RNA-coding
gene. The only necessary changes would have been to exchange ProteinCoding
Gene by RNACodingGene in the assignment to lactase_gene, and one would get
out a final RNA product instead of a protein.

9.6 Summary

9.6.1 Chapter Topics

A subclass inherits everything from its superclass, in particular all data attributes
and methods. The subclass can add new data attributes, overload methods, and
thereby enrich or restrict functionality of the superclass.

Subclass example Consider class Gravity from Sect. 7.7.1 for representing the
gravity force GM m=r2 between two masses m and M being a distance r apart.
Suppose we want to make a class for the electric force between two charges q1 and
q2, being a distance r apart in a medium with permittivity �0 is Gq1q2=r2, where
G�1 D 4��0. We use the approximate value G D 8:99 � 109 Nm2=C2 (C is the
Coulomb unit used to measure electric charges such as q1 and q2). Since the electric
force is similar to the gravity force, we can easily implement the electric force as
a subclass of Gravity. The implementation just needs to redefine the value of G!

class CoulombsLaw(Gravity):
def __init__(self, q1, q2):

Gravity.__init__(self, q1, q2)
self.G = 8.99E9

We can now call the inherited force(r) method to compute the electric force and
the visualize method to make a plot of the force:

c = CoulombsLaw(1E-6, -2E-6)
print ’Electric force:’, c.force(0.1)
c.visualize(0.01, 0.2)

However, the plot method inherited from class Gravity has an inappropriate title
referring to “Gravity force” and the masses m and M . An easy fix could be to have
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the plot title as a data attribute set in the constructor. The subclass can then override
the contents of this attribute, as it overrides self.G. It is quite common to discover
that a class needs adjustments if it is to be used as superclass.

Subclassing in general The typical sketch of creating a subclass goes as follows:

class SuperClass(object):
def __init__(self, p, q):

self.p, self.q = p, q

def where(self):
print ’In superclass’, self.__class__.__name__

def compute(self, x):
self.where()
return self.p*x + self.q

class SubClass(SuperClass):
def __init__(self, p, q, a):

SuperClass.__init__(self, p, q)
self.a = a

def where(self):
print ’In subclass’, self.__class__.__name__

def compute(self, x):
self.where()
return SuperClass.compute(self, x) + self.a*x**2

This example shows how a subclass extends a superclass with one data attribute
(a). The subclass’ compute method calls the corresponding superclass method, as
well as the overloaded method where. Let us invoke the compute method through
superclass and subclass instances:

>>> super = SuperClass(1, 2)
>>> sub = SubClass(1, 2, 3)
>>> v1 = super.compute(0)
In superclass SuperClass
>>> v2 = sub.compute(0)
In subclass SubClass
In subclass SubClass

Observe that in the subclass sub, method compute calls self.where, which trans-
lates to the wheremethod in SubClass. Then the computemethod in SuperClass
is invoked, and this method also makes a self.where call, which is a call to
SubClass’ where method (think of what self is here, it is sub, so it is natural
that we get where in the subclass (sub.where) and not where in the superclass
part of sub).

In this example, classes SuperClass and SubClass constitute a class hierarchy.
Class SubClass inherits the attributes p and q from its superclass, and overrides the
methods where and compute.
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Terminology The important computer science topics in this chapter are

� superclass
� subclass
� inheritance
� class hierarchies
� tree structures
� recursion

9.6.2 Example: Input Data Reader

The summarizing example of this chapter concerns a class hierarchy for simplify-
ing reading input data into programs. Input data may come from several different
sources: the command line, a file, or from a dialog with the user, either of input
form or in a graphical user interface (GUI). Therefore it makes sense to create
a class hierarchy where subclasses are specialized to read from different sources
and where the common code is placed in a superclass. The resulting tool will make
it easy for you to let your programs read from many different input sources by
adding just a few lines.

Problem Let us motivate the problem by a case where we want to write a program
for dumping n function values of f .x/ to a file for x 2 Œa; b�. The core part of the
program typically reads

import numpy as np
with open(filename, ’w’) as outfile:

for x in np.linspace(a, b, n):
outfile.write(’%12g %12g\n’ % (x, f(x)))

Our purpose is to read data into the variables a, b, n, filename, and f. For the
latter we want to specify a formula and use the StringFunction tool (Sect. 4.3.3)
to make the function f:

from scitools.StringFunction import StringFunction
f = StringFunction(formula)

How can we read a, b, n, formula, and filename conveniently into the program?
The basic idea is that we place the input data in a dictionary, and create a tool

that can update this dictionary from sources like the command line, a file, a GUI,
etc. Our dictionary is then

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)

This dictionary specifies the names of the input parameters to the program and the
default values of these parameters.

Using the tool is a matter of feeding p into the constructor of a subclass in the
tools’ class hierarchy and extract the parameters into, for example, distinct vari-
ables:
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inp = Subclassname(p)
a, b, filename, formula, n = inp.get_all()

Depending on what we write as Subclassname, the five variables can be read from
the command line, the terminal window, a file, or a GUI. The task now is to imple-
ment a class hierarchy to facilitate the described flexible reading of input data.

Solution We first create a very simple superclass ReadInput. Its main purpose
is to store the parameter dictionary as a data attribute, provide a method get to
extract single values, and a method get_all to extract all parameters into distinct
variables:

class ReadInput(object):
def __init__(self, parameters):

self.p = parameters

def get(self, parameter_name):
return self.p[parameter_name]

def get_all(self):
return [self.p[name] for name in sorted(self.p)]

def __str__(self):
import pprint
return pprint.pformat(self.p)

Note that we in the get_all method must sort the keys in self.p such that the
list of returned variables is well defined. In the calling program we can then list
variables in the same order as the alphabetic order of the parameter names, for
example:

a, b, filename, formula, n = inp.get_all()

The __str__ method applies the pprint module to get a pretty print of all the
parameter names and their values.

Class ReadInput cannot read from any source – subclasses are supposed to do
this. The forthcoming text describes various types of subclasses for various types
of reading input.

Prompting the user The perhaps simplest way of getting data into a program is
to use raw_input. We then prompt the user with a text Give name: and get
an appropriate object back (recall that strings must be enclosed in quotes). The
subclass PromptUser for doing this then reads

class PromptUser(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._prompt_user()
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def _prompt_user(self):
for name in self.p:

self.p[name] = eval(raw_input("Give " + name + ": "))

Note the underscore in _prompt_user: the underscore signifies that this is a “pri-
vate” method in the PromptUser class, not intended to be called by users of the
class.

There is a major difficulty with using eval on the input from the user. When
the input is intended to be a string object, such as a filename, say tmp.inp, the
program will perform the operation eval(tmp.inp), which leads to an excep-
tion because tmp.inp is treated as a variable inp in a module tmp and not as the
string ’tmp.inp’. To solve this problem, we use the str2obj function from the
scitools.misc module. This function will return the right Python object also in
the case where the argument should result in a string object (see Sect. 4.11.1 for
some information about str2obj). The bottom line is that str2obj acts as a safer
eval(raw_input(...)) call. The key assignment in class PromptUser is then
changed to

self.p[name] = str2obj(raw_input("Give " + name + ": "))

Reading from file We can also place name = value commands in a file and load
this information into the dictionary self.p. An example of a file can be

formula = sin(x) + cos(x)
filename = tmp.dat
a = 0
b = 1

In this example we have omitted n, so we rely on its default value.
A problem is how to give the filename. The easy way out of this problem is

to read from standard input, and just redirect standard input from a file when we
run the program. For example, if the filename is tmp.inp, we run the program as
follows in a terminal window

Terminal

Terminal> python myprog.py < tmp.inp

(The redirection of standard input from a file does not work in IPython so we are
in this case forced to run the program in a terminal window.)

To interpret the contents of the file, we read line by line, split each line with
respect to =, use the left-hand side as the parameter name and the right-hand side
as the corresponding value. It is important to strip away unnecessary blanks in the
name and value. The complete class now reads

class ReadInputFile(ReadInput):
def __init__(self, parameters):

ReadInput.__init__(self, parameters)
self._read_file()
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def _read_file(self, infile=sys.stdin):
for line in infile:

if "=" in line:
name, value = line.split("=")
self.p[name.strip()] = str2obj(value.strip())

A nice feature with reading from standard input is that if we do not redirect
standard input to a file, the program will prompt the user in the terminal window,
where the user can give commands of the type name = value for setting selected
input data. A Ctrl+d is needed to terminate the interactive session in the terminal
window and continue execution of the program.

Reading from the command line For input from the command line we assume
that parameters and values are given as option-value pairs, e.g., as in

--a 1 --b 10 --n 101 --formula "sin(x) + cos(x)"

We apply the argparse module (see Sect. 4.4) to parse the command-line argu-
ments. The list of legal option names must be constructed from the list of keys in
the self.p dictionary. The complete class takes the form

class ReadCommandLine(ReadInput):
def __init__(self, parameters):

self.sys_argv = sys.argv[1:] # copy
ReadInput.__init__(self, parameters)
self._read_command_line()

def _read_command_line(self):
parser = argparse.ArgumentParser()
# Make argparse list of options
for name in self.p:

# Default type: str
parser.add_argument(’--’+name, default=self.p[name])

args = parser.parse_args()
for name in self.p:

self.p[name] = str2obj(getattr(args, name))

import Tkinter
try:

We could specify the type of a parameter as type(self.p[name]) or self.
p[name].__class__, but if a float parameter has been given an integer default
value, the type will be int and argparse will not accept a decimal number as
input. Our more general strategy is to drop specifying the type, which implies that
all parameters in the args object become strings. We then use the str2obj function
to convert to the right type, a technique that is used throughout the ReadInput

module.

Reading from a gui We can with a little extra effort also make a graphical user in-
terface (GUI) for reading the input data. An example of a user interface is displayed
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Fig. 9.13 Screen dump of a graphical user interface to read input data into a program (class GUI
in the ReadInput hierarchy)

in Fig. 9.13. Since the technicalities of the implementation is beyond the scope of
this book, we do not show the subclass GUI that creates the GUI and loads the user
input into the self.p dictionary.

More flexibility in the superclass Some extra flexibility can easily be added to
the get method in the superclass. Say we want to extract a variable number of
parameters:

a, b, n = inp.get(’a’, ’b’, ’n’) # 3 variables
n = inp.get(’n’) # 1 variable

The key to this extension is to use a variable number of arguments as explained in
Sect. H.7.1:

class ReadInput(object):
...
def get(self, *parameter_names):

if len(parameter_names) == 1:
return self.p[parameter_names[0]]

else:
return [self.p[name] for name in parameter_names]

Demonstrating the tool Let us show how we can use the classes in the ReadInput
hierarchy. We apply the motivating example described earlier. The name of the pro-
gram is demo_ReadInput.py. As first command-line argument it takes the name of
the input source, given as the name of a subclass in the ReadInput hierarchy. The
code for loading input data from any of the sources supported by the ReadInput

hierarchy goes as follows:

p = dict(formula=’x+1’, a=0, b=1, n=2, filename=’tmp.dat’)
from ReadInput import *
input_reader = eval(sys.argv[1]) # PromptUser, ReadInputFile, ...
del sys.argv[1] # otherwise argparse don’t like our extra option
inp = input_reader(p)
a, b, filename, formula, n = inp.get_all()
print inp

http://tinyurl.com/pwyasaa/oo/demo_ReadInput.py
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Note how convenient eval is to automatically create the right subclass for reading
input data.

Our first try on running this program applies the PromptUser class:

Terminal

demo_ReadInput.py PromptUser
Give a: 0
Give formula: sin(x) + cos(x)
Give b: 10
Give filename: function_data
Give n: 101
{’a’: 0,
’b’: 10,
’filename’: ’function_data’,
’formula’: ’sin(x) + cos(x)’,
’n’: 101}

The next example reads data from a file tmp.inp with the same contents as
shown in paragraph above about reading from file.

Terminal

Terminal> demo_ReadInput.py ReadFileInput < tmp.inp
{’a’: 0, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}

We can also drop the redirection of standard input to a file, and instead run an
interactive session in IPython or the terminal window:

Terminal

demo_ReadInput.py ReadFileInput
n = 101
filename = myfunction_data_file.dat
^D
{’a’: 0,
’b’: 1,
’filename’: ’myfunction_data_file.dat’,
’formula’: ’x+1’,
’n’: 101}

Note that Ctrl+d is needed to end the interactive session with the user and continue
program execution.

Command-line arguments can also be specified:

Terminal

demo_ReadInput.py ReadCommandLine \
--a -1 --b 1 --formula "sin(x) + cos(x)"

{’a’: -1, ’b’: 1, ’filename’: ’tmp.dat’,
’formula’: ’sin(x) + cos(x)’, ’n’: 2}



9.7 Exercises 635

Finally, we can run the program with a GUI,

Terminal

demo_ReadInput.py GUI
{’a’: -1, ’b’: 10, ’filename’: ’tmp.dat’,
’formula’: ’x+1’, ’n’: 2}

The GUI is shown in Fig. 9.13.
Fortunately, it is now quite obvious how to apply the ReadInput hierarchy of

classes in your own programs to simplify input. Especially in applications with
a large number of parameters one can initially define these in a dictionary and then
automatically create quite comprehensive user interfaces where the user can specify
only some subset of the parameters (if the default values for the rest of the parame-
ters are suitable).

9.7 Exercises

Exercise 9.1: Demonstrate the magic of inheritance

Consider class Line from Sect. 9.1.1 and a subclass Parabola0 defined as

class Parabola0(Line):
pass

That is, class Parabola0 does not have any own code, but it inherits from class
Line. Demonstrate in a program or interactive session, using dir and looking at
the __dict__ object, (see Sect. 7.5.6) that an instance of class Parabola0 contains
everything (i.e., all attributes) that an instance of class Line contains.
Filename: dir_subclass.

Exercise 9.2: Make polynomial subclasses of parabolas

The task in this exercise is to make a class Cubic for cubic functions

c3x
3 C c2x2 C c1x C c0

with a call operator and a table method as in classes Line and Parabola from
Sect. 9.1. Implement class Cubic by inheriting from class Parabola, and call
up functionality in class Parabola in the same way as class Parabola calls up
functionality in class Line.

Make a similar class Poly4 for 4-th degree polynomials

c4x4 C c3x3 C c2x2 C c1x C c0

by inheriting from class Cubic. Insert print statements in all the __call__ meth-
ods such that you can easily watch the program flow and see when __call__ in the
different classes is called.

Evaluate cubic and a 4-th degree polynomial at a point, and observe the printouts
from all the superclasses.
Filename: Cubic_Poly4.
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Remarks This exercise follows the idea from Sect. 9.1 where more complex poly-
nomials are subclasses of simpler ones. Conceptually, a cubic polynomial is not

a parabola, so many programmers will not accept class Cubic as a subclass of
Parabola; it should be the other way around, and Exercise 9.2 follows that ap-
proach. Nevertheless, one can use inheritance solely for sharing code and not for
expressing that a subclass is a kind of the superclass. For code sharing it is natural
to start with the simplest polynomial as superclass and add terms to the inherited
data structure as we make subclasses for higher degree polynomials.

Exercise 9.3: Implement a class for a function as a subclass

Implement a class for the function f .x/ D A sin.wx/C ax2 C bx C c. The class
should have a call operator for evaluating the function for some argument x, and
a constructor that takes the function parameters A, w, a, b, and c as arguments. Also
a table method as in classes Line and Parabola should be present. Implement
the class by deriving it from class Parabola and call up functionality already im-
plemented in class Parabola whenever possible.
Filename: sin_plus_quadratic.

Exercise 9.4: Create an alternative class hierarchy for polynomials

Let class Polynomial from Sect. 7.3.7 be a superclass and implement class
Parabola as a subclass. The constructor in class Parabola should take the
three coefficients in the parabola as separate arguments. Try to reuse as much code
as possible from the superclass in the subclass. Implement class Line as a subclass
specialization of class Parabola.

Which class design do you prefer, class Line as a subclass of Parabola and
Polynomial, or Line as a superclass with extensions in subclasses? (See also
remark in Exercise 9.2.)
Filename: Polynomial_hier.

Exercise 9.5: Make circle a subclass of an ellipse

Section 7.2.3 presents class Circle. Make a similar class Ellipse for representing
an ellipse. Then create a new class Circle that is a subclass of Ellipse.
Filename: Ellipse_Circle.

Exercise 9.6: Make super- and subclass for a point

A point .x; y/ in the plane can be represented by a class:

class Point(object):
def __init__(self, x, y):

self.x, self.y = x, y

def __str__(self):
return ’(%g, %g)’ % (self.x, self.y)

We can extend the Point class to also contain the representation of the point in
polar coordinates. To this end, create a subclass PolarPoint whose constructor
takes the polar representation of a point, .r; �/, as arguments. Store r and � as
data attributes and call the superclass constructor with the corresponding x and y
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values (recall the relations x D r cos � and y D r sin � between Cartesian and
polar coordinates). Add a __str__ method in class PolarPoint which prints out
r , � , x, and y. Write a test function that creates two PolarPoint instances and
compares the four data attributes x, y, r, and theta with the expected values.
Filename: PolarPoint.

Exercise 9.7: Modify a function class by subclassing

Consider a class F implementing the function f .t I a; b/ D e�at sin.bt/:

class F(object):
def __init__(self, a, b):

self.a, self.b = a, b
def __call__(self, t):

return exp(-self.a*t)*sin(self.b*t)

We now want to study how the function f .t I a; b/ varies with the parameter b,
given t and a. Mathematically, this means that we want to compute g.bI t; a/ D
f .t I a; b/. Write a subclass Fb of F with a new __call__ method for evaluating
g.bI t; a/. Do not reimplement the formula, but call the __call__ method in the
superclass to evaluate f .t I a; b/. The Fs should work as follows:

f = Fs(t=2, a=4.5)
print f(3) # b=3

Hint Before calling __call__ in the superclass, the data attribute b in the super-
class must be set to the right value.
Filename: Fb.

Exercise 9.8: Explore the accuracy of difference formulas

The purpose of this exercise is to investigate the accuracy of the Backward1,
Forward1, Forward3, Central2, Central4, Central6 methods for the function

v.x/ D 1 � ex=�

1 � e1=�
:

Compute the errors in the approximations for x D 0; 0:9 and � D 1; 0:01. Illustrate
in a plot how the v.x/ function looks like for these two � values.

Hint Modify the src/oo/Diff2_examples.pyprogram which produces tables of
errors of difference approximations as discussed at the end of Sect. 9.2.4.
Filename: boundary_layer_derivative.

Exercise 9.9: Implement a subclass

Make a subclass Sine1 of class FuncWithDerivatives from Sect. 9.1.6 for the
sin x function. Implement the function only, and rely on the inherited df and ddf

methods for computing the derivatives. Make another subclass Sine2 for sin x

where you also implement the df and ddf methods using analytical expressions for
the derivatives. Compare Sine1 and Sine2 for computing the first- and second-
order derivatives of sin x at two x points.
Filename: Sine12.

http://tinyurl.com/pwyasaa/oo/Diff2_examples.py
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Exercise 9.10: Make classes for numerical differentiation

Carry out Exercise 7.16. Find the common code in the classes Derivative,
Backward, and Central. Move this code to a superclass, and let the three men-
tioned classes be subclasses of this superclass. Compare the resulting code with the
hierarchy shown in Sect. 9.2.1.
Filename: numdiff_classes.

Exercise 9.11: Implement a new subclass for differentiation

A one-sided, three-point, second-order accurate formula for differentiating a func-
tion f .x/ has the form

f 0.x/ � f .x � 2h/ � 4f .x � h/C 3f .x/

2h
: (9.17)

Implement this formula in a subclass Backward2 of class Diff from Sect. 9.2.
Compare Backward2 with Backward1 for g.t/ D e�t for t D 0 and h D 2�k for
k D 0; 1; : : : ; 14 (write out the errors in g0.t/).
Filename: Backward2.

Exercise 9.12: Understand if a class can be used recursively

Suppose you want to compute f 00.x/ of some mathematical function f .x/, and that
you apply some class from Sect. 9.2 twice, e.g.,

ddf = Central2(Central2(f))

Will this work?

Hint Follow the program flow, and find out what the resulting formula will be.
Then see if this formula coincides with a formula you know for approximating
f 00.x/ (actually, to recover the well-known formula with an h parameter, you would
use h=2 in the nested calls to Central2).

Exercise 9.13: Represent people by a class hierarchy

Classes are often used to model objects in the real world. We may represent the
data about a person in a program by a class Person, containing the person’s name,
address, phone number, date of birth, and nationality. A method __str__may print
the person’s data. Implement such a class Person.

A worker is a person with a job. In a program, a worker is naturally represented
as class Worker derived from class Person, because a worker is a person, i.e.,
we have an is-a relationship. Class Worker extends class Person with additional
data, say name of company, company address, and job phone number. The print
functionality must be modified accordingly. Implement this Worker class.

A scientist is a special kind of a worker. Class Scientist may therefore be
derived from class Worker. Add data about the scientific discipline (physics, chem-
istry, mathematics, computer science, . . . ). One may also add the type of scientist:
theoretical, experimental, or computational. The value of such a type attribute
should not be restricted to just one category, since a scientist may be classified
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as, e.g., both experimental and computational (i.e., you can represent the value as
a list or tuple). Implement class Scientist.

Researcher, postdoc, and professor are special cases of a scientist. One can either
create classes for these job positions, or one may add an attribute (position) for
this information in class Scientist. We adopt the former strategy. When, e.g.,
a researcher is represented by a class Researcher, no extra data or methods are
needed. In Python we can create such an empty class by writing pass (the empty
statement) as the class body:

class Researcher(Scientist):
pass

Finally, make a demo program where you create and print instances of classes
Person, Worker, Scientist, Researcher, Postdoc, and Professor. Print out
the attribute contents of each instance (use the dir function).

Remark An alternative design is to introduce a class Teacher as a special case of
Worker and let Professor be both a Teacher and Scientist, which is natural.
This implies that class Professor has two superclasses, Teacher and Scientist,
or equivalently, class Professor inherits from two superclasses. This is known as
multiple inheritance and technically achieved as follows in Python:

class Professor(Teacher, Scientist):
pass

It is a continuous debate in computer science whether multiple inheritance is a good
idea or not. One obvious problem in the present example is that class Professor
inherits two names, one via Teacher and one via Scientist (both these classes
inherit from Person).
Filename: Person.

Exercise 9.14: Add a new class in a class hierarchy

a) Add the Monte Carlo integration method from Sect. 8.5.2 as a subclass MCint
in the Integrator hierarchy explained in Sect. 9.3. Import the superclass
Integrator from the integrate module in the file with the new integration
class.

b) Make a test function for class MCint where you fix the seed of the random
number generator, use three function evaluations only, and compare the result
of this Monte Carlo integration with results calculated by hand using the same
three random numbers.

c) Run the Monte Carlo integration class in a case with known analytical solution
and see how the error in the integral changes with n D 10k function evaluations,
k D 3; 4; 5; 6.

Filename: MCint_class.
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Exercise 9.15: Compute convergence rates of numerical integration methods

Numerical integration methods can compute “any” integral
R b

a
f .x/dx, but the re-

sult is not exact. The methods have a parameter n, closely related to the number
of evaluations of the function f , that can be increased to achieve more accurate
results. In this exercise we want to explore the relation between the error E in the
numerical approximation to the integral and n. Different numerical methods have
different relations.

The relations are of the form

E D C nr ;

where and C and r < 0 are constants to be determined. That is, r is the most
important of these parameters, because if Simpson’s method has a more negative
r than the Trapezoidal method, it means that increasing n in Simpson’s method
reduces the error more effectively than increasing n in the Trapezoidal method.

One can estimate r from numerical experiments. For a chosen f .x/, where the
exact value of

R b

a
f .x/dx is available, one computes the numerical approximation

for N C 1 values of n: n0 < n1 < � � � < nN and finds the corresponding errors
E0; E1; : : : ; EN (the difference between the exact value and the value produced by
the numerical method).

One way to estimate r goes as follows. For two successive experiments we have

Ei D C nr
i :

and
EiC1 D C nr

iC1

Divide the first equation by the second to eliminate C , and then take the logarithm
to solve for r :

r D ln.Ei =EiC1/

ln.ni=niC1/
:

We can compute r for all pairs of two successive experiments. Say ri is the r value
found from experiment i and i C 1,

ri D
ln.Ei =EiC1/

ln.ni=niC1/
; i D 0; 1; : : : ; N � 1 :

Usually, the last value, rN�1, is the best approximation to the true r value. Knowing
r , we can compute C as Ei n

�r
i for any i .

Use the method above to estimate r and C for the Midpoint method, the Trape-
zoidal method, and Simpson’s method. Make your own choice of integral problem:
f .x/, a, and b. Let the parameter n be the number of function evaluations in
each method, and run the experiments with n D 2k C 1 for k D 2; : : : ; 11. The
Integrator hierarchy from Sect. 9.3 has all the requested methods implemented.
Filename: integrators_convergence.
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Exercise 9.16: Add common functionality in a class hierarchy

Suppose you want to use classes in the Integrator hierarchy from Sect. 9.3. to
calculate integrals of the form

F.x/ D
x
Z

a

f .t/dt :

Such functions F.x/ can be efficiently computed by the method from Exercise 7.22.
Implement this computation of F.x/ in an additional method in the superclass
Integrator. Test that the implementation is correct for f .x/ D 2x � 3 for all the
implemented integration methods (the Midpoint, Trapezoidal and Gauss-Legendre
methods, as well as Simpson’s rule, integrate a linear function exactly).
Filename: integrate_efficient.

Exercise 9.17: Make a class hierarchy for root finding

Given a general nonlinear equation f .x/ D 0, we want to implement classes for
solving such an equation, and organize the classes in a class hierarchy. Make classes
for three methods: Newton’s method (in Sect. A.1.10), the Bisection method (in
Sect. 4.11.2), and the Secant method (in Exercise A.10).

It is not obvious how such a hierarchy should be organized. One idea is to let the
superclass store the f .x/ function and its derivative f 0.x/ (if provided – if not, use
a finite difference approximation for f 0.x/). A method

def solve(start_values=[0], max_iter=100, tolerance=1E-6):
...

in the superclass can implement a general iteration loop. The start_values argu-
ment is a list of starting values for the algorithm in question: one point for Newton,
two for Secant, and an interval Œa; b� containing a root for Bisection. Let solve
define a list self.x holding all the computed approximations. The initial value of
self.x is simply start_values. For the Bisection method, one can use the con-
vention a; b; c = self.x[-3:], where Œa; b� represents the most recently computed
interval and c is its midpoint. The solve method can return an approximate root x,
the corresponding f .x/ value, a boolean indicator that is True if jf .x/j is less than
the tolerance parameter, and a list of all the approximations and their f values
(i.e., a list of .x; f .x// tuples).

Do Exercise A.11 using the new class hierarchy.
Filename: Rootfinders.

Exercise 9.18: Make a calculus calculator class

Given a function f .x/ defined on a domain Œa; b�, the purpose of many mathemat-
ical exercises is to sketch the function curve y D f .x/, compute the derivative
f 0.x/, find local and global extreme points, and compute the integral

R b

a
f .x/dx.

Make a class CalculusCalculator which can perform all these actions for any
function f .x/ using numerical differentiation and integration, and the method ex-
plained in Exercise 7.34. for finding extrema.
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Here is an interactive session with the class where we analyze f .x/ D
x2e�0:2x sin.2�x/ on Œ0; 6� with a grid (set of x coordinates) of 700 points:

>>> from CalculusCalculator import *
>>> def f(x):
... return x**2*exp(-0.2*x)*sin(2*pi*x)
...
>>> c = CalculusCalculator(f, 0, 6, resolution=700)
>>> c.plot() # plot f
>>> c.plot_derivative() # plot f’
>>> c.extreme_points()

All minima: 0.8052, 1.7736, 2.7636, 3.7584, 4.7556, 5.754, 0
All maxima: 0.3624, 1.284, 2.2668, 3.2604, 4.2564, 5.2548, 6
Global minimum: 5.754
Global maximum: 5.2548

>>> c.integral
-1.7353776102348935
>>> c.df(2.51) # c.df(x) is the derivative of f
-24.056988888465636
>>> c.set_differentiation_method(Central4)
>>> c.df(2.51)
-24.056988832723189
>>> c.set_integration_method(Simpson) # more accurate integration
>>> c.integral
-1.7353857856973565

Design the class such that the above session can be carried out.

Hint Use classes from the Diff and Integrator hierarchies (Sects. 9.2 and 9.3)
for numerical differentiation and integration (with, e.g., Central2 and
Trapezoidal as default methods for differentiation and integration). The method
set_differentiation_method takes a subclass name in the Diff hierarchy as
argument, and makes a data attribute df that holds a subclass instance for com-
puting derivatives. With set_integration_method we can similarly set the
integration method as a subclass name in the Integrator hierarchy, and then
compute the integral

R b

a
f .x/dx and store the value in the attribute integral. The

extreme_pointsmethod performs a print on a MinMax instance, which is stored
as an attribute in the calculator class.
Filename: CalculusCalculator.

Exercise 9.19: Compute inverse functions

Extend class CalculusCalculator from Exercise 9.18 to offer computations of
inverse functions.

Hint A numerical way of computing inverse functions is explained in Sect. A.1.11.
Other, perhaps more attractive methods are described in Exercises E.17–E.20.
Filename: CalculusCalculator2.
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Exercise 9.20: Make line drawing of a person; program

A very simple sketch of a human being can be made of a circle for the head, two
lines for the arms, one vertical line, a triangle, or a rectangle for the torso, and two
lines for the legs. Make such a drawing in a program, utilizing appropriate classes
in the Shape hierarchy.
Filename: draw_person.

Exercise 9.21: Make line drawing of a person; class

Use the code from Exercise 9.20 to make a subclass of Shape that draws a person.
Supply the following arguments to the constructor: the center point of the head and
the radius R of the head. Let the arms and the torso be of length 4R, and the legs
of length 6R. The angle between the legs can be fixed (say 30 degrees), while the
angle of the arms relative to the torso can be an argument to the constructor with
a suitable default value.
Filename: Person.

Exercise 9.22: Animate a person with waving hands

Make a subclass of the class from Exercise 9.21 where the constructor can take an
argument describing the angle between the arms and the torso. Use this new class
to animate a person who waves her/his hands.
Filename: waving_person.



ASequences and Difference Equations

From mathematics you probably know the concept of a sequence, which is nothing
but a collection of numbers with a specific order. A general sequence is written as

x0; x1; x2; : : : ; xn; : : : ;

One example is the sequence of all odd numbers:

1; 3; 5; 7; : : : ; 2nC 1; : : :

For this sequence we have an explicit formula for the n-th term: 2nC1, and n takes
on the values 0, 1, 2, : : :. We can write this sequence more compactly as .xn/1nD0

with xn D 2nC 1. Other examples of infinite sequences from mathematics are

1; 4; 9; 16; 25; : : : .xn/1nD0; xn D .nC 1/2; (A.1)

1;
1

2
;

1

3
;

1

4
; : : : .xn/1nD0; xn D

1

nC 1
: (A.2)

The former sequences are infinite, because they are generated from all integers
� 0 and there are infinitely many such integers. Nevertheless, most sequences from
real life applications are finite. If you put an amount x0 of money in a bank, you
will get an interest rate and therefore have an amount x1 after one year, x2 after two
years, and xN after N years. This process results in a finite sequence of amounts

x0; x1; x2; : : : ; xN ; .xn/N
nD0 :

Usually we are interested in quite small N values (typically N � 20�30). Anyway,
the life of the bank is finite, so the sequence definitely has an end.

For some sequences it is not so easy to set up a general formula for the n-th term.
Instead, it is easier to express a relation between two or more consecutive elements.
One example where we can do both things is the sequence of odd numbers. This
sequence can alternatively be generated by the formula

xnC1 D xn C 2 : (A.3)
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To start the sequence, we need an initial condition where the value of the first ele-
ment is specified:

x0 D 1 :

Relations like (A.3) between consecutive elements in a sequence is called recur-
rence relations or difference equations. Solving a difference equation can be quite
challenging in mathematics, but it is almost trivial to solve it on a computer. That
is why difference equations are so well suited for computer programming, and the
present appendix is devoted to this topic. Necessary background knowledge is pro-
gramming with loops, arrays, and command-line arguments and visualization of
a function of one variable.

The program examples regarding difference equations are found in the folder
src/diffeq1.

A.1 Mathematical Models Based on Difference Equations

The objective of science is to understand complex phenomena. The phenomenon
under consideration may be a part of nature, a group of social individuals, the traffic
situation in Los Angeles, and so forth. The reason for addressing something in a sci-
entific manner is that it appears to be complex and hard to comprehend. A common
scientific approach to gain understanding is to create a model of the phenomenon,
and discuss the properties of the model instead of the phenomenon. The basic idea
is that the model is easier to understand, but still complex enough to preserve the
basic features of the problem at hand.

Essentially, all models are wrong, but some are useful. George E. P. Box, statistician,
1919–2013.

Modeling is, indeed, a general idea with applications far beyond science. Sup-
pose, for instance, that you want to invite a friend to your home for the first time.
To assist your friend, you may send a map of your neighborhood. Such a map is
a model: it exposes the most important landmarks and leaves out billions of details
that your friend can do very well without. This is the essence of modeling: a good
model should be as simple as possible, but still rich enough to include the important
structures you are looking for.

Everything should be made as simple as possible, but not simpler.

Paraphrased quote attributed to Albert Einstein, physicist, 1879–1955.

Certainly, the tools we apply to model a certain phenomenon differ a lot in vari-
ous scientific disciplines. In the natural sciences, mathematics has gained a unique
position as the key tool for formulating models. To establish a model, you need
to understand the problem at hand and describe it with mathematics. Usually, this
process results in a set of equations, i.e., the model consists of equations that must
be solved in order to see how realistically the model describes a phenomenon. Dif-
ference equations represent one of the simplest yet most effective type of equations

1 http://tinyurl.com/pwyasaa/diffeq

http://tinyurl.com/pwyasaa/diffeq
http://tinyurl.com/pwyasaa/diffeq
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arising in mathematical models. The mathematics is simple and the programming
is simple, thereby allowing us to focus more on the modeling part. Below we will
derive and solve difference equations for diverse applications.

A.1.1 Interest Rates

Our first difference equation model concerns how much money an initial amount
x0 will grow to after n years in a bank with annual interest rate p. You learned in
school the formula

xn D x0

�

1C p

100

�n

: (A.4)

Unfortunately, this formula arises after some limiting assumptions, like that of
a constant interest rate over all the n years. Moreover, the formula only gives us
the amount after each year, not after some months or days. It is much easier to
compute with interest rates if we set up a more fundamental model in terms of
a difference equation and then solve this equation on a computer.

The fundamental model for interest rates is that an amount xn�1 at some point of
time tn�1 increases its value with p percent to an amount xn at a new point of time
tn:

xn D xn�1 C
p

100
xn�1 : (A.5)

If n counts years, p is the annual interest rate, and if p is constant, we can with
some arithmetics derive the following solution to (A.5):

xn D
�

1C p

100

�

xn�1 D
�

1C p

100

�2

xn�2 D : : : D
�

1C p

100

�n

x0 :

Instead of first deriving a formula for xn and then program this formula, we may
attack the fundamental model (A.5) in a program (growth_years.py) and compute
x1, x2, and so on in a loop:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))

# Compute solution
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (p/100.0)*x[n-1]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

The output of x is

[ 100. 105. 110.25 115.7625 121.550625]

http://tinyurl.com/pwyasaa/diffeq/growth_years.py
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Programmers of mathematical software who are trained in making programs more
efficient, will notice that it is not necessary to store all the xn values in an array or
use a list with all the indices 0; 1; : : : ; N . Just one integer for the index and two
floats for xn and xn�1 are strictly necessary. This can save quite some memory
for large values of N . Exercise A.3 asks you to develop such a memory-efficient
program.

Suppose now that we are interested in computing the growth of money after N

days instead. The interest rate per day is taken as r D p=D if p is the annual
interest rate and D is the number of days in a year. The fundamental model is the
same, but now n counts days and p is replaced by r :

xn D xn�1 C
r

100
xn�1 : (A.6)

A common method in international business is to choose D D 360, yet let n count
the exact number of days between two dates (see the Wikipedia entry Day count
convention2 for an explanation). Python has a module datetime for convenient
calculations with dates and times. To find the number of days between two dates,
we perform the following operations:

>>> import datetime
>>> date1 = datetime.date(2007, 8, 3) # Aug 3, 2007
>>> date2 = datetime.date(2008, 8, 4) # Aug 4, 2008
>>> diff = date2 - date1
>>> print diff.days
367

We can modify the previous program to compute with days instead of years:

from scitools.std import *
x0 = 100 # initial amount
p = 5 # annual interest rate
r = p/360.0 # daily interest rate
import datetime
date1 = datetime.date(2007, 8, 3)
date2 = datetime.date(2011, 8, 3)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = zeros(len(index_set))

# Compute solution
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r/100.0)*x[n-1]
print x
plot(index_set, x, ’ro’, xlabel=’days’, ylabel=’amount’)

Running this program, called growth_days.py, prints out 122.5 as the final
amount.

2 http://en.wikipedia.org/wiki/Day_count_convention

http://en.wikipedia.org/wiki/Day_count_convention
http://tinyurl.com/pwyasaa/diffeq/growth_days.py
http://en.wikipedia.org/wiki/Day_count_convention
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It is quite easy to adjust the formula (A.4) to the case where the interest is added
every day instead of every year. However, the strength of the model (A.6) and the
associated program growth_days.py becomes apparent when r varies in time –
and this is what happens in real life. In the model we can just write r.n/ to explic-
itly indicate the dependence upon time. The corresponding time-dependent annual
interest rate is what is normally specified, and p.n/ is usually a piecewise constant
function (the interest rate is changed at some specific dates and remains constant
between these days). The construction of a corresponding array p in a program,
given the dates when p changes, can be a bit tricky since we need to compute the
number of days between the dates of changes and index p properly. We do not
dive into these details now, but readers who want to compute p and who is ready
for some extra brain training and index puzzling can attack Exercise A.8. For now
we assume that an array p holds the time-dependent annual interest rates for each
day in the total time period of interest. The growth_days.py program then needs
a slight modification, typically,

p = zeros(len(index_set))
# set up p (might be challenging!)
r = p/360.0 # daily interest rate
...
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1]/100.0)*x[n-1]

For the very simple (and not-so-relevant) case where p grows linearly (i.e., daily
changes) from 4 to 6 percent over the period of interest, we have made a complete
program in the file growth_days_timedep.py. You can compare a simulation
with linearly varying p between 4 and 6 and a simulation using the average p value
5 throughout the whole time interval.

A difference equation with r.n/ is quite difficult to solve mathematically, but the
n-dependence in r is easy to deal with in the computerized solution approach.

A.1.2 The Factorial as a Difference Equation

The difference equation
xn D nxn�1; x0 D 1 (A.7)

can quickly be solved recursively:

xn D nxn�1

D n.n � 1/xn�2

D n.n � 1/.n � 2/xn�3

D n.n � 1/.n � 2/ � � �1 :

The result xn is nothing but the factorial of n, denoted as nŠ. Equation (A.7) then
gives a standard recipe to compute nŠ.

http://tinyurl.com/pwyasaa/diffeq/growth_days_timedep.py
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A.1.3 Fibonacci Numbers

Every textbook with some material on sequences usually presents a difference equa-
tion for generating the famous Fibonacci numbers3:

xn D xn�1 C xn�2; x0 D 1; x1 D 1; n D 2; 3; : : : (A.8)

This equation has a relation between three elements in the sequence, not only two
as in the other examples we have seen. We say that this is a difference equation
of second order, while the previous examples involving two n levels are said to be
difference equations of first order. The precise characterization of (A.8) is a homo-
geneous difference equation of second order. Such classification is not important
when computing the solution in a program, but for mathematical solution methods
by pen and paper, the classification helps determine the most suitable mathematical
technique for solving the problem.

A straightforward program for generating Fibonacci numbers takes the form
(fibonacci1.py):

import sys
import numpy as np
N = int(sys.argv[1])
x = np.zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print n, x[n]

Since xn is an infinite sequence we could try to run the program for very large
N . This causes two problems: the storage requirements of the x array may be-
come too large for the computer, but long before this happens, xn grows in size far
beyond the largest integer that can be represented by int elements in arrays (the
problem appears already for N D 50). A possibility is to use array elements of
type int64, which allows computation of twice as many numbers as with standard
int elements (see the program fibonacci1_int64.py). A better solution is to
use float elements in the x array, despite the fact that the numbers xn are inte-
gers. With float96 elements we can compute up to N D 23600 (see the program
fibinacci1_float.py).

The best solution goes as follows. We observe, as mentioned after the growth_
years.py program and also explained in Exercise A.3, that we need only three
variables to generate the sequence. We can therefore work with just three standard
int variables in Python:

import sys
N = int(sys.argv[1])
xnm1 = 1
xnm2 = 1

3 http://en.wikipedia.org/wiki/Fibonacci_number

http://en.wikipedia.org/wiki/Fibonacci_number
http://tinyurl.com/pwyasaa/diffeq/fibonacci1.py
http://tinyurl.com/pwyasaa/diffeq/fibonacci1_int64.py
http://tinyurl.com/pwyasaa/diffeq/fibonacci1_float.py
http://en.wikipedia.org/wiki/Fibonacci_number
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n = 2
while n <= N:

xn = xnm1 + xnm2
print ’x_%d = %d’ % (n, xn)
xnm2 = xnm1
xnm1 = xn
n += 1

Here xnm1 denotes xn�1 and xnm2 denotes xn�2. To prepare for the next pass in the
loop, we must shuffle the xnm1 down to xnm2 and store the new xn value in xnm1.
The nice thing with integers in Python (contrary to int elements in NumPy arrays)
is that they can hold integers of arbitrary size. More precisely, when the integer
is too large for the ordinary int object, xn becomes a long object that can hold
integers as big as the computer’s memory allows. We may try a run with N set to
250:

x_2 = 2
x_3 = 3
x_4 = 5
x_5 = 8
x_6 = 13
x_7 = 21
x_8 = 34
x_9 = 55
x_10 = 89
x_11 = 144
x_12 = 233
x_13 = 377
x_14 = 610
x_15 = 987
x_16 = 1597
...
x_249 = 7896325826131730509282738943634332893686268675876375
x_250 = 12776523572924732586037033894655031898659556447352249

In mathematics courses you learn how to derive a formula for the n-th term in
a Fibonacci sequence. This derivation is much more complicated than writing a sim-
ple program to generate the sequence, but there is a lot of interesting mathematics
both in the derivation and the resulting formula!

A.1.4 Growth of a Population

Let xn�1 be the number of individuals in a population at time tn�1. The population
can consists of humans, animals, cells, or whatever objects where the number of
births and deaths is proportional to the number of individuals. Between time levels
tn�1 and tn, bxn�1 individuals are born, and dxn�1 individuals die, where b and d

are constants. The net growth of the population is then .b � d/xn. Introducing
r D .b � d/100 for the net growth factor measured in percent, the new number of
individuals become

xn D xn�1 C
r

100
xn�1 : (A.9)
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This is the same difference equation as (A.5). It models growth of populations quite
well as long as there are optimal growing conditions for each individual. If not, one
can adjust the model as explained in Sect. A.1.5.

To solve (A.9) we need to start out with a known size x0 of the population. The
b and d parameters depend on the time difference tn � tn�1, i.e., the values of b and
d are smaller if n counts years than if n counts generations.

A.1.5 Logistic Growth

The model (A.9) for the growth of a population leads to exponential increase in the
number of individuals as implied by the solution (A.4). The size of the population
increases faster and faster as time n increases, and xn !1 when n!1. In real
life, however, there is an upper limit M of the number of individuals that can exist
in the environment at the same time. Lack of space and food, competition between
individuals, predators, and spreading of contagious diseases are examples on factors
that limit the growth. The number M is usually called the carrying capacity of the
environment, the maximum population which is sustainable over time. With limited
growth, the growth factor r must depend on time:

xn D xn�1 C
r.n � 1/

100
xn�1 : (A.10)

In the beginning of the growth process, there is enough resources and the growth
is exponential, but as xn approaches M , the growth stops and r must tend to zero.
A simple function r.n/ with these properties is

r.n/ D %
�

1 � xn

M

�

: (A.11)

For small n, xn � M and r.n/ � %, which is the growth rate with unlimited
resources. As n!M , r.n/! 0 as we want. The model (A.11) is used for logistic

growth. The corresponding logistic difference equation becomes

xn D xn�1 C
%

100
xn�1

�

1 � xn�1

M

�

: (A.12)

Below is a program (growth_logistic.py) for simulating N D 200 time inter-
vals in a case where we start with x0 D 100 individuals, a carrying capacity of
M D 500, and initial growth of % D 4 percent in each time interval:

from scitools.std import *
x0 = 100 # initial amount of individuals
M = 500 # carrying capacity
rho = 4 # initial growth rate in percent
N = 200 # number of time intervals
index_set = range(N+1)
x = zeros(len(index_set))

http://tinyurl.com/pwyasaa/diffeq/growth_logistic.py
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# Compute solution
x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (rho/100.0)*x[n-1]*(1 - x[n-1]/float(M))
print x
plot(index_set, x, ’r’, xlabel=’time units’,

ylabel=’no of individuals’, hardcopy=’tmp.pdf’)

Figure A.1 shows how the population stabilizes, i.e., that xn approaches M as N

becomes large (of the same magnitude as M ).
If the equation stabilizes as n ! 1, it means that xn D xn�1 in this limit. The

equation then reduces to

xn D xn C
%

100
xn

�

1 � xn

M

�

:

By inserting xn D M we see that this solution fulfills the equation. The same
solution technique (i.e., setting xn D xn�1) can be used to check if xn in a difference
equation approaches a limit or not.

Mathematical models like (A.12) are often easier to work with if we scale the
variables. Basically, this means that we divide each variable by a characteristic size
of that variable such that the value of the new variable is typically 1. In the present
case we can scale xn by M and introduce a new variable,

yn D
xn

M
:
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Fig. A.1 Logistic growth of a population (% D 4, M D 500, x0 D 100, N D 200).



654 A Sequences and Difference Equations

Similarly, x0 is replaced by y0 D x0=M . Inserting xn D Myn in (A.12) and
dividing by M gives

yn D yn�1 C qyn�1 .1 � yn�1/ ; (A.13)

where q D %=100 is introduced to save typing. Equation (A.13) is simpler than
(A.12) in that the solution lies approximately between y0 and 1 (values larger than
1 can occur, see Exercise A.19), and there are only two dimensionless input pa-
rameters to care about: q and y0. To solve (A.12) we need knowledge of three
parameters: x0, %, and M .

A.1.6 Payback of a Loan

A loan L is to be paid back over N months. The payback in a month consists of the
fraction L=N plus the interest increase of the loan. Let the annual interest rate for
the loan be p percent. The monthly interest rate is then p

12
. The value of the loan

after month n is xn, and the change from xn�1 can be modeled as

xn D xn�1 C
p

12 � 100
xn�1 �

�

p

12 � 100
xn�1 C

L

N

�

; (A.14)

D xn�1 �
L

N
; (A.15)

for n D 1; : : : ; N . The initial condition is x0 D L. A major difference between
(A.15) and (A.6) is that all terms in the latter are proportional to xn or xn�1, while
(A.15) also contains a constant term (L=N ). We say that (A.6) is homogeneous and
linear, while (A.15) is inhomogeneous (because of the constant term) and linear.
The mathematical solution of inhomogeneous equations are more difficult to find
than the solution of homogeneous equations, but in a program there is no big differ-
ence: we just add the extra term �L=N in the formula for the difference equation.

The solution of (A.15) is not particularly exciting (just use (A.15) repeatedly to
derive the solution xn D L � nL=N ). What is more interesting, is what we pay
each month, yn. We can keep track of both yn and xn in a variant of the previous
model:

yn D
p

12 � 100
xn�1 C

L

N
; (A.16)

xn D xn�1 C
p

12 � 100
xn�1 � yn : (A.17)

Equations (A.16)–(A.17) is a system of difference equations. In a computer code,
we simply update yn first, and then we update xn, inside a loop over n. Exercise A.4
asks you to do this.
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A.1.7 The Integral as a Difference Equation

Suppose a function f .x/ is defined as the integral

f .x/ D
x
Z

a

g.t/dt : (A.18)

Our aim is to evaluate f .x/ at a set of points x0 D a < x1 < � � � < xN . The
value f .xn/ for any 0 � n � N can be obtained by using the Trapezoidal rule for
integration:

f .xn/ D
n�1
X

kD0

1

2
.xkC1 � xk/.g.xk/C g.xkC1//; (A.19)

which is nothing but the sum of the areas of the trapezoids up to the point xn (the
plot to the right in Fig. 5.22 illustrates the idea.) We realize that f .xnC1/ is the sum
above plus the area of the next trapezoid:

f .xnC1/ D f .xn/C 1

2
.xnC1 � xn/.g.xn/C g.xnC1// : (A.20)

This is a much more efficient formula than using (A.19) with n replaced by nC 1,
since we do not need to recompute the areas of the first n trapezoids.

Formula (A.20) gives the idea of computing all the f .xn/ values through a differ-
ence equation. Define fn as f .xn/ and consider x0 D a, and x1; : : : ; xN as given.
We know that f0 D 0. Then

fn D fn�1 C
1

2
.xn � xn�1/.g.xn�1/C g.xn//; (A.21)

for n D 1; 2; : : : ; N . By introducing gn for g.xn/ as an extra variable in the differ-
ence equation, we can avoid recomputing g.xn/ when we compute fnC1:

gn D g.xn/; (A.22)

fn D fn�1 C
1

2
.xn � xn�1/.gn�1 C gn/; (A.23)

with initial conditions f0 D 0 and g0 D g.a/.
A function can take g, a, x, and N as input and return arrays x and f for

x0; : : : ; xN and the corresponding integral values f0; : : : ; fN :

def integral(g, a, x, N=20):
index_set = range(N+1)
x = np.linspace(a, x, N+1)
g_ = np.zeros_like(x)
f = np.zeros_like(x)
g_[0] = g(x[0])
f[0] = 0

for n in index_set[1:]:
g_[n] = g(x[n])
f[n] = f[n-1] + 0.5*(x[n] - x[n-1])*(g_[n-1] + g_[n])

return x, f
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Note that g is used for the integrand function to call so we introduce g_ to be the
array holding sequence of g(x[n]) values.

Our first task, after having implemented a mathematical calculation, is to verify
the result. Here we can make use of the nice fact that the Trapezoidal rule is exact
for linear functions g.t/:

def test_integral():
def g_test(t):

"""Linear integrand."""
return 2*t + 1

def f_test(x, a):
"""Exact integral of g_test."""
return x**2 + x - (a**2 + a)

a = 2
x, f = integral(g_test, a, x=10)
f_exact = f_test(x, a)
assert np.allclose(f_exact, f)

A realistic application is to apply the integral function to some g.t/ where
there is no formula for the analytical integral, e.g.,

g.t/ D 1p
2�

exp
�

�t2
	

:

The code may look like

def demo():
"""Integrate the Gaussian function."""
from numpy import sqrt, pi, exp

def g(t):
return 1./sqrt(2*pi)*exp(-t**2)

x, f = integral(g, a=-3, x=3, N=200)
integrand = g(x)
from scitools.std import plot
plot(x, f, ’r-’,

x, integrand, ’y-’,
legend=(’f’, ’g’),
legend_loc=’upper left’,
savefig=’tmp.pdf’)

Figure A.2 displays the integrand and the integral. All the code is available in the
file integral.py.

http://tinyurl.com/pwyasaa/diffeq/integral.py
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from �3 to x.

A.1.8 Taylor Series as a Difference Equation

Consider the following system of two difference equations

en D en�1 C an�1; (A.24)

an D
x

n
an�1; (A.25)

with initial conditions e0 D 0 and a0 D 1. We can start to nest the solution:

e1 D 0C a0 D 0C 1 D 1;

a1 D x;

e2 D e1 C a1 D 1C x;

a2 D
x

2
a1 D

x2

2
;

e3 D e2 C a2 D 1C x C x2

2
;

e4 D 1C x C x2

2
C x3

3 � 2 ;

e5 D 1C x C x2

2
C x3

3 � 2 C
x4

4 � 3 � 2
The observant reader who has heard about Taylor series (see Sect. B.4) will recog-
nize this as the Taylor series of ex :

ex D
1
X

nD0

xn

nŠ
: (A.26)

How do we derive a system like (A.24)–(A.25) for computing the Taylor poly-
nomial approximation to ex? The starting point is the sum

P1
nD0

xn

nŠ
. This sum is
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coded by adding new terms to an accumulation variable in a loop. The mathematical
counterpart to this code is a difference equation

enC1 D en C
xn

nŠ
; e0 D 0; n D 0; 1; 2; : : : : (A.27)

or equivalently (just replace n by n � 1):

en D en�1 C
xn�1

n � 1Š
; e0 D 0; n D 1; 2; 3; : : : : (A.28)

Now comes the important observation: the term xn=nŠ contains many of the com-
putations we already performed for the previous term xn�1=.n � 1/Š because

xn

nŠ
D x � x � � �x

n.n � 1/.n � 2/ � � � 1;
xn�1

.n � 1/Š
D x � x � � �x

.n � 1/.n � 2/.n � 3/ � � �1 :

Let an D xn=nŠ. We see that we can go from an�1 to an by multiplying an�1 by
x=n:

x

n
an�1 D

x

n

xn�1

.n � 1/Š
D xn

nŠ
D an; (A.29)

which is nothing but (A.25). We also realize that a0 D 1 is the initial condition for
this difference equation. In other words, (A.24) sums the Taylor polynomial, and
(A.25) updates each term in the sum.

The system (A.24)–(A.25) is very easy to implement in a program and consti-
tutes an efficient way to compute (A.26). The function exp_diffeq does the work:

def exp_diffeq(x, N):
n = 1
an_prev = 1.0 # a_0
en_prev = 0.0 # e_0
while n <= N:

en = en_prev + an_prev
an = x/n*an_prev
en_prev = en
an_prev = an
n += 1

return en

Observe that we do not store the sequences in arrays, but make use of the fact
that only the most recent sequence element is needed to calculate a new element.
The above function along with a direct evaluation of the Taylor series for ex and
a comparison with the exact result for various N values can be found in the file
exp_Taylor_series_diffeq.py.

A.1.9 Making a Living from a Fortune

Suppose you want to live on a fortune F . You have invested the money in a safe
way that gives an annual interest of p percent. Every year you plan to consume an

http://tinyurl.com/pwyasaa/diffeq/exp_Taylor_series_diffeq.py
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amount cn, where n counts years. The development of your fortune xn from one
year to the other can then be modeled by

xn D xn�1 C
p

100
xn�1 � cn�1; x0 D F : (A.30)

A simple example is to keep c constant, say q percent of the interest the first year:

xn D xn�1 C
p

100
xn�1 �

pq

104
F; x0 D F : (A.31)

A more realistic model is to assume some inflation of I percent per year. You will
then like to increase cn by the inflation. We can extend the model in two ways. The
simplest and clearest way, in the author’s opinion, is to track the evolution of two
sequences xn and cn:

xn D xn�1 C
p

100
xn�1 � cn�1; x0 D F; c0 D

pq

104
F; (A.32)

cn D cn�1 C
I

100
cn�1 : (A.33)

This is a system of two difference equations with two unknowns. The solution
method is, nevertheless, not much more complicated than the method for a differ-
ence equation in one unknown, since we can first compute xn from (A.32) and then
update the cn value from (A.33). You are encouraged to write the program (see
Exercise A.5).

Another way of making a difference equation for the case with inflation, is to use
an explicit formula for cn�1, i.e., solve (A.32) and end up with a formula like (A.4).
Then we can insert the explicit formula

cn�1 D
�

1C I

100

�n�1
pq

104
F

in (A.30), resulting in only one difference equation to solve.

A.1.10 Newton’s Method

The difference equation

xn D xn�1 �
f .xn�1/

f 0.xn�1/
; x0 given; (A.34)

generates a sequence xn where, if the sequence converges (i.e., if xn � xn�1 ! 0),
xn approaches a root of f .x/. That is, xn ! x, where x solves the equation
f .x/ D 0. Equation (A.34) is the famous Newton’s method for solving nonlinear
algebraic equations f .x/ D 0. When f .x/ is not linear, i.e., f .x/ is not on the form
ax C b with constant a and b, (A.34) becomes a nonlinear difference equation.
This complicates analytical treatment of difference equations, but poses no extra
difficulties for numerical solution.
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We can quickly sketch the derivation of (A.34). Suppose we want to solve the
equation

f .x/ D 0

and that we already have an approximate solution xn�1. If f .x/ were linear, f .x/ D
axC b, it would be very easy to solve f .x/ D 0: x D �b=a. The idea is therefore
to approximate f .x/ in the vicinity of x D xn�1 by a linear function, i.e., a straight
line f .x/ � Qf .x/ D ax C b. This line should have the same slope as f .x/, i.e.,
a D f 0.xn�1/, and both the line and f should have the same value at x D xn�1.
From this condition one can find b D f .xn�1/ � xn�1f

0.xn�1/. The approximate
function (line) is then

Qf .x/ D f .xn�1/C f 0.xn�1/.x � xn�1/ : (A.35)

This expression is just the two first terms of a Taylor series approximation to f .x/

at x D xn�1. It is now easy to solve Qf .x/ D 0 with respect to x, and we get

x D xn�1 �
f .xn�1/

f 0.xn�1/
: (A.36)

Since Qf is only an approximation to f , x in (A.36) is only an approximation to
a root of f .x/ D 0. Hopefully, the approximation is better than xn�1 so we set
xn D x as the next term in a sequence that we hope converges to the correct root.
However, convergence depends highly on the shape of f .x/, and there is no guar-
antee that the method will work.

The previous programs for solving difference equations have typically calculated
a sequence xn up to n D N , where N is given. When using (A.34) to find roots
of nonlinear equations, we do not know a suitable N in advance that leads to an xn

where f .xn/ is sufficiently close to zero. We therefore have to keep on increasing
n until f .xn/ < � for some small �. Of course, the sequence diverges, we will keep
on forever, so there must be some maximum allowable limit on n, which we may
take as N .

It can be convenient to have the solution of (A.34) as a function for easy reuse.
Here is a first rough implementation:

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100):
n = 0
while abs(f(x)) > epsilon and n <= N:

x = x - f(x)/dfdx(x)
n += 1

return x, n, f(x)

This function might well work, but f(x)/dfdx(x) can imply integer division, so
we should ensure that the numerator or denumerator is of float type. There are
also two function evaluations of f(x) in every pass in the loop (one in the loop body
and one in the while condition). We can get away with only one evaluation if we
store the f(x) in a local variable. In the small examples with f .x/ in the present
course, twice as many function evaluations of f as necessary does not matter, but
the same Newton function can in fact be used for much more complicated functions,
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and in those cases twice as much work can be noticeable. As a programmer, you
should therefore learn to optimize the code by removing unnecessary computations.

Another, more serious, problem is the possibility dividing by zero. Almost as
serious, is dividing by a very small number that creates a large value, which might
cause Newton’s method to diverge. Therefore, we should test for small values of
f 0.x/ and write a warning or raise an exception.

Another improvement is to add a boolean argument store to indicate whether
we want the .x; f .x// values during the iterations to be stored in a list or not. These
intermediate values can be handy if we want to print out or plot the convergence
behavior of Newton’s method.

An improved Newton function can now be coded as

def Newton(f, x, dfdx, epsilon=1.0E-7, N=100, store=False):
f_value = f(x)
n = 0
if store: info = [(x, f_value)]
while abs(f_value) > epsilon and n <= N:

dfdx_value = float(dfdx(x))
if abs(dfdx_value) < 1E-14:

raise ValueError("Newton: f’(%g)=%g" % (x, dfdx_value))

x = x - f_value/dfdx_value

n += 1
f_value = f(x)
if store: info.append((x, f_value))

if store:
return x, info

else:
return x, n, f_value

Note that to use the Newton function, we need to calculate the derivative f 0.x/

and implement it as a Python function and provide it as the dfdx argument. Also
note that what we return depends on whether we store .x; f .x// information during
the iterations or not.

It is quite common to test if dfdx(x) is zero in an implementation of New-
ton’s method, but this is not strictly necessary in Python since an exception
ZeroDivisionError is always raised when dividing by zero.

We can apply the Newton function to solve the equation e�0:1x2
sin.�

2
x/ D 0:

from math import sin, cos, exp, pi
import sys
from Newton import Newton

def g(x):
return exp(-0.1*x**2)*sin(pi/2*x)

def dg(x):
return -2*0.1*x*exp(-0.1*x**2)*sin(pi/2*x) + \

pi/2*exp(-0.1*x**2)*cos(pi/2*x)
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x0 = float(sys.argv[1])
x, info = Newton(g, x0, dg, store=True)
print ’root:’, x
for i in range(len(info)):

print ’Iteration %3d: f(%g)=%g’ % \
(i, info[i][0], info[i][1])

The Newton function and this program can be found in the file Newton.py. Run-
ning this program with an initial x value of 1.7 results in the output

root: 1.999999999768449
Iteration 0: f(1.7)=0.340044
Iteration 1: f(1.99215)=0.00828786
Iteration 2: f(1.99998)=2.53347e-05
Iteration 3: f(2)=2.43808e-10

Fortunately you realize that the exponential function can never be zero, so the so-
lutions of the equation must be the zeros of the sine function, i.e., �

2
x D i� for

all integers i D : : : ;�2; 1; 0; 1; 2; : : :. This gives x D 2i as the solutions. We see
from the output that the convergence is fast towards the solution x D 2. The error
is of the order 10�10 even though we stop the iterations when f .x/ � 10�7.

Trying a start value of 3, we would expect the method to find the root x D 2 or
x D 4, but now we get

root: 42.49723316011362
Iteration 0: f(3)=-0.40657
Iteration 1: f(4.66667)=0.0981146
Iteration 2: f(42.4972)=-2.59037e-79

We have definitely solved f .x/ D 0 in the sense that jf .x/j � �, where � is a small
value (here � � 10�79). However, the solution x � 42:5 is not close to the correct
solution (x D 42 and x D 44 are the solutions closest to the computed x). Can you
use your knowledge of how the Newton method works and figure out why we get
such strange behavior?

The demo program Newton_movie.py can be used to investigate the strange
behavior. This program takes five command-line arguments: a formula for f .x/,
a formula for f 0.x/ (or the word numeric, which indicates a numerical approxi-
mation of f 0.x/), a guess at the root, and the minimum and maximum x values in
the plots. We try the following case with the program:

Terminal

Newton_movie.py ’exp(-0.1*x**2)*sin(pi/2*x)’ numeric 3 -3 43

As seen, we start with x D 3 as the initial guess. In the first step of the method,
we compute a new value of the root, now x D 4:66667. As we see in Fig. A.3,
this root is near an extreme point of f .x/ so that the derivative is small, and the
resulting straight line approximation to f .x/ at this root becomes quite flat. The
result is a new guess at the root: x42:5. This root is far away from the last root,

http://tinyurl.com/pwyasaa/diffeq/Newton.py
http://tinyurl.com/pwyasaa/diffeq/Newton_movie.py


A.1 Mathematical Models Based on Difference Equations 663

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25  30  35  40

approximate root = 4.66667; f(4.66667) = 0.0981146

f(x)
approx. root
approx. line

Fig. A.3 Failure of Newton’s method to solve e�0:1x2
sin. �

2
x/ D 0. The plot corresponds to the

second root found (starting with x D 3).

but the second problem is that f .x/ is quickly damped as we move to increasing x

values, and at x D 42:5 f is small enough to fulfill the convergence criterion. Any
guess at the root out in this region would satisfy that criterion.

You can run the Newton_movie.py program with other values of the initial root
and observe that the method usually finds the nearest roots.

A.1.11 The Inverse of a Function

Given a function f .x/, the inverse function of f , say we call it g.x/, has the prop-
erty that if we apply g to the value f .x/, we get x back:

g.f .x// D x :

Similarly, if we apply f to the value g.x/, we get x:

f .g.x// D x : (A.37)

By hand, you substitute g.x/ by (say) y in (A.37) and solve (A.37) with respect to
y to find some x expression for the inverse function. For example, given f .x/ D
x2 � 1, we must solve y2 � 1 D x with respect to y. To ensure a unique solution
for y, the x values have to be limited to an interval where f .x/ is monotone, say
x 2 Œ0; 1� in the present example. Solving for y gives y D

p
1C x, therefore

g.x/ D
p

1C x. It is easy to check that f .g.x// D .
p

1C x/2 � 1 D x.
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Numerically, we can use the “definition” (A.37) of the inverse function g at one
point at a time. Suppose we have a sequence of points x0 < x1 < � � � < xN along
the x axis such that f is monotone in Œx0; xN �: f .x0/ > f .x1/ > � � � > f .xN / or
f .x0/ < f .x1/ < � � � < f .xN /. For each point xi , we have

f .g.xi // D xi :

The value g.xi / is unknown, so let us call it 
 . The equation

f .
/ D xi (A.38)

can be solved be respect 
 . However, (A.38) is in general nonlinear if f is a non-
linear function of x. We must then use, e.g., Newton’s method to solve (A.38).
Newton’s method works for an equation phrased as f .x/ D 0, which in our case
is f .
/ � xi D 0, i.e., we seek the roots of the function F.
/ � f .
/ � xi . Also
the derivative F 0.
/ is needed in Newton’s method. For simplicity we may use an
approximate finite difference:

dF

d

� F.
 C h/ � F.
 � h/

2h
:

As start value 
0, we can use the previously computed g value: gi�1. We introduce
the short notation 
 D Newton.F; 
0/ to indicate the solution of F.
/ D 0 with
initial guess 
0.

The computation of all the g0; : : : ; gN values can now be expressed by

gi D Newton.F; gi�1/; i D 1; : : : ; N; (A.39)

and for the first point we may use x0 as start value (for instance):

g0 D Newton.F; x0/ : (A.40)

Equations (A.39)–(A.40) constitute a difference equation for gi , since given gi�1,
we can compute the next element of the sequence by (A.39). Because (A.39) is
a nonlinear equation in the new value gi , and (A.39) is therefore an example of
a nonlinear difference equation.

The following program computes the inverse function g.x/ of f .x/ at some
discrete points x0; : : : ; xN . Our sample function is f .x/ D x2 � 1:

from Newton import Newton
from scitools.std import *

def f(x):
return x**2 - 1

def F(gamma):
return f(gamma) - xi
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def dFdx(gamma):
return (F(gamma+h) - F(gamma-h))/(2*h)

h = 1E-6
x = linspace(0.01, 3, 21)
g = zeros(len(x))

for i in range(len(x)):
xi = x[i]

# Compute start value (use last g[i-1] if possible)
if i == 0:

gamma0 = x[0]
else:

gamma0 = g[i-1]

gamma, n, F_value = Newton(F, gamma0, dFdx)
g[i] = gamma

plot(x, f(x), ’r-’, x, g, ’b-’,
title=’f1’, legend=(’original’, ’inverse’))

Note that with f .x/ D x2 � 1, f 0.0/ D 0, so Newton’s method divides by zero
and breaks down unless with let x0 > 0, so here we set x0 D 0:01. The f function
can easily be edited to let the program compute the inverse of another function.
The F function can remain the same since it applies a general finite difference to
approximate the derivative of the f(x) function. The complete program is found in
the file inverse_function.py.

A.2 Programming with Sound

Sound on a computer is nothing but a sequence of numbers. As an example, con-
sider the famous A tone at 440 Hz. Physically, this is an oscillation of a tuning fork,
loudspeaker, string or another mechanical medium that makes the surrounding air
also oscillate and transport the sound as a compression wave. This wave may hit our
ears and through complicated physiological processes be transformed to an electri-
cal signal that the brain can recognize as sound. Mathematically, the oscillations
are described by a sine function of time:

s.t/ D A sin .2�f t/ ; (A.41)

where A is the amplitude or strength of the sound and f is the frequency (440 Hz
for the A in our example). In a computer, s.t/ is represented at discrete points of
time. CD quality means 44100 samples per second. Other sample rates are also
possible, so we introduce r as the sample rate. An f Hz tone lasting for m seconds
with sample rate r can then be computed as the sequence

sn D A sin
�

2�f
n

r

�

; n D 0; 1; : : : ; m � r : (A.42)

http://tinyurl.com/pwyasaa/diffeq/inverse_function.py
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With Numerical Python this computation is straightforward and very efficient. In-
troducing some more explanatory variable names than r , A, and m, we can write
a function for generating a note:

import numpy as np

def note(frequency, length, amplitude=1, sample_rate=44100):
time_points = np.linspace(0, length, length*sample_rate)
data = np.sin(2*np.pi*frequency*time_points)
data = amplitude*data
return data

A.2.1 Writing Sound to File

The note function above generates an array of float data representing a note. The
sound card in the computer cannot play these data, because the card assumes that
the information about the oscillations appears as a sequence of two-byte integers.
With an array’s astype method we can easily convert our data to two-byte integers
instead of floats:

data = data.astype(numpy.int16)

That is, the name of the two-byte integer data type in numpy is int16 (two bytes
are 16 bits). The maximum value of a two-byte integer is 215 � 1, so this is also the
maximum amplitude. Assuming that amplitude in the note function is a relative
measure of intensity, such that the value lies between 0 and 1, we must adjust this
amplitude to the scale of two-byte integers:

max_amplitude = 2**15 - 1
data = max_amplitude*data

The data array of int16 numbers can be written to a file and played as an or-
dinary file in CD quality. Such a file is known as a wave file or simply a WAV
file since the extension is .wav. Python has a module wave for creating such files.
Given an array of sound, data, we have in SciTools a module sound with a func-
tion write for writing the data to a WAV file (using functionality from the wave

module):

import scitools.sound
scitools.sound.write(data, ’Atone.wav’)

You can now use your favorite music player to play the Atone.wav file, or you can
play it from within a Python program using

scitools.sound.play(’Atone.wav’)

The write function can take more arguments and write, e.g., a stereo file with two
channels, but we do not dive into these details here.
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A.2.2 Reading Sound from File

Given a sound signal in a WAV file, we can easily read this signal into an array
and mathematically manipulate the data in the array to change the flavor of the
sound, e.g., add echo, treble, or bass. The recipe for reading a WAV file with name
filename is

data = scitools.sound.read(filename)

The data array has elements of type int16. Often we want to compute with this
array, and then we need elements of float type, obtained by the conversion

data = data.astype(float)

The write function automatically transforms the element type back to int16 if we
have not done this explicitly.

One operation that we can easily do is adding an echo. Mathematically this
means that we add a damped delayed sound, where the original sound has weight ˇ

and the delayed part has weight 1�ˇ, such that the overall amplitude is not altered.
Let d be the delay in seconds. With a sampling rate r the number of indices in the
delay becomes dr , which we denote by b. Given an original sound sequence sn, the
sound with echo is the sequence

en D ˇsn C .1 � ˇ/sn�b : (A.43)

We cannot start n at 0 since e0 D s0�b D s�b which is a value outside the sound
data. Therefore we define en D sn for n D 0; 1; : : : ; b, and add the echo thereafter.
A simple loop can do this (again we use descriptive variable names instead of the
mathematical symbols introduced):

def add_echo(data, beta=0.8, delay=0.002, sample_rate=44100):
newdata = data.copy()
shift = int(delay*sample_rate) # b (math symbol)
for i in range(shift, len(data)):

newdata[i] = beta*data[i] + (1-beta)*data[i-shift]
return newdata

The problem with this function is that it runs slowly, especially when we have sound
clips lasting several seconds (recall that for CD quality we need 44100 numbers per
second). It is therefore necessary to vectorize the implementation of the difference
equation for adding echo. The update is then based on adding slices:

newdata[shift:] = beta*data[shift:] + \
(1-beta)*data[:len(data)-shift]

A.2.3 Playing Many Notes

How do we generate a melody mathematically in a computer program? With the
note function we can generate a note with a certain amplitude, frequency, and
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duration. The note is represented as an array. Putting sound arrays for different
notes after each other will make up a melody. If we have several sound arrays
data1, data2, data3, : : :, we can make a new array consisting of the elements in
the first array followed by the elements of the next array followed by the elements
in the next array and so forth:

data = numpy.concatenate((data1, data2, data3, ...))

The frequency of a note4 that is h half tones up from a base frequency f is given
by f 2h=12. With the tone A at 440 Hz, we can define notes and the corresponding
frequencies as

base_freq = 440.0
notes = [’A’, ’A#’, ’B’, ’C’, ’C#’, ’D’, ’D#’, ’E’,

’F’, ’F#’, ’G’, ’G#’]
notes2freq = {notes[i]: base_freq*2**(i/12.0)

for i in range(len(notes))}

With the notes to frequency mapping a melody can be made as a series of notes
with specified duration:

l = .2 # basic duration unit
tones = [(’E’, 3*l), (’D’, l), (’C#’, 2*l), (’B’, 2*l), (’A’, 2*l),

(’B’, 2*l), (’C#’, 2*l), (’D’, 2*l), (’E’, 3*l),
(’F#’, l), (’E’, 2*l), (’D’, 2*l), (’C#’, 4*l)]

samples = []
for tone, duration in tones :

s = note(notes2freq[tone], duration)
samples.append(s)

data = np.concatenate(samples)
data *= 2**15-1
scitools.sound.write(data, "melody.wav")

Playing the resulting file melody.wav reveals that this is the opening of the most-
played tune during international cross country skiing competitions.

All the notes had the same amplitude in this example, but more dynamics can
easily be added by letting the elements in tones be triplets with tone, duration, and
amplitude. The basic code above is found in the file melody.py.

A.2.4 Music of a Sequence

Problem The purpose of this example is to listen to the sound generated by two
mathematical sequences. The first one is given by an explicit formula, constructed
to oscillate around 0 with decreasing amplitude:

xn D e�4n=N sin.8�n=N / : (A.44)

4 http://en.wikipedia.org/wiki/Note

http://en.wikipedia.org/wiki/Note
http://tinyurl.com/pwyasaa/diffeq/melody.py
http://en.wikipedia.org/wiki/Note
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The other sequence is generated by the difference equation (A.13) for logistic
growth, repeated here for convenience:

xn D xn�1 C qxn�1 .1 � xn�1/ ; x D x0 : (A.45)

We let x0 D 0:01 and q D 2. This leads to fast initial growth toward the limit 1,
and then oscillations around this limit (this problem is studied in Exercise A.19).

The absolute value of the sequence elements xn are of size between 0 and 1,
approximately. We want to transform these sequence elements to tones, using the
techniques of Sect. A.2. First we convert xn to a frequency the human ear can hear.
The transformation

yn D 440C 200xn (A.46)

will make a standard A reference tone out of xn D 0, and for the maximum value of
xn around 1 we get a tone of 640 Hz. Elements of the sequence generated by (A.44)
lie between �1 and 1, so the corresponding frequencies lie between 240 Hz and
640 Hz. The task now is to make a program that can generate and play the sounds.

Solution Tones can be generated by the note function from the scitools.sound
module. We collect all tones corresponding to all the yn frequencies in a list tones.
Letting N denote the number of sequence elements, the relevant code segment reads

from scitools.sound import *
freqs = 440 + x*200
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

It is illustrating to plot the sequences too,

plot(range(N+1), freqs, ’ro’)

To generate the sequences (A.44) and (A.45), we make two functions,
oscillations and logistic, respectively. These functions take the number
of sequence elements (N) as input and return the sequence stored in an array.

In another function make_sound we compute the sequence, transform the el-
ements to frequencies, generate tones, write the tones to file, and play the sound
file.

As always, we collect the functions in a module and include a test block where
we can read the choice of sequence and the sequence length from the command
line. The complete module file looks as follows:
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from scitools.sound import *
from scitools.std import *

def oscillations(N):
x = zeros(N+1)
for n in range(N+1):

x[n] = exp(-4*n/float(N))*sin(8*pi*n/float(N))
return x

def logistic(N):
x = zeros(N+1)
x[0] = 0.01
q = 2
for n in range(1, N+1):

x[n] = x[n-1] + q*x[n-1]*(1 - x[n-1])
return x

def make_sound(N, seqtype):
filename = ’tmp.wav’
x = eval(seqtype)(N)
# Convert x values to frequences around 440
freqs = 440 + x*200
plot(range(N+1), freqs, ’ro’)
# Generate tones
tones = []
duration = 30.0/N # 30 sec sound in total
for n in range(N+1):

tones.append(max_amplitude*note(freqs[n], duration, 1))
data = concatenate(tones)
write(data, filename)
data = read(filename)
play(filename)

This code should be quite easy to read at the present stage in the book. However,
there is one statement that deserves a comment:

x = eval(seqtype)(N)

The seqtype argument reflects the type of sequence and is a string that the
user provides on the command line. The values of the string equal the function
names oscillations and logistic. With eval(seqtype) we turn the string
into a function name. For example, if seqtype is ’logistic’, performing an
eval(seqtype)(N) is the same as if we had written logistic(N). This tech-
nique allows the user of the program to choose a function call inside the code.
Without eval we would need to explicitly test on values:

if seqtype == ’logistic’:
x = logistic(N)

elif seqtype == ’oscillations’:
x = oscillations(N)

This is not much extra code to write in the present example, but if we have a large
number of functions generating sequences, we can save a lot of boring if-else code
by using the eval construction.
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The next step, as a reader who have understood the problem and the implemen-
tation above, is to run the program for two cases: the oscillations sequence with
N D 40 and the logistic sequence with N D 100. By altering the q parameter to
lower values, you get other sounds, typically quite boring sounds for non-oscillating
logistic growth (q < 1). You can also experiment with other transformations of the
form (A.46), e.g., increasing the frequency variation from 200 to 400.

A.3 Exercises

Exercise A.1: Determine the limit of a sequence

a) Write a Python function for computing and returning the sequence

an D
7C 1=.nC 1/

3 � 1=.nC 1/2
; n D 0; 2; : : : ; N :

Write out the sequence for N D 100. Find the exact limit as N ! 1 and
compare with aN .

b) Write a Python function for computing and returning the sequence

Dn D
sin.2�n/

2�n
; n D 0; : : : ; N :

Determine the limit of this sequence for large N .
c) Given the sequence

Dn D
f .x C h/ � f .x/

h
; h D 2�n; (A.47)

make a function D(f, x, N) that takes a function f .x/, a value x, and the
number N of terms in the sequence as arguments, and returns the sequence Dn

for n D 0; 1; : : : ; N . Make a call to the D function with f .x/ D sin x, x D 0,
and N D 80. Plot the evolution of the computed Dn values, using small circles
for the data points.

d) Make another call to D where x D � and plot this sequence in a separate figure.
What would be your expected limit?

e) Explain why the computations for x D � go wrong for large N .

Hint Print out the numerator and denominator in Dn.
Filename: sequence_limits.
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Exercise A.2: Compute � via sequences

The following sequences all converge to � :

.an/1nD1; an D 4

n
X

kD1

.�1/kC1

2k � 1
;

.bn/1nD1; bn D
 

6

n
X

kD1

k�2

!1=2

;

.cn/1nD1; cn D
 

90

n
X

kD1

k�4

!1=4

;

.dn/1nD1; dn D
6p
3

n
X

kD0

.�1/k

3k.2k C 1/
;

.en/1nD1; en D 16

n
X

kD0

.�1/k

52kC1.2k C 1/
� 4

n
X

kD0

.�1/k

2392kC1.2k C 1/
:

Make a function for each sequence that returns an array with the elements in the
sequence. Plot all the sequences, and find the one that converges fastest toward the
limit � .
Filename: pi_sequences.

Exercise A.3: Reduce memory usage of difference equations

Consider the program growth_years.py from Sect. A.1.1. Since xn depends on
xn�1 only, we do not need to store all the N C 1 xn values. We actually only need
to store xn and its previous value xn�1. Modify the program to use two variables
and not an array for the entire sequence. Also avoid the index_set list and use an
integer counter for n and a while loop instead. Write the sequence to file such that
it can be visualized later.
Filename: growth_years_efficient.

Exercise A.4: Compute the development of a loan

Solve (A.16)–(A.17) in a Python function.
Filename: loan.

Exercise A.5: Solve a system of difference equations

Solve (A.32)–(A.33) in a Python function and plot the xn sequence.
Filename: fortune_and_inflation1.

Exercise A.6: Modify a model for fortune development

In the model (A.32)–(A.33) the new fortune is the old one, plus the interest, minus
the consumption. During year n, xn is normally also reduced with t percent tax on
the earnings xn�1 � xn�2 in year n � 1.

a) Extend the model with an appropriate tax term, implement the model, and
demonstrate in a plot the effect of tax (t D 27) versus no tax (t D 0).
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b) Suppose you expect to live for N years and can accept that the fortune xn van-
ishes after N years. Choose some appropriate values for p, q, I , and t , and
experiment with the program to find how large the initial c0 can be in this case.

Filename: fortune_and_inflation2.

Exercise A.7: Change index in a difference equation

A mathematically equivalent equation to (A.5) is

xiC1 D xi C
p

100
xi ; (A.48)

since the name of the index can be chosen arbitrarily. Suppose someone has made
the following program for solving (A.48):

from scitools.std import *
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
index_set = range(N+1)
x = zeros(len(index_set))

# Compute solution
x[0] = x0
for i in index_set[1:]:

x[i+1] = x[i] + (p/100.0)*x[i]
print x
plot(index_set, x, ’ro’, xlabel=’years’, ylabel=’amount’)

This program does not work. Make a correct version, but keep the difference equa-
tions in its present form with the indices i+1 and i.
Filename: growth1_index_ip1.

Exercise A.8: Construct time points from dates

A certain quantity p (which may be an interest rate) is piecewise constant and un-
dergoes changes at some specific dates, e.g.,

p changes to

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

4:5 on Jan 4, 2019

4:75 on March 21, 2019

6:0 on April 1, 2019

5:0 on June 30, 2019

4:5 on Nov 1, 2019

2:0 on April 1, 2020

(A.49)

Given a start date d1 and an end date d2, fill an array p with the right p values, where
the array index counts days. Use the datetime module to compute the number of
days between dates.
Filename: dates2days.
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Exercise A.9: Visualize the convergence of Newton’s method

Let x0; x1; : : : ; xN be the sequence of roots generated by Newton’s method applied
to a nonlinear algebraic equation f .x/ D 0 (see Sect. A.1.10). In this exercise,
the purpose is to plot the sequences .xn/N

nD0 and .jf .xn/j/N
nD0 such that we can

understand how Newton’s method converges or diverges.

a) Make a general function

Newton_plot(f, x, dfdx, xmin, xmax, epsilon=1E-7)

for this purpose. The arguments f and dfdx are Python functions represent-
ing the f .x/ function in the equation and its derivative f 0.x/, respectively.
Newton’s method is run until jf .xN /j � �, and the � value is available as
the epsilon argument. The Newton_plot function should make three sepa-
rate plots of f .x/, .xn/N

nD0, and .jf .xn/j/N
nD0 on the screen and also save these

plots to PNG files. The relevant x interval for plotting of f .x/ is given by the
arguments xmin and xmax. Because of the potentially wide scale of values that
jf .xn/j may exhibit, it may be wise to use a logarithmic scale on the y axis.

Hint You can save quite some coding by calling the improved Newton function
from Sect. A.1.10, which is available in the module file Newton.py.

b) Demonstrate the function on the equation x6 sin �x D 0, with � D 10�13. Try
different starting values for Newton’s method: x0 D �2:6;�1:2; 1:5; 1:7; 0:6.
Compare the results with the exact solutions x D : : : ;�2 � 1; 0; 1; 2; : : :.

c) Use the Newton_plot function to explore the impact of the starting point x0

when solving the following nonlinear algebraic equations:

sin x D 0; (A.50)

x D sin x; (A.51)

x5 D sin x; (A.52)

x4 sin x D 0; (A.53)

x4 D 16; (A.54)

x10 D 1; (A.55)

tanh x D 0; (A.56)

tanh x D x10 : (A.57)

Hint Such an experimental investigation is conveniently recorded in an IPython
notebook. See Sect. H.4 for a quick introduction to notebooks.
Filename: Newton2.

Exercise A.10: Implement the secant method

Newton’s method (A.34) for solving f .x/ D 0 requires the derivative of the func-
tion f .x/. Sometimes this is difficult or inconvenient. The derivative can be
approximated using the last two approximations to the root, xn�2 and xn�1:

f 0.xn�1/ �
f .xn�1/� f .xn�2/

xn�1 � xn�2

:

http://tinyurl.com/pwyasaa/diffeq/Newton.py
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Using this approximation in (A.34) leads to the Secant method:

xn D xn�1 �
f .xn�1/.xn�1 � xn�2/

f .xn�1/� f .xn�2/
; x0; x1 given : (A.58)

Here n D 2; 3; : : :. Make a program that applies the Secant method to solve x5 D
sin x.
Filename: Secant.

Exercise A.11: Test different methods for root finding

Make a program for solving f .x/ D 0 by Newton’s method (Sect. A.1.10), the
Bisection method (Sect. 4.11.2), and the Secant method (Exercise A.10). For each
method, the sequence of root approximations should be written out (nicely format-
ted) on the screen. Read f .x/, f 0.x/, a, b, x0, and x1 from the command line.
Newton’s method starts with x0, the Bisection method starts with the interval Œa; b�,
whereas the Secant method starts with x0 and x1.

Run the program for each of the equations listed in Exercise A.9d. You should
first plot the f .x/ functions so you know how to choose x0, x1, a, and b in each
case.
Filename: root_finder_examples.

Exercise A.12: Make difference equations for the Midpoint rule

Use the ideas of Sect. A.1.7 to make a similar system of difference equations and
corresponding implementation for the Midpoint integration rule:

b
Z

a

f .x/dx � h

n�1
X

iD0

f .a � 1

2
hC ih/;

where h D .b� a/=n and n counts the number of function evaluations (i.e., rectan-
gles that approximate the area under the curve).
Filename: diffeq_midpoint.

Exercise A.13: Compute the arc length of a curve

Sometimes one wants to measure the length of a curve y D f .x/ for x 2 Œa; b�. The
arc length from f .a/ to some point f .x/ is denoted by s.x/ and defined through an
integral

s.x/ D
x
Z

a

p

1C Œf 0.�/�2d� : (A.59)

We can compute s.x/ via difference equations as explained in Sect. A.1.7.

a) Make a Python function arclength(f, a, b, n) that returns an array s with
s.x/ values for n uniformly spaced coordinates x in Œa; b�. Here f(x) is the
Python implementation of the function that defines the curve we want to com-
pute the arc length of.

b) How can you verify that the arclength function works correctly? Construct
test case(s) and write corresponding test functions for automating the tests.
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Hint Check the implementation for curves with known arc length, e.g., a semi-
circle and a straight line.

c) Apply the function to

f .x/ D
x
Z

�2

D 1p
2�

e�4t2

dt; x 2 Œ�2; 2� :

Compute s.x/ and plot it together with f .x/.

Filename: arclength.

Exercise A.14: Find difference equations for computing sin x

The purpose of this exercise is to derive and implement difference equations for
computing a Taylor polynomial approximation to sin x:

sin x � S.xIn/ D
n
X

jD0

.�1/j x2jC1

.2j C 1/Š
: (A.60)

To compute S.xIn/ efficiently, write the sum as S.xIn/ D
Pn

jD0 aj , and derive
a relation between two consecutive terms in the series:

aj D �
x2

.2j C 1/2j
aj�1 : (A.61)

Introduce sj D S.xI j � 1/ and aj as the two sequences to compute. We have
s0 D 0 and a0 D x.

a) Formulate the two difference equations for sj and aj .

Hint Section A.1.8 explains how this task and the associated programming can be
solved for the Taylor polynomial approximation of ex .

b) Implement the system of difference equations in a function sin_Taylor(x, n),
which returns snC1 and janC1j. The latter is the first neglected term in the sum
(since snC1 D

Pn
jD0 aj ) and may act as a rough measure of the size of the error

in the Taylor polynomial approximation.
c) Verify the implementation by computing the difference equations for n D 2

by hand (or in a separate program) and comparing with the output from the
sin_Taylor function. Automate this comparison in a test function.

d) Make a table or plot of sn for various x and n values to illustrate that the accuracy
of a Taylor polynomial (around x D 0) improves as n increases and x decreases.

Hint Be aware of the fact that sin_Taylor(x, n) can give extremely inaccurate
approximations to sin x if x is not sufficiently small and n sufficiently large. In
a plot you must therefore define the axis appropriately.
Filename: sin_Taylor_series_diffeq.
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Exercise A.15: Find difference equations for computing cos x

Solve Exercise A.14 for the Taylor polynomial approximation to cos x. (The rele-
vant expression for the Taylor series is easily found in a mathematics textbook or
by searching on the Internet.)
Filename: cos_Taylor_series_diffeq.

Exercise A.16: Make a guitar-like sound

Given start values x0; x1; : : : ; xp , the following difference equation is known to
create guitar-like sound:

xn D
1

2
.xn�p C xn�p�1/; n D p C 1; : : : ; N : (A.62)

With a sampling rate r , the frequency of this sound is given by r=p. Make a program
with a function solve(x, p) which returns the solution array x of (A.62). To
initialize the array x[0:p+1] we look at two methods, which can be implemented
in two alternative functions:

� x0 D 1, x1 D x2 D � � � D xp D 0

� x0; : : : ; xp are uniformly distributed random numbers in Œ�1; 1�

Import max_amplitude, write, and play from the scitools.sound module.
Choose a sampling rate r and set p D r=440 to create a 440 Hz tone (A). Create
an array x1 of zeros with length 3r such that the tone will last for 3 seconds. Ini-
tialize x1 according to method 1 above and solve (A.62). Multiply the x1 array by
max_amplitude. Repeat this process for an array x2 of length 2r , but use method
2 for the initial values and choose p such that the tone is 392 Hz (G). Concatenate
x1 and x2, call write and then play to play the sound. As you will experience,
this sound is amazingly similar to the sound of a guitar string, first playing A for 3
seconds and then playing G for 2 seconds.

The method (A.62) is called the Karplus-Strong algorithm and was discovered in
1979 by a researcher, Kevin Karplus, and his student Alexander Strong, at Stanford
University.
Filename: guitar_sound.

Exercise A.17: Damp the bass in a sound file

Given a sequence x0; : : : ; xN�1, the following filter transforms the sequence to
a new sequence y0; : : : ; yN�1:

yn D

8

ˆ

<

ˆ

:

xn; n D 0

� 1
4
.xn�1 � 2xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.63)

If xn represents sound, yn is the same sound but with the bass damped. Load some
sound file, e.g.,

x = scitools.sound.Nothing_Else_Matters()
# or
x = scitools.sound.Ja_vi_elsker()
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to get a sound sequence. Apply the filter (A.63) and play the resulting sound. Plot
the first 300 values in the xn and yn signals to see graphically what the filter does
with the signal.
Filename: damp_bass.

Exercise A.18: Damp the treble in a sound file

Solve Exercise A.17 to get some experience with coding a filter and trying it out
on a sound. The purpose of this exercise is to explore some other filters that reduce
the treble instead of the bass. Smoothing the sound signal will in general damp the
treble, and smoothing is typically obtained by letting the values in the new filtered
sound sequence be an average of the neighboring values in the original sequence.

The simplest smoothing filter can apply a standard average of three neighboring
values:

yn D

8

ˆ

<

ˆ

:

xn; n D 0
1
3
.xn�1 C xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.64)

Two other filters put less emphasis on the surrounding values:

yn D

8

ˆ

<

ˆ

:

xn; n D 0
1
4
.xn�1 C 2xn C xnC1/; 1 � n � N � 2

xn; n D N � 1

(A.65)

yn D

8

ˆ

<

ˆ

:

xn; n D 0; 1
1
16

.xn�2 C 4xn�1 C 6xn C 4xnC1C xnC2/; 2 � n � N � 3

xn; n D N � 2; N � 1

(A.66)
Apply all these three filters to a sound file and listen to the result. Plot the first 300
values in the xn and yn signals for each of the three filters to see graphically what
the filter does with the signal.
Filename: damp_treble.

Exercise A.19: Demonstrate oscillatory solutions of the logistic equation

a) Write a program to solve the difference equation (A.13):

yn D yn�1 C qyn�1 .1 � yn�1/ ; n D 0; : : : ; N :

Read the input parameters y0, q, and N from the command line. The variables
and the equation are explained in Sect. A.1.5.

b) Equation (A.13) has the solution yn D 1 as n ! 1. Demonstrate, by running
the program, that this is the case when y0 D 0:3, q D 1, and N D 50.

c) For larger q values, yn does not approach a constant limit, but yn oscillates
instead around the limiting value. Such oscillations are sometimes observed in
wildlife populations. Demonstrate oscillatory solutions when q is changed to 2
and 3.
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d) It could happen that yn stabilizes at a constant level for larger N . Demonstrate
that this is not the case by running the program with N D 1000.

Filename: growth_logistic2.

Exercise A.20: Automate computer experiments

It is tedious to run a program like the one from Exercise A.19 repeatedly for a wide
range of input parameters. A better approach is to let the computer do the manual
work. Modify the program from Exercise A.19 such that the computation of yn and
the plot is made in a function. Let the title in the plot contain the parameters y0 and
q (N is easily visible from the x axis). Also let the name of the plot file reflect the
values of y0, q, and N . Then make loops over y0 and q to perform the following
more comprehensive set of experiments:

� y0 D 0:01; 0:3

� q D 0:1; 1; 1:5; 1:8; 2; 2:5; 3

� N D 50

How does the initial condition (the value y0) seem to influence the solution?

Hint If you do no want to get a lot of plots on the screen, which must be killed,
drop the call to show() in Matplotlib or use show=False as argument to plot in
SciTools.
Filename: growth_logistic3.

Exercise A.21: Generate an HTML report

Extend the program made in Exercise A.20 with a report containing all the plots.
The report can be written in HTML and displayed by a web browser. The plots
must then be generated in PNG format. The source of the HTML file will typically
look as follows:

<html>
<body>
<p><img src="tmp_y0_0.01_q_0.1_N_50.png">
<p><img src="tmp_y0_0.01_q_1_N_50.png">
<p><img src="tmp_y0_0.01_q_1.5_N_50.png">
<p><img src="tmp_y0_0.01_q_1.8_N_50.png">
...
<p><img src="tmp_y0_0.01_q_3_N_1000.png">
</html>
</body>

Let the program write out the HTML text to a file. You may let the function making
the plots return the name of the plot file such that this string can be inserted in the
HTML file.
Filename: growth_logistic4.
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Exercise A.22: Use a class to archive and report experiments

The purpose of this exercise is to make the program from Exercise A.21 more flex-
ible by creating a Python class that runs and archives all the experiments (provided
you know how to program with Python classes). Here is a sketch of the class:

class GrowthLogistic(object):
def __init__(self, show_plot_on_screen=False):

self.experiments = []
self.show_plot_on_screen = show_plot_on_screen
self.remove_plot_files()

def run_one(self, y0, q, N):
"""Run one experiment."""
# Compute y[n] in a loop...
plotfile = ’tmp_y0_%g_q_%g_N_%d.png’ % (y0, q, N)
self.experiments.append({’y0’: y0, ’q’: q, ’N’: N,

’mean’: mean(y[20:]),
’y’: y, ’plotfile’: plotfile})

# Make plot...

def run_many(self, y0_list, q_list, N):
"""Run many experiments."""
for q in q_list:

for y0 in y0_list:
self.run_one(y0, q, N)

def remove_plot_files(self):
"""Remove plot files with names tmp_y0*.png."""
import os, glob
for plotfile in glob.glob(’tmp_y0*.png’):

os.remove(plotfile)

def report(self, filename=’tmp.html’):
"""
Generate an HTML report with plots of all
experiments generated so far.
"""
# Open file and write HTML header...
for e in self.experiments:

html.write(’<p><img src="%s">\n’ % e[’plotfile’])
# Write HTML footer and close file...

Each time the run_onemethod is called, data about the current experiment is stored
in the experiments list. Note that experiments contains a list of dictionaries.
When desired, we can call the report method to collect all the plots made so far in
an HTML report. A typical use of the class goes as follows:

N = 50
g = GrowthLogistic()
g.run_many(y0_list=[0.01, 0.3],

q_list=[0.1, 1, 1.5, 1.8] + [2, 2.5, 3], N=N)
g.run_one(y0=0.01, q=3, N=1000)
g.report()
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Make a complete implementation of class GrowthLogistic and test it with the
small program above. The program file should be constructed as a module.
Filename: growth_logistic5.

Exercise A.23: Explore logistic growth interactively

Class GrowthLogistic from Exercise A.22 is very well suited for interactive ex-
ploration. Here is a possible sample session for illustration:

>>> from growth_logistic5 import GrowthLogistic
>>> g = GrowthLogistic(show_plot_on_screen=True)
>>> q = 3
>>> g.run_one(0.01, q, 100)
>>> y = g.experiments[-1][’y’]
>>> max(y)
1.3326056469620293
>>> min(y)
0.0029091569028512065

Extend this session with an investigation of the oscillations in the solution yn. For
this purpose, make a function for computing the local maximum values yn and the
corresponding indices where these local maximum values occur. We can say that
yi is a local maximum value if

yi�1 < yi > yiC1 :

Plot the sequence of local maximum values in a new plot. If I0; I1; I2; : : : constitute
the set of increasing indices corresponding to the local maximum values, we can
define the periods of the oscillations as I1�I0, I2�I1, and so forth. Plot the length
of the periods in a separate plot. Repeat this investigation for q D 2:5.
Filename: GrowthLogistic_interactive.

Exercise A.24: Simulate the price of wheat

The demand for wheat in year t is given by

Dt D apt C b;

where a < 0, b > 0, and pt is the price of wheat. Let the supply of wheat be

St D Apt�1 C B C ln.1C pt�1/;

where A and B are given constants. We assume that the price pt adjusts such that
all the produced wheat is sold. That is, Dt D St .

a) For A D 1; a D �3; b D 5; B D 0, find from numerical computations, a stable
price such that the production of wheat from year to year is constant. That is,
find p such that ap C b D Ap C B C ln.1C p/.

b) Assume that in a very dry year the production of wheat is much less than
planned. Given that price this year, p0, is 4:5 and Dt D St , compute in a pro-
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gram how the prices p1; p2; : : : ; pN develop. This implies solving the difference
equation

apt C b D Apt�1 C B C ln.1C pt�1/ :

From the pt values, compute St and plot the points .pt ; St / for t D 0; 1; 2; : : : ;

N . How do the prices move when N !1?

Filename: wheat.



BIntroduction to Discrete Calculus

This appendix is authored by Aslak Tveito

In this chapter we will discuss how to differentiate and integrate functions on a com-
puter. To do that, we have to care about how to treat mathematical functions on
a computer. Handling mathematical functions on computers is not entirely straight-
forward: a function f .x/ contains an infinite amount of information (function
values at an infinite number of x values on an interval), while the computer can
only store a finite amount of data. Think about the cos x function. There are typ-
ically two ways we can work with this function on a computer. One way is to run
an algorithm to compute its value, like that in Exercise 3.37, or we simply call
math.cos(x) (which runs a similar type of algorithm), to compute an approxima-
tion to cos x for a given x, using a finite number of calculations. The other way is
to store cos x values in a table for a finite number of x values (of course, we need
to run an algorithm to populate the table with cos x numbers). and use the table in
a smart way to compute cos x values. This latter way, known as a discrete repre-
sentation of a function, is in focus in the present chapter. With a discrete function
representation, we can easily integrate and differentiate the function too. Read on
to see how we can do that.

The folder src/discalc1 contains all the program example files referred to in
this chapter.

B.1 Discrete Functions

Physical quantities, such as temperature, density, and velocity, are usually defined as
continuous functions of space and time. However, as mentioned in above, discrete
versions of the functions are more convenient on computers. We will illustrate the
concept of discrete functions through some introductory examples. In fact, we use
discrete functions when plotting curves on a computer: we define a finite set of co-
ordinates x and store the corresponding function values f(x) in an array. A plotting
program will then draw straight lines between the function values. A discrete rep-
resentation of a continuous function is, from a programming point of view, nothing

1 http://tinyurl.com/pwyasaa/discalc
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but storing a finite set of coordinates and function values in an array. Nevertheless,
we will in this chapter be more formal and describe discrete functions by precise
mathematical terms.

B.1.1 The Sine Function

Suppose we want to generate a plot of the sine function for values of x between 0

and � . To this end, we define a set of x-values and an associated set of values of
the sine function. More precisely, we define nC 1 points by

xi D ih for i D 0; 1; : : : ; n; (B.1)

where h D �=n and n � 1 is an integer. The associated function values are defined
as

si D sin.xi/ for i D 0; 1; : : : ; n : (B.2)

Mathematically, we have a sequence of coordinates .xi /
n
iD0 and of function values

.si /
n
iD0. (Here we have used the sequence notation .xi /

n
iD0 D x0; x1; : : : ; xn.) Often

we “merge” the two sequences to one sequence of points: .xi ; si /
n
iD0. Sometimes

we also use a shorter notation, just xi , si , or .xi ; si / if the exact limits are not of im-
portance. The set of coordinates .xi /

n
iD0 constitutes a mesh or a grid. The individual

coordinates xi are known as nodes in the mesh (or grid). The discrete representation
of the sine function on Œ0; �� consists of the mesh and the corresponding sequence
of function values .si /

n
iD0 at the nodes. The parameter n is often referred to as the

mesh resolution.
In a program, we represent the mesh by a coordinate array, say x, and the func-

tion values by another array, say s. To plot the sine function we can simply write

from scitools.std import *

n = int(sys.argv[1])
x = linspace(0, pi, n+1)
s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, savefig=’tmp.pdf’)

Figure B.1 shows the resulting plot for n D 5; 10; 20 and 100. Because the
plotting program draws straight lines between the points in x and s, the curve looks
smoother the more points we use, and since sin.x/ is a smooth function, the plots
in Fig. B.1 do not look sufficiently good. However, we can with our eyes hardly
distinguish the plot with 100 points from the one with 20 points, so 20 points seem
sufficient in this example.

There are no tests on the validity of the input data (n) in the previous program.
A program including these tests reads

from scitools.std import *

n = int(sys.argv[1])
x = linspace(0, pi, n+1)
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Fig. B.1 Plots of sin.x/ with various n

s = sin(x)
plot(x, s, legend=’sin(x), n=%d’ % n, savefig=’tmp.pdf’)

Such tests are important parts of a good programming philosophy. However, for the
programs displayed in this text, we skip such tests in order to make the programs
more compact and readable and to strengthen the focus on the mathematics in the
programs. In the versions of these programs in the files that can be downloaded you
will, hopefully, always find a test on input data.

B.1.2 Interpolation

Suppose we have a discrete representation of the sine function: .xi ; si /
n
iD0. At the

nodes we have the exact sine values si , but what about the points in between these
nodes? Finding function values between the nodes is called interpolation, or we
can say that we interpolate a discrete function.

A graphical interpolation procedure could be to look at one of the plots in
Fig. B.1 to find the function value corresponding to a point x between the nodes.
Since the plot is a straight line from node value to node value, this means that
a function value between two nodes is found from a straight line approximation
to the underlying continuous function. (Strictly speaking, we also assume that the
function to be interpolated is rather smooth. It is easy to see that if the function
is very wild, i.e., the values of the function change very rapidly, this procedure
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may fail even for very large values of n. Section 5.4.2 provides an example.) We
formulate this procedure precisely in terms of mathematics in the next paragraph.

Assume that we know that a given x� lies in the interval from x D xk to xkC1,
where the integer k is given. In the interval xk � x < xkC1, we define the linear
function that passes through .xk; sk/ and .xkC1; skC1/:

Sk.x/ D sk C
skC1 � sk

xkC1 � xk

.x � xk/ : (B.3)

That is, Sk.x/ coincides with sin.x/ at xk and xkC1, and between these nodes,
Sk.x/ is linear. We say that Sk.x/ interpolates the discrete function .xi ; si /

n
iD0 on

the interval Œxk; xkC1�.

B.1.3 Evaluating the Approximation

Given the values .xi ; si /
n
iD0 and the formula (B.3), we want to compute an approxi-

mation of the sine function for any x in the interval from x D 0 to x D � . In order
to do that, we have to compute k for a given value of x. More precisely, for a given
x we have to find k such that xk � x � xkC1. We can do that by defining

k D bx=hc

where the function bzc denotes the largest integer that is smaller than z. In Python,
bzc is computed by int(z). The program below takes x and n as input and com-
putes the approximation of sin.x/. The program prints the approximation S.x/ and
the exact value of sin.x/ so we can look at the development of the error when n is
increased. (The value is not really exact, it is the value of sin.x/ provided by the
computer, math.sin(x), and this value is calculated from an algorithm that only
yields an approximation to sin.x/. Exercise 3.37 provides an example of the type
of algorithm in question.)

from numpy import *
import sys

xp = eval(sys.argv[1])
n = int(sys.argv[2])

def S_k(k):
return s[k] + \

((s[k+1] - s[k])/(x[k+1] - x[k]))*(xp - x[k])
h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
k = int(xp/h)

print ’Approximation of sin(%s): ’ % xp, S_k(k)
print ’Exact value of sin(%s): ’ % xp, sin(xp)
print ’Eror in approximation: ’, sin(xp) - S_k(k)
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To study the approximation, we put x D
p

2 and use the program eval_sine.py

for n D 5; 10 and 20.

Terminal

Terminal> python src-discalc/eval_sine.py ’sqrt(2)’ 5
Approximation of sin(1.41421356237): 0.951056516295
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0367094296976

Terminal

Terminal> python src-discalc/eval_sine.py ’sqrt(2)’ 10
Approximation of sin(1.41421356237): 0.975605666221
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 0.0121602797718

Terminal

Terminal> python src-discalc/eval_sine.py ’sqrt(2)’ 20
Approximation of sin(1.41421356237): 0.987727284363
Exact value of sin(1.41421356237): 0.987765945993
Eror in approximation: 3.86616296923e-05

Note that the error is reduced as the n increases.

B.1.4 Generalization

In general, we can create a discrete version of a continuous function as follows.
Suppose a continuous function f .x/ is defined on an interval ranging from x D a

to x D b, and let n � 1, be a given integer. Define the distance between nodes,

h D b � a

n
;

and the nodes
xi D aC ih for i D 0; 1; : : : ; n : (B.4)

The discrete function values are given by

yi D f .xi / for i D 0; 1; : : : ; n : (B.5)

Now, .xi ; yi /
n
iD0 is the discrete version of the continuous function f .x/. The

program discrete_func.py takes f; a; b and n as input, computes the discrete
version of f , and then applies the discrete version to make a plot of f .

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)

http://tinyurl.com/pwyasaa/discalc/eval_sine.py
http://tinyurl.com/pwyasaa/discalc/discrete_func.py
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y = zeros(len(x))
for i in xrange(len(x)):

y[i] = func(x[i])
return x, y

from scitools.std import *

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])
f = StringFunction(f_formula)

x, y = discrete_func(f, a, b, n)
plot(x, y)

We can equally well make a vectorized version of the discrete_func function:

def discrete_func(f, a, b, n):
x = linspace(a, b, n+1)
y = f(x)
return x, y

However, for the StringFunction tool to work properly in vectorized mode, we
need to follow the recipe in Sect. 5.5.1:

f = StringFunction(f_formula)
f.vectorize(globals())

The corresponding vectorized program is found in the file discrete_func_vec.py.

B.2 Differentiation Becomes Finite Differences

You have heard about derivatives. Probably, the following formulas are well known
to you:

d

dx
sin.x/ D cos.x/;

d

dx
ln.x/ D 1

x
;

d

dx
xm D mxm�1;

But why is differentiation so important? The reason is quite simple: the derivative
is a mathematical expression of change. And change is, of course, essential in mod-
eling various phenomena. If we know the state of a system, and we know the laws
of change, then we can, in principle, compute the future of that system. Appendix C
treats this topic in detail. Appendix A also computes the future of systems, based
on modeling changes, but without using differentiation. In Appendix C you will see

http://tinyurl.com/pwyasaa/discalc/discrete_func_vec.py
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that reducing the step size in the difference equations results in derivatives instead
of pure differences. However, differentiation of continuous functions is somewhat
hard on a computer, so we often end up replacing the derivatives by differences.
This idea is quite general, and every time we use a discrete representation of a func-
tion, differentiation becomes differences, or finite differences as we usually say.

The mathematical definition of differentiation reads

f 0.x/ D lim
"!0

f .x C "/� f .x/

"
:

You have probably seen this definition many times, but have you understood what
it means and do you think the formula has a great practical value? Although the
definition requires that we pass to the limit, we obtain quite good approximations
of the derivative by using a fixed positive value of ". More precisely, for a small
" > 0, we have

f 0.x/ � f .x C "/� f .x/

"
:

The fraction on the right-hand side is a finite difference approximation to the deriva-
tive of f at the point x. Instead of using " it is more common to introduce h D " in
finite differences, i.e., we like to write

f 0.x/ � f .x C h/ � f .x/

h
: (B.6)

B.2.1 Differentiating the Sine Function

In order to get a feeling for how good the approximation (B.6) to the derivative
really is, we explore an example. Consider f .x/ D sin.x/ and the associated
derivative f 0.x/ D cos.x/. If we put x D 1;we have

f 0.1/ D cos.1/ � 0:540;

and by putting h D 1=100 in (B.6) we get

f 0.1/ � f .1C 1=100/� f .1/

1=100
D sin.1:01/� sin.1/

0:01
� 0:536 :

The program forward_diff.py, shown below, computes the derivative of f .x/

using the approximation (B.6), where x and h are input parameters.

def diff(f, x, h):
return (f(x+h) - f(x))/float(h)

from math import *
import sys

x = eval(sys.argv[1])
h = eval(sys.argv[2])

http://tinyurl.com/pwyasaa/discalc/forward_diff.py
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approx_deriv = diff(sin, x, h)
exact = cos(x)
print ’The approximated value is: ’, approx_deriv
print ’The correct value is: ’, exact
print ’The error is: ’, exact - approx_deriv

Running the program for x D 1 and h D 1=1000 gives

Terminal

Terminal> python src-discalc/forward_diff.py 1 0.001
The approximated value is: 0.53988148036
The correct value is: 0.540302305868
The error is: 0.000420825507813

B.2.2 Differences on aMesh

Frequently, we will need finite difference approximations to a discrete function de-
fined on a mesh. Suppose we have a discrete representation of the sine function:
.xi ; si /

n
iD0, as introduced in Sect. B.1.1. We want to use (B.6) to compute approx-

imations to the derivative of the sine function at the nodes in the mesh. Since we
only have function values at the nodes, the h in (B.6) must be the difference between
nodes, i.e., h D xiC1 � xi . At node xi we then have the following approximation
of the derivative:

zi D
siC1 � si

h
; (B.7)

for i D 0; 1; : : : ; n � 1. Note that we have not defined an approximate derivative
at the end point x D xn. We cannot apply (B.7) directly since snC1 is undefined
(outside the mesh). However, the derivative of a function can also be defined as

f 0.x/ D lim
"!0

f .x/ � f .x � "/

"
;

which motivates the following approximation for a given h > 0,

f 0.x/ � f .x/ � f .x � h/

h
: (B.8)

This alternative approximation to the derivative is referred to as a backward dif-

ference formula, whereas the expression (B.6) is known as a forward difference

formula. The names are natural: the forward formula goes forward, i.e., in the di-
rection of increasing x and i to collect information about the change of the function,
while the backward formula goes backwards, i.e., toward smaller x and i value to
fetch function information.

At the end point we can apply the backward formula and thus define

zn D
sn � sn�1

h
: (B.9)

We now have an approximation to the derivative at all the nodes. A plain specialized
program for computing the derivative of the sine function on a mesh and comparing
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this discrete derivative with the exact derivative is displayed below (the name of the
file is diff_sine_plot1.py).

from scitools.std import *

n = int(sys.argv[1])
h = pi/n
x = linspace(0, pi, n+1)
s = sin(x)
z = zeros(len(s))
for i in xrange(len(z)-1):

z[i] = (s[i+1] - s[i])/h
# Special formula for end point_
z[-1] = (s[-1] - s[-2])/h
plot(x, z)

xfine = linspace(0, pi, 1001) # for more accurate plot
exact = cos(xfine)
hold()
plot(xfine, exact)
legend(’Approximate function’, ’Correct function’)
title(’Approximate and discrete functions, n=%d’ % n)

In Fig. B.2 we see the resulting graphs for n D 5; 10; 20 and 100. Again, we
note that the error is reduced as n increases.
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Fig. B.2 Plots for exact and approximate derivatives of sin.x/ with varying values of the resolu-
tion n

http://tinyurl.com/pwyasaa/discalc/diff_sine_plot1.py
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B.2.3 Generalization

The discrete version of a continuous function f .x/ defined on an interval Œa; b� is
given by .xi ; yi /

n
iD0 where

xi D aC ih;

and
yi D f .xi /

for i D 0; 1; : : : ; n. Here, n � 1 is a given integer, and the spacing between the
nodes is given by

h D b � a

n
:

A discrete approximation of the derivative of f is given by .xi ; zi /
n
iD0 where

zi D
yiC1 � yi

h

i D 0; 1; : : : ; n � 1, and

zn D
yn � yn�1

h
:

The collection .xi ; zi /
n
iD0 is the discrete derivative of the discrete version .xi ; fi /

n
iD0

of the continuous function f .x/. The program below, found in the file diff_

func.py, takes f; a; b, and n as input and computes the discrete derivative of f

on the mesh implied by a, b, and h, and then a plot of f and the discrete derivative
is made.

def diff(f, a, b, n):
x = linspace(a, b, n+1)
y = zeros(len(x))
z = zeros(len(x))
h = (b-a)/float(n)
for i in xrange(len(x)):

y[i] = func(x[i])
for i in xrange(len(x)-1):

z[i] = (y[i+1] - y[i])/h
z[n] = (y[n] - y[n-1])/h
return y, z

from scitools.std import *

f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])
f = StringFunction(f_formula)
y, z = diff(f, a, b, n)
plot(x, y, ’r-’, x, z, ’b-’,

legend=(’function’, ’derivative’))

http://tinyurl.com/pwyasaa/discalc/diff_func.py
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B.3 Integration Becomes Summation

Some functions can be integrated analytically. You may remember the following
cases,

Z

xmdx D 1

mC 1
xmC1 for m ¤ �1;

Z

sin.x/dx D � cos.x/;

Z

x

1C x2
dx D 1

2
ln
�

x2 C 1
	

:

These are examples of so-called indefinite integrals. If the function can be inte-
grated analytically, it is straightforward to evaluate an associated definite integral.
Recall, in general, that

Œf .x/�ba D f .b/ � f .a/:

Some particular examples are

1
Z

0

xmdx D
�

1

mC 1
xmC1

�1

0

D 1

mC 1
;

�
Z

0

sin.x/dx D Œ� cos.x/��0 D 2;

1
Z

0

x

1C x2
dx D

�

1

2
ln
�

x2 C 1
	

�1

0

D 1

2
ln 2:

But lots of functions cannot be integrated analytically and therefore definite inte-
grals must be computed using some sort of numerical approximation. Above, we
introduced the discrete version of a function, and we will now use this construction
to compute an approximation of a definite integral.

B.3.1 Dividing into Subintervals

Let us start by considering the problem of computing the integral of sin.x/ from
x D 0 to x D � . This is not the most exciting or challenging mathematical prob-
lem you can think of, but it is good practice to start with a problem you know well
when you want to learn a new method. In Sect. B.1.1 we introduce a discrete func-
tion .xi ; si /

n
iD0 where h D �=n; si D sin.xi / and xi D ih for i D 0; 1; : : : ; n.

Furthermore, in the interval xk � x < xkC1, we defined the linear function

Sk.x/ D sk C
skC1 � sk

xkC1 � xk

.x � xk/:
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We want to compute an approximation of the integral of the function sin.x/ from
x D 0 to x D � . The integral

�
Z

0

sin.x/dx

can be divided into subintegrals defined on the intervals xk � x < xkC1, leading to
the following sum of integrals:

�
Z

0

sin.x/dx D
n�1
X

kD0

xkC1
Z

xk

sin.x/dx :

To get a feeling for this split of the integral, let us spell the sum out in the case of
only four subintervals. Then n D 4; h D �=4,

x0 D 0;

x1 D �=4;

x2 D �=2;

x3 D 3�=4

x4 D �:

The interval from 0 to � is divided into four intervals of equal length, and we can
divide the integral similarly,

�
Z

0

sin.x/dx D
x1
Z

x0

sin.x/dx C
x2
Z

x1

sin.x/dxC

x3
Z

x2

sin.x/dx C
x4
Z

x3

sin.x/dx : (B.10)

So far we have changed nothing – the integral can be split in this way - with no ap-
proximation at all. But we have reduced the problem of approximating the integral

�
Z

0

sin.x/dx

down to approximating integrals on the subintervals, i.e. we need approximations
of all the following integrals

x1
Z

x0

sin.x/dx;

x2
Z

x1

sin.x/dx;

x3
Z

x2

sin.x/dx;

x4
Z

x3

sin.x/dx :

The idea is that the function to be integrated changes less over the subintervals than
over the whole domain Œ0; �� and it might be reasonable to approximate the sine by
a straight line, Sk.x/, over each subinterval. The integration over a subinterval will
then be very easy.
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B.3.2 Integration on Subintervals

The task now is to approximate integrals on the form

xkC1
Z

xk

sin.x/dx:

Since
sin.x/ � Sk.x/

on the interval .xk; xkC1/, we have

xkC1
Z

xk

sin.x/dx �
xkC1
Z

xk

Sk.x/dx:

In Fig. B.3 we have graphed Sk.x/ and sin.x/ on the interval .xk; xkC1/ for
k D 1 in the case of n D 4. We note that the integral of S1.x/ on this interval
equals the area of a trapezoid, and thus we have

x2
Z

x1

S1.x/dx D 1

2
.S1.x2/C S1.x1// .x2 � x1/;
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Fig. B.3 Sk.x/ and sin.x/ on the interval .xk ; xkC1/ for k D 1 and n D 4
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so
x2
Z

x1

S1.x/dx D h

2
.s2 C s1/ ;

and in general we have

xkC1
Z

xk

sin.x/dx � 1

2
.skC1 C sk/ .xkC1 � xk/

D h

2
.skC1 C sk/ :

B.3.3 Adding the Subintervals

By adding the contributions from each subinterval, we get

�
Z

0

sin.x/dx D
n�1
X

kD0

xkC1
Z

xk

sin.x/dx

�
n�1
X

kD0

h

2
.skC1 C sk/ ;

so
�
Z

0

sin.x/dx � h

2

n�1
X

kD0

.skC1 C sk/ : (B.11)

In the case of n D 4, we have

�
Z

0

sin.x/dx � h

2
Œ.s1 C s0/C .s2 C s1/C .s3 C s2/C .s4 C s3/�

D h

2
Œs0 C 2 .s1Cs2Cs3/C s4� :

One can show that (B.11) can be alternatively expressed as

�
Z

0

sin.x/dx � h

2

"

s0 C 2

n�1
X

kD1

sk C sn

#

: (B.12)

This approximation formula is referred to as the Trapezoidal rule of numerical inte-
gration. Using the more general program trapezoidal.py, presented in the next
section, on integrating

R �

0
sin.x/dx with n D 5; 10; 20 and 100 yields the numbers

1.5644, 1.8864, 1.9713, and 1.9998 respectively. These numbers are to be com-
pared to the exact value 2. As usual, the approximation becomes better the more
points (n) we use.
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B.3.4 Generalization

An approximation of the integral

b
Z

a

f .x/dx

can be computed using the discrete version of a continuous function f .x/ defined
on an interval Œa; b�. We recall that the discrete version of f is given by .xi ; yi /

n
iD0

where
xi D aC ih; and yi D f .xi /

for i D 0; 1; : : : ; n. Here, n � 1 is a given integer and h D .b � a/=n. The
Trapezoidal rule can now be written as

b
Z

a

f .x/dx � h

2

"

y0 C 2

n�1
X

kD1

yk C yn

#

:

The program trapezoidal.py implements the Trapezoidal rule for a general
function f .

def trapezoidal(f, a, b, n):
h = (b-a)/float(n)
I = f(a) + f(b)
for k in xrange(1, n, 1):

x = a + k*h
I += 2*f(x)

I *= h/2
return I

from math import *
from scitools.StringFunction import StringFunction
import sys

def test(argv=sys.argv):
f_formula = argv[1]
a = eval(argv[2])
b = eval(argv[3])
n = int(argv[4])
f = StringFunction(f_formula)
I = trapezoidal(f, a, b, n)
print ’Approximation of the integral: ’, I

if __name__ == ’__main__’:
test()

We have made the file as a module such that you can easily import the
trapezoidal function in another program. Let us do that: we make a table

http://tinyurl.com/pwyasaa/discal/trapezoidal.py
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of how the approximation and the associated error of an integral are reduced as n is
increased. For this purpose, we want to integrate

R t2
t1

g.t/dt , where

g.t/ D �ae�at sin.�wt/C �we�at cos.�wt/ :

The exact integral G.t/ D
R

g.t/dt equals

G.t/ D e�at sin.�wt/ :

Here, a and w are real numbers that we set to 1/2 and 1, respectively, in the program.
The integration limits are chosen as t1 D 0 and t2 D 4. The integral then equals
zero. The program and its output appear below.

from trapezoidal import trapezoidal
from math import exp, sin, cos, pi

def g(t):
return -a*exp(-a*t)*sin(pi*w*t) + pi*w*exp(-a*t)*cos(pi*w*t)

def G(t): # integral of g(t)
return exp(-a*t)*sin(pi*w*t)

a = 0.5
w = 1.0
t1 = 0
t2 = 4
exact = G(t2) - G(t1)
for n in 2, 4, 8, 16, 32, 64, 128, 256, 512:

approx = trapezoidal(g, t1, t2, n)
print ’n=%3d approximation=%12.5e error=%12.5e’ % \

(n, approx, exact-approx)

n= 2 approximation= 5.87822e+00 error=-5.87822e+00
n= 4 approximation= 3.32652e-01 error=-3.32652e-01
n= 8 approximation= 6.15345e-02 error=-6.15345e-02
n= 16 approximation= 1.44376e-02 error=-1.44376e-02
n= 32 approximation= 3.55482e-03 error=-3.55482e-03
n= 64 approximation= 8.85362e-04 error=-8.85362e-04
n=128 approximation= 2.21132e-04 error=-2.21132e-04
n=256 approximation= 5.52701e-05 error=-5.52701e-05
n=512 approximation= 1.38167e-05 error=-1.38167e-05

We see that the error is reduced as we increase n. In fact, as n is doubled we realize
that the error is roughly reduced by a factor of 4, at least when n > 8. This is an
important property of the Trapezoidal rule, and checking that a program reproduces
this property is an important check of the validity of the implementation.
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B.4 Taylor Series

The single most important mathematical tool in computational science is the Taylor
series. It is used to derive new methods and also for the analysis of the accuracy of
approximations. We will use the series many times in this text. Right here, we just
introduce it and present a few applications.

B.4.1 Approximating Functions Close to One Point

Suppose you know the value of a function f at some point x0, and you are interested
in the value of f close to x. More precisely, suppose we know f .x0/ and we want
an approximation of f .x0Ch/ where h is a small number. If the function is smooth
and h is really small, our first approximation reads

f .x0 C h/ � f .x0/ : (B.13)

That approximation is, of course, not very accurate. In order to derive a more
accurate approximation, we have to know more about f at x0. Suppose that we
know the value of f .x0/ and f 0.x0/, then we can find a better approximation of
f .x0 C h/ by recalling that

f 0.x0/ �
f .x0 C h/ � f .x0/

h
:

Hence, we have
f .x0 C h/ � f .x0/C hf 0.x0/ : (B.14)

B.4.2 Approximating the Exponential Function

Let us be a bit more specific and consider the case of

f .x/ D ex

around
x0 D 0:

Since f 0.x/ D ex , we have f 0.0/ D 1, and then it follows from (B.14) that

eh � 1C h :

The little program below (found in Taylor1.py) prints eh and 1C h for a range of
h values.

from math import exp
for h in 1, 0.5, 1/20.0, 1/100.0, 1/1000.0:

print ’h=%8.6f exp(h)=%11.5e 1+h=%g’ % (h, exp(h), 1+h)

http://tinyurl.com/pwyasaa/discalc/Taylor1.py
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h=1.000000 exp(h)=2.71828e+00 1+h=2
h=0.500000 exp(h)=1.64872e+00 1+h=1.5
h=0.050000 exp(h)=1.05127e+00 1+h=1.05
h=0.010000 exp(h)=1.01005e+00 1+h=1.01
h=0.001000 exp(h)=1.00100e+00 1+h=1.001

As expected, 1C h is a good approximation to eh the smaller h is.

B.4.3 More Accurate Expansions

The approximations given by (B.13) and (B.14) are referred to as Taylor series. You
can read much more about Taylor series in any Calculus book. More specifically,
(B.13) and (B.14) are known as the zeroth- and first-order Taylor series, respec-
tively. The second-order Taylor series is given by

f .x0 C h/ � f .x0/C hf 0.x0/C
h2

2
f 00.x0/; (B.15)

the third-order series is given by

f .x0 C h/ � f .x0/C hf 0.x0/C
h2

2
f 00.x0/C

h3

6
f 000.x0/; (B.16)

and the fourth-order series reads

f .x0 C h/ � f .x0/C hf 0.x0/C h2

2
f 00.x0/C

h3

6
f 000.x0/C

h4

24
f 0000.x0/: (B.17)

In general, the n-th order Taylor series is given by

f .x0 C h/ �
n
X

kD0

hk

kŠ
f .k/.x0/; (B.18)

where we recall that f .k/ denotes the k�th derivative of f , and

kŠ D 1 � 2 � 3 � 4 � � � .k � 1/ � k

is the factorial. By again considering f .x/ D ex and x0 D 0, we have

f .x0/ D f 0.x0/ D f 00.x0/ D f 000.x0/ D f 0000.x0/ D 1

which gives the following Taylor series:

eh � 1C hC 1

2
h2 C 1

6
h3 C 1

24
h4 :

The program below, called Taylor2.py, prints the error of these approximations
for a given value of h (note that we can easily build up a Taylor series in a list by
adding a new term to the last computed term in the list).

http://tinyurl.com/pwyasaa/discalc/Taylor2.py
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from math import exp
import sys

h = float(sys.argv[1])
Taylor_series = []
Taylor_series.append(1)
Taylor_series.append(Taylor_series[-1] + h)
Taylor_series.append(Taylor_series[-1] + (1/2.0)*h**2)
Taylor_series.append(Taylor_series[-1] + (1/6.0)*h**3)
Taylor_series.append(Taylor_series[-1] + (1/24.0)*h**4)

print ’h =’, h
for order in range(len(Taylor_series)):

print ’order=%d, error=%g’ % \
(order, exp(h) - Taylor_series[order])

By running the program with h D 0:2, we have the following output:

h = 0.2
order=0, error=0.221403
order=1, error=0.0214028
order=2, error=0.00140276
order=3, error=6.94248e-05
order=4, error=2.75816e-06

We see how much the approximation is improved by adding more terms. For h D 3

all these approximations are useless:

h = 3.0
order=0, error=19.0855
order=1, error=16.0855
order=2, error=11.5855
order=3, error=7.08554
order=4, error=3.71054

However, by adding more terms we can get accurate results for any h. The method
from Sect. A.1.8 computes the Taylor series for ex with n terms in general. Running
the associated program exp_Taylor_series_diffeq.py for various values of h

shows how much is gained by adding more terms to the Taylor series. For h D 3,
e3 D 20:086 and we have

nC 1 Taylor series
2 4
4 13
8 19.846

16 20.086

http://tinyurl.com/pwyasaa/diffeq/exp_Taylor_series_diffeq.py
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For h D 50, e50 D 5:1847 � 1021 and we have

nC 1 Taylor series
2 51
4 2:2134 � 104

8 1:7960 � 108

16 3:2964 � 1013

32 1:3928 � 1019

64 5:0196 � 1021

128 5:1847 � 1021

Here, the evolution of the series as more terms are added is quite dramatic (and
impressive!).

B.4.4 Accuracy of the Approximation

Recall that the Taylor series is given by

f .x0 C h/ �
n
X

kD0

hk

kŠ
f .k/.x0/ : (B.19)

This can be rewritten as an equality by introducing an error term,

f .x0 C h/ D
n
X

kD0

hk

kŠ
f .k/.x0/CO.hnC1/ : (B.20)

Let’s look a bit closer at this for f .x/ D ex . In the case of n D 1, we have

eh D 1C hCO.h2/ : (B.21)

This means that there is a constant c that does not depend on h such that
ˇ

ˇeh � .1C h/
ˇ

ˇ � ch2; (B.22)

so the error is reduced quadratically in h. This means that if we compute the fraction

q1
h D

ˇ

ˇeh � .1C h/
ˇ

ˇ

h2
;

we expect it to be bounded as h is reduced. The program Taylor_err1.py prints
q1

h for h D 1=10; 1=20; 1=100 and 1=1000.

from numpy import exp, abs

def q_h(h):
return abs(exp(h) - (1+h))/h**2

print " h q_h"
for h in 0.1, 0.05, 0.01, 0.001:

print "%5.3f %f" %(h, q_h(h))

http://tinyurl.com/pwyasaa/discalc/Taylor_err1.py
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We can run the program and watch the output:

Terminal

Terminal> python src-discalc/Taylor_err1.py
h q_h

0.100 0.517092
0.050 0.508439
0.010 0.501671
0.001 0.500167

We observe that qh � 1=2 and it is definitely bounded independent of h. The
program Taylor_err2.py prints

q0
h D

ˇ

ˇeh � 1
ˇ

ˇ

h
;

q1
h D

ˇ

ˇeh � .1C h/
ˇ

ˇ

h2
;

q2
h D

ˇ

ˇ

ˇ
eh �

�

1C hC h2

2

�
ˇ

ˇ

ˇ

h3
;

q3
h D

ˇ

ˇ

ˇ
eh �

�

1C hC h2

2
C h3

6

�
ˇ

ˇ

ˇ

h4
;

q4
h D

ˇ

ˇ

ˇ
eh �

�

1C hC h2

2
C h3

6
C h4

24

�
ˇ

ˇ

ˇ

h5
;

for h D 1=5; 1=10; 1=20 and 1=100.

from numpy import exp, abs

def q_0(h):
return abs(exp(h) - 1) / h

def q_1(h):
return abs(exp(h) - (1 + h)) / h**2

def q_2(h):
return abs(exp(h) - (1 + h + (1/2.0)*h**2)) / h**3

def q_3(h):
return abs(exp(h) - (1 + h + (1/2.0)*h**2 + \

(1/6.0)*h**3)) / h**4
def q_4(h):

return abs(exp(h) - (1 + h + (1/2.0)*h**2 + (1/6.0)*h**3 + \
(1/24.0)*h**4)) / h**5

hlist = [0.2, 0.1, 0.05, 0.01]
print "%-05s %-09s %-09s %-09s %-09s %-09s" \

%("h", "q_0", "q_1", "q_2", "q_3", "q_4")
for h in hlist:

print "%.02f %04f %04f %04f %04f %04f" \
%(h, q_0(h), q_1(h), q_2(h), q_3(h), q_4(h))

http://tinyurl.com/pwyasaa/discalc/Taylor_err2.py
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By using the program, we get the following table:

h q_0 q_1 q_2 q_3 q_4
0.20 1.107014 0.535069 0.175345 0.043391 0.008619
0.10 1.051709 0.517092 0.170918 0.042514 0.008474
0.05 1.025422 0.508439 0.168771 0.042087 0.008403
0.01 1.005017 0.501671 0.167084 0.041750 0.008344

Again we observe that the error of the approximation behaves as indicated in (B.20).

B.4.5 Derivatives Revisited

We observed above that

f 0.x/ � f .x C h/ � f .x/

h
:

By using the Taylor series, we can obtain this approximation directly, and also get
an indication of the error of the approximation. From (B.20) it follows that

f .x C h/ D f .x/C hf 0.x/CO.h2/;

and thus

f 0.x/ D f .x C h/ � f .x/

h
CO.h/; (B.23)

so the error is proportional to h. We can investigate if this is the case through some
computer experiments. Take f .x/ D ln.x/, so that f 0.x/ D 1=x. The program
diff_ln_err.py prints h and

1

h

ˇ

ˇ

ˇ

ˇ

f 0.x/ � f .x C h/ � f .x/

h

ˇ

ˇ

ˇ

ˇ

(B.24)

at x D 10 for a range of h values.

def error(h):
return (1.0/h)*abs(df(x) - (f(x+h)-f(x))/h)

from math import log as ln

def f(x):
return ln(x)

def df(x):
return 1.0/x

x = 10
hlist = []
for h in 0.2, 0.1, 0.05, 0.01, 0.001:

print "%.4f %4f" % (h, error(h))

http://tinyurl.com/pwyasaa/discalc/diff_ln_err.py
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From the output

0.2000 0.004934
0.1000 0.004967
0.0500 0.004983
0.0100 0.004997
0.0010 0.005000

we observe that the quantity in (B.24) is constant (� 0:5) independent of h, which
indicates that the error is proportional to h.

B.4.6 More Accurate Difference Approximations

We can also use the Taylor series to derive more accurate approximations of the
derivatives. From (B.20), we have

f .x C h/ � f .x/C hf 0.x/C h2

2
f 00.x/CO.h3/ : (B.25)

By using �h instead of h, we get

f .x � h/ � f .x/ � hf 0.x/C h2

2
f 00.x/CO.h3/ : (B.26)

By subtracting (B.26) from (B.25), we have

f .x C h/� f .x � h/ D 2hf 0.x/CO.h3/;

and consequently

f 0.x/ D f .x C h/ � f .x � h/

2h
CO.h2/: (B.27)

Note that the error is now O.h2/ whereas the error term of (B.23) is O.h/. In order
to see if the error is actually reduced, let us compare the following two approxima-
tions

f 0.x/ � f .x C h/ � f .x/

h
and f 0.x/ � f .x C h/ � f .x � h/

2h

by applying them to the discrete version of sin.x/ on the interval .0; �/. As usual,
we let n � 1 be a given integer, and define the mesh

xi D ih for i D 0; 1; : : : ; n;

where h D �=n. At the nodes, we have the functional values

si D sin.xi/ for i D 0; 1; : : : ; n;
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and at the inner nodes we define the first (F) and second (S) order approximations
of the derivatives given by

d F
i D

siC1 � si

h
;

and
d S

i D
siC1 � si�1

2h
;

respectively for i D 1; 2; : : : ; n � 1. These values should be compared to the exact
derivative given by

di D cos.xi / for i D 1; 2; : : : ; n � 1:

The following program, found in diff_1st2nd_order.py, plots the discrete func-
tions .xi ; di /

n�1
iD1; .xi ; d F

i /n�1
iD1; and .xi ; d S

i /n�1
iD1 for a given n. Note that the first three

functions in this program are completely general in that they can be used for any
f .x/ on any mesh. The special case of f .x/ D sin.x/ and comparing first- and
second-order formulas is implemented in the example function. This latter func-
tion is called in the test block of the file. That is, the file is a module and we can
reuse the first three functions in other programs (in particular, we can use the third
function in the next example).

def first_order(f, x, h):
return (f(x+h) - f(x))/h

def second_order(f, x, h):
return (f(x+h) - f(x-h))/(2*h)

def derivative_on_mesh(formula, f, a, b, n):
"""
Differentiate f(x) at all internal points in a mesh
on [a,b] with n+1 equally spaced points.
The differentiation formula is given by formula(f, x, h).
"""
h = (b-a)/float(n)
x = linspace(a, b, n+1)
df = zeros(len(x))
for i in xrange(1, len(x)-1):

df[i] = formula(f, x[i], h)
# Return x and values at internal points only
return x[1:-1], df[1:-1]

def example(n):
a = 0; b = pi;
x, dF = derivative_on_mesh(first_order, sin, a, b, n)
x, dS = derivative_on_mesh(second_order, sin, a, b, n)
# Accurate plot of the exact derivative at internal points
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001)
exact = cos(xfine)
plot(x, dF, ’r-’, x, dS, ’b-’, xfine, exact, ’y-’,

http://tinyurl.com/pwyasaa/discalc/diff_1st2nd_order.py
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Fig. B.4 Plots of exact and approximate derivatives with various number of mesh points n

legend=(’First-order derivative’,
’Second-order derivative’,
’Correct function’),

title=’Approximate and correct discrete ’\
’functions, n=%d’ % n)

# Main program
from scitools.std import *
n = int(sys.argv[1])
example(n)

The result of running the program with four different n values is presented in
Fig. B.4. Observe that d S

i is a better approximation to di than d F
i , and note that

both approximations become very good as n is getting large.

B.4.7 Second-Order Derivatives

We have seen that the Taylor series can be used to derive approximations of the
derivative. But what about higher order derivatives? Next we shall look at second
order derivatives. From (B.20) we have

f .x0 C h/ D f .x0/C hf 0.x0/C
h2

2
f 00.x0/C

h3

6
f 000.x0/CO.h4/;
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and by using �h, we have

f .x0 � h/ D f .x0/� hf 0.x0/C
h2

2
f 00.x0/ �

h3

6
f 000.x0/CO.h4/

By adding these equations, we have

f .x0 C h/C f .x0 � h/ D 2f .x0/C h2f 00.x0/CO.h4/;

and thus

f 00.x0/ D
f .x0 � h/ � 2f .x0/C f .x0 C h/

h2
CO.h2/ : (B.28)

For a discrete function .xi ; yi /
n
iD0, yi D f .xi /, we can define the following ap-

proximation of the second derivative,

di D
yi�1 � 2yi C yiC1

h2
: (B.29)

We can make a function, found in the file diff2nd.py, that evaluates (B.29) on
a mesh. As an example, we apply the function to

f .x/ D sin.ex/;

where the exact second-order derivative is given by

f 00.x/ D ex cos .ex/� .sin .ex// e2x :

from diff_1st2nd_order import derivative_on_mesh
from scitools.std import *

def diff2nd(f, x, h):
return (f(x+h) - 2*f(x) + f(x-h))/(h**2)

def example(n):
a = 0; b = pi

def f(x):
return sin(exp(x))

def exact_d2f(x):
e_x = exp(x)
return e_x*cos(e_x) - sin(e_x)*exp(2*x)

x, d2f = derivative_on_mesh(diff2nd, f, a, b, n)
h = (b-a)/float(n)
xfine = linspace(a+h, b-h, 1001) # fine mesh for comparison

http://tinyurl.com/pwyasaa/discalc/diff2nd.py
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Fig. B.5 Plots of exact and approximate second-order derivatives with various mesh resolution n

exact = exact_d2f(xfine)
plot(x, d2f, ’r-’, xfine, exact, ’b-’,

legend=(’Approximate derivative’,
’Correct function’),

title=’Approximate and correct second order ’\
’derivatives, n=%d’ % n,

savefig=’tmp.pdf’)

try:
n = int(sys.argv[1])

except:
print "usage: %s n" % sys.argv[0]; sys.exit(1)

example(n)

In Fig. B.5 we compare the exact and the approximate derivatives for n D
10; 20; 50, and 100. As usual, the error decreases when n becomes larger, but
note here that the error is very large for small values of n.

B.5 Exercises

Exercise B.1: Interpolate a discrete function

In a Python function, represent the mathematical function

f .x/ D exp .�x2/ cos.2�x/



710 B Introduction to Discrete Calculus

on a mesh consisting of q C 1 equally spaced points on Œ�1; 1�, and return 1) the
interpolated function value at x D �0:45 and 2) the error in the interpolated value.
Call the function and write out the error for q D 2; 4; 8; 16.
Filename: interpolate_exp_cos.

Exercise B.2: Study a function for different parameter values

Develop a program that creates a plot of the function f .x/ D sin. 1
xC"

/ for x in the
unit interval, where " > 0 is a given input parameter. Use nC 1 nodes in the plot.

a) Test the program using n D 10 and " D 1=5.
b) Refine the program such that it plots the function for two values of n; say n and

nC 10.
c) How large do you have to choose n in order for the difference between these

two functions to be less than 0:1?

Hint Each function gives an array. Create a while loop and use the max function
of the arrays to retrieve the maximum value and compare these.

d) Let " D 1=10 and recalculate.
e) Let " D 1=20 and recalculate.
f) Try to find a formula for how large n needs to be for a given value of " such that

increasing n further does not change the plot so much that it is visible on the
screen. Note that there is no exact answer to this question.

Filename: plot_sin_eps.

Exercise B.3: Study a function and its derivative

Consider the function

f .x/ D sin
�

1

x C "

�

for x ranging from 0 to 1, and the derivative

f 0.x/ D
� cos

�

1
xC"

	

.x C "/2
:

Here, " is a given input parameter.

a) Develop a program that creates a plot of the derivative of f D f .x/ based on
a finite difference approximation using n computational nodes. The program
should also graph the exact derivative given by f 0 D f 0.x/ above.

b) Test the program using n D 10 and " D 1=5.
c) How large do you have to choose n in order for the difference between these

two functions to be less than 0:1?

Hint Each function gives an array. Create a while loop and use the max function
of the arrays to retrieve the maximum value and compare these.

d) Let " D 1=10 and recalculate.
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e) Let " D 1=20 and recalculate.
f) Try to determine experimentally how large n needs to be for a given value of

" such that increasing n further does not change the plot so much that you can
view it on the screen. Note, again, that there is no exact solution to this problem.

Filename: sin_deriv.

Exercise B.4: Use the Trapezoidal method

The purpose of this exercise is to test the program trapezoidal.py.

a) Let

a D
1
Z

0

e4xdx D 1

4
e4 � 1

4
:

Compute the integral using the program trapezoidal.py and, for a given n,
let a.n/ denote the result. Try to find, experimentally, how large you have to
choose n in order for

ja � a.n/j � "

where " D 1=100.
b) Recalculate with " D 1=1000.
c) Recalculate with " D 1=10;000.
d) Try to figure out, in general, how large n has to be such that

ja � a.n/j � "

for a given value of ".

Filename: trapezoidal_test_exp.

Exercise B.5: Compute a sequence of integrals

a) Let

bk D
1
Z

0

xkdx D 1

k C 1
;

and let bk.n/ denote the result of using the program trapezoidal.py to com-
pute

R 1

0
xkdx. For k D 4; 6 and 8, try to figure out, by doing numerical

experiments, how large n needs to be in order for bk.n/ to satisfy

ˇ

ˇ

ˇ
bk � bk.n/

ˇ

ˇ

ˇ
� 0:0001:

Note that n will depend on k.

Hint Run the program for each k, look at the output, and calculate
ˇ

ˇ

ˇ
bk � bk.n/

ˇ

ˇ

ˇ

manually.

http://tinyurl.com/pwyasaa/discalc/trapezoidal.py
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b) Try to generalize the result in the previous point to arbitrary k � 2.
c) Generate a plot of xk on the unit interval for k D 2; 4; 6; 8; and 10, and try

to figure out if the results obtained in (a) and (b) are reasonable taking into
account that the program trapezoidal.py was developed using a piecewise
linear approximation of the function.

Filename: trapezoidal_test_power.

Exercise B.6: Use the Trapezoidal method

The purpose of this exercise is to compute an approximation of the integral

I D
1
Z

�1

e�x2

dx

using the Trapezoidal method.

a) Plot the function e�x2
for x ranging from �10 to 10 and use the plot to argue

that
1
Z

�1

e�x2

dx D 2

1
Z

0

e�x2

dx:

b) Let T .n; L/ be the approximation of the integral

2

L
Z

0

e�x2

dx

computed by the Trapezoidal method using n subintervals. Develop a program
that computes the value of T for a given n and L.

c) Extend the program to write out values of T .n; L/ in a table with rows cor-
responding to n D 100; 200; : : : ; 500 and columns corresponding to L D
2; 4; 6; 8; 10.

d) Extend the program to also print a table of the errors in T .n; L/ for the same n

and L values as in (c). The exact value of the integral is
p

� .

Filename: integrate_exp.

Remarks Numerical integration of integrals with finite limits requires a choice of
n, while with infinite limits we also need to truncate the domain, i.e., choose L in
the present example. The accuracy depends on both n and L.

Exercise B.7: Compute trigonometric integrals

The purpose of this exercise is to demonstrate a property of trigonometric functions
that you will meet in later courses. In this exercise, you may compute the integrals
using the program trapezoidal.pywith n D 100.
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a) Consider the integrals

Ip;q D 2

1
Z

0

sin.p�x/ sin.q�x/dx

and fill in values of the integral Ip;q in a table with rows corresponding to q D
0; 1; : : : ; 4 and columns corresponding to p D 0; 1; : : : ; 4.

b) Repeat the calculations for the integrals

Ip;q D 2

1
Z

0

cos.p�x/ cos.q�x/dx:

c) Repeat the calculations for the integrals

Ip;q D 2

1
Z

0

cos.p�x/ sin.q�x/dx:

Filename: ortho_trig_funcs.

Exercise B.8: Plot functions and their derivatives

a) Use the program diff_func.py to plot approximations of the derivative for the
following functions defined on the interval ranging from x D 1=1000 to x D 1:

f .x/ D ln
�

x C 1

100

�

;

g.x/ D cos.e10x/;

h.x/ D xx :

b) Extend the program such that both the discrete approximation and the correct
(analytical) derivative can be plotted. The analytical derivative should be evalu-
ated in the same computational points as the numerical approximation. Test the
program by comparing the discrete and analytical derivative of x3.

c) Use the program to compare the analytical and discrete derivatives of the func-
tions f , g, and h. How large do you have to choose n in each case in order for
the plots to become indistinguishable on your screen. Note that the analytical
derivatives are given by:

f 0.x/ D 1

x C 1
100

;

g0.x/ D �10e10x sin
�

e10x
	

h0.x/ D .ln x/ xx C xxx�1

Filename: diff_functions.

http://tinyurl.com/pwyasaa/discalc/diff_func.py
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Exercise B.9: Use the Trapezoidal method

Develop an efficient program that creates a plot of the function

f .x/ D 1

2
C 1p

�

x
Z

0

e�t2

dt

for x 2 Œ0; 10�. The integral should be approximated using the Trapezoidal method
and use as few function evaluations of e�t2

as possible.
Filename: plot_integral.
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Differential equations have proven to be an immensely successful instrument for
modeling phenomena in science and technology. It is hardly an exaggeration to say
that differential equations are used to define mathematical models in virtually all
parts of the natural sciences. In this chapter, we will take the first steps towards
learning how to deal with differential equations on a computer. This is a core issue
in Computational Science and reaches far beyond what we can cover in this text.
However, the ideas you will see here are reused in lots of advanced applications,
so this chapter will hopefully provide useful introduction to a topic that you will
probably encounter many times later.

We will show you how to build programs for solving differential equations. More
precisely, we will show how a differential equation can be formulated in a discrete
manner suitable for analysis on a computer, and how to implement programs to
compute the discrete solutions. The simplest differential equations can be solved
analytically in the sense that you can write down an explicit formula for the solu-
tions. However, differential equations arising in practical applications are usually
rather complicated and thus have to be solved numerically on a computer. Therefore
we focus on implementing numerical methods to solve the equations. Appendix E
describes more advanced implementation techniques aimed at making an easy-to-
use toolbox for solving differential equations. Exercises in the present appendix
and Appendix E aim at solving a variety of differential equations arising in various
disciplines of science.

As with all the other chapters, the source code can be found in src, in this
case in the subdirectory ode1. The short form ODE (plural: ODEs) is commonly
used as abbreviation for ordinary differential equation, which is the type of differ-
ential equation that we address in this appendix. Actually, differential equations
are divided into two groups: ordinary differential equations and partial differential
equations. Ordinary differential equations contain derivatives with respect to one
variable (usually t in our examples), whereas partial differential equations contain
derivatives with respect to more than one variable, typically with respect to space
and time. A typical ordinary differential equation is

u0.t/ D u.t/;

715
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and a typical partial differential equation is

@u

@t
D @2u

@x2
C @2u

@y2
;

The latter is known as the heat or diffusion equation.

C.1 The simplest case

Consider the problem of solving the following equation

u0.t/ D t3 : (C.1)

The solution can be computed directly by integrating (C.1), which gives

u.t/ D 1

4
t4 C C;

where C is an arbitrary constant. To obtain a unique solution, we need an extra con-
dition to determine C . Specifying u.t1/ for some time point t1 represents a possible
extra condition. It is common to view (C.1) as an equation for the function u.t/ for
t 2 Œ0; T �, and the extra condition is usually that the start value u.0/ is known. This
is called the initial condition. Say

u.0/ D 1 : (C.2)

In general, the solution of the differential equation (C.1) subject to the initial con-
dition (C.2) is

u.t/ D u.0/C
t
Z

0

u0.�/d�;

D 1C
t
Z

0

�3d�

D 1C 1

4
t4 :

If you are confused by the use of t and � , don’t get too upset:

In mathematics you don’t understand things. You just get used to them. John von Neumann,
mathematician, 1903–1957.

Let us go back and check the solution derived above. Does u.t/ D 1C 1
4
t4 really

satisfy the two requirements listed in (C.1) and (C.2)? Obviously, u.0/ D 1; and
u0.t/ D t3; so the solution is correct.

More generally, we consider the equation

u0.t/ D f .t/ (C.3)
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together with the initial condition

u.0/ D u0 : (C.4)

Here we assume that f .t/ is a given function, and that u0 is a given number. Then,
by reasoning as above, we have

u.t/ D u0 C
T
Z

0

f .�/d� : (C.5)

By using the methods introduced in Appendix B, we can find a discrete version of
u by approximating the integral. Generally, an approximation of the integral

T
Z

0

f .�/d�

can be computed using the discrete version of a continuous function f .�/ defined
on an interval Œ0; t � : The discrete version of f is given by .�i ; yi /

n
iD0 where

�i D ih; and yi D f .�i /

for i D 0; 1; : : : ; n. Here n � 1 is a given integer and h D T=n: The Trapezoidal
rule can now be written as

T
Z

0

f .�/d� � h

2

"

y0 C 2

n�1
X

kD1

yk C yn

#

: (C.6)

By using this approximation, we find that an approximate solution of (C.3)–(C.4) is
given by

u.t/ � u0 C
h

2

"

y0 C 2

n�1
X

kD1

yk C yn

#

:

The program integrate_ode.py computes a numerical solution of (C.3)–(C.4),
where the function f , the time t; the initial condition u0, and the number of time-
steps n are inputs to the program.

#!/usr/bin/env python

def integrate(T, n, u0):
h = T/float(n)
t = linspace(0, T, n+1)
I = f(t[0])
for k in iseq(1, n-1, 1):

I += 2*f(t[k])
I += f(t[-1])
I *= (h/2)

http://tinyurl.com/pwyasaa/ode1/integrate_ode.py
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I += u0
return I

from scitools.std import *

f_formula = sys.argv[1]
T = eval(sys.argv[2])
u0 = eval(sys.argv[3])
n = int(sys.argv[4])
f = StringFunction(f_formula, independent_variables=’t’)
print "Numerical solution of u’(t)=%s: %.4f" % \

(f_formula, integrate(T, n, u0))

We apply the program for computing the solution of

u0.t/ D tet2

;

u.0/ D 0;

at time T D 2 using n D 10; 20; 50 and 100:

Terminal

Terminal> python src-ode1/integrate_ode.py ’t*exp(t**2)’ 2 0 10
Numerical solution of u’(t)=t*exp(t**2): 28.4066

Terminal

Terminal> python src-ode1/integrate_ode.py ’t*exp(t**2)’ 2 0 20
Numerical solution of u’(t)=t*exp(t**2): 27.2060

Terminal

Terminal> python src-ode1/integrate_ode.py ’t*exp(t**2)’ 2 0 50
Numerical solution of u’(t)=t*exp(t**2): 26.8644

Terminal

Terminal> python src-ode1/integrate_ode.py ’t*exp(t**2)’ 2 0 100
Numerical solution of u’(t)=t*exp(t**2): 26.8154

The exact solution is given by 1
2
e22� 1

2
� 26:799; so we see that the approximate

solution becomes better as n is increased, as expected.

C.2 Exponential Growth

The example above was really not much of a differential equation, because the
solution was obtained by straightforward integration. Equations of the form

u0.t/ D f .t/ (C.7)
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arise in situations where we can explicitly specify the derivative of the unknown
function u: Usually, the derivative is specified in terms of the solution itself. Con-
sider, for instance, population growth under idealized conditions as modeled in
Sect. A.1.4. We introduce the symbol vi for the number of individuals at time
�i (vi corresponds to xn in Sect. A.1.4). The basic model for the evolution of vi is
(A.9):

vi D .1C r/vi�1; i D 1; 2; : : : ; and v0 known : (C.8)

As mentioned in Sect. A.1.4, r depends on the time difference �� D �i � �i�1: the
larger �� is, the larger r is. It is therefore natural to introduce a growth rate ˛ that
is independent of �� : ˛ D r=�� . The number ˛ is then fixed regardless of how
long jumps in time we take in the difference equation for vi . In fact, ˛ equals the
growth in percent, divided by 100, over a time interval of unit length.

The difference equation now reads

vi D vi�1 C ˛�� vi�1 :

Rearranging this equation we get

vi � vi�1

��
D ˛vi�1 : (C.9)

Assume now that we shrink the time step �� to a small value. The left-hand side of
(C.9) is then an approximation to the time-derivative of a function v.�/ expressing
the number of individuals in the population at time � . In the limit �� ! 0, the
left-hand side becomes the derivative exactly, and the equation reads

v0.�/ D ˛v.�/ : (C.10)

As for the underlying difference equation, we need a start value v.0/ D v0. We have
seen that reducing the time step in a difference equation to zero, we get a differential
equation.

Many like to scale an equation like (C.10) such that all variables are without
physical dimensions and their maximum absolute value is typically of the order
of unity. In the present model, this means that we introduce new dimensionless
variables

u D v

v0

; t D �

˛

and derive an equation for u.t/. Inserting v D v0u and � D ˛t in (C.10) gives the
prototype equation for population growth:

u0.t/ D u.t/ (C.11)

with the initial condition
u.0/ D 1 : (C.12)

When we have computed the dimensionless u.t/, we can find the function v.�/ as

v.�/ D v0u.�=˛/ :

We shall consider practical applications of population growth equations later, but
let’s start by looking at the idealized case (C.11).
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Analytical solution Our differential equation can be written in the form

du

dt
D u;

which can be rewritten as
du

u
D dt;

and then integration on both sides yields

ln.u/ D t C c;

where c is a constant that has to be determined by using the initial condition. Putting
t D 0; we have

ln.u.0// D c;

hence
c D ln.1/ D 0;

and then
ln.u/ D t;

so we have the solution
u.t/ D et : (C.13)

Let us now check that this function really solves (C.7)–(C.11). Obviously, u.0/ D
e0 D 1; so (C.11) is fine. Furthermore

u0.t/ D et D u.t/;

thus (C.7) also holds.

Numerical solution We have seen that we can find a formula for the solution of
the equation of exponential growth. So the problem is solved, and it is trivial to
write a program to graph the solution. We will, however, go one step further and
develop a numerical solution strategy for this problem. We don’t really need such
a method for this problem since the solution is available in terms of a formula, but
as mentioned earlier, it is good practice to develop methods for problems where we
know the solution; then we are more confident when we are confronted with more
challenging problems.

Suppose we want to compute a numerical approximation of the solution of

u0.t/ D u.t/ (C.14)

equipped with the initial condition

u.0/ D 1 : (C.15)

We want to compute approximations from time t D 0 to time t D 1. Let n � 1 be
a given integer, and define

�t D 1=n : (C.16)
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Furthermore, let uk denote an approximation of u.tk/ where

tk D k�t (C.17)

for k D 0; 1; : : : ; n. The key step in developing a numerical method for this differ-
ential equation is to invoke the Taylor series as applied to the exact solution,

u.tkC1/ D u.tk/C�tu0.tk/CO.�t2/; (C.18)

which implies that

u0.tk/ � u.tkC1/� u.tk/

�t
: (C.19)

By using (C.14), we get

u.tkC1/ � u.tk/

�t
� u.tk/ : (C.20)

Recall now that u.tk/ is the exact solution at time tk; and that uk is the approximate
solution at the same point in time. We now want to determine uk for all k � 0:

Obviously, we start by defining

u0 D u.0/ D 1:

Since we want uk � u.tk/; we require that uk satisfy the following equality

ukC1 � uk

�t
D uk (C.21)

motivated by (C.20). It follows that

ukC1 D .1C�t/uk : (C.22)

Since u0 is known, we can compute u1; u2 and so on by using the formula above.
The formula is implemented in the program exp_growth.py. Actually, we do not
need the method and we do not need the program. It follows from (C.22) that

uk D .1C�t/ku0

for k D 0; 1; : : : ; n which can be evaluated on a pocket calculator or even on your
cellular phone. But again, we show examples where everything is as simple as
possible (but not simpler!) in order to prepare your mind for more complex matters
ahead.

#!/usr/bin/env python

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
u = u0
dt = T/float(n)

http://tinyurl.com/pwyasaa/ode1/exp_growth.py
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for k in range(0, n, 1):
u = (1+dt)*u

return u # u(T)

import sys

n = int(sys.argv[1])
# Special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
print ’u(1) =’, compute_u(u0, T, n)

Observe that we do not store the u values: we just overwrite a float object u by
its new value as this saves a lot of storage if n is large.

Running the program for n D 5; 10; 20 and 100, we get the approximations
2.4883, 2.5937, 2.6533, and 2.7048. The exact solution at time t D 1 is given by
u.1/ D e1 � 2:7183, so again the approximations become better as n is increased.

An alternative program, where we plot u.t/ and therefore store all the uk and
tk D k�t values, is shown below.

#!/usr/bin/env python

def compute_u(u0, T, n):
"""Solve u’(t)=u(t), u(0)=u0 for t in [0,T] with n steps."""
t = linspace(0, T, n+1)
t[0] = 0
u = zeros(n+1)
u[0] = u0
dt = T/float(n)
for k in range(0, n, 1):

u[k+1] = (1+dt)*u[k]
t[k+1] = t[k] + dt

return u, t

from scitools.std import *

n = int(sys.argv[1])
# Special test case: u’(t)=u, u(0)=1, t in [0,1]
T = 1; u0 = 1
u, t = compute_u(u0, T, n)
plot(t, u)
tfine = linspace(0, T, 1001) # for accurate plot
v = exp(tfine) # correct solution
hold(’on’)
plot(tfine, v)
legend([’Approximate solution’, ’Correct function’])
title(’Approximate and correct discrete functions, n=%d’ % n)
savefig(’tmp.pdf’)

Using the program for n D 5; 10; 20, and 100, results in the plots in Fig. C.1. The
convergence towards the exponential function is evident from these plots.
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Fig. C.1 Plots of exact and approximate solutions of u0.t/ D u.t/ with varying number of time
steps in Œ0; 1�.

C.3 Logistic Growth

Exponential growth can be modelled by the following equation

u0.t/ D ˛u.t/

where a > 0 is a given constant. If the initial condition is given by

u.0/ D u0

the solution is given by
u.t/ D u0e

˛t :

Since a > 0; the solution becomes very large as t increases. For a short time,
such growth of a population may be realistic, but over a longer time, the growth
of a population is restricted due to limitations of the environment, as discussed in
Sect. A.1.5. Introducing a logistic growth term as in (A.12) we get the differential
equation

u0.t/ D ˛u.t/

�

1 � u.t/

R

�

; (C.23)

where ˛ is the growth-rate, and R is the carrying capacity (which corresponds to
M in Sect. A.1.5). Note that R is typically very large, so if u.0/ is small, we have

u.t/

R
� 0
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for small values of t; and thus we have exponential growth for small t I

u0.t/ � au.t/:

But as t increases, and u grows, the term u.t/=R will become important and limit
the growth.

A numerical scheme for the logistic equation (C.23) is given by

ukC1 � uk

�t
D ˛uk

�

1 � uk

R

�

;

which we can solve with respect to the unknown ukC1:

ukC1 D uk C�t˛uk

�

1 � uk

R

�

:

This is the form of the equation that is suited for implementation.

C.4 A Simple Pendulum

So far we have considered scalar ordinary differential equations, i.e., equations with
one single function u.t/ as unknown. Now we shall deal with systems of ordinary
differential equations, where in general n unknown functions are coupled in a sys-
tem of n equations. Our introductory example will be a system of two equations
having two unknown functions u.t/ and v.t/. The example concerns the motion
of a pendulum, see Fig. C.2. A sphere with mass m is attached to a massless rod
of length L and oscillates back and forth due to gravity. Newton’s second law of
motion applied to this physical system gives rise the differential equation

� 00.t/C ˛ sin.�/ D 0; (C.24)

where � D �.t/ is the angle the rod makes with the vertical, measured in radians,
and ˛ D g=L (g is the acceleration of gravity). The unknown function to solve
for is � , and knowing � , we can quite easily compute the position of the sphere,
its velocity, and its acceleration, as well as the tension force in the rod. Since the
highest derivative in (C.24) is of second order, we refer to (C.24) as a second-order

differential equations. Our previous examples in this chapter involved only first-
order derivatives, and therefore they are known as first-order differential equations.

Equation (C.24) can be solved by the same numerical method as we use in
Sect. D.1.2, because (C.24) is very similar to Equation (D.8), which is the topic
of Appendix D. The only difference is that (D.8) has extra terms, which can be
skipped, while the kS term in (D.8) must be extended to ˛ sin.S/ to make (D.8)
identical to (C.24). This extension is easily performed. However, here we shall
not solve the second-order equation (C.24) as it stands. We shall instead rewrite it
as a system of two first-order equations so that we can use numerical methods for
first-order equations to solve it.

To transform a second-order equation to a system of two first-order equations,
we introduce a new variable for the first-order derivative (the angular velocity of the
sphere): v.t/ D � 0.t/. Using v and � in (C.24) yields

v0.t/C ˛ sin.�/ D 0 :
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Fig. C.2 A pendulum with m D mass, L D length of massless rod and � D �.t/ D angle.

In addition, we have the relation

v D � 0.t/

between v and � . This means that (C.24) is equivalent to the following system of
two coupled first-order differential equations:

� 0.t/ D v.t/; (C.25)

v0.t/ D �˛ sin.�/ : (C.26)

As for scalar differential equations, we need initial conditions, now two conditions
because we have two unknown functions:

�.0/ D �0;

v.0/ D v0;

Here we assume the initial angle �0 and the initial angular velocity v0 to be given.
It is common to group the unknowns and the initial conditions in 2-vectors:

.�.t/; v.t// and .�0; v0/. One may then view (C.25)–(C.26) as a vector equation,
whose first component equation is (C.25), and the second component equation is
(C.26). In Python software, this vector notation makes solution methods for scalar
equations (almost) immediately available for vector equations, i.e., systems of or-
dinary differential equations.

In order to derive a numerical method for the system (C.25)–(C.26), we proceed
as we did above for one equation with one unknown function. Say we want to
compute the solution from t D 0 to t D T where T > 0 is given. Let n � 1 be
a given integer and define the time step

�t D T=n:
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Furthermore, we let .�k; vk/ denote approximations of the exact solution .�.tk/;

v.tk// for k D 0; 1; : : : ; n. A Forward Euler type of method will now read

�kC1 � �k

�t
D vk; (C.27)

vkC1 � vk

�t
D �˛ sin.�k/ : (C.28)

This scheme can be rewritten in a form more suitable for implementation:

�kC1 D �k C�t vk ; (C.29)

vkC1 D vk � ˛�t sin.�k/ : (C.30)

The next program, pendulum.py, implements this method in the function
pendulum. The input parameters to the model, �0, v0;, the final time T , and
the number of time-steps n, must be given on the command line.

#!/usr/bin/env python

def pendulum(T, n, theta0, v0, alpha):
"""Return the motion (theta, v, t) of a pendulum."""
dt = T/float(n)
t = linspace(0, T, n+1)
v = zeros(n+1)
theta = zeros(n+1)
v[0] = v0
theta[0] = theta0
for k in range(n):

theta[k+1] = theta[k] + dt*v[k]
v[k+1] = v[k] - alpha*dt*sin(theta[k+1])

return theta, v, t

from scitools.std import *

n = int(sys.argv[1])
T = eval(sys.argv[2])
v0 = eval(sys.argv[3])
theta0 = eval(sys.argv[4])
alpha = eval(sys.argv[5])

theta, v, t = pendulum(T, n, theta0, v0)
plot(t, v, xlabel=’t’, ylabel=’velocity’)
figure()
plot(t, theta, xlabel=’t’, ylabel=’velocity’)

By running the program with the input data �0 D �=6, v0 D 0, ˛ D 5, T D 10 and
n D 1000, we get the results shown in Fig. C.3. The angle � D �.t/ is displayed in
the left panel and the velocity is given in the right panel.

http://tinyurl.com/pwyasaa/ode1/pendulum.py
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Fig. C.3 Plot of the motion of a pendulum. Left: the angle �.t/. Right: angular velocity � 0.

C.5 AModel for the Spreading of a Disease

Mathematical models are used intensively to analyze the spread of infectious dis-
eases. In the simplest case, we may consider a population, that is supposed to be
constant, consisting of two groups; the susceptibles .S/ who can catch the disease,
and the infectives .I / who have the disease and are able to transmit it. A system of
differential equations modelling the evolution of S and I is given by

S 0 D �rSI; (C.31)

I 0 D rSI � aI : (C.32)

Here r and a are given constants reflecting the characteristics of the epidemic. The
initial conditions are given by

S.0/ D S0;

I.0/ D I0;

where the initial state .S0; I0/ is assumed to be known.
Suppose we want to compute numerical solutions of this system from time t D 0

to t D T: Then, by reasoning as above, we introduce the time step

�t D T=n

and the approximations .Sk; Ik/ of the solution .S.tk/; I.tk//: An explicit Forward
Euler method for the system takes the following form,

SkC1 � Sk

�t
D �rSkIk;

IkC1 � Ik

�t
D rSkIk � aIk;
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which can be rewritten on computational form

SkC1 D Sk ��trSkIk;

IkC1 D Ik C�t .rSkIk � aIk/ :

This scheme is implemented in the program exp_epidemic.pywhere r; a; S0; I0; n

and T are input data given on the command line. The function epidemic computes
the solution .S; I / to the differential equation system. This pair of time-dependent
functions is then plotted in two separate plots.

#!/usr/bin/env python

def epidemic(T, n, S0, I0, r, a):
dt = T/float(n)
t = linspace(0, T, n+1)
S = zeros(n+1)
I = zeros(n+1)
S[0] = S0
I[0] = I0
for k in range(n):

S[k+1] = S[k] - dt*r*S[k]*I[k]
I[k+1] = I[k] + dt*(r*S[k]*I[k] - a*I[k])

return S, I, t

from scitools.std import *

n = int(sys.argv[1])
T = eval(sys.argv[2])
S0 = eval(sys.argv[3])
I0 = eval(sys.argv[4])
r = eval(sys.argv[5])
a = eval(sys.argv[6])

S, I, t = epidemic(T, n, S0, I0, r, a)
plot(t, S, xlabel=’t’, ylabel=’Susceptibles’)
plot(t, I, xlabel=’t’, ylabel=’Infectives’)

We want to apply the program to a specific case where an influenza epidemic hit
a British boarding school with a total of 763 boys. (The data are taken from Murray
[18], and Murray found the data in the British Medical Journal, March 4, 1978.)
The epidemic lasted from 21st January to 4th February in 1978. We let t D 0

denote 21st of January and we define T D 14 days. We put S0 D 762 and I0 D 1

which means that one person was ill at t D 0: In the Fig. C.4 we see the numerical
results using r D 2:18 � 10�3; a D 0:44; n D 1000. Also, we have plotted actual
the measurements, and we note that the simulations fit the real data quite well.

Reader interested in mathematical models for the spreading of infectious dis-
eases may consult the excellent book [18] on Mathematical Biology by J.D. Murray.

http://tinyurl.com/pwyasaa/ode1/exp_epidemic.py
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Fig. C.4 Graphs of susceptibles (left) and infectives (right) for an influenza in a British boarding
school in 1978.

C.6 Exercises

Exercise C.1: Solve a nonhomogeneous linear ODE

Solve the ODE problem

u0 D 2u� 1; u.0/ D 2; t 2 Œ0; 6�

using the Forward Euler method. Choose �t D 0:25. Plot the numerical solution
together with the exact solution u.t/ D 1

2
C 3

2
e2t .

Filename: nonhomogeneous_linear_ODE.

Exercise C.2: Solve a nonlinear ODE

Solve the ODE problem

u0 D uq; u.0/ D 1; t 2 Œ0; T �

using the Forward Euler method. The exact solution reads u.t/ D et for q D 1

and u.t/ D .t.1 � q/C 1/1=.1�q/ for q > 1 and t.1 � q/ C 1 > 0. Read q, �t ,
and T from the command line, solve the ODE, and plot the numerical and exact
solution. Run the program for different cases: q D 2 and q D 3, with �t D 0:01

and �t D 0:1. Set T D 6 if q D 1 and T D 1=.q � 1/� 0:1 otherwise.
Filename: nonlinear_ODE.

Exercise C.3: Solve an ODE for y.x/

We have given the following ODE problem:

dy

dx
D 1

2.y � 1/
; y.0/ D 1C

p
�; x 2 Œ0; 4�; (C.33)

where � > 0 is a small number. Formulate a Forward Euler method for this ODE
problem and compute the solution for varying step size in x: �x D 1, �x D 0:25,
�x D 0:01. Plot the numerical solutions together with the exact solution y.x/ D
1 C
p

x C �, using 1001 x coordinates for accurate resolution of the latter. Set �

to 10�3. Study the numerical solution with �x D 1, and use that insight to explain
why this problem is hard to solve numerically.
Filename: yx_ODE.
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Exercise C.4: Experience instability of an ODE

Consider the ODE problem

u0 D ˛u; u.0/ D u0;

solved by the Forward Euler method. Show by repeatedly applying the scheme that

uk D .1C ˛�t/ku0 :

We now turn to the case ˛ < 0. Show that the numerical solution will oscillate if
�t > �1=˛. Make a program for computing uk, set ˛ D �1, and demonstrate
oscillatory solutions for �t D 1:1; 1:5; 1:9. Recall that the exact solution, u.t/ D
e˛t , never oscillates.

What happens if �t > �2=˛? Try it out in the program and explain why we do
not experience that uk ! 0 as k !1.
Filename: unstable_ODE.

Exercise C.5: Solve an ODE with time-varying growth

Consider the ODE for exponential growth,

u0 D ˛u; u.0/ D 1; t 2 Œ0; T � :

Now we introduce a time-dependent ˛ such that the growth decreases with time:
˛.t/ D a � bt . Solve the problem for a D 1, b D 0:1, and T D 10. Plot the
solution and compare with the corresponding exponential growth using the mean
value of ˛.t/ as growth factor: e.a�bT=2/t .
Filename: time_dep_growth.
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The examples in the ordinary chapters of this book are quite compact and composed
to convey programming constructs in a gentle pedagogical way. In this appendix the
idea is to solve a more comprehensive real-world problem by programming. The
problem solving process gets quite advanced because we bring together elements
from physics, mathematics, and programming, in a way that a scientific program-
mer must master. Each individual element is quite straightforward in the sense that
you have probably met the element already, either in high school physics or mathe-
matics, or in this book. The challenge is to understand the problem, and analyze it
by breaking it into a set of simpler elements. It is not necessary to understand this
problem solving process in detail. As a computer programmer, all you need to un-
derstand is how you translate the given algorithm into a working program and how
to test the program. We anticipate that this task should be doable without a thorough
understanding of the physics and mathematics of the problem.

Sections D.1 and D.2 require basic knowledge of loops, lists, functions, and
command-line parsing via the argparse module, while Sect. D.3 also requires
knowledge about curve plotting.

All Python files associated with this appendix are found in src/boxspring1.

D.1 About the Problem: Motion and Forces in Physics

D.1.1 The Physical Problem

We shall study a simple device for modeling oscillating systems. A box with mass m

and height b is attached to a spring of length L as shown in Fig. D.1. The end of the
spring is attached to a plate, which we can move up and down with a displacement
w.t/, where t denotes time. There are two ways the box can be set in motion: we
can either stretch or compress the string initially by moving the box up or down, or
we can move the plate. If w D 0 the box oscillates freely, otherwise we have what
is called driven oscillations.

Why will such a system oscillate? When the box moves downward, the spring
is stretched, which results in a force that tries to move the box upward. The more

1 http://tinyurl.com/pwyasaa/boxspring
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Fig. D.1 An oscillating sys-
tem with a box attached to
a spring

we stretch the spring, the bigger the force against the movement becomes. The
box eventually stops and starts moving upward with an upward acceleration. At
some point the spring is not stretched anymore and there is no spring force on the
box, but because of inertia, the box continues its motion upward. This causes the
spring to get compressed, causing a force from the spring on the box that acts down-
ward, against the upward movement. The downward force increases in intensity and
manages to stop the upward motion. The process repeats itself and results in an os-
cillatory motion of the box. Since the spring tries to restore the position of the box,
we refer to the spring force as a restoring force.

You have probably experienced that oscillations in such springs tend to die out
with time. There is always a damping force that works against the motion. This
damping force may be due to a not perfectly elastic string, and the force can be
quite small, but we can also explicitly attach the spring to a damping mechanism to
obtain a stronger, controllable damping of the oscillations (as one wants in a car or
a mountain bike). We will assume that there is some damping force present in our
system, and this can well be a damping mechanism although this is not explicitly
included in Fig. D.1.

Oscillating systems of the type depicted in Fig. D.1 have a huge number of ap-
plications throughout science and technology. One simple example is the spring
system in a car or bicycle, which you have probably experienced on a bumpy road
(the bumps lead to a w.t/ function). When your washing machine jumps up and
down, it acts as a highly damped oscillating system (and the w.t/ function is re-
lated to uneven distribution of the mass of the clothes). The pendulum in a wall
clock is another oscillating system, not with a spring, but physically the system can
(for small oscillations) be modeled as a box attached to a spring because gravity
makes a spring-like force on a pendulum (in this case, w.t/ D 0). Other exam-
ples on oscillating systems where this type of equation arise are briefly mentioned
in Exercise E.50. The bottom line is that understanding the dynamics of Fig. D.1
is the starting point for understanding the behavior of a wide range of oscillating
phenomena in nature and technical devices.

Goal of the computations Our aim is to compute the position of the box as a func-
tion of time. If we know the position, we can compute the velocity, the acceleration,
the spring force, and the damping force. The mathematically difficult thing is to
calculate the position – everything else is much easier. More precisely, to compute
the position we must solve a differential equation while the other quantities can be
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computed by differentiation and simple arithmetics. Solving differential equations
is historically considered very difficult, but computers have simplified this task dra-
matically.

We assume that the box moves in the vertical direction only, so we introduce Y.t/

as the vertical position of the center point of the box. We shall derive a mathematical
equation that has Y.t/ as solution. This equation can be solved by an algorithm,
which can be implemented in a program. Our focus is on the implementation, since
this is a book about programming, but for the reader interested in how computers
play together with physics and mathematics in science and technology, we also
outline how the equation and algorithm arise.

The key quantities Let S be the stretch of the spring, where S > 0 means stretch
and S < 0 implies compression. The length of the spring when it is unstretched is
L, so at a given point of time t the actual length is LC S.t/. Given the position of
the plate, w.t/, the length of the spring, LC S.t/, and the height of the box, b, the
position Y.t/ is then, according to Fig. D.1,

Y.t/ D w.t/ � .LC S.t// � b

2
: (D.1)

You can think as follows: we first “go up” to the plate at y D w.t/, then down
LCS.t/ along the spring and then down b=2 to the center of the box. While L, w,
and b must be known as input data, S.t/ is unknown and will be output data from
the program.

D.1.2 The Computational Algorithm

Let us now go straight to the programming task and present the recipe for computing
Y.t/. The algorithm below actually computes S.t/, but at any point of time we can
easily find Y.t/ from (D.1) if we know S.t/. The S.t/ function is computed at
discrete points of time, t D ti D i�t , for i D 0; 1; : : : ; N . We introduce the
notation Si for S.ti /. The Si values can be computed by the following algorithm.

Set the initial stretch S0 from input data and compute S1 by

SiC1 D
1

2m

�

2mSi ��t2 kSi Cm .wiC1 � 2wi Cwi�1/C�t2 mg
	

; (D.2)

with i D 0. Then for i D 1; 2; : : : ; N � 1, compute SiC1 by

SiC1 D .mC 
/�1
�

2mSi �mSi�1 C 
�t Si�1 ��t2 kSiC
m.wiC1 � 2wi Cwi�1/C�t2 mg

	

: (D.3)

The parameter 
 equals 1
2
ˇ�t . The input data to the algorithm are the mass of

the box m, a coefficient k characterizing the spring, a coefficient ˇ characterizing
the amount of damping in the system, the acceleration of gravity g, the movement
of the plate w.t/, the initial stretch of the spring S0, the number of time steps N ,
and the time �t between each computation of S values. The smaller we choose �t ,
the more accurate the computations become.



734 D A Complete Differential Equation Project

Now you have two options, either read the derivation of this algorithm in
Sects. D.1.3 and D.1.4 or jump right to implementation in Sect. D.2.

D.1.3 Derivation of theMathematical Model

To derive the algorithm we need to make a mathematical model of the oscillating
system. This model is based on physical laws. The most important physical law for
a moving body is Newton’s second law of motion:

F D ma; (D.4)

where F is the sum of all forces on the body, m is the mass of the body, and a is the
acceleration of the body. The body here is our box.

Let us first find all the forces on the box. Gravity acts downward with magnitude
mg. We introduce Fg D �mg as the gravity force, with a minus sign because
a negative force acts downward, in negative y direction.

The spring force on the box acts upward if the spring is stretched, i.e., if S > 0

we have a positive spring force Fs . The size of the force is proportional to the
amount of stretching, so we write Fs D kS , where k is commonly known as the
spring constant. (Spring forces are often written in the canonical form F D �kx,
where x is the stretch. The reason that we have no minus sign is that our stretch
S is positive in the downward, negative direction.) We also assume that we have
a damping force that is always directed toward the motion and proportional with
the velocity of the stretch, �dS=dt . Naming the proportionality constant ˇ, we can
write the damping force as Fd D ˇdS=dt . Note that when dS=dt > 0, S increases
in time and the box moves downward, the Fd force then acts upward, against the
motion, and must be positive. This is the way we can check that the damping force
expression has the right sign.

The sum of all forces is now

F D Fg C Fs C Fd ;

D �mg C kS C ˇ
dS

dt
: (D.5)

We now know the left-hand side of (D.4), but S is unknown to us. The acceler-
ation a on the right-hand side of (D.4) is also unknown. However, acceleration is
related to movement and the S quantity, and through this relation we can eliminate
a as a second unknown. From physics, it is known that the acceleration of a body
is the second derivative in time of the position of the body, so in our case,

a D d 2Y

dt2
;

D d 2w

dt2
� d 2S

dt2
; (D.6)

(remember that L and b are constant).
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Equation (D.4) now reads

�mg C kS C ˇ
dS

dt
D m

�

d 2w

dt2
� d 2S

dt2

�

: (D.7)

It is common to collect the unknown terms on the left-hand side and the known
quantities on the right-hand side, and let higher-order derivatives appear before
lower-order derivatives. With such a reordering of terms we get

m
d 2S

dt2
C ˇ

dS

dt
C kS D m

d 2w

dt2
Cmg : (D.8)

This is the equation governing our physical system. If we solve the equation for
S.t/, we have the position of the box according to (D.1), the velocity v as

v.t/ D dY

dt
D dw

dt
� dS

dt
; (D.9)

the acceleration as (D.6), and the various forces can be easily obtained from the
formulas in (D.5).

A key question is if we can solve (D.8). If w D 0, there is in fact a well-known
solution, which can be written

S.t/ D m

k
g C

8

ˆ

ˆ

<

ˆ

ˆ

:

e��t
�

c1e
t
p

ˇ2�1 C c2e
�t
p

�2�1
�

; � > 1;

e��t .c1 C c2t/; � D 1;

e��t
h

c1 cos
�

p

1 � �2t
�

C c2 sin
�

p

1 � �2t
�i

; � < 1 :

(D.10)
Here, � is a short form for ˇ=2, and c1 and c2 are arbitrary constants. That is, the
solution (D.10) is not unique.

To make the solution unique, we must determine c1 and c2. This is done by
specifying the state of the system at some point of time, say t D 0. In the present
type of mathematical problem we must specify S and dS=dt . We allow the spring
to be stretched an amount S0 at t D 0. Moreover, we assume that there is no
ongoing increase or decrease in the stretch at t D 0, which means that dS=dt D 0.
In view of (D.9), this condition implies that the velocity of the box is that of the
plate, and if the latter is at rest, the box is also at rest initially. The conditions at
t D 0 are called initial conditions:

S.0/ D S0;
dS

dt
.0/ D 0 : (D.11)

These two conditions provide two equations for the two unknown constants c1 and
c2. Without the initial conditions two things happen: (i) there are infinitely many
solutions to the problem, and (ii) the computational algorithm in a program cannot
start.

Also when w ¤ 0 one can find solutions S.t/ of (D.8) in terms of mathemat-
ical expressions, but only for some very specific choices of w.t/ functions. With
a program we can compute the solution S.t/ for any “reasonable” w.t/ by a quite
simple method. The method gives only an approximate solution, but the approxi-
mation can usually be made as good as desired. This powerful solution method is
described below.
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D.1.4 Derivation of the Algorithm

To solve (D.8) on a computer, we do two things:

� We calculate the solution at some discrete time points t D ti D i�t , i D
0; 1; 2; : : : ; N .

� We replace the derivatives by finite differences, which are approximate expres-
sions for the derivatives.

The first and second derivatives can be approximated by the following finite differ-
ences

dS

dt
.ti / �

S.tiC1/ � S.ti�1/

2�t
; (D.12)

d 2S

dt2
.ti / �

S.tiC1/ � 2S.ti /C S.ti�1/

�t2
: (D.13)

Derivations of such formulas can be found in Appendices B and C. It is common to
save some writing by introducing Si as a short form for S.ti /. The formulas then
read

dS

dt
.ti / �

SiC1 � Si�1

2�t
; (D.14)

d 2S

dt2
.ti / �

SiC1 � 2Si C Si�1

�t2
: (D.15)

Let (D.8) be valid at a point of time ti :

m
d 2S

dt2
.ti /C ˇ

dS

dt
.ti /C kS.ti / D m

d 2w

dt2
.ti /Cmg : (D.16)

We now insert (D.14) and (D.15) in (D.16) (observe that we can approximate
d 2w=dt2 in the same way as we approximate d 2S=dt2):

m
SiC1 � 2Si C Si�1

�t2
C ˇ

SiC1 � Si�1

2�t
C kSi D m

wiC1 � 2wi C wi�1

�t2
Cmg :

(D.17)
The computational algorithm starts with knowing S0, then S1 is computed, then
S2, and so on. Therefore, in (D.17) we can assume that Si and Si�1 are already
computed, and that SiC1 is the new unknown to calculate. Let us as usual put the
unknown terms on the left-hand side (and multiply by �t2):

mSiC1 C 
SiC1 D 2mSi �mSi�1 C 
Si�1 ��t2 kSiC
m .wiC1 � 2wi Cwi�1/C�t2 mg; (D.18)

where we have introduced the short form 
 D 1
2
ˇ�t to save space. Equation (D.18)

can easily be solved for SiC1:

SiC1 D .mC 
/�1
�

2mSi �mSi�1 C 
Si�1 ��t2 kSiC
m.wiC1 � 2wi C wi�1/C�t2 mg

	

; (D.19)
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One fundamental problem arises when we try to start the computations. We
know S0 and want to apply (D.19) for i D 0 to calculate S1. However, (D.19)
involves Si�1, that is, S�1, which is an unknown value at a point of time before we
compute the motion. The initial conditions come to rescue here. Since dS=dt D 0

at t D 0 (or i D 0), we can approximate this condition as

S1 � S�1

2�t
D 0 ) S�1 D S1 : (D.20)

Inserting this relation in (D.19) when i D 0 gives a special formula for S1 (or SiC1

with i D 0, if we want):

SiC1 D
1

2m

�

2mSi ��t2 kSi Cm .wiC1 � 2wi Cwi�1/C�t2 mg
	

: (D.21)

Remember that i D 0 in this formula. The overall algorithm is summarized below.

1. Initialize S0 from initial condition
2. Use (D.21) to compute SiC1 for i D 0

3. For i D 0; 1; 2; : : : ; N � 1, use (D.19) to compute SiC1

D.2 Program Development and Testing

D.2.1 Implementation

The aim now is to implement the algorithm from Sect. D.1.2 in a Python program.
There are naturally two parts of the program, one where we read input data such
as L, m, and w.t/, and one part where we run the computational algorithm. Let us
write a function for each part.

The set of input data to the program consists of the mathematical symbols

� m (the mass of the box)
� b (the height of the box)
� L (the length of the unstretched spring)
� ˇ (coefficient for the damping force)
� k (coefficient for the spring force)
� �t (the time step between each Si calculation)
� N (the number of computed time steps)
� S0 (the initial stretch of the spring)
� w.t/ (the vertical displacement of the plate)
� g (acceleration of gravity)

We make a function init_prms for initializing these input parameters from option-
value pairs on the command line. That is, the user provides pairs like –m 2 and –dt

0.1 (for �t). The argparse module from Sect. 4.4 can be used for this purpose.
We supply default values for all parameters as arguments to the init_prms func-
tion. The function returns all these parameters with the changes that the user has
specified on the command line. The w parameter is given as a string expression
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(called w_formula below), and the StringFunction tool from Sect. 4.3.3 can be
used to turn the formula into a working Python function. An algorithmic sketch
of the tasks in the init_prms function can be expressed by some pseudo Python
code:

def init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N):
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--m’, ’--mass’,

type=float, default=m)
parser.add_argument(’--b’, ’--boxheight’,

type=float, default=b)
...
args = parser.parse_args()

from scitools.StringFunction import StringFunction
w = StringFunction(args.w, independent_variables=’t’)
return args.m, args.b, args.L, args.k, args.beta, \

args.S0, args.dt, args.g, w, args.N

With such a sketch as a start, we can complete the indicated code and arrive at
a working function for specifying input parameters to the mathematical model:

def init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N):
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--m’, ’--mass’,

type=float, default=m)
parser.add_argument(’--b’, ’--boxheight’,

type=float, default=b)
parser.add_argument(’--L’, ’--spring-length’,

type=float, default=L)
parser.add_argument(’--k’, ’--spring-stiffness’,

type=float, default=k)
parser.add_argument(’--beta’, ’--spring-damping’,

type=float, default=beta)
parser.add_argument(’--S0’, ’--initial-position’,

type=float, default=S0)
parser.add_argument(’--dt’,’--timestep’,

type=float, default=dt)
parser.add_argument(’--g’, ’--gravity’,

type=float, default=g)
parser.add_argument(’--w’, type=str, default=w_formula)
parser.add_argument(’--N’, type=int, default=N)
args = parser.parse_args()

from scitools.StringFunction import StringFunction
w = StringFunction(args.w, independent_variables=’t’)
return args.m, args.b, args.L, args.k, args.beta, \

args.S0, args.dt, args.g, w, args.N

You may wonder why we specify g (gravity) since this is a known constant, but
it is useful to turn off the gravity force to test the program. Just imagine the oscil-
lations take place in the horizontal direction – the mathematical model is the same,
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but Fg D 0, which we can obtain in our program by setting the input parameter g
to zero.

The computational algorithm is quite easy to implement, as there is a quite direct
translation of the mathematical algorithm in Sect. D.1.2 to valid Python code. The
Si values can be stored in a list or array with indices going from 0 to N . We use
lists and instead of arrays here to allow readers not familiar with the latter concept
to follow the code.

The function for computing Si reads

def solve(m, k, beta, S0, dt, g, w, N):
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0
# Special formula for first time step
i = 0
S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +

m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)
t = dt

for i in range(1,N):
S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +

gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
return S

The primary challenge in coding the algorithm is to set the index i and the time
t right. Recall that in the updating formula for S[i+1] at time t+dt, the time on
the right-hand side shall be the time at time step i, so the t+=dt update must come
after S[i+1] is computed. The same is important in the special formula for the first
time step as well.

A main program will typically first set some default values of the 10 input pa-
rameters, then call init_prms to let the user adjust the default values, and then call
solve to compute the Si values:

# Default values
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N)

So, what shall we do with the solution S? We can write out the values of this list,
but the numbers do not give an immediate feeling for how the box moves. It will be
better to graphically illustrate the S.t/ function, or even better, the Y.t/ function.
This is straightforward and treated in Sect. D.3. In Sect. 9.4, we develop a drawing
tool for drawing figures like Fig. D.1. By drawing the box, string, and plate at
every time level we compute Si , we can use this tool to make a moving figure that
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illustrates the dynamics of the oscillations. Already now you can play around with
a program doing that (boxspring_figure_anim.py).

D.2.2 Callback Functionality

It would be nice to make some graphics of the system while the computations take
place, not only after the S list is ready. The user must then put some relevant state-
ments in between the statements in the algorithm. However, such modifications
will depend on what type of analysis the user wants to do. It is a bad idea to mix
user-specific statements with general statements in a general algorithm. We there-
fore let the user provide a function that the algorithm can call after each Si value is
computed. This is commonly called a callback function (because a general function
calls back to the user’s program to do a user-specific task). To this callback func-
tion we send three key quantities: the S list, the point of time (t), and the time step
number (i C 1), so that the user’s code gets access to these important data.

If we just want to print the solution to the screen, the callback function can be as
simple as

def print_S(S, t, step):
print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

In the solve function we take the callback function as a keyword argument
user_action. The default value can be an empty function, which we can de-
fine separately:

def empty_func(S, time, time_step_no):
return None

def solve(m, k, beta, S0, dt, g, w, N,
user_action=empty_func):

...

However, it is quicker to just use a lambda function (see Sect. 3.1.14):

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

The new solve function has a call to user_action each time a new S value has
been computed:

def solve(m, k, beta, S0, dt, g, w, N,
user_action=lambda S, time, time_step_no: None):

"""Calculate N steps forward. Return list S."""
S = [0.0]*(N+1) # output list
gamma = beta*dt/2.0 # short form
t = 0
S[0] = S0
user_action(S, t, 0)
# Special formula for first time step
i = 0

http://tinyurl.com/pwyasaa/boxspring/boxspring_figure_anim.py
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S[i+1] = (1/(2.0*m))*(2*m*S[i] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt)) + dt**2*m*g)

t = dt
user_action(S, t, i+1)

# Time loop
for i in range(1,N):

S[i+1] = (1/(m + gamma))*(2*m*S[i] - m*S[i-1] +
gamma*dt*S[i-1] - dt**2*k*S[i] +
m*(w(t+dt) - 2*w(t) + w(t-dt))
+ dt**2*m*g)

t += dt
user_action(S, t, i+1)

return S

def test_constant():
"""Test constant solution."""
from math import pi
m = 10.0; k = 5.0; g = 9.81;
S0 = m/k*g
m, b, L, k, beta, S0, dt, g, w, N = \

init_prms(m=10, b=0, L=5, k=5, beta=0, S0=S0,
dt=2*pi/40, g=g, w_formula=’0’, N=40)

S = solve(m, k, beta, S0, dt, g, w, N)
S_ref = S0 # S[i] = S0 is the reference value
tol = 1E-13
for S_ in S:

assert abs(S_ref - S_) < tol

def test_general_solve():
def print_S(S, t, step):

print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

# Default values
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 80;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

S = solve(m, k, beta, S0, dt, g, w, N,
user_action=print_S)

S_reference = [
1, 1.1086890184669964, 1.432074279830456, 1.9621765725933782,
2.685916146951562, 3.5854354446841863]

for S_new, S_ref in zip(S, S_reference):
assert abs(S_ref - S_new) < 1E-14

def demo():
def print_S(S, t, step):

"""Callback function: user_action."""
print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

from math import pi
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m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m=1, b=2, L=10, k=1, beta=0, S0=0,

dt=2*pi/40, g=9.81, w_formula=’0’, N=80)

S = solve(m, k, beta, S0, dt, g, w, N,
user_action=print_S)

import matplotlib.pyplot as plt
plt.plot(S)
plt.show()

if __name__ == ’__main__’:
#demo()
test_constant()

The two last arguments to user_action must be carefully set: these should be
time value and index for the most recently computed S value.

D.2.3 Making aModule

The init_prms and solve functions can now be combined with many different
types of main programs and user_action functions. It is therefore preferable to
have the general init_prms and solve functions in a module boxspring and
import these functions in more user-specific programs. Making a module out of
init_prms and solve is, according to Sect. 4.9, quite trivial as we just need to put
the functions in a file boxspring.py.

It is a good habit to include a demo function that quickly tells users how to
operate the key functions in the module. The demo function is often called from the
test block. Here is an example:

def demo():
def print_S(S, t, step):

"""Callback function: user_action."""
print ’t=%.2f S[%d]=%+g’ % (t, step, S[step])

from math import pi

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m=1, b=2, L=10, k=1, beta=0, S0=0,

dt=2*pi/40, g=9.81, w_formula=’0’, N=80)

S = solve(m, k, beta, S0, dt, g, w, N,
user_action=print_S)

import matplotlib.pyplot as plt
plt.plot(S)
plt.show()

if __name__ == ’__main__’:
#demo()
test_constant()

http://tinyurl.com/pwyasaa/boxspring/boxpsring.py
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D.2.4 Verification

To check that the program works correctly, we need a series of problems where
the solution is known. These test cases must be specified by someone with a good
physical and mathematical understanding of the problem being solved. We already
have a solution formula (D.10) that we can compare the computations with, and
more tests can be made in the case w ¤ 0 as well.

However, before we even think of checking the program against the formula
(D.10), we should perform some much simpler tests. The simplest test is to see
what happens if we do nothing with the system. This solution is of course not very
exciting – the box is at rest, but it is in fact exciting to see if our program reproduces
the boring solution. Many bugs in the program can be found this way! So, let us
run the program boxspring.py with –S0 0 as the only command-line argument.
The output reads

t=0.00 S[0]=+0
t=0.16 S[1]=+0.121026
t=0.31 S[2]=+0.481118
t=0.47 S[3]=+1.07139
t=0.63 S[4]=+1.87728
t=0.79 S[5]=+2.8789
t=0.94 S[6]=+4.05154
t=1.10 S[7]=+5.36626
...

Some motion takes place! All S[1], S[2], and so forth should be zero. What is the
error?

There are two directions to follow now: we can either visualize the solution
to understand more of what the computed S.t/ function looks like (perhaps this
explains what is wrong), or we can dive into the algorithm and compute S[1] by
hand to understand why it does not become zero. Let us follow both paths.

First we print out all terms on the right-hand side of the statement that computes
S[1]. All terms except the last one (�t2 mg) are zero. The gravity term causes the
spring to be stretched downward, which causes oscillations. We can see this from
the governing equation (D.8) too: if there is no motion, S.t/ D 0, the derivatives
are zero (and w D 0 is default in the program), and then we are left with

kS D mg ) S D m

k
g : (D.22)

This result means that if the box is at rest, the spring is stretched (which is reason-
able!). Either we have to start with S.0/ D m

k
g in the equilibrium position, or we

have to turn off the gravity force by setting –g 0 on the command line. Setting
either –S0 0 –g 0 or –S0 9.81 shows that the whole S list contains either zeros
or 9.81 values (recall that m D k D 1 so S0 D g). This constant solution is correct,
and the coding looks promising.

Our first verification case should be automated in a test function that follows the
conventions for the nose testing framework: the function name starts with test_,
the function takes no arguments, and the tests raise an AssertionError if a test
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fails (e.g., by using assert success, where success is a boolean variable re-
flecting whether the test is successful or not).

A relevant test function sets the special input corresponding to the equilibrium
position and must test that every S[i] equals the constant reference value within
a tolerance:

def test_constant():
"""Test constant solution."""
from math import pi
m = 10.0; k = 5.0; g = 9.81;
S0 = m/k*g
m, b, L, k, beta, S0, dt, g, w, N = \

init_prms(m=10, b=0, L=5, k=5, beta=0, S0=S0,
dt=2*pi/40, g=g, w_formula=’0’, N=40)

S = solve(m, k, beta, S0, dt, g, w, N)
S_ref = S0 # S[i] = S0 is the reference value
tol = 1E-13
for S_ in S:

assert abs(S_ref - S_) < tol

For the first test where S0 ¤ mg=k, we can plot the solution to see what it looks
like, using the program boxspring_plot:

Terminal

boxspring_plot.py --S0 0 --N 200

Figure D.2 shows the function Y.t/ for this case where the initial stretch is zero, but
gravity is causing a motion. With some mathematical analysis of this problem we
can establish that the solution is correct. We have that m D k D 1 and w D ˇ D 0,
which implies that the governing equation is

d 2S

dt2
C S D g; S.0/ D 0; dS=dt.0/ D 0 :

Without the g term this equation is simple enough to be solved by basic techniques
you can find in most introductory books on differential equations. Let us therefore
get rid of the g term by a little trick: we introduce a new variable T D S � g, and
by inserting S D T C g in the equation, the g is gone:

d 2T

dt2
C T D 0; T .0/ D �g;

dT

dt
.0/ D 0 : (D.23)

This equation is of a very well-known type and the solution reads T .t/ D �g cos t ,
which means that S.t/ D g.1� cos t/ and

Y.t/ D �L � g.1 � cos t/ � b

2
:
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Fig. D.2 Positions Y.t/ of an oscillating box with m D k D 1, w D ˇ D 0, g D 9:81, L D 10,
and b D 2

With L D 10, g � 10, and b D 2 we get oscillations around y � 21 with a period
of 2� and a start value Y.0/ D �L � b=2 D 11. A rough visual inspection of
the plot shows that this looks right. A more thorough analysis would be to make
a test of the numerical values in a new callback function (the program is found in
boxspring_test1.py):

from boxspring import init_prms, solve
from math import cos

def exact_S_solution(t):
return g*(1 - cos(t))

def check_S(S, t, step):
error = exact_S_solution(t) - S[step]
print ’t=%.2f S[%d]=%+g error=%g’ % (t, step, S[step], error)

# Fixed values for a test
from math import pi
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 0
dt = 2*pi/40; g = 9.81; N = 200

def w(t):
return 0

S = solve(m, k, beta, S0, dt, g, w, N, user_action=check_S)

http://tinyurl.com/pwyasaa/boxspring/boxspring_test1.py
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The output from this program shows increasing errors with time, up as large
values as 0.3. The difficulty is to judge whether this is the error one must expect
because the program computes an approximate solution, or if this error points to
a bug in the program – or a wrong mathematical formula.

From these sessions on program testing you will probably realize that verification
of mathematical software is challenging. In particular, the design of the test prob-
lems and the interpretation of the numerical output require quite some experience
with the interplay between physics (or another application discipline), mathematics,
and programming.

D.3 Visualization

The purpose of this section is to add graphics to the oscillating system application
developed in Sect. D.2. Recall that the function solve solves the problem and
returns a list S with indices from 0 to N. Our aim is to plot this list and various
physical quantities computed from it.

D.3.1 Simultaneous Computation and Plotting

The solve function makes a call back to the user’s code through a callback function
(the user_action argument to solve) at each time level. The callback function
has three arguments: S, the time, and the current time step number. Now we want
the callback function to plot the position Y.t/ of the box during the computations.
In principle this is easy, but S is longer than we want to plot, because S is allocated
for the whole time simulation while the user_action function is called at time
levels where only the indices in S up to the current time level have been computed
(the rest of the elements in S are zero). We must therefore use a sublist of S, from
time zero and up to the current time. The callback function we send to solve as the
user_action argument can then be written like this:

def plot_S(S, t, step):
if step == 0: # nothing to plot yet

return None

tcoor = linspace(0, t, step+1)
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.
plot(tcoor, Y)

Note that L, dt, b, and w must be global variables in the user’s main program.
The major problem with the plot_S function shown is that the w(tcoor) eval-

uation does not work. The reason is that w is a StringFunction object, and
according to Sect. 5.5.1, StringFunction objects do not work with array argu-
ments unless we call their vectorize function once. We therefore need to do a

w.vectorize(globals())
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before calling solve (which calls plot_S repeatedly). Here is the main program
with this important statement:

from boxspring import init_prms, solve
from scitools.std import *

# Default values
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1;
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200;

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

w.vectorize(globals())

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

Now the plot_S function works fine. You can try the program out by running

Terminal

boxspring_plot_v1.py

Fixing axes Both the t and the y axes adapt to the solution array in every plot. The
adaptation of the y is okay since it is difficult to predict the future minimum and
maximum values of the solution, and hence it is most natural to just adapt the y

axis to the computed Y points so far in the simulation. However, the t axis should
be fixed throughout the simulation, and this is easy since we know the start and end
times. The end time is T D N�t and a relevant plot command becomes

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

At the end of the simulation it can be nice to make a hardcopy of the last plot
command performed in the plot_S function. We then just call

savefig(’tmp_Y.pdf’)

after the solve function is finished.
In the beginning of the simulation it is convenient to skip plotting for a number

of steps until there are some interesting points to visualize and to use for computing
the axis extent. We also suggest to apply the recipe at the end of Sect. 5.5.1 to
vectorize w. More precisely, we use w.vectorize in general, but turn to numpy’s
vectorize feature only if the string formula contains an inline if-else test (to
avoid requiring users to use where to vectorize the string expressions). One reason
for paying attention to if-else tests in the w formula is that sudden movements of
the plate are of interest, and this gives rise to step functions and strings like ’1 if

t>0 else 0’. A main program with all these features is listed next.
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from boxspring import init_prms, solve
from scitools.std import *

def plot_S(S, t, step):
first_plot_step = 10 # skip the first steps
if step < first_plot_step:

return

tcoor = linspace(0, t, step+1) # t = dt*step
S = array(S[:len(tcoor)])
Y = w(tcoor) - L - S - b/2.0 # (w, L, b are global vars.)

plot(tcoor, Y,
axis=[0, N*dt, min(Y), max(Y)],
xlabel=’time’, ylabel=’Y’)

# Default values
m = 1; b = 2; L = 10; k = 1; beta = 0; S0 = 1
dt = 2*pi/40; g = 9.81; w_formula = ’0’; N = 200

m, b, L, k, beta, S0, dt, g, w, N = \
init_prms(m, b, L, k, beta, S0, dt, g, w_formula, N)

# Vectorize the StringFunction w
w_formula = str(w) # keep this to see if w=0 later
if ’ else ’ in w_formula:

w = vectorize(w) # general vectorization
else:

w.vectorize(globals()) # more efficient (when no if)

S = solve(m, k, beta, S0, dt, g, w, N, user_action=plot_S)

# First make a hardcopy of the the last plot of Y
savefig(’tmp_Y.pdf’)

D.3.2 Some Applications

What if we suddenly, right after t D 0, move the plate upward from y D 0 to
y D 1? This will set the system in motion, and the task is to find out what the
motion looks like.

There is no initial stretch in the spring, so the initial condition becomes S0 D 0.
We turn off gravity for simplicity and try a w D 1 function since the plate has the
position y D w D 1 for t > 0:

Terminal

boxspring_plot.py --w ’1’ --S 0 --g 0

Nothing happens. The reason is that we specify w.t/ D 1, but in the equation only
d 2w=dt2 has an effect and this quantity is zero. What we need to specify is a step
function: w D 0 for t � 0 and w D 1 for t > 0. In Python such a function can
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Fig. D.3 Plot of the position of an oscillating box where the end point of the spring (w.t/) is given
a sudden movement at t D 0. Other parameters are m D k D 1, ˇ D 0:1, g D 0, S0 D 0. Left:
1000 time steps. Right: 100 steps for magnifying the first oscillation cycles

be specified as a string expression ’1 if t>0 else 0’. With a step function we
obtain the right initial jump of the plate:

Terminal

boxspring_plot.py --w ’1 if t > 0 else 0’ \
--S0 0 --g 0 --N 1000 --beta 0.1

Figure D.3 displays the solution. We see that the damping parameter has the effect
of reducing the amplitude of Y.t/, and the reduction looks exponential, which is in
accordance with the exact solution (D.10) (although this formula is not valid in the
present case because w ¤ 0 – but one gets the same exponential reduction even in
this case). The box is initially located at Y D 0 � .10C 0/ � 2=2 D �11. During
the first time step we get a stretch S D 0:5 and the plate jumps up to y D 1 so the
box jumps to Y D 1 � .10C 0:5/ � 2=2 D �10:5. In Fig. D.3 (right) we see that
the box starts correctly out and jumps upwards, as expected.

More exciting motions of the box can be obtained by moving the plate back and
forth in time, see for instance Fig. D.4.

D.3.3 Remark on Choosing�t

If you run the boxspring_plot.py program with a large –dt argument (for �t),
strange things may happen. Try –dt 2 –N 20 as command-line arguments and
observe that Y jumps up and down in a saw tooth fashion so we clearly have too
large time steps. Then try –dt 2.1 –N 20 and observe that Y takes on very large
values (105). This highly non-physical result points to an error in the program.
However, the problem is not in the program, but in the numerical method used to
solve (D.8). This method becomes unstable and hence useless if �t is larger than
a critical value. We shall not dig further into such problems, but just notice that
mathematical models on a computer must be used with care, and that a serious user
of simulation programs must understand how the mathematical methods work in
detail and what their limitations are.

http://tinyurl.com/pwyasaa/boxspring/boxspring_plot.py
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D.3.4 Comparing Several Quantities in Subplots

So far we have plotted Y , but there are other interesting quantities to look at, e.g., S ,
w, the spring force, and the damping force. The spring force and S are proportional,
so only one of these is necessary to plot. Also, the damping force is relevant only
if ˇ ¤ 0, and w is only relevant if the string formula is different from the default
value ’0’.

All the mentioned additional plots can be placed in the same figure for compar-
ison. To this end, we apply the subfigure command in Easyviz and create a row
of individual plots. How many plots we have depends on the values of str(w) and
beta. The relevant code snippet for creating the additional plots is given below and
appears after the part of the main program shown above.

# Make plots of several additional interesting quantities
tcoor = linspace(0, N*dt, N+1)
S = array(S)

plots = 2 # number of rows of plots
if beta != 0:

plots += 1
if w_formula != ’0’:

plots += 1

# Position Y(t)
plot_row = 1
subplot(plots, 1, plot_row)
Y = w(tcoor) - L - S - b/2.0
plot(tcoor, Y, xlabel=’time’, ylabel=’Y’)

# Spring force (and S)
plot_row += 1
subplot(plots, 1, plot_row)
Fs = k*S
plot(tcoor, Fs, xlabel=’time’, ylabel=’spring force’)

# Friction force
if beta != 0:

plot_row += 1
subplot(plots, 1, plot_row)
Fd = beta*diff(S) # diff is in numpy
# len(diff(S)) = len(S)-1 so we use tcoor[:-1]:
plot(tcoor[:-1], Fd, xlabel=’time’, ylabel=’damping force’)

# Excitation
if w_formula != ’0’:

plot_row += 1
subplot(plots, 1, plot_row)
w_array = w(tcoor)
plot(tcoor, w_array, xlabel=’time’, ylabel=’w(t)’)

savefig(’tmp.pdf’) # save this multi-axis plot in a file

Figure D.4 displays what the resulting plot looks like for a test case with an
oscillating plate (w). The command for this run is
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Fig. D.4 Plot of the plate position w.t/, the spring force (proportional to S.t/), and the position
Y.t/ for a test problem where w.t/ D 2.cos.8t/ � 1/, ˇ D g D 0, m D k D 1, S0 D 0,
�t D 0:5236, and N D 600

Terminal

boxspring_plot.py --S0 0 --w ’2*(cos(8*t)-1)’ \
--N 600 --dt 0.05236

The rapid oscillations of the plate require us to use a smaller �t and more steps
(larger N ).

D.3.5 Comparing Approximate and Exact Solutions

To illustrate multiple curves in the same plot and animations we turn to a slightly
different program. The task now is to visually investigate how the accuracy of the
computations depends on the �t parameter. The smaller �t is, the more accurate
the solution S is. To look into this topic, we need a test problem with known
solution. Setting m D k D 1 and w D 0 D ˇ D 0 implies the exact solution
S.t/ D g.1 � cos t/ (see Sect. D.2.4). The boxspring_test1.py program from
Sect. D.2.4 can easily be extended to plot the calculated solution together with the
exact solution. We drop the user_action callback function and just make the plot
after having the complete solution S returned from the solve function:
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Fig.D.5 Error plots for a test problem involving an oscillating system: Left: the error as a function
of time. Right: the logarithm of the absolute value of the error as a function of time, where �t is
reduced by one half from one curve to the next one below

tcoor = linspace(0, N*dt, len(S))
exact = exact_S_solution(tcoor)
plot(tcoor, S, ’r’, tcoor, exact, ’b’,

xlabel=’time’, ylabel=’S’,
legend=(’computed S(t)’, ’exact S(t)’),
savefig=’tmp_S.pdf’)

The two curves tend to lie upon each other, so to get some more insight into the
details of the error, we plot the error itself, in a separate plot window:

figure() # new plot window
S = array(S) # turn list into NumPy array for computations
error = exact - S
plot(tcoor, error, xlabel=’time’, ylabel=’error’,

savefig=’tmp_error.pdf’)

The error increases in time as the plot in Fig. D.5 (left) clearly shows.

D.3.6 Evolution of the Error as �t Decreases

Finally, we want to investigate how the error curve evolves as the time step �t

decreases. In a loop we halve �t in each pass, solve the problem, compute the
error, and plot the error curve. From the finite difference formulas involved in the
computational algorithm, we can expect that the error is of order �t2. That is, if �t

is halved, the error should be reduced by 1/4.
The resulting plot of error curves is not very informative because the error re-

duces too quickly (by several orders of magnitude). A better plot is obtained by
taking the logarithm of the error. Since an error curve may contain positive and
negative elements, we take the absolute value of the error before taking the loga-
rithm. We also note that S0 is always correct, so it is necessary to leave out the
initial value of the error array to avoid the logarithm of zero.

The ideas of the previous two paragraphs can be summarized in a Python code
snippet:
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figure() # new plot window
dt = 2*pi/10
tstop = 8*pi # 4 periods
N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
# Drop abserror[0] since it is always zero and causes
# problems for the log function:
logerror = log10(abserror[1:])

plot(tcoor[1:], logerror, ’r’, xlabel=’time’,
ylabel=’log10(abs(error))’)

hold(’on’)
savefig(’tmp_errors.pdf’)

The resulting plot is shown in Fig. D.5 (right).
Visually, it seems to be a constant distance between the curves in Fig. D.5 (right).

Let d denote this difference and let Ei be the absolute error curve associated with
�t in the i -th pass in the loop. What we plot is log10 Ei . The difference between
two curves is then DiC1 D log10 Ei � log10 EiC1 D log10.Ei =EiC1/. If this differ-
ence is roughly 0.5 as we see from Fig. D.5 (right), we have

log10

Ei

EiC1

D d D 0:5 ) EiC1 D
1

3:16
Ei :

That is, the error is reduced, but not by the theoretically expected factor 4. Let us
investigate this topic in more detail by plotting DiC1.

We make a loop as in the last code snippet, but store the logerror array from
the previous pass in the loop (Ei ) in a variable logerror_prev such that we can
compute the difference DiC1 as

logerror_diff = logerror_prev - logerror

There are two problems to be aware of now in this array subtraction: (i) the
logerror_prev array is not defined before the second pass in the loop (when i

is one or greater), and (ii) logerror_prev and logerror have different lengths
since logerror has twice as many time intervals as logerror_prev. Numerical
Python does not know how to compute this difference unless the arrays have the
same length. We therefore need to use every two elements in logerror:

logerror_diff = logerror_prev - logerror[::2]

An additional problem now arises because the set of time coordinates, tcoor, in
the current pass of the loop also has twice as many intervals so we need to plot
logerror_diff against tcoor[::2].
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The complete code snippet for plotting differences between the logarithm of the
absolute value of the errors now becomes

figure()
dt = 2*pi/10
tstop = 8*pi # 4 periods
N = int(tstop/dt)
for i in range(6):

dt /= 2.0
N *= 2
S = solve(m, k, beta, S0, dt, g, w, N)
S = array(S)
tcoor = linspace(0, tstop, len(S))
exact = exact_S_solution(tcoor)
abserror = abs(exact - S)
logerror = log10(abserror[1:])
if i > 0:

logerror_diff = logerror_prev - logerror[::2]
plot(tcoor[1::2], logerror_diff, ’r’, xlabel=’time’,

ylabel=’difference in log10(abs(error))’)
hold(’on’)
meandiff = mean(logerror_diff)
print ’average log10(abs(error)) difference:’, meandiff

logerror_prev = logerror
savefig(’tmp_errors_diff.pdf’)

Figure D.6 shows the result. We clearly see that the differences between the curves
in Fig. D.5 (right) are almost the same even if �t is reduced by several orders of
magnitude.

In the loop we also print out the average value of the difference curves in
Fig. D.6:

average log10(abs(error)) difference: 0.558702094666
average log10(abs(error)) difference: 0.56541814902
average log10(abs(error)) difference: 0.576489014172
average log10(abs(error)) difference: 0.585704362507
average log10(abs(error)) difference: 0.592109360025

These values are almost constant. Let us use 0.57 as an representative value and see
what it implies. Roughly speaking, we can then say that

log10 Ei � log10 EiC1 D 0:57 :

Collecting the two first terms and applying the exponential function 10x on both
sides we get that

EiC1 D
1

3:7
Ei :

This error reduction when �t is decreased is not quite as good as we would theo-
retically expect (1/4), but it is close. The purpose of this brief analysis is primarily
to show how errors can be explored by plotting, and how we can take advantage
of array computing to produce various quantities of interest in a problem. A more
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Fig. D.6 Differences between the curves in Fig. D.5 (right)

thorough investigation of how the error depends on �t would use time integrals of
the error instead of the complete error curves.

Again we mention that the complete problem analyzed in this appendix is chal-
lenging to understand because of its mix of physics, mathematics, and program-
ming. In real life, however, problem solving in science and industry involve multi-
disciplinary projects where people with different competence work together. As
a scientific programmer you must then be able to fully understand what to program
and how to verify the results. This is a requirement in the current summarizing ex-
ample too. You have to accept that your programming problem is buried in a lot of
physical and mathematical details.

Having said this, we expect that most readers of this book also gain a back-
ground in physics and mathematics so that the present summarizing example can
be understood in complete detail, at least at some later stage.

D.4 Exercises

Exercise D.1: Model sudden movements of the plate

Set up a problem with the boxspring_plot.py program where the initial stretch
in the spring is 1 and there is no gravity force. Between t D 20 and t D 30 we
move the plate suddenly from 0 to 2 and back again:

w.t/ D
(

2; 20 < t < 30;

0; otherwise
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Run this problem and view the solution.

Exercise D.2: Write a callback function

Doing Exercise D.1 shows that the Y position increases significantly in magnitude
when the plate jumps upward and back again at t D 20 and t D 30, respectively.
Make a program where you import from the boxspringmodule and provide a call-
back function that checks if Y < 9 and then aborts the program.
Filename: boxspring_Ycrit.

Exercise D.3: Improve input to the simulation program

The oscillating system in Sect. D.1 has an equilibrium position S D mg=k, see
(D.22). A natural case is to let the box start at rest in this position and move the
plate to induce oscillations. We must then prescribe S0 D mg=k on the command
line, but the numerical value depends on the values of m and g that we might also
give in the command line. However, it is possible to specify –S0 m*g/k on the
command line if we in the init_prms function first let S0 be a string in the elif

test and then, after the for loop, execute S0 = eval(S0). At that point, m and k

are read from the command line so that eval will work on ’m*g/k’, or any other
expression involving data from the command. Implement this idea.

A first test problem is to start from rest in the equilibrium position S.0/ D mg=k

and give the plate a sudden upward change in position from y D 0 to y D 1. That
is,

w.t/ D
(

0; t � 0;

1; t > 0

You should get oscillations around the displaced equilibrium position Y D w�L�
S0 D �9 � 2g.
Filename: boxspring2.
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Appendices C and D give a brief introduction to differential equations, with a fo-
cus on a few specific equations and programs that are tailored to these equations.
The present appendix views differential equations from a more abstract point of
view, which allows us to formulate numerical methods and create general soft-
ware that are applicable to a large family of widely different differential equation
problems from mathematics, physics, biology, and finance. More specifically, the
abstract view is motivated by the slogan implement once, apply anywhere. We
have in fact met this principle several places in the book: differentiation (f 00.x/) in
Sects. 3.1.12 and 7.3.2, integration (

R b

a f .x/dx) in Sects. 3.4.2 and 7.3.3, and root
finding (f .x/ D 0) in Sect. 4.11.2 and Sect. A.1.10. In all of the referred implemen-
tations, we work with a general function f .x/ so that any problem can be solved by
the same piece of code as long as we can define the problem in terms of a function
f .x/. This is an excellent demonstration of the power of mathematics, and this
abstract view of problems in terms of some f .x/ is especially powerful in numer-
ical methods and programming. Now we shall formulate differential equations on
the abstract form u0 D f .u; t/ and create software that can solve any equation for
which the f .u; t/ is given.

Before studying the present appendix, the reader should have some familiarity
with differential equations at the level of Appendix C. Appendix D can also be
advantageous to read, although this is not strictly required. Only fundamental pro-
gramming skills regarding loops, lists, arrays, functions, if tests, command-line
arguments, and curve plotting are required for the basic function-based material in
this appendix. However, Sects. E.1.7 and E.2.4, as well as many exercises, use
classes to a large extent and hence demand familiarity with the class concept from
Chap. 7. The material on object-oriented programming in Sect. E.3 requires good
knowledge of class hierarchies and inheritance from Chap. 9.

All computer codes associated with this appendix is found in src/ode21.

1 http://tinyurl.com/pwyasaa/ode2
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E.1 Scalar Ordinary Differential Equations

We shall in this appendix work with ordinary differential equations (ODEs) written
on the abstract form

u0.t/ D f .u.t/; t/ : (E.1)

There is an infinite number of solutions to such an equation, so to make the solution
u.t/ unique, we must also specify an initial condition

u.0/ D U0 : (E.2)

Given f .u; t/ and U0, our task is to compute u.t/.
At first sight, (E.1) is only a first-order differential equation, since only u0 and

not higher-order derivatives like u0 are present in the equation. However, equations
with higher-order derivatives can also be written on the abstract form (E.1) by in-
troducing auxiliary variables and interpreting u and f as vector functions. This
rewrite of the original equation leads to a system of first-order differential equa-
tions and will be treated in Sect. E.2. The bottom line is that a very large family of
differential equations can be written as (E.1). Forthcoming examples will provide
evidence.

We shall first assume that u.t/ is a scalar function, meaning that it has one
number as value, which can be represented as a float object in Python. We then
refer to (E.1) as a scalar differential equation. The counterpart vector function

means that u is a vector of scalar functions and the equation is known as a system

of ODEs (also known as a vector ODE). The value of a vector function is a list or
array in a program. Systems of ODEs are treated in Sect. E.2.

E.1.1 Examples on Right-Hand-Side Functions

To write a specific differential equation on the form (E.1) we need to identify what
the f function is. Say the equation reads

y2y0 D x; y.0/ D Y;

with y.x/ as the unknown function. First, we need to introduce u and t as new
symbols: u D y, t D x. This gives the equivalent equation u2u0 D t and the initial
condition u.0/ D Y . Second, the quantity u0 must be isolated on the left-hand side
of the equation in order to bring the equation on the form (E.1). Dividing by u2

gives
u0 D tu�2 :

This fits the form (E.1), and the f .u; t/ function is simply the formula involving u

and t on the right-hand side:

f .u; t/ D tu�2 :

The t parameter is very often absent on the right-hand side such that f involves u

only.
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Let us list some common scalar differential equations and their corresponding f

functions. Exponential growth of money or populations is governed by

u0 D ˛u; (E.3)

where ˛ > 0 is a given constant expressing the growth rate of u. In this case,

f .u; t/ D ˛u : (E.4)

A related model is the logistic ODE for growth of a population under limited re-
sources:

u0 D ˛u
�

1 � u

R

�

; (E.5)

where ˛ > 0 is the initial growth rate and R is the maximum possible value of u.
The corresponding f is

f .u; t/ D ˛u
�

1 � u

R

�

: (E.6)

Radioactive decay of a substance has the model

u0 D �au; (E.7)

where a > 0 is the rate of decay of u. Here,

f .u; t/ D �au : (E.8)

A body falling in a fluid can be modeled by

u0 C bjuju D g; (E.9)

where b > 0 models the fluid resistance, g is the acceleration of gravity, and u is
the body’s velocity (see Exercise E.8). By solving for u0 we find

f .u; t/ D �bjujuC g : (E.10)

Finally, Newton’s law of cooling is the ODE

u0 D �h.u � s/; (E.11)

where u is the temperature of a body, h > 0 is a proportionality constant, normally
to be estimated from experiments, and s is the temperature of the surroundings.
Obviously,

f .u; t/ D �h.u � s/ : (E.12)

E.1.2 The Forward Euler Scheme

Our task now is to define numerical methods for solving equations of the form
(E.1). The simplest such method is the Forward Euler scheme. Equation (E.1)
is to be solved for t 2 .0; T �, and we seek the solution u at discrete time points
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ti D i�t , i D 1; 2; : : : ; n. Clearly, tn D n�t D T , determining the number of
points n as T=�t . The corresponding values u.ti / are often abbreviated as ui , just
for notational simplicity.

Equation (E.1) is to be fulfilled at all time points t 2 .0; T �. However, when we
solve (E.1) numerically, we only require the equation to be satisfied at the discrete
time points t1; t2; : : : ; tn. That is,

u0.tk/ D f .u.tk/; tk/;

for k D 1; : : : ; n. The fundamental idea of the Forward Euler scheme is to approx-
imate u0.tk/ by a one-sided, forward difference:

u0.tk/ � u.tkC1/� u.tk/

�t
D ukC1 � uk

�t
:

This removes the derivative and leaves us with the equation

ukC1 � uk

�t
D f .uk; tk/ :

We assume that uk is already computed, so that the only unknown in this equation
is ukC1, which we can solve for:

ukC1 D uk C�tf .uk; tk/ : (E.13)

This is the Forward Euler scheme for a scalar first-order differential equation u0 D
f .u; t/.

Equation (E.13) has a recursive nature. We start with the initial condition, u0 D
U0, and compute u1 as

u1 D u0 C�tf .u0; t0/ :

Then we can continue with

u2 D u1 C�tf .u1; t1/;

and then with u3 and so forth. This recursive nature of the method also demonstrates
that we must have an initial condition – otherwise the method cannot start.

E.1.3 Function Implementation

The next task is to write a general piece of code that implements the Forward Euler
scheme (E.13). The complete original (continuous) mathematical problem is stated
as

u0 D f .u; t/; t 2 .0; T �; u.0/ D U0; (E.14)

while the discrete numerical problem reads

u0 D U0; (E.15)

ukC1 D uk C�tf .uk ; tk/; tk D k�t; k D 1; : : : ; n; n D T=�t : (E.16)
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We see that the input data to the numerical problem consist of f , U0, T , and �t or
n. The output consists of u1; u2; : : : ; un and the corresponding set of time points
t1; t2; : : : ; tn.

Let us implement the Forward Euler method in a function ForwardEuler that
takes f , U0, T , and n as input, and that returns u0; : : : ; un and t0; : : : ; tn:

import numpy as np

def ForwardEuler(f, U0, T, n):
"""Solve u’=f(u,t), u(0)=U0, with n steps until t=T."""
t = np.zeros(n+1)
u = np.zeros(n+1) # u[k] is the solution at time t[k]
u[0] = U0
t[0] = 0
dt = T/float(n)
for k in range(n):

t[k+1] = t[k] + dt
u[k+1] = u[k] + dt*f(u[k], t[k])

return u, t

Note the close correspondence between the implementation and the mathemati-
cal specification of the problem to be solved. The argument f to the ForwardEuler
function must be a Python function f(u, t) implementing the f .u; t/ function in
the differential equation. In fact, f is the definition of the equation to be solved. For
example, we may solve u0 D u for t 2 .0; 3/, with u.0/ D 1, and �t D 0:1 by the
following code utilizing the ForwardEuler function:

def f(u, t):
return u

u, t = ForwardEuler(f, U0=1, T=4, n=20)

With the u and t arrays we can easily plot the solution or perform data analysis
on the numbers.

E.1.4 Verifying the Implementation

Visual comparison Many computational scientists and engineers look at a plot to
see if a numerical and exact solution are sufficiently close, and if so, they conclude
that the program works. This is, however, not a very reliable test. Consider a first
try at running ForwardEuler(f, U0=1, T=4, n=10), which gives the plot to the
left in Fig. E.1. The discrepancy between the solutions is large, and the viewer may
be uncertain whether the program works correctly or not. Running n=20 should
give a better solution, depicted to the right in Fig. E.1, but is the improvement good
enough? Increasing n drives the numerical curve closer to the exact one. This
brings evidence that the program is correct, but there could potentially be errors in
the code that makes the curves further apart than what is implied by the numerical
approximations alone. We cannot know if such a problem exists.
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Fig. E.1 Comparison of numerical exact solution for 10 intervals (left) and 20 (intervals)

Comparing with hand calculations A more rigorous way of verifying the imple-
mentation builds on a simple principle: we run the algorithm by hand a few times
and compare the results with those in the program. For most practical purposes, it
suffices to compute u1 and u2 by hand:

u1 D 1C 0:1 � 1 D 1:1; u2 D 1:1C 0:1 � 1:1 D 1:21 :

These values are to be compared with the numbers produced by the code. A correct
program will lead to deviations that are zero (to machine precision). Any such test
should be wrapped in a proper test function such that it can easily be repeated later.
Here, it means we make a function

def test_ForwardEuler_against_hand_calculations():
"""Verify ForwardEuler against hand calc. for 3 time steps."""
u, t = ForwardEuler(f, U0=1, T=0.2, n=2)
exact = np.array([1, 1.1, 1.21]) # hand calculations
error = np.abs(exact - u).max()
success = error < 1E-14
assert success, ’|exact - u| = %g != 0’ % error

The test function is written in a way that makes it trivial to integrate it in the
nose testing framework, see Sect. H.9 and the brief examples in Sects. 3.3.3, 3.4.2,
and 4.9.4. This means that the name starts with test_, there are no function argu-
ments, and the check for passing the test is done with assert success. The test
fails if the boolean variable success is False. The string after assert success

is a message that will be written out if the test fails. The error measure is most con-
veniently a scalar number, which here is taken as the absolute value of the largest
deviation between the exact and the numerical solution. Although we expect the er-
ror measure to be zero, we are prepared for rounding errors and must use a tolerance
when testing if the test has passed.

Comparing with an exact numerical solution Another effective way to verify
the code, is to find a problem that can be solved exactly by the numerical method
we use. That is, we seek a problem where we do not have to deal with numerical
approximation errors when comparing the exact solution with the one produced by
the program. It turns out that if the solution u.t/ is linear in t , the Forward Euler
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method will reproduce this solution exactly. Therefore, we choose u.t/ D at CU0,
with (e.g.) a D 0:2 and U0 D 3. The corresponding f is the derivative of u, i.e.,
f .u; t/ D a. This is obviously a very simple right-hand side without any u or t .
However, we can make f more complicated by adding something that is zero, e.g.,
some expression with u � .at C U0/, say .u � .at C U0//

4, so that

f .u; t/ D aC .u � .at C U0//
4 : (E.17)

We implement our special f and the exact solution in two functions f and
u_exact, and compute a scalar measure of the error. As a above, we place the
test inside a test function and make an assertion that the error is sufficiently close to
zero:

def test_ForwardEuler_against_linear_solution():
"""Use knowledge of an exact numerical solution for testing."""
def f(u, t):

return 0.2 + (u - u_exact(t))**4

def u_exact(t):
return 0.2*t + 3

u, t = ForwardEuler(f, U0=u_exact(0), T=3, n=5)
u_e = u_exact(t)
error = np.abs(u_e - u).max()
success = error < 1E-14
assert success, ’|exact - u| = %g != 0’ % error

A “silent” execution of the function indicates that the test works.
The shown functions are collected in a file ForwardEuler_func.py.

E.1.5 From Discrete to Continuous Solution

The numerical solution of an ODE is a discrete function in the sense that we only
know the function values u0; u1; ldots; uN at some discrete points t0; t1; : : : ; tN in
time. What if we want to know u between two computed points? For example,
what is u between ti and tiC1, say at the midpoint t D ti C 1

2
�t? One can use

interpolation techniques to find this value u. The simplest interpolation technique
is to assume that u varies linearly on each time interval. On the interval Œti ; tiC1� the
linear variation of u becomes

u.t/ D ui C
uiC1 � ui

tiC1 � ti
.t � ti / :

We can then evaluate, e.g., u.ti C 1
2
�t/ from this formula and show that it becomes

.ui C uiC1/=2.
The function scitools.std.wrap2callable can automatically convert a dis-

crete function to a continuous function:

from scitools.std import wrap2callable
u_cont = wrap2callable((t, u))

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
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From the arrays t and u, wrap2callable constructs a continuous function based
on linear interpolation. The result u_cont is a Python function that we can evaluate
for any value of its argument t:

dt = t[i+1] - t[i]
t = t[i] + 0.5*dt
value = u_cont(t)

In general, the wrap2callable function is handy when you have computed
some discrete function and you want to evaluate this discrete function at any point.

E.1.6 Switching Numerical Method

There are numerous alternative numerical methods for solving (E.13). One of the
simplest is Heun’s method:

u� D uk C�tf .uk; tk/; (E.18)

ukC1 D uk C
1

2
�tf .uk ; tk/C 1

2
�tf .u�; tkC1/ : (E.19)

This scheme is easily implemented in the ForwardEuler function by replacing the
Forward Euler formula

u[k+1] = u[k] + dt*f(u[k], t[k])

by (E.18) and (E.19):

u_star = u[k] + dt*f(u[k], t[k])
u[k+1] = u[k] + 0.5*dt*f(u[k], t[k]) + 0.5*dt*f(u_star, t[k+1])

We can, especially if f is expensive to calculate, eliminate a call f(u[k], t[k])

by introducing an auxiliary variable:

f_k = f(u[k], t[k])
u_star = u[k] + dt*f_k
u[k+1] = u[k] + 0.5*dt*f_k + 0.5*dt*f(u_star, t[k+1])

E.1.7 Class Implementation

As an alternative to the general ForwardEuler function in Sect. E.1.3, we shall now
implement the numerical method in a class. This requires, of course, familiarity
with the class concept from Chap. 7.

Class wrapping of a function Let us start with simply wrapping the ForwardEuler
function in a class ForwardEuler_v1 (the postfix _v1 indicates that this is the very
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first class version). That is, we take the code in the ForwardEuler function and
distribute it among methods in a class.

The constructor can store the input data of the problem and initialize data struc-
tures, while a solve method can perform the time stepping procedure:

import numpy as np

class ForwardEuler_v1(object):
def __init__(self, f, U0, T, n):

self.f, self.U0, self.T, self.n = f, dt, U0, T, n
self.dt = T/float(n)
self.u = np.zeros(n+1)
self.t = np.zeros(n+1)

def solve(self):
"""Compute solution for 0 <= t <= T."""
self.u[0] = float(self.U0)
self.t[0] = float(0)

for k in range(self.n):
self.k = k
self.t[k+1] = self.t[k] + self.dt
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t

u_new = u[k] + dt*f(u[k], t[k])
return u_new

Note that we have introduced a third class method, advance, which isolates the
numerical scheme. The motivation is that, by observation, the constructor and the
solve method are completely general as they remain unaltered if we change the
numerical method (at least this is true for a wide class of numerical methods). The
only difference between various numerical schemes is the updating formula. It is
therefore a good programming habit to isolate the updating formula so that another
scheme can be implemented by just replacing the advancemethod – without touch-
ing any other parts of the class.

Also note that we in the advancemethod “strip off” the self prefix by introduc-
ing local symbols with exactly the same names as in the mathematical specification
of the numerical method. This is important if we want a visually one-to-one corre-
spondence between the mathematics and the computer code.

Application of the class goes as follows, here for the model problem u0 D u,
u.0/ D 1:

def f(u, t):
return u

solver = ForwardEuler_v1(f, U0=1, T=3, n=15)
u, t = solver.solve()
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Switching numerical method Implementing, for example, Heun’s method (E.18)–
(E.19) is a matter of replacing the advance method by

def advance(self):
"""Advance the solution one time step."""
u, dt, f, k, t = \

self.u, self.dt, self.f, self.k, self.t

u_star = u[k] + dt*f(u[k], t[k])
u_new = u[k] + \

0.5*dt*f(u[k], t[k]) + 0.5*dt*f(u_star, t[k+1])
return u_new

Checking input data is always a good habit, and in the present class the construc-
tor may test that the f argument is indeed an object that can be called as a function:

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

Any function f or any instance of a class with a __call__ method will make
callable(f) evaluate to True.

A more flexible class Say we solve u0 D f .u; t/ from t D 0 to t D T1. We
can continue the solution for t > T1 simply by restarting the whole procedure
with initial conditions at t D T1. Hence, the implementation should allow several
consequtive solve steps.

Another fact is that the time step �t does not need to be constant. Allowing
small �t in regions where u changes rapidly and letting �t be larger in areas where
u is slowly varying, is an attractive solution strategy. The Forward Euler method
can be reformulated for a variable time step size tkC1 � tk :

ukC1 D uk C .tkC1 � tk/f .uk ; tk/ : (E.20)

Similarly, Heun’s method and many other methods can be formulated with a vari-
able step size simply by replacing �t with tkC1 � tk . It then makes sense for
the user to provide a list or array with time points for which a solution is sought:
t0; t1; : : : ; tn. The solve method can accept such a set of points.

The mentioned extensions lead to a modified class:

class ForwardEuler(object):
def __init__(self, f):

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

self.f = f

def set_initial_condition(self, U0):
self.U0 = float(U0)
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def solve(self, time_points):
"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
self.u = np.zeros(len(time_points))
# Assume self.t[0] corresponds to self.U0
self.u[0] = self.U0

for k in range(len(self.t)-1):
self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

Usage of the class We must instantiate an instance, call the set_initial_

condition method, and then call the solve method with a list or array of the time
points we want to compute u at:

def f(u, t):
"""Right-hand side function for the ODE u’ = u."""
return u

solver = ForwardEuler(f)
solver.set_initial_condition(2.5)
u, t = solver.solve(np.linspace(0, 4, 21))

A simple plot(t, u) command can visualize the solution.

Verification It is natural to perform the same verifications as we did for the
ForwardEuler function in Sect. E.1.4. First, we test the numerical solution against
hand calculations. The implementation makes use of the same test function, just
the way of calling up the numerical solver is different:

def test_ForwardEuler_against_hand_calculations():
"""Verify ForwardEuler against hand calc. for 2 time steps."""
solver = ForwardEuler(lambda u, t: u)
solver.set_initial_condition(1)
u, t = solver.solve([0, 0.1, 0.2])
exact = np.array([1, 1,1, 1.21]) # hand calculations
error = np.abs(exact - u).max()
assert error < 1E-14, ’|exact - u| = %g != 0’ % error

We have put some efforts into making this test very compact, mainly to demonstrate
how Python allows very short, but still readable code. With a lambda function we
can define the right-hand side of the ODE directly in the constructor argument. The
solve method accepts a list, tuple, or array of time points and turns the data into an
array anyway. Instead of a separate boolean variable success we have inserted the
test inequality directly in the assert statement.
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The second verification method applies the fact that the Forward Euler scheme
is exact for a u that is linear in t . We perform a slightly more complicated test than
in Sect. E.1.4: now we first solve for the points 0; 0:4; 1; 1:2, and then we continue
the solution process for t1 D 1:4 and t2 D 1:5.

def test_ForwardEuler_against_linear_solution():
"""Use knowledge of an exact numerical solution for testing."""
u_exact = lambda t: 0.2*t + 3
solver = ForwardEuler(lambda u, t: 0.2 + (u - u_exact(t))**4)

# Solve for first time interval [0, 1.2]
solver.set_initial_condition(u_exact(0))
u1, t1 = solver.solve([0, 0.4, 1, 1.2])

# Continue with a new time interval [1.2, 1.5]
solver.set_initial_condition(u1[-1])
u2, t2 = solver.solve([1.2, 1.4, 1.5])

# Append u2 to u1 and t2 to t1
u = np.concatenate((u1, u2))
t = np.concatenate((t1, t2))

u_e = u_exact(t)
error = np.abs(u_e - u).max()
assert error < 1E-14, ’|exact - u| = %g != 0’ % error

Making a module It is a well-established programming habit to have class imple-
mentations in files that act as Python modules. This means that all code is collected
within classes or functions, and that the main program is executed in a test block.
Upon import, no test or demonstration code should be executed.

Everything we have made so far is in classes or functions, so the remaining task
to make a module, is to construct the test block.

if __name__ == ’__main__’:
import sys
if len(sys.argv) >= 2 and sys.argv[1] == ’test’:

test_ForwardEuler_v1_against_hand_calculations()
test_ForwardEuler_against_hand_calculations()
test_ForwardEuler_against_linear_solution()

The ForwardEuler_func.py file with functions from Sects. E.1.3 and E.1.4 is
in theory a module, but not sufficiently cleaned up. Exercise E.15 encourages you
to turn the file into a proper module.

Remark We do not need to call the test functions from the test block, since
we can let nose run the tests automatically, see Sect. H.9, by nosetests -s

ForwardEuler.py.
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E.1.8 Logistic Growth via a Function-Based Approach

A more exciting application than the verification problems above is to simulate
logistic growth of a population. The relevant ODE reads

u0.t/ D ˛u.t/

�

1 � u.t/

R

�

:

The mathematical f .u; t/ function is simply the right-hand side of this ODE. The
corresponding Python function is

def f(u, t):
return alpha*u*(1 - u/R)

where alpha and R are global variables that correspond to ˛ and R. These must be
initialized before calling the ForwardEuler function (which will call the f(u,t)

above):

alpha = 0.2
R = 1.0

from ForwardEuler_func2 import ForwardEuler
u, t = ForwardEuler(f, U0=0.1, T=40, n=400)

We have in this program assumed that Exercise E.15 has been carried out to clean
up the ForwardEuler_func.pyfile such that it becomes a proper module file with
the name ForwardEuler_func2.py.

With u and t computed we can proceed with visualizing the solution (see
Fig. E.2):

from matplotlib.pyplot import *
plot(t, u)
xlabel(’t’); ylabel(’u’)
title(’Logistic growth: alpha=%s, R=%g, dt=%g’ %

(alpha, R, t[1]-t[0]))
savefig(’tmp.pdf’); savefig(’tmp.png’)
show()

The complete code appears in the file logistic_func.py.

E.1.9 Logistic Growth via a Class-Based Approach

The task of this section is to redo the implementation of Sect. E.1.8 using a prob-
lem class to store the physical parameters and the f .u; t/ function, and using class
ForwardEuler from Sect. E.1.7 to solve the ODE. Comparison with the code in
Sect. E.1.8 will then exemplify what the difference between a function-based and
a class-based implementation is. There will be two major differences. One is related
to technical differences between programming with functions and programming

http://tinyurl.com/pwyasaa/ode2/logistic_func.py
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Fig. E.2 Plot of the solution of the ODE problem u0 D 0:2u.1 � u/, u.0/ D 0:1

with classes. The other is psychological: when doing class programming one often
puts more efforts into making more functions, a complete module, a user inter-
face, more testing, etc. A function-based approach, and in particular the present
“flat” MATLAB-style program, tends to be more ad hoc and contain less general,
reusable code. At least this is the author’s experience over many years when ob-
serving students and professionals create different style of code with different type
of programming techniques.

The style adopted for this class-based example have several important ingredi-
ents motivated by professional programming habits:

� Modules are imported as import module and calls to functions in the module
are therefore prefixed with the module name such that we can easily see where
different functionality comes from.

� All information about the original ODE problem is collected in a class.
� Physical and numerical parameters can be set on the command line.
� The main program is collected in a function.
� The implementation takes the form of a module such that other programs can

reuse the class for representing data in a logistic problem.

The problem class Class Logistic holds the parameters of the ODE problem:
U0, ˛, R, and T as well as the f .u; t/ function. Whether T should be a member of
class Logistic or not is a matter of taste, but the appropriate size of T is strongly
linked to the other parameters so it is natural to specify them together. The number
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of time intervals, n, used in the numerical solution method is not a part of class
Logistic since it influences the accuracy of the solution, but not the qualitative
properties of the solution curve as the other parameters do.

The f .u; t/ function is naturally implemented as a __call__ method such that
the problem instance can act as both an instance and a callable function at the same
time. In addition, we include a __str__ for printing out the ODE problem. The
complete code for the class looks like

class Logistic(object):
"""Problem class for a logistic ODE."""
def __init__(self, alpha, R, U0, T):

self.alpha, self.R, self.U0, self.T = alpha, float(R), U0, T

def __call__(self, u, t):
"""Return f(u,t) for the logistic ODE."""
return self.alpha*u*(1 - u/self.R)

def __str__(self):
"""Return ODE and initial condition."""
return "u’(t) = %g*u*(1 - u/%g), t in [0, %g]\nu(0)=%g" % \

(self.alpha, self.R, self.T, self.U0)

Getting input from the command line We decide to specify ˛, R, U0, T , and n,
in that order, on the command line. A function for converting the command-line
arguments into proper Python objects can be

def get_input():
"""Read alpha, R, U0, T, and n from the command line."""
try:

alpha = float(sys.argv[1])
R = float(sys.argv[2])
U0 = float(sys.argv[3])
T = float(sys.argv[4])
n = float(sys.argv[5])

except IndexError:
print ’Usage: %s alpha R U0 T n’ % sys.argv[0]
sys.exit(1)

return alpha, R, U0, T, n

We have used a standard a try-except block to handle potential errors because
of missing command-line arguments. A more user-friendly alternative would be to
allow option-value pairs such that, e.g., T can be set by –T 40 on the command
line, but this requires more programming (with the argparse module).

Import statements The import statements necessary for the problem solving pro-
cess are written as

import ForwardEuler
import numpy as np
import matplotlib.pyplot as plt
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The two latter statements with their abbreviations have evolved as a standard in
Python code for scientific computing.

Solving the problem The remaining necessary statements for solving a logistic
problem are collected in a function

def logistic():
alpha, R, U0, T, n = get_input()
problem = Logistic(alpha=alpha, R=R, U0=U0)
solver = ForwardEuler.ForwardEuler(problem)
solver.set_initial_condition(problem.U0)
time_points = np.linspace(0, T, n+1)
u, t = solver.solve(time_points)

plt.plot(t, u)
plt.xlabel(’t’); plt.ylabel(’u’)
plt.title(’Logistic growth: alpha=%s, R=%g, dt=%g’

% (problem.alpha, problem.R, t[1]-t[0]))
plt.savefig(’tmp.pdf’); plt.savefig(’tmp.png’)
plt.show()

Making a module Everything we have created is either a class or a function. The
only remaining task to ensure that the file is a proper module is to place the call to
the “main” function logistic in a test block:

if __name__ == ’__main__’:
logistic()

The complete module is called logistic_class.py.

Pros and cons of the class-based approach If we quickly need to solve an ODE
problem, it is tempting and efficient to go for the function-based code, because it
is more direct and much shorter. A class-based module, with a user interface and
often also test functions, usually gives more high-quality code that pays off when
the software is expected to have a longer life time and will be extended to more
complicated problems.

A pragmatic approach is to first make a quick function-based code, but refactor
that code to a more reusable and extensible class version with test functions when
you experience that the code frequently undergo changes. The present simple lo-
gistic ODE problem is, in my honest opinion, not complicated enough to defend
a class version for practical purposes, but the primary goal here was to use a very
simple mathematical problem for illustrating class programming.

E.2 Systems of Ordinary Differential Equations

The software developed so far in this appendix targets scalar ODEs of the form
u0 D f .u; t/ with initial condition u.0/ D U0. Our goal now is to build flexible
software for solving scalar ODEs as well as systems of ODEs. That is, we want the
same code to work both for systems and scalar equations.

http://tinyurl.com/pwyasaa/ode2/logistic_class.py
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E.2.1 Mathematical Problem

A scalar ODE involves the single equation

u0.t/ D f .u.t/; t/

with a single function u.t/ as unknown, while a system of ODEs involves n scalar
ODEs and consequently n unknown functions. Let us denote the unknown functions
in the system by u.i/.t/, with i as a counter, i D 0; : : : ; m � 1. The system of n

ODEs can then be written in the following abstract form:

du.0/

dt
D f .0/.u.0/; u.1/; : : : ; u.m�1/; t/; (E.21)

:::

du.i/

dt
D f .i/.u.0/; u.1/; : : : ; u.m�1/; t/; (E.22)

:::

du.m�1/

dt
D f .m�1/.u.0/; u.1/; : : : ; u.m�1/; t/; (E.23)

In addition, we need n initial conditions for the n unknown functions:

u.i/.0/ D U
.i/
0 ; i D 0; : : : ; m � 1 : (E.24)

Instead of writing out each equation as in (E.21)–(E.23), mathematicians like to
collect the individual functions u.0/; u.1/; : : : ; u.m�1/ in a vector

u D .u.0/; u.1/; : : : ; u.m�1// :

The different right-hand-side functions f .0/; f .1/; : : : ; f .m�1/ in (E.21)–(E.23) can
also be collected in a vector

f D .f .0/; f .1/; : : : ; f .m�1// :

Similarly, we put the initial conditions also in a vector

U0 D .U
.0/
0 ; U

.1/
0 ; : : : ; U

.m�1/
0 / :

With the vectors u, f , and U0, we can write the ODE system (E.21)–(E.23) with
initial conditions (E.24) as

u0 D f .u; t/; u.0/ D U0 : (E.25)

This is exactly the same notation as we used for a scalar ODE (!). The power of
mathematics is that abstractions can be generalized so that new problems look like
the familiar ones, and very often methods carry over to the new problems in the new
notation without any changes. This is true for numerical methods for ODEs too.
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Let us apply the Forward Euler scheme to each of the ODEs in the system (E.21)–
(E.23):

u
.0/

kC1 D u
.0/

k C�tf .0/.u
.0/

k ; u
.1/

k ; : : : ; u
.m�1/

k ; tk/; (E.26)

:::

u
.i/

kC1 D u
.i/

k C�tf .i/.u
.0/

k ; u
.1/

k ; : : : ; u
.m�1/

k ; tk/; (E.27)

:::

u
.m�1/

kC1 D u
.m�1/

k C�tf .m�1/.u
.0/

k ; u
.1/

k ; : : : ; u
.m�1/

k ; tk/; (E.28)

Utilizing the vector notation, (E.26)–(E.28) can be compactly written as

ukC1 D uk C�tf .uk ; tk/; (E.29)

and this is again nothing but the formula we had for the Forward Euler scheme
applied to a scalar ODE.

To summarize, the notation u0 D f .u; t/, u.0/ D U0, is from now on used both
for scalar ODEs and for systems of ODEs. In the former case, u and f are scalar
functions, while in the latter case they are vectors. This great flexibility carries over
to programming too: we can develop code for u0 D f .u; t/ that works for scalar
ODEs and systems of ODEs, the only difference being that u and f correspond to
float objects for scalar ODEs and to arrays for systems of ODEs.

E.2.2 Example of a System of ODEs

An oscillating spring-mass system can be governed by a second-order ODE (see
(D.8) in Appendix D for derivation):

mu00 C ˇu0 C ku D F.t/; u.0/ D U0; u0.0/ D 0 : (E.30)

The parameters m, ˇ, and k are known and F.t/ is a prescribed function. This
second-order equation can be rewritten as two first-order equations by introducing
two functions,

u.0/.t/ D u.t/; u.1/.t/ D u0.t/ :

The unknowns are now the position u.0/.t/ and the velocity u.1/.t/. We can then
create equations where the derivative of the two new primary unknowns u.0/ and
u.1/ appear alone on the left-hand side:

d

dt
u.0/.t/ D u.1/.t/; (E.31)

d

dt
u.1/.t/ D m�1.F.t/ � ˇu.1/ � ku.0// : (E.32)

We write this system as u0.t/ D f .u; t/ where now u and f are vectors, here of
length two:

u.t/ D .u.0/.t/; u.1/.t//

f .t; u/ D .u.1/; m�1.F.t/ � ˇu.1/ � ku.0/// : (E.33)
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Note that the vector u.t/ is different from the quantity u in (E.30)! There are, in
fact, several interpretation of the symbol u, depending on the context: the exact
solution u of (E.30), the numerical solution u of (E.30), the vector u in a rewrite
of (E.30) as a first-order ODE system, and the array u in the software, holding the
numerical approximation to u.t/ D .u.0/.t/; u.1/.t//.

E.2.3 Function Implementation

Let us have a look at how the software from Sects. E.1.3–E.1.6 changes if we try
to apply it to systems of ODEs. We start with the ForwardEuler function listed in
Sect. E.1.3 and the specific system from Sect. E.2.2. The right-hand-side function
f(u, t) must now return the vector in (E.33), here as a NumPy array:

def f(u, t):
return np.array([u[1], 1./m*(F(t) - beta*u[1] - k*u[0])])

Note that u is an array with two components, holding the values of the two unknown
functions u.0/.t/ and u.1/.t/ at time t.

The initial conditions can also be specified as an array

U0 = np.array([0.1, 0])

What happens if we just send these f and U0 objects to the ForwardEuler func-
tion? To answer the question, we must examine each statement inside the function
to see if the Python operations are still valid. But of greater importance, we must
check that the right mathematics is carried out.

The first failure occurs with the statement

u = np.zeros(n+1) # u[k] is the solution at time t[k]

Now, u should be an array of arrays, since the solution at each time level is an array.
The length of U0 gives information on how many equations and unknowns there are
in the system. An updated code is

if isinstance(U0, (float,int)):
u = np.zeros(n+1)

else:
neq = len(U0)
u = np.zeros((n+1,neq))

Fortunately, the rest of the code now works regardless of whether u is a one- or
two-dimensional array. In the former case, u[k+1] = u[k] + ... involves com-
putations with float objects only, while in the latter case, u[k+1] picks out row
k C 1 in the two-dimensional array u. This row is the array with the two unknown
values at time tkC1: u.0/.tkC1/ and u.1/.tkC1/. The statement u[k+1] = u[k] +

... then involves array arithmetics with arrays of length two in this specific exam-
ple.
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Allowing lists The specification of f and U0 using arrays is not as readable as
a plain list specification:

def f(u, t):
return [u[1], 1./m*(F(t) - beta*u[1] - k*u[0])]

U0 = [0.1, 0]

Users would probably prefer the list syntax. With a little adjustment inside the
modified ForwardEuler function we can allow lists, tuples, or arrays for U0 and as
return objects from f. With U0 we just do

U0 = np.asarray(U0)

since np.asarray will just return U0 if it already is an array and otherwise copy
the data to an array.

The situation is a bit more demanding with the f function. The array operation
dt*f(u[k], t[k]) will not work unless f really returns an array (since lists or
tuples cannot be multiplied by a scalar dt). A trick is to wrap a function around the
user-provided right-hand-side function:

def ForwardEuler(f_user, dt, U0, T):
def f(u, t):

return np.asarray(f_user(u, t))
...

Now, dt*f(u[k], t[k]) will call f, which calls the user’s f_user and turns
whatever is returned from that function into a NumPy array. A more compact syntax
arises from using a lambda function (see Sect. 3.1.14):

def ForwardEuler(f_user, dt, U0, T):
f = lambda u, t: np.asarray(f_user(u, t))
...

The file ForwardEuler_sys_func.py contains the complete code. Verifica-
tion of the implementation in terms of a test function is lacking, but Exercise E.24
encourages you to write such a function.

Let us apply the software to solve the equation u00Cu D 0, u.0/ D 0, u0.0/ D 1,
with solution u.t/ D sin.t/ and u0.t/ D cos.t/. The corresponding first-order ODE
system is derived in Sect. E.2.2. The right-hand side of the system is in the present
case .u.1/;�u.0//. The following Python function solves the problem

def demo(T=8*np.pi, n=200):
def f(u, t):

return [u[1], -u[0]]

U0 = [0, 1]
u, t = ForwardEuler(f, U0, T, n)
u0 = u[:,0]

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_sys_func.py
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Fig. E.3 Comparison of large (left) and small (right) time step when solving u00 C u D 0 by the
Forward Euler method

# Plot u0 vs t and compare with exact solution sin(t)
from matplotlib.pyplot import plot, show, savefig, legend
plot(t, u0, ’r-’, t, np.sin(t), ’b--’)
legend([’ForwardEuler, n=%d’ % n, ’exact’], loc=’upper left’)
savefig(’tmp.pdf’)
show()

Storage of the solution of ODE systems

When solving systems of ODEs, the computed solution u is a two-dimensional
array where u[k,i] holds the unknown function number i at time point number
k: u.i/.tk/. Hence, to grab all the values associated with u.0/, we fix i as 0 and
let the k index take on all its legal values: u[:,0]. This slice of the u array
refers to the piece of u where the discrete values u.0/.t0/; u.0/.t1/; : : : ; u.0/.tn/

are stored. The remaining part of u, u[:,1], holds all the discrete values of the
computed u0.t/.

From visualizing the solution, see Fig. E.3, we realize that the Forward Euler
method leads to a growing amplitude, while the exact solution has a constant am-
plitude. Fortunately, the amplification effect is reduced when �t is reduced, but
other methods, especially the 4th-order Runge-Kutta method, can solve this prob-
lem much more efficiently, see Sect. E.3.7.

To really understand how we generalized the code for scalar ODEs to systems of
ODEs, it is recommended to do Exercise E.25.

E.2.4 Class Implementation

A class version of code in the previous section naturally starts with class
ForwardEuler from Sect. E.1.7. The first task is to make similar adjustments
of the code as we did for the ForwardEuler function: the trick with the lambda
function for allowing the user’s f to return a list is introduced in the constructor,
and distinguishing between scalar and vector ODEs is required where self.U0 and
self.u are created. The complete class looks as follows:
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class ForwardEuler(object):
"""
Class for solving a scalar of vector ODE,

du/dt = f(u, t)

by the ForwardEuler solver.

Class attributes:
t: array of time values
u: array of solution values (at time points t)
k: step number of the most recently computed solution
f: callable object implementing f(u, t)
"""
def __init__(self, f):

if not callable(f):
raise TypeError(’f is %s, not a function’ % type(f))

self.f = lambda u, t: np.asarray(f(u, t))

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1
else: # system of ODEs

U0 = np.asarray(U0)
self.neq = U0.size

self.U0 = U0

def solve(self, time_points):
"""Compute u for t values in time_points list."""
self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

# Assume self.t[0] corresponds to self.U0
self.u[0] = self.U0

# Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

You are strongly encouraged to do Exercise E.26 to understand class
ForwardEuler listed above. This will also be an excellent preparation for the
further generalizations of class ForwardEuler in Sect. E.3.
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E.3 The ODESolver Class Hierarchy

This section takes class ForwardEuler from Sect. E.2.4 as a starting point for
creating more flexible software where the user can switch problem and numerical
method with very little coding. Also, the developer of the tool must be able to
include a new numerical method with a minimum of coding. These requirements
can be met by utilizing object-oriented programming. Recommended background
material consists of Sects. 9.1–9.3.

E.3.1 Numerical Methods

Numerical methods for ODEs compute approximations uk to the exact solution u at
discrete time levels tk , k D 1; 2; 3; : : :. Some of the simplest, but also most widely
used methods for ODEs are listed below.

The Forward Euler method has the formula

ukC1 D uk C�t f .uk ; tk/; �t D tkC1 � tk : (E.34)

The Leapfrog method (also called the Midpoint method) involves three time levels
and is written as

ukC1 D uk�1 C 2�tf .uk; tk/; 2�t D tkC1 � tk�1 (E.35)

for k D 1; 2; : : :. The computation of u1 requires u�1, which is unknown, so for
the first step we must use another method, for instance, (E.34). Heun’s method is
a two-step procedure,

u� D uk C�tf .uk; tk/; (E.36)

ukC1 D uk C
1

2
�tf .uk ; tk/C 1

2
�tf .u�; tkC1/; (E.37)

with �t D tkC1 � tk . A closely related technique is the 2nd-order Runge-Kutta

method, commonly written as

ukC1 D uk CK2 (E.38)

where

K1 D �t f .uk; tk/; (E.39)

K2 D �t f .uk C
1

2
K1; tk C

1

2
�t/; (E.40)

with �t D tkC1 � tk .
The perhaps most famous and most widely used method for solving ODEs is the

4th-order Runge-Kutta method:

ukC1 D uk C
1

6
.K1 C 2K2 C 2K3 CK4/ ; (E.41)
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where

K1 D �t f .uk ; tk/; (E.42)

K2 D �t f .uk C
1

2
K1; tk C

1

2
�t/; (E.43)

K3 D �t f .uk C
1

2
K2; tk C

1

2
�t/; (E.44)

K4 D �t f .uk CK3; tk C�t/; (E.45)

and �t D tkC1 � tk . Another common technique is the 3rd-order Adams-Bashforth

method:

ukC1 D uk C
�t

12
.23f .uk; tk/� 16f .uk�1; tk�1/C 5f .uk�2; tk�2// ; (E.46)

with �t constant. To start the scheme, one can apply a 2nd-order Runge-Kutta
method or Heun’s method to compute u1 and u2 before (E.46) is applied for k � 2.
A more complicated solution procedure is the Midpoint method with iterations:

vq D uk C
1

2
�t
�

f .vq�1; tkC1/C f .uk ; tk/
	

; (E.47)

q D 1; : : : ; N; v0 D uk

ukC1 D vN : (E.48)

At each time level, one runs the formula (E.47) N times, and the value vN becomes
ukC1. Setting N D 1 recovers the Forward Euler scheme if f is independent of t ,
while N D 2 corresponds to Heun’s method. We can either fix the value of N , or
we can repeat (E.47) until the change in vq is small, that is, until jvq � vq�1j < �,
where � is a small value.

Finally, we mention the Backward Euler method:

ukC1 D uk C�t f .ukC1; tkC1/; �t D tkC1 � tk : (E.49)

If f .u; t/ is nonlinear in u, (E.49) constitutes a nonlinear equation in ukC1, which
must be solved by some method for nonlinear equations, say Newton’s method.

All the methods listed above are valid both for scalar ODEs and for systems of
ODEs. In the system case, the quantities u, uk, ukC1, f , K1, K2, etc., are vectors.

E.3.2 Construction of a Solver Hierarchy

Section E.2.4 presents a class ForwardEuler for implementing the Forward Eu-
ler scheme (E.34) both for scalar ODEs and systems. Only the advance method
should be necessary to change in order to implement other numerical methods.
Copying the ForwardEuler class and editing just the advance method is con-
sidered bad programming practice, because we get two copies the general parts of
class ForwardEuler. As we implement more schemes, we end up with a lot of
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copies of the same code. Correcting an error or improving the code in this general
part therefore requires identical edits in several almost identical classes.

A good programming practice is to collect all the common code in a super-
class. Subclasses can implement the advance method, but share the constructor,
the set_initial_conditionmethod, and the solve method with the superclass.

The superclass We introduce class ODESolver as the superclass of various numer-
ical methods for solving ODEs. Class ODESolver should provide all functionality
that is common to all numerical methods for ODEs:

� hold the solution u.t/ at discrete time points in an array u

� hold the corresponding time values t
� hold information about the f .u; t/ function, i.e., a callable Python object f(u,

t)

� hold the current time step number k in a data attribute k
� hold the initial condition U0

� implement the loop over all time steps

As already outlined in class ForwardEuler in Sects. E.1.7 and E.2.4, we implement
the last point as two methods: solve for performing the time loop and advance for
advancing the solution one time step. The latter method is empty in the superclass
since the method is to be implemented by various subclasses for various specific
numerical schemes.

A first version of class ODESolver follows directly from class ForwardEuler
in Sect. E.1.7, but letting advance be an empty method. However, there is one
more extension which will be handy in some problems, namely a possibility for
the user to terminate the simulation if the solution has certain properties. Throwing
a ball yields an example: the simulation should be stopped when the ball hits the
ground, instead of simulating an artificial movement down in the ground until the
final time T is reached. To implement the requested feature, the user can provide
a function terminate(u, t, step_no), which returns True if the time loop is be
terminated. The arguments are the solution array u, the corresponding time points
t, and the current time step number step_no. For example, if we want to solve an
ODE until the solution is (close enough to) zero, we can supply the function

def terminate(u, t, step_no):
eps = 1.0E-6 # small number
return abs(u[step_no]) < eps # close enough to zero?

The terminate function is an optional argument to the solve method. By default,
a function that always returns False is used.

The suggested code for the superclass ODESolver takes the following form:

class ODESolver(object):
def __init__(self, f):

self.f = lambda u, t: np.asarray(f(u, t), float)

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError
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def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0)
self.neq = U0.size

self.U0 = U0

def solve(self, time_points, terminate=None):
if terminate is None:

terminate = lambda u, t, step_no: False

self.t = np.asarray(time_points)
n = self.t.size
if self.neq == 1: # scalar ODEs

self.u = np.zeros(n)
else: # systems of ODEs

self.u = np.zeros((n,self.neq))

# Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

# Time loop
for k in range(n-1):

self.k = k
self.u[k+1] = self.advance()
if terminate(self.u, self.t, self.k+1):

break # terminate loop over k
return self.u[:k+2], self.t[:k+2]

Note that we return just the parts of self.u and self.t that have been filled with
values (the rest are zeroes): all elements up to the one with index k+1 are computed
before terminate may return True. The corresponding slice of the array is then
:k+2 since the upper limit is not included in the slice. If terminate never returns
True we simply have that :k+1 is the entire array.

The Forward Euler method Subclasses implement specific numerical formulas
for numerical solution of ODEs in the advancemethod. The Forward Euler scheme
(E.34) is implemented by defining the subclass name and copying the advance

method from the ForwardEuler class in Sect. E.1.7 or E.1.7:

class ForwardEuler(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
u_new = u[k] + dt*f(u[k], t[k])
return u_new

Remark on stripping off the self prefix

When we extract data attributes to local variables with short names, we should
only use these local variables for reading values, not setting values. For example,
if we do a k += 1 to update the time step counter, that increased value is not re-
flected in self.k (which is the “official” counter). On the other hand, changing
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a list in-place, say u[k+1] = ..., is reflected in self.u. Extracting data at-
tributes in local variables is done for getting the code closer to the mathematics,
but has a danger of introducing bugs that might be hard to track down.

The 4th-order Runge-Kutta method Below is an implementation of the 4th-order
Runge-Kutta method (E.41):

class RungeKutta4(ODESolver):
def advance(self):

u, f, k, t = self.u, self.f, self.k, self.t
dt = t[k+1] - t[k]
dt2 = dt/2.0
K1 = dt*f(u[k], t[k])
K2 = dt*f(u[k] + 0.5*K1, t[k] + dt2)
K3 = dt*f(u[k] + 0.5*K2, t[k] + dt2)
K4 = dt*f(u[k] + K3, t[k] + dt)
u_new = u[k] + (1/6.0)*(K1 + 2*K2 + 2*K3 + K4)
return u_new

It is left as exercises to implement other numerical methods in the ODESolver

class hierarchy. However, the Backward Euler method (E.49) requires a much more
advanced implementation than the other methods so that particular method deserves
its own section.

E.3.3 The Backward Euler Method

The Backward Euler scheme (E.49) leads in general to a nonlinear equation at a new
time level, while all the other schemes listed in Sect. E.3.1 have a simple formula
for the new ukC1 value. The nonlinear equation reads

ukC1 D uk C�t f .ukC1; tkC1/ :

For simplicity we assume that the ODE is scalar so the unknown ukC1 is a scalar.
It might be easier to see that the equation for ukC1 is nonlinear if we rearrange the
equation to

F.w/ � w ��tf .w; tkC1/ � uk D 0; (E.50)

where w D ukC1. If now f .u; t/ is a nonlinear function of u, F.w/ will also be
a nonlinear function of w.

To solve F.w/ D 0 we can use the Bisection method from Sect. 4.11.2, New-
ton’s method from Sect. A.1.10, or the Secant method from Exercise A.10. Here we
apply Newton’s method and the implementation given in src/diffeq/Newton.py.
A disadvantage with Newton’s method is that we need the derivative of F with re-
spect to w, which requires the derivative @f .w; t/=@w. A quick solution is to use
a numerical derivative, e.g., class Derivative from Sect. 7.3.2.

We make a subclass BackwardEuler. As we need to solve F.w/ D 0 at every
time step, we also need to implement the F.w/ function. This is conveniently done
in a local function inside the advance method:

http://tinyurl.com/pwyasaa/diffeq/Newton.py
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def advance(self):
u, f, k, t = self.u, self.f, self.k, self.t

def F(w):
return w - dt*f(w, t[k+1]) - u[k]

dFdw = Derivative(F)
w_start = u[k] + dt*f(u[k], t[k]) # Forward Euler step
u_new, n, F_value = self.Newton(F, w_start, dFdw, N=30)
if n >= 30:

print "Newton’s failed to converge at t=%g "\
"(%d iterations)" % (t, n)

return u_new

The local variables in the advance function, such as dt and u, act as “global”
variables for the F function. Hence, when F is sent away to some self.Newton

function, F remembers the values of dt, f, t, and u (!). The derivative dF=dw is
in our advance function computed numerically by a class Derivative, which is
a slight modification of the similar class in Sect. 7.3.2, because we now want to use
a more accurate, centered formula:

class Derivative(object):
def __init__(self, f, h=1E-5):

self.f = f
self.h = float(h)

def __call__(self, x):
f, h = self.f, self.h
return (f(x+h) - f(x-h))/(2*h)

This code is included in the ODESolver.py file.
The next step is to call Newton’s method. For this purpose we need to import

the Newton function from the Newton module. The Newton.py file must then
reside in the same directory as ODESolver.py, or Newton.py must be in one of
the directories listed in the sys.path list or the PYTHONPATH environment variable
(see Sect. 4.9.7).

Having the Newton(f, x_start, dfdx, N) function from Sect. A.1.10 ac-
cessible in our ODESolver.py file, we can make a call and supply our F function as
the argument f, a start value for the iteration, here called w_start, as the argument
x, and the derivative dFdw for the argument dfdx. We rely on default values for the
epsilon and store arguments, while the maximum number of iterations is set to
N=30. The program is terminated if it happens that the number of iterations exceeds
that value, because then the method is not considered to have converged (at least
not quickly enough), and we have consequently not been able to compute the next
ukC1 value.

The starting value for Newton’s method must be chosen. As we expect the so-
lution to not change much from one time level to the next, uk could be a good
initial guess. However, we can do better by using a simple Forward Euler step
uk C�tf .uk ; tk/, which is exactly what we do in the advance function above.

http://tinyurl.com/pwyasaa/ode2/ODESolver.py
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Since Newton’s method always has the danger of converging slowly, it can be
interesting to store the number of iterations at each time level as a data attribute in
the BackwardEuler class. We can easily insert extra statement for this purpose:

def advance(self):
...
u_new, n, F_value = Newton(F, w_start, dFdw, N=30)
if k == 0:

self.Newton_iter = []
self.Newton_iter.append(n)
...

Note the need for creating an empty list (at the first call of advance) before we can
append elements.

There is now one important question to ask: will the advance method work for
systems of ODEs? In that case, F.w/ is a vector of functions. The implementa-
tion of F will work when w is a vector, because all the quantities involved in the
formula are arrays or scalar variables. The dFdw instance will compute a numeri-
cal derivative of each component of the vector function dFdw.f (which is simply
our F function). The call to the Newton function is more critical: It turns out that
this function, as the algorithm behind it, works for scalar equations only. Newton’s
method can quite easily be extended to a system of nonlinear equations, but we do
not consider that topic here. Instead we equip class BackwardEuler with a con-
structor that calls the f object and controls that the returned value is a float and
not an array:

class BackwardEuler(ODESolver):
def __init__(self, f):

ODESolver.__init__(self, f)
# Make a sample call to check that f is a scalar function:
try:

u = np.array([1]); t = 1
value = f(u, t)

except IndexError: # index out of bounds for u
raise ValueError(’f(u,t) must return float/int’)

Observe that we must explicitly call the superclass constructor and pass on the
argument f to achieve the right storage and treatment of this argument.

Understanding class BackwardEuler implies a good understanding of classes
in general; a good understanding of numerical methods for ODEs, for numerical
differentiation, and for finding roots of functions; and a good understanding on how
to combine different code segments from different parts of the book. Therefore, if
you have digested class BackwardEuler, you have all reasons to believe that you
have digested the key topics of this book.

E.3.4 Verification

The fundamental problem with testing approximate numerical methods is that we do
not normally know what the output from the computer should be. In some special



786 E Programming of Differential Equations

cases, however, we can find an exact solution of the discretized problem that the
computer program solves. This exact solution should be reproduced to machine
precision by the program. It turns out that most numerical methods for ordinary
differential equations are able to exactly reproduce a linear solution. That is, if
the solution of the differential equation is u D at C b, the numerical method will
produce the same solution: uk D ak�t C b. We can use this knowledge to make
a test function for verifying our implementations.

Let u D at C b be the solution of the test problem. A corresponding ODE is
obviously u0 D a, with u.0/ D b. A more demanding ODE arises from adding
a term that is zero, e.g., .u � .at C b//5. We therefore aim to solve

u0 D aC .u � .at C b//5; u.0/ D b :

Our test function loops over registered solvers in the ODESolver hierarchy,
solves the test problem, and checks that the maximum deviation between the com-
puted solution and the exact linear solution is within a tolerance:

registered_solver_classes = [
ForwardEuler, RungeKutta4, BackwardEuler]

def test_exact_numerical_solution():
a = 0.2; b = 3

def f(u, t):
return a + (u - u_exact(t))**5

def u_exact(t):
"""Exact u(t) corresponding to f above."""
return a*t + b

U0 = u_exact(0)
T = 8
n = 10
tol = 1E-15
t_points = np.linspace(0, T, n)
for solver_class in registered_solver_classes:

solver = solver_class(f)
solver.set_initial_condition(U0)
u, t = solver.solve(t_points)
u_e = u_exact(t)
max_error = (u_e - u).max()
msg = ’%s failed with max_error=%g’ % \

(solver.__class__.__name__, max_error)
assert max_error < tol, msg

Note how we can make a loop over class types (because the class is an ordinary
object in Python). New subclasses can add their class type to the registered_

solver_classes list and the test function will include such new classes in the test
as well.

Remarks A more general testing technique is based on knowing how the error in
a numerical method varies with the discretization parameter, here �t . Say we know
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that a particular method has an error that decays as �t2. In a problem where the
exact analytical solution is known, we can run the numerical method for several
values of �t and compute the corresponding numerical error in each case. If the
computed errors decay like �t2, it brings quite strong evidence for a correct imple-
mentation. Such tests are called convergence tests and constitute the most general
tool we have for verifying implementations of numerical algorithms. Exercise E.37
gives an introduction to the topic.

E.3.5 Example: Exponential Decay

Let us apply the classes in the ODESolver hierarchy to see how they solve the
perhaps simplest of all ODEs: u0 D �u, with initial condition u.0/ D 1. The exact
solution is u.t/ D e�t , which decays exponentially with time. Application of class
ForwardEuler to solve this problem requires writing the following code:

import ODESolver

def f(u, t):
return -u

solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(1.0)
t_points = linspace(0, 3, 31)
u, t = solver.solve(t_points)
plot(t, u)

We can run various values of �t to see the effect on the accuracy:

# Test various dt values and plot
figure()
legends = []
T = 3
for dt in 2.0, 1.0, 0.5, 0.1:

n = int(round(T/dt))
solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(1)
u, t = solver.solve(linspace(0, T, n+1))
plot(t, u)
legends.append(’dt=%g’ % dt)
hold(’on’)

plot(t, exp(-t), ’bo’)
legends.append(’exact’)
legend(legends)

Figure E.4 shows alarming results. With �t D 2 we get a completely wrong solu-
tion that becomes negative and then increasing. The value �t D 1 gives a peculiar
solution: uk D 0 for k � 1! Qualitatively correct behavior appears with �t D 0:5,
and the results get quantitatively better as we decrease �t . The solution correspond-
ing to � D 0:1 looks good from the graph.

Such strange results reveal that we most likely have programming errors in our
implementation. Fortunately, we did some verification of the implementations in
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Fig. E.4 Solution of u0 D �u for t 2 Œ0; 3� by the Forward Euler method and �t 2 f2; 1; 0:5; 0:1g

Sect. E.3.4, so it might well happen that what we observe in the experiments are
problems with the numerical method and not with the implementation.

We can in fact easily explain what we observe in Fig. E.4. For the equation in
question, the Forward Euler method computes

u1 D u0 ��tu0 D .1 ��t/u0;

u2 D u1 ��tu1 D .1 ��t/u1 D .1 ��t/2u0;

:::

uk D .1 ��t/ku0 :

With �t D 1 we simply get uk D 0 for k � 1. For �t > 1, 1 � �t < 0,
and .1 � �t/k means raising a negative value to an integer power, which results
in uk > 0 for even k and uk < 0 for odd k. Moreover, jukj decreases with k.
Such a growing, oscillating solution is of course qualitatively wrong when the exact
solution is e�t and monotonically decaying. The conclusion is that the Forward
Euler method gives meaningless results for �t � 1 in the present example.

A particular strength of the ODESolver hierarchy of classes is that we can
trivially switch from one method to another. For example, we may demonstrate
how superior the 4-th order Runge-Kutta method is for this equation: just replace
ForwardEuler by RungeKutta4 in the previous code segment and re-run the
program. It turns out that the 4-th order Runge-Kutta method gives a monotonically
decaying numerical solution for all the tested �t values. In particular, the solutions
corresponding to �t D 0:5 and �t D 0:1 are visually very close to the exact
solution. The conclusion is that the 4-th order Runge-Kutta method is a safer and
more accurate method.
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Fig. E.5 Comparison of the Forward Euler and the 4-th order Runge-Kutta method for solving
u0 D �u for t 2 Œ0; 3� and a time step �t D 0:5

Let us compare the two numerical methods in the case where �t D 0:5:

# Test ForwardEuler vs RungeKutta4
figure()
legends = []
T = 3
dt = 0.5
n = int(round(T/dt))
t_points = linspace(0, T, n+1)
for solver_class in ODESolver.RungeKutta4, ODESolver.ForwardEuler:

solver = solver_class(f)
solver.set_initial_condition(1)
u, t = solver.solve(t_points)
plot(t, u)
legends.append(’%s’ % solver_class.__name__)
hold(’on’)

plot(t, exp(-t), ’bo’)
legends.append(’exact’)
legend(legends)

Figure E.5 illustrates that differences in accuracy between the two methods. The
complete program can be found in the file app1_decay.py.

E.3.6 Example: The Logistic Equation with Problem and Solver
Classes

The logistic ODE (E.5) is copied here for convenience:

u0.t/ D ˛u.t/

�

1 � u.t/

R

�

; u.0/ D U0 :

http://tinyurl.com/pwyasaa/ode2/app1_decay.py
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The right-hand side contains the parameters ˛ and R. We know that u ! R as
t ! 1, so at some point Ot in time we have approached the asymptotic value
u D R within a sufficiently small tolerance and should stop the simulation. This
can be done by providing a function as the tolerance argument in the solve

method.

Basic problem and solver classes Let us, as in Sect. E.1.9, implement the
problem-dependent data in a class. This time we store all user-given physical
data in the class:

import ODESolver
from scitools.std import plot, figure, savefig, title, show
#from matplotlib.pyplot import plot, figure, savefig, title, show
import numpy as np

class Problem(object):
def __init__(self, alpha, R, U0, T):

"""
alpha, R: parameters in the ODE.
U0: initial condition.
T: max length of time interval for integration;
asympotic value R must be reached within 1%
accuracy for some t <= T.
"""
self.alpha, self.R, self.U0, self.T = alpha, R, U0, T

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R)

def terminate(self, u, t, step_no):
"""Return True when asymptotic value R is reached."""
tol = self.R*0.01
return abs(u[step_no] - self.R) < tol

def __str__(self):
"""Pretty print of physical parameters."""
return ’alpha=%g, R=%g, U0=%g’ % \

(self.alpha, self.R, self.U0)

Note that the tolerance used in the terminatemethod is made dependent on the
size of R: ju � Rj=R < 0:01. For example, if R D 1000 we say the asymptotic
value is reached when u � 990. Smaller tolerances will just lead to a solution curve
where large parts of it show the boring behavior u � R.

The solution is obtained the usual way by short code:

solver = ODESolver.RungeKutta4(problem)
solver.set_initial_condition(problem.U0)
dt = 1.0
n = int(round(problem.T/dt))
t_points = np.linspace(0, T, n+1)
u, t = solver.solve(t_points, problem.terminate)
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Let us pack these statements into a class Solver, which has two methods: solve
and plot, and add some documentation and flexibility. The code may look like

class Solver(object):
def __init__(self, problem, dt,

method=ODESolver.ForwardEuler):
"""
problem: instance of class Problem.
dt: time step.
method: class in ODESolver hierarchy.
"""
self.problem, self.dt = problem, dt
self.solver = method

def solve(self):
solver = self.method(self.problem)
solver.set_initial_condition(self.problem.U0)
n = int(round(self.problem.T/self.dt))
t_points = np.linspace(0, self.problem.T, n+1)
self.u, self.t = solver.solve(t_points,

self.problem.terminate)

# The solution terminated if the limiting value was reached
if solver.k+1 == n: # no termination - we reached final T

self.plot()
raise ValueError(

’termination criterion not reached, ’\
’give T > %g’ % self.problem.T)

def plot(self):
filename = ’logistic_’ + str(self.problem) + ’.pdf’
plot(self.t, self.u)
title(str(self.problem) + ’, dt=%g’ % self.dt)
savefig(filename)
show()

Problem-dependent data related to the numerical quality of the solution, such as
the time step here, go to the Solver class. That is, class Problem contains the
physics and class Solver the numerics of the problem under investigation.

If the last computed time step, solver.k+1, equals the last possible index, n,
problem.terminate never returned True, which means that the asymptotic limit
was not reached. This is treated as an erroneous condition. To guide the user,
we launch a plot before raising the exception with an instructive message. The
complete code is found in the file app2_logistic.py.

Computing an appropriate �t Choosing an appropriate �t is not always so easy.
The impact of �t can sometimes be dramatic, as demonstrated for the Forward
Euler method in Sect. E.3.5. We could automate the process of finding a suitable
�t : start with a large �t , and keep halving �t until the difference between two
solutions corresponding to two consequtive �t values is small enough.

Say solver is a class Solver instance computed with time step �t and
solver2 is the instance corresponding to a computation with �t=2. Calculat-
ing the difference between solver.u and solver2.u is not trivial as one of the

http://tinyurl.com/pwyasaa/ode2/app2_logistic.py
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arrays has approximately twice as many elements as the other, and the last element
in both arrays does not necessarily correspond to the same time value since the time
stepping and the terminate function may lead to slightly different termination
times.

A solution to these two problems is to turn each of the arrays solver.u

and solver2.u into continuous functions, as explained in Sect. E.1.5, and then
evaluate the difference at some selected time points up to the smallest value of
solver.t[-1] and solver2.t[-1]. The code becomes

# Make continuous functions u(t) and u2(t)
u = wrap2callable((solver. t, solver. u))
u2 = wrap2callable((solver2.t, solver2.u))
# Sample the difference in n points in [0, t_end]
n = 13
t_end = min(solver2.t[-1], solver.t[-1])
t = np.linspace(0, t_end, n)
u_diff = np.abs(u(t) - u2(t)).max()

The next step is to introduce a loop where we halve the time step in each iteration
and solve the logistic ODE with the new time step and compute u_diff as shown
above. A complete function takes the form

def find_dt(problem, method=ODESolver.ForwardEuler,
tol=0.01, dt_min=1E-6):

"""
Return a "solved" class Solver instance where the
difference in the solution and one with a double
time step is less than tol.

problem: class Problem instance.
method: class in ODESolver hierarchy.
tol: tolerance (chosen relative to problem.R).
dt_min: minimum allowed time step.
"""
dt = problem.T/10 # start with 10 intervals
solver = Solver(problem, dt, method)
solver.solve()
from scitools.std import wrap2callable

good_approximation = False
while not good_approximation:

dt = dt/2.0
if dt < dt_min:

raise ValueError(’dt=%g < %g - abort’ % (dt, dt_min))

solver2 = Solver(problem, dt, method)
solver2.solve()

# Make continuous functions u(t) and u2(t)
u = wrap2callable((solver. t, solver. u))
u2 = wrap2callable((solver2.t, solver2.u))

# Sample the difference in n points in [0, t_end]
n = 13
t_end = min(solver2.t[-1], solver.t[-1])



E.3 The ODESolver Class Hierarchy 793

t = np.linspace(0, t_end, n)
u_diff = np.abs(u(t) - u2(t)).max()
print u_diff, dt, tol
if u_diff < tol:

good_approximation = True
else:

solver = solver2
return solver2

Setting the tolerance tol must be done with a view to the typical size of u,
i.e., the size of R. With R D 100 and tol=1, the Forward Euler method meets
the tolerance for �t D 0:25. Switching to the 4-th order Runge-Kutta method
makes �t D 1:625 sufficient to meet the tolerance. Note that although the latter
method can use a significantly larger time step, it also involves four times as many
evaluations of the right-hand side function at each time step.

Finally, we show how to make a class that behaves as class Solver, but with
automatic computation of the time step. If we do not provide a dt parameter to
the constructor, the find_dt function just presented is used to compute dt and the
solution, otherwise we use the standard Solver.solve code. This new class is
conveniently realized as a subclass of Solver where we override the constructor
and the solve method. The plot method can be inherited as is. The code becomes

class AutoSolver(Solver):
def __init__(self, problem, dt=None,

method=ODESolver.ForwardEuler,
tol=0.01, dt_min=1E-6):

Solver.__init__(self, problem, dt, method)
if dt is None:

solver = find_dt(self.problem, method,
tol, dt_min)

self.dt = solver.dt
self.u, self.t = solver.u, solver.t

def solve(self, method=ODESolver.ForwardEuler):
if hasattr(self, ’u’):

# Solution was computed by find_dt in constructor
pass

else:
Solver.solve(self)

The call hasattr(self, ’u’) returns True if u is a data attribute in object
self. Here this is used as an indicator that the solution was computed in the con-
structor by the find_dt function. A typical use is

problem = Problem(alpha=0.1, R=500, U0=2, T=130)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Dealing with time-dependent coefficients The carrying capacity of the environ-
ment, R, may vary with time, e.g., due to seasonal changes. Can we extend the
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previous code so that R can be specified either as a constant or as a function of
time?

This is in fact easy if we in the implementation of the right-hand side function
assume that R is a function of time. If R is given as a constant in the constructor of
class Problem, we just wrap it as a function of time:

if isinstance(R, (float,int)): # number?
self.R = lambda t: R

elif callable(R):
self.R = R

else:
raise TypeError(

’R is %s, has to be number of function’ % type(R))

The terminate method is also affected as we need to base the tolerance on the R

value at the present time level. Also the __str__ method must be changed since it
is not meaningful to print a function self.R. That is, all methods in the generalized
problem class, here called Problem2, must be altered. We have not chosen to make
Problem2 a subclass of Problem, even though the interface is the same and the two
classes are closely related. While Problem is clearly a special case of Problem2,
as a constant R is a special case of a function .R/, the opposite case is not true.

Class Problem2 becomes

class Problem2(Problem):
def __init__(self, alpha, R, U0, T):

"""
alpha, R: parameters in the ODE.
U0: initial condition.
T: max length of time interval for integration;
asympotic value R must be reached within 1%
accuracy for some t <= T.
"""
self.alpha, self.U0, self.T = alpha, U0, T
if isinstance(R, (float,int)): # number?

self.R = lambda t: R
elif callable(R):

self.R = R
else:

raise TypeError(
’R is %s, has to be number of function’ % type(R))

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R(t))

def terminate(self, u, t, step_no):
"""Return True when asymptotic value R is reached."""
tol = self.R(t[step_no])*0.01
return abs(u[step_no] - self.R(t[step_no])) < tol

def __str__(self):
return ’alpha=%g, U0=%g’ % (self.alpha, self.U0)
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Fig. E.6 Solution of the logistic equation u0 D ˛u .1 � u=R.t// when R D 500 for t < 60 and
R D 100 for t � 60

We can compute the case where R D 500 for t < 60 and then reduced to
R D 100 because of an environmental crisis (see Fig. E.6):

problem = Problem2(alpha=0.1, U0=2, T=130,
R=lambda t: 500 if t < 60 else 100)

solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Note the use of a lambda function (Sect. 3.1.14) to save some typing when specify-
ing R. The corresponding graph is made of two parts, basically exponential growth
until the environment changes and then exponential reduction until u approaches
the new R value and the change in u becomes small.

Reading input Our final version of the problem class is equipped with functional-
ity for reading data from the command line in addition to setting data explicitly in
the program. We use the argparse module described in Sect. 4.4. The idea now
is to have a constructor that just sets default values. Then we have a method for
defining the command-line arguments and a method for transforming the argparse
information to the attributes alpha, U0, R, and T. The R attribute is supposed to be
a function, and we use the StringFunction tool to turn strings from the command-
line into a Python function of time t.

The code of our new problem class is listed next.

class Problem3(Problem):
def __init__(self):

# Set default parameter values
self.alpha = 1.
self.R = StringFunction(’1.0’, independent_variable=’t’)
self.U0 = 0.01
self.T = 4.
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def define_command_line_arguments(self, parser):
"""Add arguments to parser (argparse.ArgumentParser)."""

def evalcmlarg(text):
return eval(text)

def toStringFunction(text):
return StringFunction(text, independent_variable=’t’)

parser.add_argument(
’--alpha’, dest=’alpha’, type=evalcmlarg,
default=self.alpha,
help=’initial growth rate in logistic model’)

parser.add_argument(
’--R’, dest=’R’, type=toStringFunction, default=self.R,
help=’carrying capacity of the environment’)

parser.add_argument(
’--U0’, dest=’U0’, type=evalcmlarg, default=self.U0,
help=’initial condition’)

parser.add_argument(
’--T’, dest=’T’, type=evalcmlarg, default=self.T,
help=’integration in time interval [0,T]’)

return parser

def set(self, **kwargs):
"""
Set parameters as keyword arguments alpha, R, U0, or T,
or as args (object returned by parser.parse_args()).
"""
for prm in (’alpha’, ’U0’, ’R’, ’T’):

if prm in kwargs:
setattr(self, prm, kwargs[prm])

if ’args’ in kwargs:
args = kwargs[’args’]
for prm in (’alpha’, ’U0’, ’R’, ’T’):

if hasattr(args, prm):
setattr(self, prm, getattr(args, prm))

else:
print ’Really strange’, dir(args)

def __call__(self, u, t):
"""Return f(u,t) for logistic ODE."""
return self.alpha*u*(1 - u/self.R(t))

def terminate(self, u, t, step_no):
"""Return True when asymptotic value R is reached."""
tol = self.R(t[step_no])*0.01
return abs(u[step_no] - self.R(t[step_no])) < tol

def __str__(self):
s = ’alpha=%g, U0=%g’ % (self.alpha, self.U0)
if isinstance(self.R, StringFunction):

s += ’, R=%s’ % str(self.R)
return s

The calls to parser.add_argument are straightforward, but notice that we
allow strings for ˛, U0, and T to be interpreted by eval. The string for R is in-
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terpreted as a formula by StringFunction. The set method is flexible: it accepts
any set of keyword arguments, and first checks if these are the names of the prob-
lem parameters, and thereafter if args=’ is given, the parameters are taken from
the command line. The rest of the class is very similar to earlier versions.

The typical use of class Problem3 is shown below. First we set parameters
directly:

problem = Problem3()
problem.set(alpha=0.1, U0=2, T=130,

R=lambda t: 500 if t < 60 else 100)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

Then we rely on reading parameters from the command line:

problem = Problem3()
import argparse
parser = argparse.ArgumentParser(

description=’Logistic ODE model’)
parser = problem.define_command_line_arguments(parser)

# Try --alpha 0.11 --T 130 --U0 2 --R ’500 if t < 60 else 300’
args = parser.parse_args()
problem.set(args=args)
solver = AutoSolver(problem, tol=1)
solver.solve(method=ODESolver.RungeKutta4)
solver.plot()

The last example using a problem class integrated with the command line is the
most flexible way of implementing ODE models.

E.3.7 Example: An Oscillating System

The motion of a box attached to a spring, as described in detail in Appendix D,
can be modeled by two first-order differential equations as listed in (E.33), here
repeated with F.t/ D mw00.t/, where the w.t/ function is the forced movement of
the end of the spring.

du.0/

dt
D u.1/;

du.1/

dt
D w00.t/C g �m�1ˇu.1/ �m�1ku.0/ :

The code related to this example is found in app3_osc.py. Because our right-
hand side f contains several parameters, we implement it as a class with the pa-
rameters as data attributes and a __call__ method for returning the 2-vector f .
We assume that the user of the class supplies the w.t/ function, so it is natural to
compute w00.t/ by a finite difference formula.

http://tinyurl.com/pwyasaa/ode2/app3_osc.py
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class OscSystem:
def __init__(self, m, beta, k, g, w):

self.m, self.beta, self.k, self.g, self.w = \
float(m), float(beta), float(k), float(g), w

def __call__(self, u, t):
u0, u1 = u
m, beta, k, g, w = \

self.m, self.beta, self.k, self.g, self.w
# Use a finite difference for w’’(t)
h = 1E-5
ddw = (w(t+h) - 2*w(t) + w(t-h))/(h**2)
f = [u1, ddw + g - beta/m*u1 - k/m*u0]
return f

A simple test case arises if we set m D k D 1 and ˇ D g D w D 0:

du.0/

dt
D u.1/;

du.1/

dt
D �u.0/ :

Suppose that u.0/.0/ D 1 and u.1/.0/ D 0. An exact solution is then

u.0/.t/ D cos t; u.1/.t/ D � sin t :

We can use this case to check how the Forward Euler method compares with the
4-th order Runge-Kutta method:

import ODESolver
from scitools.std import *
#from matplotlib.pyplot import *
legends = []
f = OscSystem(1.0, 0.0, 1.0, 0.0, lambda t: 0)
u_init = [1, 0] # initial condition
nperiods = 3.5 # no of oscillation periods
T = 2*pi*nperiods
for solver_class in ODESolver.ForwardEuler, ODESolver.RungeKutta4:

if solver_class == ODESolver.ForwardEuler:
npoints_per_period = 200

elif solver_class == ODESolver.RungeKutta4:
npoints_per_period = 20

n = npoints_per_period*nperiods
t_points = linspace(0, T, n+1)
solver = solver_class(f)
solver.set_initial_condition(u_init)
u, t = solver.solve(t_points)

# u is an array of [u0,u1] pairs for each time level,
# get the u0 values from u for plotting
u0_values = u[:, 0]
u1_values = u[:, 1]
u0_exact = cos(t)
u1_exact = -sin(t)
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Fig. E.7 Solution of an oscillating system (u00 C u D 0 formulated as system of two ODEs) by
the Forward Euler method with �t D 2�=200 (left), and the 4-th order Runge-Kutta method with
the same time step (right)

figure()
alg = solver_class.__name__ # (class) name of algorithm
plot(t, u0_values, ’r-’,

t, u0_exact, ’b-’)
legend([’numerical’, ’exact’]),
title(’Oscillating system; position - %s’ % alg)
savefig(’tmp_oscsystem_pos_%s.pdf’ % alg)
figure()
plot(t, u1_values, ’r-’,

t, u1_exact, ’b-’)
legend([’numerical’, ’exact’])
title(’Oscillating system; velocity - %s’ % alg)
savefig(’tmp_oscsystem_vel_%s.pdf’ % alg)

show()

For this particular application it turns out that the 4-th order Runge-Kutta is very
accurate, even with few (20) time steps per oscillation. Unfortunately, the Forward
Euler method leads to a solution with increasing amplitude in time. Figure E.7
shows a comparison between the two methods. Note that the Forward Euler method
uses 10 times as many time steps as the 4-th order Runge-Kutta method and is still
much less accurate. A very much smaller time step is needed to limit the growth of
the Forward Euler scheme for oscillating systems.

E.3.8 Application 4: The Trajectory of a Ball

Exercise 1.13 derives the following two second-order differential equations for the
motion of a ball (neglecting air resistance):

d 2x

dt2
D 0; (E.51)

d 2y

dt2
D �g; (E.52)

where .x; y/ is the position of the ball (x is a horizontal measure and y is a ver-
tical measure), and g is the acceleration of gravity. To use numerical methods for
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first-order equations, we must rewrite the system of two second-order equations
as a system of four first-order equations. This is done by introducing to new un-
knowns, the velocities vx D dx=dt and vy D dy=dt . We then have the first-order
system of ODEs

dx

dt
D vx ; (E.53)

dvx

dt
D 0; (E.54)

dy

dt
D vy ; (E.55)

dvy

dt
D �g : (E.56)

The initial conditions are

x.0/ D 0; (E.57)

vx.0/ D v0 cos �; (E.58)

y.0/ D y0; (E.59)

vy.0/ D v0 sin �; (E.60)

where v0 is the initial magnitude of the velocity of the ball. The initial velocity has
a direction that makes the angle � with the horizontal.

The code related to this example is found in app4_ball.py. A function return-
ing the right-hand side of our ODE system reads

def f(u, t):
x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

It makes sense to solve the ODE system as long as the ball as above the ground, i.e.,
as long as y � 0. We must therefore supply a terminate function as explained in
Sect. E.3:

def terminate(u, t, step_no):
y = u[:,2] # all the y coordinates
return y[step_no] < 0

Observe that all the y values are given by u[:,2] and we want to test the value at
the current step, which becomes u[step_no,2].

The main program for solving the ODEs can be set up as

v0 = 5
theta = 80*pi/180
U0 = [0, v0*cos(theta), 0, v0*sin(theta)]
T = 1.2; dt = 0.01; n = int(round(T/dt))

http://tinyurl.com/pwyasaa/ode2/app4_ball.py
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Fig. E.8 The trajectory of a ball solved as a system of four ODEs by the Forward Euler method

solver = ODESolver.ForwardEuler(f)
solver.set_initial_condition(U0)

def terminate(u, t, step_no):
return False if u[step_no,2] >= 0 else True

u, t = solver.solve(linspace(0, T, n+1), terminate)

Now, u[:,0] represents all the x.t/ values, u[:,1] all the vx.t/ values, u[:,2]
all the y.t/ values, and u[:,3] all the vy.t/ values. To plot the trajectory, y versus
x, we write

x = u[:,0]
y = u[:,2]
plot(x, y)

The exact solution is given by (1.6), so we can easily assess the accuracy of the
numerical solution. Figure E.8 shows a comparison of the numerical and the exact
solution in this simple test problem. Note that even if we are just interested in y

as a function of x, we first need to solve the complete ODE system for x.t/, vx.t/,
y.t/, and vy.t/.

The real strength of the numerical approach is the ease with which we can add air
resistance and lift to the system of ODEs. Insight in physics is necessary to derive
what the additional terms are, but implementing the terms is trivial in our program
above (do Exercise E.39).

E.3.9 Further Developments of ODESolver

The ODESolver hierarchy is a simplified prototype version of a more professional
Python package for solving ODEs called Odespy. This package features a range of
simple and sophisticated methods for solving scalar ODEs and systems of ODEs.
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Some of the solvers are implemented in Python, while others call up well-known
ODE software in Fortran. Like the ODESolver hierarchy, Odespy offers a unified
interface to the different numerical methods, which means that the user can spec-
ify the ODE problem as a function f(u,t) and send this function to all solvers.
This feature makes it easy to switch between solvers to test a wide collection of
numerical methods for a problem.

Odespy can be downloaded from http://hplgit.github.com/odespy. It is
installed by the usual python setup.py install command.

E.4 Exercises

Exercise E.1: Solve a simple ODE with function-based code

This exercise aims to solve the ODE problem u � 10u0 D 0, u.0/ D 0:2, for
t 2 Œ0; 20�.

a) Identify the mathematical function f .u; t/ in the generic ODE form u0 D
f .u; t/.

b) Implement the f .u; t/ function in a Python function.
c) Use the ForwardEuler function from Sect. E.1.3 to compute a numerical solu-

tion of the ODE problem. Use a time step �t D 5.
d) Plot the numerical solution and the exact solution u.t/ D 0:2e0:1t .
e) Save the numerical solution to file. Decide upon a suitable file format.
f) Perform simulations for smaller �t values and demonstrate visually that the

numerical solution approaches the exact solution.

Filename: simple_ODE_func.

Exercise E.2: Solve a simple ODE with class-based code

Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler class
from Sect. E.1.7. Implement the right-hand side function f as a class too.
Filename: simple_ODE_class.

Exercise E.3: Solve a simple ODE with the ODEsolver hierarchy

Solve the same ODE problem as in Exercise E.1, but use the ForwardEuler class
in the ODESolver hierarchy from Sect. E.3.
Filename: simple_ODE_class_ODESolver.

Exercise E.4: Solve an ODE specified on the command line

We want to make a program odesolver_cml.py which accepts an ODE problem
to be specified on the command line. The command-line arguments are f u0 dt T,
where f is the right-hand side f .u; t/ specified as a string formula, u0 is the initial
condition, dt is the time step, and T is the final time of the simulation. A fifth op-
tional argument can be given to specify the name of the numerical solution method
(set any method of your choice as default value). A curve plot of the solution versus
time should be produced and stored in a file plot.png.

http://hplgit.github.com/odespy
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Hint 1 Use StringFunction from scitools.std for convenient conversion of
a formula on the command line to a Python function.

Hint 2 Use the ODESolver hierarchy to solve the ODE and let the fifth command-
line argument be the class name in the ODESolver hierarchy.
Filename: odesolver_cml.

Exercise E.5: Implement a numerical method for ODEs

Implement the numerical method (E.36)–(E.37). How can you verify that the im-
plementation is correct?
Filename: Heuns_method.

Exercise E.6: Solve an ODE for emptying a tank

A cylindrical tank of radius R is filled with water to a height h0. By opening a valve
of radius r at the bottom of the tank, water flows out, and the height of water, h.t/,
decreases with time. We can derive an ODE that governs the height function h.t/.

Mass conservation of water requires that the reduction in height balances the
outflow. In a time interval �t , the height is reduced by �h, which corresponds to
a water volume of �R2�h. The water leaving the tank in the same interval of time
equals �r2v�t , where v is the outflow velocity. It can be shown (from what is
known as Bernoulli’s equation) [15, 26] that

v.t/ D
p

2gh.t/C h0.t/2;

where g is the acceleration of gravity. Note that �h > 0 implies an increase in
h, which means that ��R2�h is the corresponding decrease in volume that must
balance the outflow loss of volume �r2v�t . Elimination of v and taking the limit
�t ! 0 lead to the ODE

dh

dt
D �

� r

R

�2
�

1 �
� r

R

�4
��1=2

p

2gh :

For practical applications r � R so that 1 � .r=R/4 � 1 is a reasonable approx-
imation, since other approximations are done as well: friction is neglected in the
derivation, and we are going to solve the ODE by approximate numerical methods.
The final ODE then becomes

dh

dt
D �

� r

R

�2p

2gh : (E.61)

The initial condition follows from the initial height of water, h0, in the tank: h.0/ D
h0.

Solve (E.61) by a numerical method of your choice in a program. Set r D 1 cm,
R D 20 cm, g D 9:81 m/s2, and h0 D 1 m. Use a time step of 10 seconds. Plot
the solution, and experiment to see what a proper time interval for the simulation
is. Make sure to test for h < 0 so that you do not apply the square root function to
negative numbers. Can you find an analytical solution of the problem to compare
the numerical solution with?
Filename: tank_ODE.
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Exercise E.7: Solve an ODE for the arc length

Given a curve y D f .x/, the length of the curve from x D x0 to some point x is
given by the function s.x/, which solves the problem

ds

dx
D
p

1C Œf 0.x/�2; s.x0/ D 0 : (E.62)

Since s does not enter the right-hand side, (E.62) can immediately be integrated
from x0 to x (see Exercise A.13). However, we shall solve (E.62) as an ODE.
Use the Forward Euler method and compute the length of a straight line (for easy
verification) and a parabola: f .x/ D 1

2
x C 1, x 2 Œ0; 2�; f .x/ D x2, x 2 Œ0; 2�.

Filename: arclength_ODE.

Exercise E.8: Simulate a falling or rising body in a fluid

A body moving vertically through a fluid (liquid or gas) is subject to three different
types of forces:

� the gravity force Fg D �mg, where m is the mass of the body and g is the
acceleration of gravity;

� the drag force Fd D � 1
2
CD%Ajvjv, where CD is a dimensionless drag coefficient

depending on the body’s shape, % is the density of the fluid, A is the cross-
sectional area (produced by a cut plane, perpendicular to the motion, through the
thickest part of the body), and v is the velocity;

� the uplift or buoyancy (“Archimedes”) force Fb D %gV , where V is the volume
of the body.

(Roughly speaking, the Fd formula is suitable for medium to high velocities, while
for very small velocities, or very small bodies, Fd is proportional to the velocity,
not the velocity squared, see [26].)

Newton’s second law applied to the body says that the sum of the listed forces
must equal the mass of the body times its acceleration a:

Fg C Fd C Fb D ma;

which gives

�mg � 1

2
CD%Ajvjv C %gV D ma :

The unknowns here are v and a, i.e., we have two unknowns but only one equation.
From kinematics in physics we know that the acceleration is the time derivative of
the velocity: a D dv=dt . This is our second equation. We can easily eliminate a

and get a single differential equation for v:

�mg � 1

2
CD%Ajvjv C %gV D m

dv

dt
:

A small rewrite of this equation is handy: we express m as %bV , where %b is the
density of the body, and we isolate dv=dt on the left-hand side,

dv

dt
D �g

�

1 � %

%b

�

� 1

2
CD

%A

%bV
jvjv : (E.63)

This differential equation must be accompanied by an initial condition: v.0/ D V0.
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a) Make a program for solving (E.63) numerically, using any numerical method of
your choice.

Hint It is not strictly necessary, but it is an elegant Python solution to implement the
right-hand side of (E.63) in the __call__ method of a class where the parameters
g, %, %b, CD , A, and V are data attributes.

b) To verify the program, assume a heavy body in air such that the Fb force can be
neglected, and assume a small velocity such that the air resistance Fd can also
be neglected. Mathematically, setting % D 0 removes both these terms from
the equation. The solution is then v.t/ D y0.t/ D v0 � gt . Observe through
experiments that the linear solution is exactly reproduced by the numerical so-
lution regardless of the value of �t . (Note that if you use the Forward Euler
method, the method can become unstable for large �t , see Sect. E.3.5. and time
steps above the critical limit for stability cannot be used to reproduce the linear
solution.) Write a test function for automatically checking that the numerical
solution is uk D v0 � gk�t in this test case.

c) Make a function for plotting the forces Fg , Fb , and Fd as functions of t . See-
ing the relative importance of the forces as time develops gives an increased
understanding of how the different forces contribute to changing the velocity.

d) Simulate a skydiver in free fall before the parachute opens. We set the density
of the human body as %b D 1003 kg=m3 and the mass as m D 80 kg, implying
V D m=%b D 0:08 m3. We can base the cross-sectional area A the assumption
of a circular cross section of diameter 50 cm, giving A D �R2 D 0:9 m2. The
density of air decreases with height, and we here use the value 0.79 kg/m3 which
is relevant for about 5000 m height. The CD coefficient can be set as 0.6. Start
with v0 D 0.

e) A ball with the size of a soccer ball is placed in deep water, and we seek to com-
pute its motion upwards. Contrary to the former example, where the buoyancy
force Fb is very small, Fb is now the driving force, and the gravity force Fg

is small. Set A D �a2 with a D 11 cm. The mass of the ball is 0.43 kg, the
density of water is 1000 kg/m3, and CD can be taken as 0.4. Start with v0 D 0.

Filename: body_in_fluid.

Exercise E.9: Verify the limit of a solution as time grows

The solution of (E.63) often tends to a constant velocity, called the terminal veloc-
ity. This happens when the sum of the forces, i.e., the right-hand side in (E.63),
vanishes.

a) Compute the formula for the terminal velocity by hand.
b) Solve the ODE using class ODESolver and call the solve method with

a terminate function that terminates the computations when a constant veloc-
ity is reached, that is, when jv.tn/� v.tn�1/j � �, where � is a small number.

c) Run a series of �t values and make a graph of the terminal velocity as a function
of �t for the two cases in Exercise E.8 d) and e). Indicate the exact terminal
velocity in the plot by a horizontal line.

Filename: body_in_fluid_termvel.
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Exercise E.10: Scale the logistic equation

Consider the logistic model (E.5):

u0.t/ D ˛u.t/

�

1 � u.t/

R

�

; u.0/ D U0 :

This problem involves three input parameters: U0, R, and ˛. Learning how u varies
with U0, R, and ˛ requires much experimentation where we vary all three param-
eters and observe the solution. A much more effective approach is to scale the
problem. By this technique the solution depends only on one parameter: U0=R.
This exercise tells how the scaling is done.

The idea of scaling is to introduce dimensionless versions of the independent and
dependent variables:

v D u

uc

; � D t

tc
;

where uc and tc are characteristic sizes of u and t , respectively, such that the di-
mensionless variables v and � are of approximately unit size. Since we know that
u! R as t !1, R can be taken as the characteristic size of u.

Insert u D Rv and t D tc� in the governing ODE and choose tc D 1=˛. Show
that the ODE for the new function v.�/ becomes

dv

d�
D v.1 � v/; v.0/ D v0 : (E.64)

We see that the three parameters U0, R, and ˛ have disappeared from the ODE
problem, and only one parameter v0 D U0=R is involved.

Show that if v.�/ is computed, one can recover u.t/ by

u.t/ D Rv.˛t/ : (E.65)

Geometrically, the transformation from v to u is just a stretching of the two axis in
the coordinate system.

Make a program logistic_scaled.py where you compute v.�/, given v0 D
0:05, and then you use (E.65) to plot u.t/ for R D 100; 500; 1000 and ˛ D 1 in
one figure, and u.t/ for ˛ D 1; 5; 10 and R D 1000 in another figure. Note how
effectively you can generate u.t/ without needing to solve an ODE problem, and
also note how varying R and ˛ impacts the graph of u.t/.
Filename: logistic_scaled.

Exercise E.11: Compute logistic growth with time-varying carrying capacity

Use classes Problem2 and AutoSolver from Sect. E.3.6 to study logistic growth
when the carrying capacity of the environment, R, changes periodically with time:
R D 500 for i ts � t < .i C 1/ts and R D 200 for .i C 1/ts � t < .i C 2/ts , with
i D 0; 2; 4; 6; : : :. Use the same data as in Sect. E.3.6, and find some relevant sizes
of the period of variation, ts , to experiment with.
Filename: seasonal_logistic_growth.
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Exercise E.12: Solve an ODE until constant solution

Newton’s law of cooling,
dT

dt
D �h.T � Ts/ (E.66)

can be used to see how the temperature T of an object changes because of heat ex-
change with the surroundings, which have a temperature Ts . The parameter h, with
unit s�1 is an experimental constant (heat transfer coefficient) telling how efficient
the heat exchange with the surroundings is. For example, (E.66) may model the
cooling of a hot pizza taken out of the oven. The problem with applying (E.66) is
that h must be measured. Suppose we have measured T at t D 0 and t1. We can
use a rough Forward Euler approximation of (E.66) with one time step of length t1,

T .t1/ � T .0/

t1
D �h.T .0/ � Ts/;

to make the estimate

h D T .t1/ � T .0/

t1.Ts � T .0//
: (E.67)

a) The temperature of a pizza is 200 C at t D 0, when it is taken out of the oven,
and 180 C after 50 seconds, in a room with temperature 20 C. Find an estimate
of h from the formula above.

b) Solve (E.66) numerically by a method of your choice to find the evolution of the
temperature of the pizza. Plot the solution.

Hint You may solve the ODE the way you like, but the solvemethod in the classes
in the ODESolver hierarchy accepts an optional terminate function that can be
used to terminate the solution process when T is sufficiently close to Ts . Reading
the first part of Sect. E.3.6 may be useful.
Filename: pizza_cooling1.

Exercise E.13: Use a problem class to hold data about an ODE

We address the same physical problem as in Exercise E.12, but we will now provide
a class-based implementation for the user’s code.

a) Make a class Problem containing the parameters h, Ts , T .0/, and �t as data
attributes. Let these parameters be set in the constructor. The right-hand side of
the ODE can be implemented in a __call__ method. If you use a class from
the ODESolver hierarchy to solve the ODE, include the terminate function as
a method in class Problem.
Create a stand-alone function estimate_h(t0, t1, T0, T1) which applies
(E.67) from Exercise E.12 to estimate the h parameter based on the initial tem-
perature and one data point .t1; T .t1//. You can use this function to estimate
a value for h prior to calling the constructor in the Problem class.

Hint You may want to read Sect. E.3.6 to see why and how a class Problem is
constructed.
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b) Implement a test function test_Problem() for testing that class Problem

works. (It is up to you to define how to test the class.)
c) What are the advantages and disadvantages with class Problem compared to

using plain functions (in your view)?
d) We now want to run experiments with different values of some parameters: Ts D

15; 22; 30 C and T .0/ D 250; 200 C. For each T .0/, plot T for the three Ts

values. The estimated value of h in Exercise E.12 can be reused here.

Hint The typical elegant Python way to solve such a problem goes as follows.
Write a function solve(problem) that takes a Problem object with name
problem as argument and performs what it takes to solve one case (i.e., solve
must solve the ODE and plot the solution). A dictionary can for each T0 value hold
a list of the cases to be plotted together. Then we loop over the problems in the
dictionary of lists and call solve for each problem:

# Given h and dt
problems = {T_0: [Problem(h, T_s, T_0, dt)

for T_s in 15, 22, 30] for T_0 in 250, 200}
for T_0 in problems:

hold(’off’)
for problem in problems[T_0]:

solve(problem)
hold(’on’)

savefig(’T0_%g’.pdf % T_0)

When you become familiar with such code, and appreciate it, you can call yourself
a professional programmer – with a deep knowledge of how lists, dictionaries, and
classes can play elegantly together to conduct scientific experiments. In the present
case we perform only a few experiments that could also have been done by six
separate calls to the solver functionality, but in large-scale scientific and engineering
investigations with hundreds of parameter combinations, the above code is still the
same, only the generation of the Problem instances becomes more involved.
Filename: pizza_cooling2.

Exercise E.14: Derive and solve a scaled ODE problem

Use the scaling approach outlined in Exercise E.10 to “scale away” the parame-
ters in the ODE in Exercise E.12. That is, introduce a new unknown u D .T �
Ts/=.T .0/ � Ts/ and a new time scale � D th. Find the ODE and the initial con-
dition that governs the u.�/ function. Make a program that computes u.�/ until
juj < 0:001. Store the discrete u and � values in a file u_tau.dat if that file is
not already present (you can use os.path.isfile(f) to test if a file with name
f exists). Create a function T(u, tau, h, T0, Ts) that loads the u and � data
from the u_tau.dat file and returns two arrays with T and t values, corresponding
to the computed arrays for u and � . Plot T versus t . Give the parameters h, Ts ,
and T .0/ on the command line. Note that this program is supposed to solve the
ODE once and then recover any T .t/ solution by a simple scaling of the single u.�/

solution.
Filename: pizza_cooling3.
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Exercise E.15: Clean up a file to make it a module

The ForwardEuler_func.pyfile is not well organized to be used as a module, say
for doing

>>> from ForwardEuler_func import ForwardEuler
>>> u, t = ForwardEuler(lambda u, t: -u**2, U0=1, T=5, n=30)

The reason is that this import statement will execute a main program in the
ForwardEuler_func.py file, involving plotting of the solution in an example.
Also, the verification tests are run, which in more complicated problems could
take considerable time and thus make the import statement hang until the tests are
done.

Go through the file and modify it such that it becomes a module where no code
is executed unless the module file is run as a program.
Filename: ForwardEuler_func2.

Exercise E.16: Simulate radioactive decay

The equation u0 D �au is a relevant model for radioactive decay, where u.t/ is
the fraction of particles that remains in the radioactive substance at time t . The
parameter a is the inverse of the so-called mean lifetime of the substance. The
initial condition is u.0/ D 1.

a) Introduce a class Decay to hold information about the physical problem: the
parameter a and a __call__ method for computing the right-hand side �au of
the ODE.

b) Initialize an instance of class Decay with a D ln.2/=5600 1/y. The unit 1/y
means one divided by year, so time is here measured in years, and the particular
value of a corresponds to the Carbon-14 radioactive isotope whose decay is used
extensively in dating organic material that is tens of thousands of years old.

c) Solve u0 D �au with a time step of 500 y, and simulate the radioactive decay for
T D 20; 000 y. Plot the solution. Write out the final u.T / value and compare it
with the exact value e�aT .

Filename: radioactive_decay.

Exercise E.17: Compute inverse functions by solving an ODE

The inverse function g of some function f .x/ takes the value of f .x/ back to x

again: g.f .x// D x. The common technique to compute inverse functions is to set
y D f .x/ and solve with respect to x. The formula on the right-hand side is then
the desired inverse function g.y/. Section A.1.11 makes use of such an approach,
where y � f .x/ D 0 is solved numerically with respect to x for different discrete
values of y.

We can formulate a general procedure for computing inverse functions from an
ODE problem. If we differentiate y D f .x/ with respect to y, we get 1 D f 0.x/ dx

dy

by the chain rule. The inverse function we seek is x.y/, but this function then
fulfills the ODE

x0.y/ D 1

f 0.x/
: (E.68)

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
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That y is the independent coordinate and x a function of y can be a somewhat
confusing notation, so we might introduce u for x and t for y:

u0.t/ D 1

f 0.u/
:

The initial condition is x.0/ D xr where xr solves the equation f .xr / D 0 (x.0/

implies y D 0 and then from y D f .x/ it follows that f .x.0// D 0).
Make a program that can use the described method to compute the inverse func-

tion of f .x/, given xr . Use any numerical method of your choice for solving the
ODE problem. Verify the implementation for f .x/ D 2x. Apply the method for
f .x/ D px and plot f .x/ together with its inverse function.
Filename: inverse_ODE.

Exercise E.18: Make a class for computing inverse functions

The method for computing inverse functions described in Exercise E.17 is very
general. The purpose now is to use this general approach to make a more reusable
utility, here called Inverse, for computing the inverse of some Python function
f(x) on some interval I=[a,b]. The utility can be used as follows to calculate the
inverse of sin x on I D Œ0; �=2�:

def f(x):
return sin(x)

# Compute the inverse of f
inverse = Inverse(f, x0=0, I=[0, pi/2], resolution=100)
x, y = Inverse.compute()

plot(y, x, ’r-’,
x, f(x), ’b-’,
y, asin(y), ’go’)

legend([’computed inverse’, ’f(x)’, ’exact inverse’])

Here, x0 is the value of x at 0, or in general at the left point of the interval: I[0].
The parameter resolution tells how many equally sized intervals �y we use in
the numerical integration of the ODE. A default choice of 1000 can be used if it is
not given by the user.

Write class Inverse and put it in a module. Include a test function test_

Inverse() in the module for verifying that class Inverse reproduces the exact
solution in the test problem f .x/ D 2x.
Filename: Inverse1.

Exercise E.19: Add functionality to a class

Extend the module in Exercise E.18 such that the value of x.0/ (x0 in class
Inverse’s constructor) does not need to be provided by the user.

Hint Class Inverse can compute a value of x.0/ as the root of f .x/ D 0. You may
use the Bisection method from Sect. 4.11.2, Newton’s method from Sect. A.1.10, or
the Secant method from Exercise A.10 to solve f .x/ D 0. Class Inverse should
figure out a suitable initial interval for the Bisection method or start values for the
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Newton or Secant methods. Computing f .x/ for x at many points and examining
these may help in solving f .x/ D 0 without any input from the user.
Filename: Inverse2.

Exercise E.20: Compute inverse functions by interpolation

Instead of solving an ODE for computing the inverse function g.y/ of some func-
tion f .x/, as explained in Exercise E.17, one may use a simpler approach based on
ideas from Sect. E.1.5. Say we compute discrete values of x and f .x/, stored in
the arrays x and y. Doing a plot(x, y) shows y D f .x/ as a function of x, and
doing plot(y, x) shows x as a function of y, i.e., we can trivially plot the inverse
function g.y/ (!).

However, if we want the inverse function of f .x/ as some Python function g(y)

that we can call for any y, we can use the tool wrap2callable from Sect. E.1.5
to turn the discrete inverse function, described by the arrays y (independent coordi-
nate) and x (dependent coordinate), into a continuous function g(y):

from scitools.std import wrap2callable
g = wrap2callable((y, x))

y = 0.5
print g(y)

The g(y) function applies linear interpolation in each interval between the points
in the y array.

Implement this method in a program. Verify the implementation for f .x/ D 2x,
x 2 Œ0; 4�, and apply the method to f .x/ D sin x for x 2 Œ0; �=2�.
Filename: inverse_wrap2callable.

Exercise E.21: Code the 4th-order Runge-Kutta method; function

Use the file ForwardEuler_func.py from Sect. E.1.3 as starting point for imple-
menting the famous and widely used 4th-order Runge-Kutta method (E.41)–(E.45).
Use the test function involving a linear u.t/ for verifying the implementation. Ex-
ercise E.23 suggests an application of the code.
Filename: RK4_func.

Exercise E.22: Code the 4th-order Runge-Kutta method; class

Carry out the steps in Exercise E.21, but base the implementation on the file
ForwardEuler.py from Sect. E.1.7.
Filename: RK4_class.

Exercise E.23: Compare ODE methods

Investigate the accuracy of the 4th-order Runge-Kutta method and the Forward Eu-
ler scheme for solving the (challenging) ODE problem

dy

dx
D 1

2.y � 1/
; y.0/ D 1C

p
�; x 2 Œ0; 4�; (E.69)

where � is a small number, say � D 0:001. Start with four steps in Œ0; 4� and reduce
the step size repeatedly by a factor of two until you find the solutions sufficiently

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler.py
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accurate. Make a plot of the numerical solutions along with the exact solution
y.x/ D 1C

p
x C � for each step size.

Filename: yx_ODE_FE_vs_RK4.

Exercise E.24: Code a test function for systems of ODEs

The ForwardEuler_func.py file from Sect. E.1.3 does not contain any test func-
tion for verifying the implementation. We can use the fact that linear functions of
time will be exactly reproduced by most numerical methods for ODEs. A simple
system of two ODEs with linear solutions v.t/ D 2C 3t and w.t/ D 3C 4t is

v0 D 3C .3C 4t � w/3; (E.70)

w0 D 4C .2C 3t � v/4 (E.71)

Write a test function test_ForwardEuler() for comparing the numerical solution
of this system with the exact solution.
Filename: ForwardEuler_sys_func2.

Exercise E.25: Code Heun’s method for ODE systems; function

Use the file ForwardEuler_sys_func.py from Sect. E.2.3 as starting point for
implementing Heun’s method (E.36)–(E.37) for systems of ODEs. Verify the solu-
tion using the test function suggested in Exercise E.24.
Filename: Heun_sys_func.

Exercise E.26: Code Heun’s method for ODE systems; class

Carry out the steps in Exercise E.25, but make a class implementation based on the
file ForwardEuler_sys.py from Sect. E.2.4.
Filename: Heun_sys_class.

Exercise E.27: Implement and test the Leapfrog method

a) Implement the Leapfrog method specified in formula (E.35) from Sect. E.3.1 in
a subclass of ODESolver. Place the code in a separate module file Leapfrog.py.

b) Make a test function for verifying the implementation.

Hint Use the fact that the method will exactly produce a linear u, see Sect. E.3.4.

c) Make a movie that shows how the Leapfrog method, the Forward Euler method,
and the 4th-order Runge-Kutta method converge to the exact solution as �t is
reduced. Use the model problem u0 D u, u.0/ D 1, t 2 Œ0; 8�, with n D 2k

intervals, k D 1; 2 : : : ; 14. Place the movie generation in a function.
d) Repeat c) for the model problem u0 D �u, u.0/ D 1, t 2 Œ0; 5�, with n D 2k

intervals, k D 1; 2 : : : ; 14. In the movie, start with the finest resolution and
reduce n until n D 2. The lessons learned is that Leapfrog can give completely
wrong, oscillating solutions if the time step is not small enough.

Filename: Leapfrog.

http://tinyurl.com/pwyasaa/ode2/ForwardEuler_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler_sys_func.py
http://tinyurl.com/pwyasaa/ode2/ForwardEuler_sys.py
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Exercise E.28: Implement and test an Adams-Bashforth method

Do Exercise E.27 with the 3rd-order Adams-Bashforth method (E.46).
Filename: AdamBashforth3.

Exercise E.29: Solve two coupled ODEs for radioactive decay

Consider two radioactive substances A and B. The nuclei in substance A decay to
form nuclei of type B with a mean lifetime �A, while substance B decay to form
type A nuclei with a mean lifetime �B . Letting uA and uB be the fractions of the
initial amount of material in substance A and B, respectively, the following system
of ODEs governs the evolution of uA.t/ and uB.t/:

u0A D uB=�B � uA=�A; (E.72)

u0B D uA=�A � uB=�B ; (E.73)

with uA.0/ D uB.0/ D 1.

a) Introduce a problem class, which holds the parameters �A and �B and offers
a __call__ method to compute the right-hand side vector of the ODE system,
i.e., .uB=�B � uA=�A; uA=�A � uB=�B/.

b) Solve for uA and uB using a subclass in the ODESolver hierarchy and the pa-
rameter choices �A D 8 minutes, �B D 40 minutes, and �t D 10 seconds.

c) Plot uA and uB against time measured in minutes.
d) From the ODE system it follows that the ratio uA=uB ! �A=�B as t ! 1

(assuming u0A D u0B D 0 in the limit t ! 1). Extend the problem class
with a test method for checking that two given solutions uA and uB fulfill this
requirement. Verify that this is indeed the case with the computed solutions in
b).

Filename: radioactive_decay2.

Exercise E.30: Implement a 2nd-order Runge-Kutta method; function

Implement the 2nd-order Runge-Kutta method specified in formula (E.38). Use
a plain function RungeKutta2 of the type shown in Sect. E.1.2 for the Forward
Euler method. Construct a test problem where you know the analytical solution,
and plot the difference between the numerical and analytical solution. Demonstrate
that the numerical solution approaches the exact solution as �t is reduced.
Filename: RungeKutta2_func.

Exercise E.31: Implement a 2nd-order Runge-Kutta method; class

a) Make a new subclass RungeKutta2 in the ODESolver hierarchy from Sect. E.3
for solving ordinary differential equations with the 2nd-order Runge-Kutta
method specified in formula (E.38).

b) Construct a test problem where you can find an exact solution. Run different val-
ues of �t and demonstrate in a plot that the numerical solution approaches the
exact solution as �t is decreased. Put the code that creates the plot in a function.
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c) Make a test function test_RungeKutta2_against_hand_calc()where you
do the computations of u1 and u2 i Python based on the mathematical formulas.
Thereafter, run the RungeKutta2 class for two time steps and check that the two
solutions are equal (within a small tolerance). Use an ODE where the right-hand
side depends on t as well as u such that you can test that RungeKutta2 treats
the t argument in f .u; t/ correctly.

d) Make a module out of the RungeKutta2 class and the associated functions. Call
the functions from a test block in the module file.

Filename: RungeKutta2.

Exercise E.32: Code the iterated midpoint method; function

a) Implement the numerical method (E.47)–(E.48) as a function

iterated_Midpoint_method(f, U0, T, n, N)

where f is a Python implementation of f .u; t/, U0 is the initial condition u.0/ D
U0, T is the final time of the simulation, n is the number of time steps, and N is the
parameter N in the method (E.47). The iterated_Midpoint_method should
return two arrays: u0; : : : ; un and t0; : : : ; tn.

Hint You may want to build the function on the software described in Sect. E.1.3.

b) To verify the implementation, calculate by hand u1 and u2 when N D 2

for the ODE u0 D �2u, u.0/ D 1, with �t D 1=4. Compare your
hand calculations with the results of the program. Make a test function
test_iterated_Midpoint_method() for automatically comparing the hand
calculations with the output of the function in a).

c) Consider the ODE problem u0 D �2.t�4/u, u.0/ D e�16, t 2 Œ0; 8�, with exact
solution u D e�.t�4/2

. Write a function for comparing the numerical and exact
solution in a plot. Enable setting of �t and N from the command line and use
the function to study the behavior of the numerical solution as you vary �t and
N . Start with �t D 0:5 and N D 1. Continue with reducing �t and increasing
N .

Filename: MidpointIter_func.

Exercise E.33: Code the iterated midpoint method; class

The purpose of this exercise is to implement the numerical method (E.47)–(E.48) in
a class MidpointIter, like the ForwardEuler class from Sect. E.1.7. Also make
a test function test_MidpointIter()where you apply the verification technique
from Exercise E.32b.
Filename: MidpointIter_class.
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Exercise E.34: Make a subclass for the iterated midpoint method

Implement the numerical method (E.47)–(E.48) in a subclass in the ODESolver

hierarchy. The code should reside in a separate file where the ODESolver class is
imported. One can either fix N or introduce an � and iterate until the change in
jvq � vq�1j is less than �. Allow the constructor to take both N and � as arguments.
Compute a new vq as long as q � N and jvq�vq�1j > �. Let N D 20 and � D 10�6

by default. Store N as an attribute such that the user’s code can access what N was
in the last computation. Also write a test function for verifying the implementation.
Filename: MidpointIter.

Exercise E.35: Compare the accuracy of various methods for ODEs

We want to see how various numerical methods treat the following ODE problem:

u0 D �2.t � 4/u; u.0/ D e�16; t 2 .0; 10� :

The exact solution is a Gaussian function: u.t/ D e�.t�4/2
. Compare the For-

ward Euler method with other methods of your choice in the same plot. Relevant
methods are the 4th-order Runge-Kutta method (found in the ODESolver.py hier-
archy) and methods from Exercises E.5, E.21, E.22, E.25, E.26, E.27, E.28 E.31,
or E.34. Put the value of �t in the title of the plot. Perform experiments with
�t D 0:3; 0:25; 0:1; 0:05; 0:01; 0:001 and report how the various methods behave.
Filename: methods4gaussian.

Exercise E.36: Animate how various methods for ODEs converge

Make a movie for illustrating how three selected numerical methods converge to the
exact solution for the problem described in Exercise E.35 as �t is reduced. Start
with �t D 1, fix the y axis in Œ�0:1; 1:1�, and reduce �t by a quite small factor,
say 1.5, between each frame in the movie. The movie must last until all methods
have their curves visually on top of the exact solution.
Filename: animate_methods4gaussian.

Exercise E.37: Study convergence of numerical methods for ODEs

The approximation error when solving an ODE numerically is usually of the form
C�t r , where C and r are constants that can be estimated from numerical experi-
ments. The constant r , called the convergence rate, is of particular interest. Halving
�t halves the error if r D 1, but if r D 3, halving �t reduces the error by a factor
of 8.

Exercise 9.15 describes a method for estimating r from two consecutive experi-
ments. Make a function

ODE_convergence(f, U0, u_e, method, dt=[])

that returns a series of estimated r values corresponding to a series of �t values
given as the dt list. The argument f is a Python implementation of f .u; t/ in the
ODE u0 D f .u; t/. The initial condition is u.0/ D U0, where U0 is given as the
U0 argument, u_e is the exact solution ue.t/ of the ODE, and method is the name
of a class in the ODESolver hierarchy. The error between the exact solution ue and
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the computed solution u0; u1; : : : ; un can be defined as

e D
 

�t

n
X

iD0

.ue.ti / � ui/
2

!1=2

:

Call the ODE_convergence function for some numerical methods and print the
estimated r values for each method. Make your own choice of the ODE problem
and the collection of numerical methods.
Filename: ODE_convergence.

Exercise E.38: Find a body’s position along with its velocity

In Exercise E.8 we compute the velocity v.t/. The position of the body, y.t/, is
related to the velocity by y0.t/ D v.t/. Extend the program from Exercise E.8 to
solve the system

dy

dt
D v;

dv

dt
D �g

�

1 � %

%b

�

� �1

2
CD

%A

%bV
jvjv :

Filename: body_in_fluid2.

Exercise E.39: Add the effect of air resistance on a ball

The differential equations governing the horizontal and vertical motion of a ball
subject to gravity and air resistance read

d 2x

dt2
D �3

8
CD N%a�1

s

�

dx

dt

�2

C
�

dy

dt

�2
dx

dt
; (E.74)

d 2y

dt2
D �g � 3

8
CD N%a�1

s

�

dx

dt

�2

C
�

dy

dt

�2
dy

dt
; (E.75)

where .x; y/ is the position of the ball (x is a horizontal measure and y is a vertical
measure), g is the acceleration of gravity, CD D 0:2 is a drag coefficient, N% is the
ratio of the density of air and the ball, and a is the radius of the ball.

Let the initial condition be x D y D 0 (start position in the origin) and

dx=dt D v0 cos �; dy=dt D v0 sin �;

where v0 is the magnitude of the initial velocity and � is the angle the velocity
makes with the horizontal.

a) Express the two second-order equations above as a system of four first-order
equations with four initial conditions.

b) Implement the right-hand side in a problem class where the physical parameters
CD , N%, a, v0, and � are stored along with the initial conditions. You may also
want to add a terminate method in this class for checking when the ball hits
the ground and then terminate the solution process.
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c) Simulate a hard football kick where v0 D 120 km/h and � is 30 degrees. Take
the density of the ball as 0.017 hg=m3 and the radius as 11 cm. Solve the ODE
system for CD D 0 (no air resistance) and CD D 0:2, and plot y as a function of
x in both cases to illustrate the effect of air resistance. Make sure you express
all units in kg, m, s, and radians.

Filename: kick2D.

Exercise E.40: Solve an ODE system for an electric circuit

An electric circuit with a resistor, a capacitor, an inductor, and a voltage source can
be described by the ODE

L
dI

dt
CRI C Q

C
D E.t/; (E.76)

where LdI=dt is the voltage drop across the inductor, I is the current (measured
in amperes, A), L is the inductance (measured in henrys, H), R is the resistance
(measured in ohms, ˝), Q is the charge on the capacitor (measured in coulombs,
C), C is the capacitance (measured in farads, F), E.t/ is the time-variable voltage
source (measured in volts, V), and t is time (measured in seconds, s). There is
a relation between I and Q:

dQ

dt
D I : (E.77)

Equations (E.76)–(E.77) is a system two ODEs. Solve these for L D 1 H, E.t/ D
2 sin !t V, !2 D 3:5 s�2, C D 0:25 C, R D 0:2 ˝, I.0/ D 1 A, and Q.0/ D 1C .
Use the Forward Euler scheme with �t D 2�=.60!/. The solution will, after some
time, oscillate with the same period as E.t/, a period of 2�=!. Simulate 10 periods.
Filename: electric_circuit.

Remarks It turns out that the Forward Euler scheme overestimates the amplitudes
of the oscillations. The more accurate 4th-order Runge-Kutta method is much better
for this type of differential equation model.

Exercise E.41: Simulate the spreading of a disease by a SIR model

We shall in this exercise model epidemiological diseases such as measles or swine
flu. Suppose we have three categories of people: susceptibles (S) who can get the
disease, infected (I) who have developed the disease and who can infect suscepti-
bles, and recovered (R) who have recovered from the disease and become immune.
Let S.t/, I.t/, and R.t/ be the number of people in category S, I, and R, respec-
tively. We have that SCICR D N , where N is the size of the population, assumed
constant here for simplicity.

When people mix in the population there are SI possible pairs of susceptibles
and infected, and a certain fraction ˇSI per time interval meets with the result
that the infected “successfully” infect the susceptible. During a time interval �t ,
ˇSI�t get infected and move from the S to the I category:

S.t C�t/ D S.t/ � ˇSI�t :
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We divide by �t and let �! 0 to get the differential equation

S 0.t/ D �ˇSI : (E.78)

A fraction �I of the infected will per time unit recover from the disease. In a time
�t , �I�t recover and move from the I to the R category. The quantity 1=� typically
reflects the duration of the disease. In the same time interval, ˇSI�t come from
the S to the I category. The accounting for the I category therefore becomes

I.t C�t/ D I.t/C ˇSI�t � �I�t;

which in the limit �t ! 0 becomes the differential equation

I 0.t/ D ˇSI � �I : (E.79)

Finally, the R category gets contributions from the I category:

R.t C�t/ D R.t/C �I�t :

The corresponding ODE for R reads

R0.t/ D �I : (E.80)

In case the recovered do not become immune, we do not need the recovered cate-
gory, since the recovered go directly out of the I category to the S category again.
This gives a contribution �I to the equation for S and we end up with the S-I
system (C.31)–(C.32) from Sect. C.5.

The system (E.78)–(E.80) is known as a SIR model in epidemiology (which is
the name of the scientific field studying the spreading of epidemic diseases).

Make a function for solving the differential equations in the SIR model by any
numerical method of your choice. Make a separate function for visualizing S.t/,
I.t/, and R.t/ in the same plot.

Adding the equations shows that S 0CI 0CR0 D 0, which means that SCI CR

must be constant. Perform a test at each time level for checking that S C I C R

equals S0 C I0 C R0 within some small tolerance. If a subclass of ODESolver
is used to solve the ODE system, the test can be implemented as a user-specified
terminate function that is called by the solve method a every time level (simply
return True for termination if S C I C R is not sufficiently constant).

A specific population has 1500 susceptibles and one infected. We are interested
in how the disease develops. Set S.0/ D 1500, I.0/ D 1, and R.0/ D 0. Choose
� D 0:1, �t D 0:5, and t 2 Œ0; 60�. Time t here counts days. Visualize first how
the disease develops when ˇ D 0:0005. Certain precautions, like staying inside,
will reduce ˇ. Try ˇ D 0:0001 and comment from the plot how a reduction in
ˇ influences S.t/. (Put the comment as a multi-line string in the bottom of the
program file.)
Filename: SIR.



E.4 Exercises 819

Exercise E.42: Introduce problem and solver classes in the SIR model

The parameters � and ˇ in the SIR model in Exercise E.41 can be constants or
functions of time. Now we shall make an implementation of the f .u; t/ function
specifying the ODE system such that � and ˇ can be given as either a constant or
a Python function. Introduce a class for f .u; t/, with the following code sketch:

class ProblemSIR(object):
def __init__(self, nu, beta, S0, I0, R0, T):

"""
nu, beta: parameters in the ODE system
S0, I0, R0: initial values
T: simulation for t in [0,T]
"""
if isinstance(nu, (float,int)): # number?

self.nu = lambda t: nu # wrap as function
elif callable(nu):

self.nu = nu

# same for beta and self.beta
...

# store the other parameters

def __call__(self, u, t):
"""Right-hand side function of the ODE system."""
S, I, R = u
return [-self.beta(t)*S*I, # S equation

..., # I equation
self.nu(t)*I] # R equation

# Example:
problem = ProblemSIR(beta=lambda t: 0.0005 if t <= 12 else 0.0001,

nu=0.1, S0=1500, I0=1, R0=0, T=60)
solver = ODESolver.ForwardEuler(problem)

Write the complete code for class ProblemSIR based on the sketch of ideas above.
The � parameter is usually not varying with time as 1=� is a characteristic size of
the period a person is sick, but introduction of new medicine during the disease
might change the picture such that time dependence becomes relevant.

We can also make a class SolverSIR for solving the problem (see Sect. E.3.6
for similar examples):

class SolverSIR(object):
def __init__(self, problem, dt):

self.problem, self.dt = problem, dt

def solve(self, method=ODESolver.RungeKutta4):
self.solver = method(self.problem)
ic = [self.problem.S0, self.problem.I0, self.problem.R0]
self.solver.set_initial_condition(ic)
n = int(round(self.problem.T/float(self.dt)))
t = np.linspace(0, self.problem.T, n+1)



820 E Programming of Differential Equations

u, self.t = self.solver.solve(t)
self.S, self.I, self.R = u[:,0], u[:,1], u[:,2]

def plot(self):
# plot S(t), I(t), and R(t)

After the breakout of a disease, authorities often start campaigns for decreas-
ing the spreading of the disease. Suppose a massive campaign telling people to
wash their hands more frequently is launched, with the effect that ˇ is significantly
reduced after some days. For the specific case simulated in Exercise E.41, let

ˇ.t/ D
(

0:0005; 0 � t � 12;

0:0001; t > 12

Simulate this scenario with the Problem and Solver classes. Report the maximum
number of infected people and compare it to the case where ˇ.t/ D 0:0005.
Filename: SIR_class.

Exercise E.43: Introduce vaccination in a SIR model

We shall now extend the SIR model in Exercise E.41 with a vaccination2 program.
If a fraction p of the susceptibles per time unit is being vaccinated, and we say that
the vaccination is 100 percent effective, pS�t individuals will be removed from the
S category in a time interval �t . We place the vaccinated people in a new category
V. The equations for S and V becomes

S 0 D �ˇSI � pS; (E.81)

V 0 D pS : (E.82)

The equations for I and R are not affected. The initial condition for V can be taken
as V.0/ D 0. The resulting model is named SIRV.

Try the same parameters as in Exercise E.41 in combination with p D 0:1 and
compute the evolution of S.t/, I.t/, R.t/, and V.t/. Comment on the effect of
vaccination on the maximum number of infected.

Hint You can of course edit the code from Exercise E.42, but it is much better
to avoid duplicating code and use object-oriented programming to implement the
extensions in the present exercise as subclasses of the classes from Exercise E.42.
Filename: SIRV.

Exercise E.44: Introduce a vaccination campaign in a SIR model

Let the vaccination campaign in Exercise E.43 start 6 days after the outbreak of the
disease and let it last for 10 days,

p.t/ D
(

0:1; 6 � t � 15;

0; otherwise

2 https://www.youtube.com/watch?v=s_6QW9sNPEY

https://www.youtube.com/watch?v=s_6QW9sNPEY
https://www.youtube.com/watch?v=s_6QW9sNPEY


E.4 Exercises 821

Plot the corresponding solutions S.t/, I.t/, R.t/, and V.t/. (It is clearly advan-
tageous to have the SIRV model implemented as an extension to the classes in
Exercise E.42.)
Filename: SIRV_varying_p.

Exercise E.45: Find an optimal vaccination period

Let the vaccination campaign in Exercise E.44 last for VT days:

p.t/ D
(

0:1; 6 � t � 6C VT ;

0; otherwise

Compute the maximum number of infected people, maxt I.t/, as a function of VT 2
Œ0; 31�, by running the model for VT D 0; 1; 2 : : : ; 31. Plot this function. Determine
from the plot the optimal VT , i.e., the smallest vaccination period VT such that
increasing VT has negligible effect on the maximum number of infected people.
Filename: SIRV_optimal_duration.

Exercise E.46: Simulate human-zombie interaction

Suppose the human population is attacked by zombies. This is quite a common hap-
pening in movies, and the “zombification” of humans acts much like the spreading
of a disease. Let us make a differential equation model, inspired by the SIR model
from Exercise E.41, to simulate how humans and zombies interact.

We introduce four categories of individuals:

1. S: susceptible humans who can become zombies.
2. I: infected humans, being bitten by zombies.
3. Z: zombies.
4. R: removed individuals, either conquered zombies or dead humans.

The corresponding functions counting how many individuals we have in each cate-
gory are named S.t/, I.t/, Z.t/, and R.t/, respectively.

The type of zombies considered here is inspired by the standard for modern zom-
bies set by the classic movie The Night of the Living Dead, by George A. Romero
from 1968. Only a small extension of the SIR model is necessary to model the
effect of human-zombie interaction mathematically. A fraction of the human sus-
ceptibles is getting bitten by zombies and moves to the infected category. A fraction
of the infected is then turned into zombies. On the other hand, humans can conquer
zombies.

Now we shall precisely set up all the dynamic features of the human-zombie
populations we aim to model. Changes in the S category are due to three effects:

1. Susceptibles are infected by zombies, modeled by a term ��tˇSZ, similar to
the S-I interaction in the SIR model.

2. Susceptibles die naturally or get killed and therefore enter the removed category.
If the probability that one susceptible dies during a unit time interval is ıS , the
total expected number of deaths in a time interval �t becomes �tıS S .
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3. We also allow new humans to enter the area with zombies, as this effect may be
necessary to successfully run a war on zombies. The number of new individuals
in the S category arriving per time unit is denoted by ˙ , giving an increase in
S.t/ by �t˙ during a time �t .

We could also add newborns to the S category, but we simply skip this effect since
it will not be significant over time scales of a few days.

The balance of the S category is then

S 0 D ˙ � ˇSZ � ıS S;

in the limit �t ! 0.
The infected category gets a contribution �tˇSZ from the S category, but loses

individuals to the Z and R category. That is, some infected are turned into zombies,
while others die. Movies reveal that infected may commit suicide or that others
(susceptibles) may kill them. Let ıI be the probability of being killed in a unit time
interval. During time �t , a total of ıI �tI will die and hence be transferred to the
removed category. The probability that a single infected is turned into a zombie
during a unit time interval is denoted by �, so that a total of �t�I individuals are
lost from the I to the Z category in time �t . The accounting in the I category
becomes

I 0 D ˇSZ � �I � ıI I :

The zombie category gains��t�I individuals from the I category. We disregard
the effect that any removed individual can turn into a zombie again, as we consider
that effect as pure magic beyond reasonable behavior, at least according to what is
observed in the Romero movie tradition. A fundamental feature in zombie movies
is that humans can conquer zombies. Here we consider zombie killing in a “man-to-
man” human-zombie fight. This interaction resembles the nature of zombification
(or the susceptible-infective interaction in the SIR model) and can be modeled by
a loss �˛SZ for some parameter ˛ with an interpretation similar to that of ˇ. The
equation for Z then becomes

Z 0 D �I � ˛SZ :

The accounting in the R category consists of a gain ıS of natural deaths from the
S category, a gain ıI from the I category, and a gain ˛SZ from defeated zombies:

R0 D ıSS C ıI I C ˛SZ :

The complete SIZR model for human-zombie interaction can be summarized as

S 0 D ˙ � ˇSZ � ıS S; (E.83)

I 0 D ˇSZ � �I � ıI I; (E.84)

Z 0 D �I � ˛SZ; (E.85)

R0 D ıS S C ıI I C ˛SZ : (E.86)
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The interpretations of the parameters are as follows:

� ˙ : the number of new humans brought into the zombified area per unit time.
� ˇ: the probability that a theoretically possible human-zombie pair actually meets

physically, during a unit time interval, with the result that the human is infected.
� ıS : the probability that a susceptible human is killed or dies, in a unit time

interval.
� ıI : the probability that an infected human is killed or dies, in a unit time interval.
� �: the probability that an infected human is turned into a zombie, during a unit

time interval.
� ˛: the probability that, during a unit time interval, a theoretically possible

human-zombie pair fights and the human kills the zombie.

Note that probabilities per unit time do not necessarily lie in the interval Œ0; 1�.
The real probability, lying between 0 and 1, arises after multiplication by the time
interval of interest.

Implement the SIZR model with a Problem and Solver class as explained in
Exercise E.42, allowing parameters to vary in time. The time variation is essential
to make a realistic model that can mimic what happens in movies.

Test the implementation with the following data: ˇ D 0:0012, ˛ D 0:0016,
ıI D 0:014, ˙ D 2, � D 1, S.0/ D 10, Z.0/ D 100, I.0/ D 0, R.0/ D 0, and
simulation time T D 24 hours. Other parameters can be set to zero. These values
are estimated from the hysterical phase of the movie The Night of the Living Dead.
The time unit is hours. Plot the S , I , Z, and R quantities.
Filename: SIZR.

Exercise E.47: Simulate a zombie movie

The movie The Night of the Living Dead has three phases:

1. The initial phase, lasting for (say) 4 hours, where two humans meet one zombie
and one of the humans get infected. A rough (and uncertain) estimation of
parameters in this phase, taking into account dynamics not shown in the movie,
yet necessary to establish a more realistic evolution of the S and Z categories
later in the movie, is ˙ D 20, ˇ D 0:03, � D 1, S.0/ D 60, and Z.0/ D 1. All
other parameters are taken as zero when not specified.

2. The hysterical phase, when the zombie treat is evident. This phase lasts for
24 hours, and relevant parameters can be taken as ˇ D 0:0012, ˛ D 0:0016,
ıI D 0:014, ˙ D 2, � D 1.

3. The counter attack by humans, estimated to last for 5 hours, with parameters
˛ D 0:006, ˇ D 0 (humans no longer get infected), ıS D 0:0067, � D 1.

Use the program from Exercise E.46 to simulate all three phases of the movie.

Hint It becomes necessary to work with piecewise constant functions in time.
These can be hardcoded for each special case, our one can employ a ready-made
tool for such functions (actually developed in Exercise 3.32):
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from scitools.std import PiecewiseConstant

# Define f(t) as 1.5 in [0,3], 0.1 in [3,4] and 1 in [4,7]
f = PiecewiseConstant(domain=[0, 7],

data=[(0, 1.5), (3, 0.1), (4, 1)])

Filename: Night_of_the_Living_Dead.

Exercise E.48: Simulate a war on zombies

A war on zombies can be implemented through large-scale effective attacks. A pos-
sible model is to increase ˛ in the SIZR model from Exercise E.46 by some ad-
ditional amount !.t/, where !.t/ varies in time to model strong attacks at m C 1

distinct points of time T0 < T1 < � � � < Tm. Around these t values we want ! to
have a large value, while in between the attacks ! is small. One possible mathe-
matical function with this behavior is a sum of Gaussian functions:

!.t/ D a

m
X

iD0

exp

 

�1

2

�

t � Ti

�

�2
!

; (E.87)

where a measures the strength of the attacks (the maximum value of !.t/) and
� measures the length of the attacks, which should be much less than the time
between the points of attack: typically, 4� measures the length of an attack, and we
must have 4� � Ti � Ti�1 for i D 1; : : : ; m. We should choose a significantly
larger than ˛ to make the attacks in the war on zombies much stronger than the
usual “man-to-man” killing of zombies.

Modify the model and the implementation from Exercise E.46 to include a war
on zombies. We start out with 50 humans and 3 zombies and ˇ D 0:03. This
leads to rapid zombification. Assume that there are some small resistances against
zombies from the humans, ˛ D 0:2ˇ, throughout the simulations. In addition, the
humans implement three strong attacks, a D 50˛, at 5, 10, and 18 hours after the
zombification starts. The attacks last for about 2 hours (� D 0:5). Set ıS D �I D
˙ D 0, ˇ D 0:03, and � D 1, simulate for T D 20 hours, and see if the war on
zombies modeled by the suggested !.t/ is sufficient to save mankind.
Filename: war_on_zombies.

Exercise E.49: Explore predator-prey population interactions

Suppose we have two species in an environment: a predator and a prey. How will the
two populations interact and change with time? A system of ordinary differential
equations can give insight into this question. Let x.t/ and y.t/ be the size of the
prey and the predator populations, respectively. In the absence of a predator, the
population of the prey will follow the ODE derived in Sect. C.2:

dx

dt
D rx;

with r > 0, assuming there are enough resources for exponential growth. Similarly,
in the absence of prey, the predator population will just experience a death rate
m > 0:

dy

dt
D �my :
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In the presence of the predator, the prey population will experience a reduction in
the growth proportional to xy. The number of interactions (meetings) between x

and y numbers of animals is xy, and in a certain fraction of these interactions the
predator eats the prey. The predator population will correspondingly experience
a growth in the population because of the xy interactions with the prey population.
The adjusted growth of both populations can now be expressed as

dx

dt
D rx � axy; (E.88)

dy

dt
D �my C bxy; (E.89)

for positive constants r , m, a, and b. Solve this system and plot x.t/ and y.t/ for
r D m D 1, a D 0:3, b D 0:2, x.0/ D 1, and y.0/ D 1, t 2 Œ0; 20�. Try to explain
the dynamics of the population growth you observe. Experiment with other values
of a and b.
Filename: predator_prey.

Exercise E.50: Formulate a 2nd-order ODE as a system

In this and subsequent exercises we shall deal with the following second-order or-
dinary differential equation with two initial conditions:

m RuC f . Pu/C s.u/ D F.t/; t > 0; u.0/ D U0; Pu.0/ D V0 : (E.90)

The notation Pu and Ru means u0.t/ and u00.t/, respectively. Write (E.90) as a system
of two first-order differential equations. Also set up the initial condition for this
system.

Physical applications Equation (E.90) has a wide range of applications throughout
science and engineering. A primary application is damped spring systems in, e.g.,
cars and bicycles: u is the vertical displacement of the spring system attached to
a wheel; Pu is then the corresponding velocity; F.t/ resembles a bumpy road; s.u/

represents the force from the spring; and f . Pu/ models the damping force (friction)
in the spring system. For this particular application f and s will normally be linear
functions of their arguments: f . Pu/ D ˇ Pu and s.u/ D ku, where k is a spring
constant and ˇ some parameter describing viscous damping.

Equation (E.90) can also be used to describe the motions of a moored ship or
oil platform in waves: the moorings act as a nonlinear spring s.u/; F.t/ represents
environmental excitation from waves, wind, and current; f . Pu/ models damping of
the motion; and u is the one-dimensional displacement of the ship or platform.

Oscillations of a pendulum can be described by (E.90): u is the angle the pendu-
lum makes with the vertical; s.u/ D .mg=L/ sin.u/, where L is the length of the
pendulum, m is the mass, and g is the acceleration of gravity; f . Pu/ D ˇj Puj Pu models
air resistance (with ˇ being some suitable constant, see Exercises 1.11 and E.54);
and F.t/ might be some motion of the top point of the pendulum.

Another application is electric circuits with u.t/ as the charge, m D L as the
inductance, f . Pu/ D R Pu as the voltage drop across a resistor R, s.u/ D u=C as the
voltage drop across a capacitor C , and F.t/ as an electromotive force (supplied by
a battery or generator).
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Furthermore, Equation (E.90) can act as a (very) simplified model of many other
oscillating systems: aircraft wings, lasers, loudspeakers, microphones, tuning forks,
guitar strings, ultrasound imaging, voice, tides, the El Ni no phenomenon, climate
changes – to mention some.

We remark that (E.90) is a possibly nonlinear generalization of Equation (D.8)
explained in Sect. D.1.3. The case in Appendix D corresponds to the special choice
of f . Pu/ proportional to the velocity Pu, s.u/ proportional to the displacement u, and
F.t/ as the acceleration Rw of the plate and the action of the gravity force.

Exercise E.51: Solve Ru C u D 0

Make a function

def rhs(u, t):
...

for returning a list with two elements with the two right-hand side expressions in
the first-order differential equation system from Exercise E.50. As usual, the u ar-
gument is an array or list with the two solution components u[0] and u[1] at some
time t. Inside rhs, assume that you have access to three global Python functions
friction(dudt), spring(u), and external(t) for evaluating f . Pu/, s.u/, and
F.t/, respectively.

Test the rhs function in combination with the functions f . Pu/ D 0, F.t/ D
0, s.u/ D u, and the choice m D 1. The differential equation then reads Ru C
u D 0. With initial conditions u.0/ D 1 and Pu.0/ D 0, one can show that the
solution is given by u.t/ D cos.t/. Apply three numerical methods: the 4th-order
Runge-Kutta method and the Forward Euler method from the ODESolver module
developed in Sect. E.3, as well as the 2nd-order Runge-Kutta method developed in
Exercise E.31. Use a time step �t D �=20.

Plot u.t/ and Pu.t/ versus t together with the exact solutions. Also make a plot
of Pu versus u (plot(u[:,0], u[:,1]) if u is the array returned from the solver’s
solve method). In the latter case, the exact plot should be a circle because the
points on the curve are .cos t; sin t/, which all lie on a circle as t is varied. Ob-
serve that the ForwardEuler method results in a spiral and investigate how the spiral
develops as �t is reduced.

The kinetic energy K of the motion is given by 1
2
m Pu2, and the potential en-

ergy P (stored in the spring) is given by the work done by the spring force: P D
R u

0
s.v/dv D 1

2
u2. Make a plot with K and P as functions of time for both the

4th-order Runge-Kutta method and the Forward Euler method, for the same physi-
cal problem described above. In this test case, the sum of the kinetic and potential
energy should be constant. Compute this constant analytically and plot it together
with the sum K C P as calculated by the 4th-order Runge-Kutta method and the
Forward Euler method.
Filename: oscillator_v1.

Exercise E.52: Make a tool for analyzing oscillatory solutions

The solution u.t/ of the equation (E.90) often exhibits an oscillatory behavior (for
the test problem in Exercise E.51 we have that u.t/ D cos t). It is then of interest
to find the wavelength of the oscillations. The purpose of this exercise is to find and
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visualize the distance between peaks in a numerical representation of a continuous
function.

Given an array .y0; : : : ; yn�1/ representing a function y.t/ sampled at various
points t0; : : : ; tn�1, a local maximum of y.t/ occurs at t D tk if yk�1 < yk > ykC1.
Similarly, a local minimum of y.t/ occurs at t D tk if yk�1 > yk < ykC1. By
iterating over the y1; : : : ; yn�2 values and making the two tests, one can collect
local maxima and minima as .tk; yk/ pairs. Make a function minmax(t, y) which
returns two lists, minima and maxima, where each list holds pairs (2-tuples) of t and
y values of local minima or maxima. Ensure that the t value increases from one pair
to the next. The arguments t and y in minmax hold the coordinates t0; : : : ; tn�1 and
y0; : : : ; yn�1, respectively.

Make another function wavelength(peaks) which takes a list peaks of
2-tuples with t and y values for local minima or maxima as argument and re-
turns an array of distances between consecutive t values, i.e., the distances
between the peaks. These distances reflect the local wavelength of the com-
puted y function. More precisely, the first element in the returned array is
peaks[1][0]-peaks[0][0], the next element is peaks[2][0]-peaks[1][0],
and so forth.

Test the minmax and wavelength functions on y values generated by y D
et=4 cos.2t/ and y D e�t=4 cos.t2=5/ for t 2 Œ0; 4��. Plot the y.t/ curve in each
case, and mark the local minima and maxima computed by minmax with circles
and boxes, respectively. Make a separate plot with the array returned from the
wavelength function (just plot the array against its indices – the point is to see if
the wavelength varies or not). Plot only the wavelengths corresponding to maxima.

Make a module with the minmax and wavelength function, and let the test block
perform the tests specified above.
Filename: wavelength.

Exercise E.53: Implement problem, solver, and visualizer classes

The user-chosen functions f , s, and F in Exercise E.51 must be coded with par-
ticular names. It is then difficult to have several functions for s.u/ and experiment
with these. A much more flexible code arises if we adopt the ideas of a problem
and a solver class as explained in Sect. E.3.6. Specifically, we shall here make use
of class Problem3 in Sect. E.3.6 to store information about f . Pu/, s.u/, F.t/, u.0/,
Pu.0/, m, T , and the exact solution (if available). The solver class can store param-
eters related to the numerical quality of the solution, i.e., �t and the name of the
solver class in the ODESolver hierarchy. In addition we will make a visualizer class
for producing plots of various kinds.

We want all parameters to be set on the command line, but also have sensible
default values. As in Sect. E.3.6, the argparse module is used to read data from
the command line. Class Problem can be sketched as follows:

class Problem(object):
def define_command_line_arguments(self, parser):

"""Add arguments to parser (argparse.ArgumentParser)."""

parser.add_argument(
’--friction’, type=func_dudt, default=’0’,
help=’friction function f(dudt)’,
metavar=’<function expression>’)
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parser.add_argument(
’--spring’, type=func_u, default=’u’,
help=’spring function s(u)’,
metavar=’<function expression>’)

parser.add_argument(
’--external’, type=func_t, default=’0’,
help=’external force function F(t)’,
metavar=’<function expression>’)

parser.add_argument(
’--u_exact’, type=func_t_vec, default=’0’,
help=’exact solution u(t) (0 or None: now known)’,
metavar=’<function expression>’)

parser.add_argument(
’--m’, type=evalcmlarg, default=1.0, help=’mass’,
type=float, metavar=’mass’)

...
return parser

def set(self, args):
"""Initialize parameters from the command line."""
self.friction = args.friction
self.spring = args.spring
self.m = args.m
...

def __call__(self, u, t):
"""Define the right-hand side in the ODE system."""
m, f, s, F = \

self.m, self.friction, self.spring, self.external
...

Several functions are specified as the type argument to parser.add_argument

for turning strings into proper objects, in particular StringFunction objects with
different independent variables:

def evalcmlarg(text):
return eval(text)

def func_dudt(text):
return StringFunction(text, independent_variable=’dudt’)

def func_u(text):
return StringFunction(text, independent_variable=’u’)

def func_t(text):
return StringFunction(text, independent_variable=’t’)

def func_t_vec(text):
if text == ’None’ or text == ’0’:

return None
else:

f = StringFunction(text, independent_variable=’t’)
f.vectorize(globals())
return f
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The use of evalcmlarg is essential: this function runs the strings from the com-
mand line through eval, which means that we can use mathematical formulas like
–T ’4*pi’.

Class Solver is relatively much shorter than class Problem:

class Solver(object):
def __init__(self, problem):

self.problem = problem

def define_command_line_arguments(self, parser):
"""Add arguments to parser (argparse.ArgumentParser)."""
# add --dt and --method
...
return parser

def set(self, args):
self.dt = args.dt
self.n = int(round(self.problem.T/self.dt))
self.solver = eval(args.method)

def solve(self):
self.solver = self.method(self.problem)
ic = [self.problem.initial_u, self.problem.initial_dudt]
self.solver.set_initial_condition(ic)
time_points = linspace(0, self.problem.T, self.n+1)
self.u, self.t = self.solver.solve(time_points)

The Visualizer class holds references to a Problem and Solver instance and
creates plots. The user can specify plots in an interactive dialog in the terminal
window. Inside a loop, the user is repeatedly asked to specify a plot until the user
responds with quit. The specification of a plot can be one of the words u, dudt,
dudt-u, K, and wavelength which means a plot of u.t/ versus t , Pu.t/ versus t ,
Pu versus u, K (D 1

2
m Pu2, kinetic energy) versus t , and u’s wavelength versus its

indices, respectively. The wavelength can be computed from the local maxima of u

as explained in Exercise E.52.
A sketch of class Visualizer is given next:

class Visualizer(object):
def __init__(self, problem, solver):

self.problem = problem
self.solver = solver

def visualize(self):
t = self.solver.t # short form
u, dudt = self.solver.u[:,0], self.solver.u[:,1]

# Tag all plots with numerical and physical input values
title = ’solver=%s, dt=%g, m=%g’ % \

(self.solver.method, self.solver.dt, self.problem.m)
# Can easily get the formula for friction, spring and force
# if these are string formulas.
if isinstance(self.problem.friction, StringFunction):

title += ’ f=%s’ % str(self.problem.friction)
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if isinstance(self.problem.spring, StringFunction):
title += ’ s=%s’ % str(self.problem.spring)

if isinstance(self.problem.external, StringFunction):
title += ’ F=%s’ % str(self.problem.external)

# Let the user interactively specify what
# to be plotted
plot_type = ’’
while plot_type != ’quit’:

plot_type = raw_input(’Specify a plot: ’)
figure()
if plot_type == ’u’:

# Plot u vs t
if self.problem.u_exact is not None:

hold(’on’)
# Plot self.problem.u_exact vs t

show()
savefig(’tmp_u.pdf’)

elif plot_type == ’dudt’:
...
elif plot_type == ’dudt-u’:
...
elif plot_type == ’K’:
...
elif plot_type == ’wavelength’:
...

Make a complete implementation of the three proposed classes. Also make
a main function that (i) creates a problem, solver, and visualizer, (ii) calls the func-
tions to define command-line arguments in the problem and solver classes, (iii)
reads the command line, (iv) passes on the command-line parser object to the prob-
lem and solver classes, (v) calls the solver, and (vi) calls the visualizer’s visualize
method to create plots. Collect the classes and functions in a module oscillator,
which has a call to main in the test block.

The first task from Exercises E.51 can now be run as

Terminal

oscillator.py --method ForwardEuler --u_exact "cos(t)" \
--dt "pi/20" --T "5*pi"

The other tasks from Exercises E.51 can be tested similarly.
Explore some of the possibilities of specifying several functions on the command

line:

Terminal

oscillator.py --method RungeKutta4 --friction "0.1*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "40*pi" --m 10

oscillator.py --method RungeKutta4 --friction "0.8*dudt" \
--external "sin(0.5*t)" --dt "pi/80" \
--T "120*pi" --m 50

Filename: oscillator.
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Exercise E.54: Use classes for flexible choices of models

Some typical choices of f . Pu/, s.u/, and F.t/ in (E.90) are listed below:

� Linear friction force (low velocities): f . Pu/ D 6��R Pu (Stokes drag), where R

is the radius of a spherical approximation to the body’s geometry, and � is the
viscosity of the surrounding fluid.

� Quadratic friction force (high velocities): f . Pu/ D 1
2
CD%Aj Puj Pu. See Exer-

cise 1.11 for explanation of the symbols.
� Linear spring force: s.u/ D ku, where k is a spring constant.
� Sinusoidal spring force: s.u/ D k sin u, where k is a constant.
� Cubic spring force: s.u/ D k.u � 1

6
u3/, where k is a spring constant.

� Sinusoidal external force: F.t/ D F0CA sin !t , where F0 is the mean value of
the force, A is the amplitude, and ! is the frequency.

� Bump force: F.t/ D H.t � t1/.1 �H.t � t2//F0, where H.t/ is the Heaviside
function (H D 0 for x < 0 and H D 1 for x � 0), t1 and t2 are two given time
points, and F0 is the size of the force. This F.t/ is zero for t < t1 and t > t2,
and F0 for t 2 Œt1; t2�.

� Random force 1: F.t/ D F0 C A � U.t IB/, where F0 and A are constants,
and U.t IB/ denotes a function whose value at time t is random and uniformly
distributed in the interval Œ�B; B�.

� Random force 2: F.t/ D F0 C A � N.t I�; �/, where F0 and A are constants,
and N.t I�; �/ denotes a function whose value at time t is random, Gaussian
distributed number with mean � and standard deviation � .

Make a module functions where each of the choices above are implemented as
a class with a __call__ special method. Also add a class Zero for a function
whose value is always zero. It is natural that the parameters in a function are set as
arguments to the constructor. The different classes for spring functions can all have
a common base class holding the k parameter as data attribute.
Filename: functions.

Exercise E.55: Apply software for oscillating systems

The purpose of this exercise is to demonstrate the use of the classes from Exer-
cise E.54 to solve problems described by (E.90).

With a lot of models for f . Pu/, s.u/, and F.t/ available as classes in functions.
py, the initialization of self.friction, self.spring, etc., from the command
line does not work, because we assume simple string formulas on the command
line. Now we want to write things like –spring ’LinearSpring(1.0)’.
There is a quite simple remedy: replace all the special conversion functions
to StringFunction objects by evalcmlarg in the type specifications in the
parser.add_argumentcalls. If a from functions import * is also performed
in the oscillator.py file, a simple eval will turn strings like ’LinearSpring

(1.0)’ into living objects.
However, we shall here follow a simpler approach, namely dropping initializing

parameters on the command line and instead set them directly in the code. Here is
an example:
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problem = Problem()
problem.m = 1.0
k = 1.2
problem.spring = CubicSpring(k)
problem.friction = Zero()
problem.T = 8*pi/sqrt(k)
...

This is the simplest way of making use of the objects in the functions module.
Note that the set method in classes Solver and Visualizer is unaffected

by the new objects from the functions module, so flexible initialization via
command-line arguments works as before for –dt, –method, and plot. One may
also dare to call the set method in the problem object to set parameters like m,
initial_u, etc., or one can choose the safer approach of not calling set but
initialize all data attributes explicitly in the user’s code.

Make a new file say oscillator_test.py where you import class Problem,
Solver, and Visualizer, plus all classes from the functions module. Provide
a main1 function for solving the following problem: m D 1, u.0/ D 1, Pu.0/ D 0,
no friction (use class Zero), no external forcing (class Zero), a linear spring s.u/ D
u, �t D �=20, T D 8� , and exact u.t/ D cos.t/. Use the Forward Euler method.

Then make another function main2 for the case with m D 5, u.0/ D 1, Pu.0/ D
0, linear friction f . Pu/ D 0:1 Pu, s.u/ D u, F.t/ D sin. 1

2
t/, �t D �=80, T D 60� ,

and no knowledge of an exact solution. Use the 4-th order Runge-Kutta method.
Let a test block use the first command-line argument to indicate a call to main1

or main2.
Filename: oscillator_test.

Exercise E.56: Model the economy of fishing

A population of fish is governed by the differential equation

dx
dt
D 1

10
x
�

1 � x
100

	

� h; x.0/ D 500; (E.91)

where x.t/ is the size of the population at time t and h is the harvest.

a) Assume h D 0. Find an exact solution for x.t/. For which value of t is dx
dt

largest? For which value of t is 1
x

dx
dt

largest?
b) Solve the differential equation (E.91) by the Forward Euler method. Plot the

numerical and exact solution in the same plot.
c) Suppose the harvest h depends on the fishers’ efforts, E, in the following way:

h D qxE, with q as a constant. Set q D 0:1 and assume E is constant. Show
the effect of E on x.t/ by plotting several curves, corresponding to different E

values, in the same figure.
d) The fishers’ total revenue is given by � D ph � c

2
E2, where p is a constant.

In the literature about the economy of fisheries, one is often interested in how
a fishery will develop in the case the harvest is not regulated. Then new fishers
will appear as long as there is money to earn (� > 0). It can (for simplicity) be
reasonable to model the dependence of E on � as

dE

dt
D 
�; (E.92)
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where 
 is a constant. Solve the system of differential equations for x.t/ and
E.t/ by the 4th-order Runge-Kutta method, and plot the curve with points
(x.t/; E.t/) in the two cases 
 D 1=2 and 
 ! 1. Choose c D 0:3, p D 10,
E.0/ D 0:5, and T D 1.

Filename: fishery.
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Testing a program to find errors usually takes much more time than to write the
code. This appendix is devoted to tools and good habits for effective debugging.
Section F.1 describes the Python debugger, a key tool for examining the internal
workings of a code, while Sect. F.2 explains how to solve problems and write soft-
ware to simplify the debugging process.

F.1 Using a Debugger

A debugger is a program that can help you find out what is going on in a computer
program. You can stop the execution at any prescribed line number, print out vari-
ables, continue execution, stop again, execute statements one by one, and repeat
such actions until you have tracked down abnormal behavior and found bugs.

Here we shall use the debugger to demonstrate the program flow of the code
Simpson.py (which can integrate functions of one variable with the famous Simp-
son’s rule). This development of this code is explained in Sect. 3.4.2. You are
strongly encouraged to carry out the steps below on your computer to get a glimpse
of what a debugger can do.

Step 1 Go to the folder src/funcif1 where the program Simpson.py resides.

Step 2 If you use the Spyder Integrated Development Environment, choose Debug

on the Run pull-down menu. If you run your programs in a plain terminal window,
start IPython:

Terminal

Terminal> ipython

Run the program Simpson.py with the debugger on (-d):

In [1]: run -d Simpson.py

1 http://tinyurl.com/pwyasaa/funcif
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We now enter the debugger and get a prompt

ipdb>

After this prompt we can issue various debugger commands. The most important
ones will be described as we go along.

Step 3 Type continue or just c to go to the first line in the file. Now you can see
a printout of where we are in the program:

1---> 1 def Simpson(f, a, b, n=500):
2 """
3 Return the approximation of the integral of f

Each program line is numbered and the arrow points to the next line to be executed.
This is called the current line.

Step 4 You can set a break point where you want the program to stop so that you
can examine variables and perhaps follow the execution closely. We start by setting
a break point in the application function:

ipdb> break application
Breakpoint 2 at /home/.../src/funcif/Simpson.py:30

You can also say break X, where X is a line number in the file.

Step 5 Continue execution until the break point by writing continue or c. Now
the program stops at line 31 in the application function:

ipdb> c
> /home/.../src/funcif/Simpson.py(31)application()
2 30 def application():
---> 31 from math import sin, pi

32 print ’Integral of 1.5*sin^3 from 0 to pi:’

Step 6 Typing step or just s executes one statement at a time:

ipdb> s
> /home/.../src/funcif/Simpson.py(32)application()

31 from math import sin, pi
---> 32 print ’Integral of 1.5*sin^3 from 0 to pi:’

33 for n in 2, 6, 12, 100, 500:

ipdb> s
Integral of 1.5*sin^3 from 0 to pi:
> /home/.../src/funcif/Simpson.py(33)application()

32 print ’Integral of 1.5*sin^3 from 0 to pi:’
---> 33 for n in 2, 6, 12, 100, 500:

34 approx = Simpson(h, 0, pi, n)
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Typing another s reaches the call to Simpson, and a new s steps into the function
Simpson:

ipdb> s
--Call--
> /home/.../src/funcif/Simpson.py(1)Simpson()
1---> 1 def Simpson(f, a, b, n=500):

2 """
3 Return the approximation of the integral of f

Type a few more s to step ahead of the if tests.

Step 7 Examining the contents of variables is easy with the print (or p) command:

ipdb> print f, a, b, n
<function h at 0x898ef44> 0 3.14159265359 2

We can also check the type of the objects:

ipdb> whatis f
Function h
ipdb> whatis a
<type ’int’>
ipdb> whatis b
<type ’float’>
ipdb> whatis n
<type ’int’>

Step 8 Set a new break point in the application function so that we can jump
directly there without having to go manually through all the statements in the
Simpson function. To see line numbers and corresponding statements around some
line with number X, type list X. For example,

ipdb> list 32
27 def h(x):
28 return (3./2)*sin(x)**3
29
30 from math import sin, pi
31

2 32 def application():
33 print ’Integral of 1.5*sin^3 from 0 to pi:’
34 for n in 2, 6, 12, 100, 500:
35 approx = Simpson(h, 0, pi, n)
36 print ’n=%3d, approx=%18.15f, error=%9.2E’ % \
37 (n, approx, 2-approx)

We set a line break at line 35:

ipdb> break 35
Breakpoint 3 at /home/.../src/funcif/Simpson.py:35

Typing c continues execution up to the next break point, line 35.
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Step 9 The command next or n is like step or s in that the current line is executed,
but the execution does not step into functions, instead the function calls are just
performed and the program stops at the next line:

ipdb> n
> /home/.../src/funcif/Simpson.py(36)application()
3 35 approx = Simpson(h, 0, pi, n)
---> 36 print ’n=%3d, approx=%18.15f, error=%9.2E’ % \

37 (n, approx, 2-approx)
ipdb> print approx, n
1.9891717005835792 6

Step 10 The command disable X Y Z disables break points with numbers X, Y,
and Z, and so on. To remove our three break points and continue execution until the
program naturally stops, we write

ipdb> disable 1 2 3
ipdb> c
n=100, approx= 1.999999902476350, error= 9.75E-08
n=500, approx= 1.999999999844138, error= 1.56E-10

In [2]:

At this point, I hope you realize that a debugger is a very handy tool for moni-
toring the program flow, checking variables, and thereby understanding why errors
occur.

F.2 How to Debug

Most programmers will claim that writing code consumes a small portion of the
time it takes to develop a program: the major portion of the work concerns testing
the program and finding errors.

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the

code as cleverly as possible, you are, by definition, not smart enough to debug it. Brian W.
Kernighan, computer scientist, 1942-.

Newcomers to programming often panic when their program runs for the first
time and aborts with a seemingly cryptic error message. How do you approach the
art of debugging? This appendix summarizes some important working habits in this
respect. Some of the tips are useful for problem solving in general, not only when
writing and testing Python programs.

F.2.1 A Recipe for ProgramWriting and Debugging

1. Understand the problem Make sure that you really understand the task the
program is supposed to solve. We can make a general claim: if you do not under-
stand the problem and the solution method, you will never be able to make a correct
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program. It may be argued that this claim is not entirely true: sometimes students
with limited understanding of the problem are able to grab a similar program and
guess at a few modifications, and actually get a program that works. But this tech-
nique is based on luck and not on understanding. The famous Norwegian computer
scientist Kristen Nygaard (1926–2002) phrased it precisely: Programming is un-

derstanding. It may be necessary to read a problem description or exercise many
times and study relevant background material before starting on the programming
part of the problem solving process.

2. Work out examples Start with sketching one or more examples on input and
output of the program. Such examples are important for controlling the understand-
ing of the purpose of the program, and for verifying the implementation.

3. Decide on a user interface Find out how you want to get data into the program.
You may want to grab data from the command-line, a file, or a dialog with questions
and answers.

4. Make algorithms Identify the key tasks to be done in the program and sketch
rough algorithms for these. Some programmers prefer to do this on a piece of paper,
others prefer to start directly in Python and write Python-like code with comments
to sketch the program (this is easily developed into real Python code later).

5. Look up information Few programmers can write the whole program without
consulting manuals, books, and the Internet. You need to know and understand the
basic constructs in a language and some fundamental problem solving techniques,
but technical details can be looked up.

The more program examples you have studied (in this book, for instance), the
easier it is to adapt ideas from an existing example to solve a new problem.

6. Write the program Be extremely careful with what you write. In particular,
compare all mathematical statements and algorithms with the original mathematical
expressions.

In longer programs, do not wait until the program is complete before you start
testing it, test parts while you write.

7. Run the program If the program aborts with an error message from Python,
these messages are fortunately quite precise and helpful. First, locate the line num-
ber where the error occurs and read the statement, then carefully read the error
message. The most common errors (exceptions) are listed below.

SyntaxError: Illegal Python code.

File "somefile.py", line 5
x = . 5

^
SyntaxError: invalid syntax

Often the error is precisely indicated, as above, but sometimes you have to search
for the error on the previous line.
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NameError: A name (variable, function, module) is not defined.

File "somefile.py", line 20, in <module>
table(10)

File "somefile.py", line 16, in table
value, next, error = L(x, n)

File "somefile.py", line 8, in L
exact_error = log(1+x) - value_of_sum

NameError: global name ’value_of_sum’ is not defined

Look at the last of the lines starting with File to see where in the program the error
occurs. The most common reasons for a NameError are

� a misspelled name,
� a variable that is not initialized,
� a function that you have forgotten to define,
� a module that is not imported.

TypeError: An object of wrong type is used in an operation.

File "somefile.py", line 17, in table
value, next, error = L(x, n)

File "somefile.py", line 7, in L
first_neglected_term = (1.0/(n+1))*(x/(1.0+x))**(n+1)

TypeError: unsupported operand type(s) for +: ’float’ and ’str’

Print out objects and their types (here: print x, type(x), n, type(n)), and
you will most likely get a surprise. The reason for a TypeError is often far away
from the line where the TypeError occurs.

ValueError: An object has an illegal value.

File "somefile.py", line 8, in L
y = sqrt(x)

ValueError: math domain error

Print out the value of objects that can be involved in the error (here: print x).
IndexError: An index in a list, tuple, string, or array is too large.

File "somefile.py", line 21
n = sys.argv[i+1]

IndexError: list index out of range

Print out the length of the list, and the index if it involves a variable (here: print
len(sys.argv), i).

8. Verify the results Assume now that we have a program that runs without error
messages from Python. Before judging the results of the program, set precisely up
a test case where you know the exact solution. This is in general quite difficult. In
complicated mathematical problems it is an art to construct good test problems and
procedures for providing evidence that the program works.
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If your program produces wrong answers, start to examine intermediate results.
Never forget that your own hand calculations that you use to test the program may
be wrong!

9. Use a debugger If you end up inserting a lot of print statements in the pro-
gram for checking intermediate results, you might benefit from using a debugger as
explained in Sect. F.1.

Some may think that this list of nine points is very comprehensive. However,
the recipe just contains the steps that you should always carry out when developing
programs. Never forget that computer programming is a difficult task.

Program writing is substantially more demanding than book writing. Why is it so? I think

the main reason is that a larger attention span is needed when working on a large computer

program than when doing other intellectual tasks. Donald Knuth [11, p. 18], computer
scientist, 1938-.

F.2.2 Application of the Recipe

Let us illustrate the points above in a specific programming problem: implementa-
tion of the Midpoint rule for numerical integration. The Midpoint rule for approxi-
mating an integral

R b

a
f .x/dx reads

I D h

n
X

iD1

f .aC .i � 1

2
/h/; h D b � a

n
: (F.1)

We just follow the individual steps in the recipe to develop the code.

1. Understand the problem In this problem we must understand how to program
the formula (F.1). Observe that we do not need to understand how the formula is
derived, because we do not apply the derivation in the program. What is impor-
tant, is to notice that the formula is an approximation of an integral. Comparing
the result of the program with the exact value of the integral will in general show
a discrepancy. Whether we have an approximation error or a programming error is
always difficult to judge. We will meet this difficulty below.

2. Work out examples As a test case we choose to integrate

f .x/ D sin�1.x/ : (F.2)

between 0 and � . From a table of integrals we find that this integral equals

h

x sin�1.x/C
p

1 � x2

i�

0
: (F.3)

The formula (F.1) gives an approximation to this integral, so the program will (most
likely) print out a result different from (F.3). It would therefore be very helpful to
construct a calculation where there are no approximation errors. Numerical integra-
tion rules usually integrate some polynomial of low order exactly. For the Midpoint
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rule it is obvious, if you understand the derivation of this rule, that a constant func-
tion will be integrated exactly. We therefore also introduce a test problem where we
integrate g.x/ D 1 from 0 to 10. The answer should be exactly 10.

Input and output The input to the calculations is the function to integrate, the in-
tegration limits a and b, and the n parameter (number of intervals) in the formula
(F.1). The output from the calculations is the approximation to the integral.

3. Decide on a user interface We find it easiest at this beginning stage to program
the two functions f .x/ and g.x/ directly in the program. We also specify the
corresponding integration limits a and b in the program, but we read a common
n for both integrals from the command line. Note that this is not a flexible user
interface, but it suffices as a start for creating a working program. A much better
user interface is to read f , a, b, and n from the command line, which will be done
later in a more complete solution to the present problem.

4. Make algorithms Like most mathematical programming problems, also this
one has a generic part and an application part. The generic part is the formula
(F.1), which is applicable to an arbitrary function f .x/. The implementation should
reflect that we can specify any Python function f(x) and get it integrated. This prin-
ciple calls for calculating (F.1) in a Python function where the input to the compu-
tation (f , a, b, n) are arguments. The function heading can look as integrate(f,
a, b, n), and the value of (F.1) is returned.

The test part of the program consists of defining the test functions f .x/ and g.x/

and writing out the calculated approximations to the corresponding integrals.
A first rough sketch of the program can then be

def integrate(f, a, b, n):
# compute integral, store in I
return I

def f(x):
...

def g(x):
...

# test/application part:
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
# calculate and print out the exact integral of f

The next step is to make a detailed implementation of the integrate function.
Inside this function we need to compute the sum (F.1). In general, sums are com-
puted by a for loop over the summation index, and inside the loop we calculate
a term in the sum and add it to an accumulation variable. Here is the algorithm in
Python code:
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s = 0
for i in range(1, n+1):

s = s + f(a + (i-0.5)*h)
I = s*h

5. Look up information Our test function f .x/ D sin�1.x/ must be evaluated
in the program. How can we do this? We know that many common mathematical
functions are offered by the math module. It is therefore natural to check if this
module has an inverse sine function. The best place to look for Python modules
is the Python Standard Library2 [3] documentation, which has a search facility.
Typing math brings up a link to the math module, there we find math.asin as the
function we need. Alternatively, one can use the command line utility pydoc and
write pydoc math to look up all the functions in the module.

In this simple problem, we use very basic programming constructs and there is
hardly any need for looking at similar examples to get started with the problem solv-
ing process. We need to know how to program a sum, though, via a for loop and
an accumulation variable for the sum. Examples are found in Sects. 2.1.4 and 3.1.8.

6. Write the program Here is our first attempt to write the program. You can find
the whole code in the file integrate_v1.py.

def integrate(f, a, b, n):
s = 0
for i in range(1, n):

s += f(a + i*h)
return s

def f(x):
return asin(x)

def g(x):
return 1

# Test/application part
n = sys.argv[1]
I = integrate(g, 0, 10, n)
print "Integral of g equals %g" % I
I = integrate(f, 0, pi, n)
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1
print "Integral of f equals %g (exact value is %g)’ % \

(I, I_exact)

7. Run the program We try a first execution from IPython

In [1]: run integrate_v1.py

2 http://docs.python.org/2/library/

http://docs.python.org/2/library/
http://tinyurl.com/pwyasaa/debug/integrate_v1.py
http://docs.python.org/2/library/
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Unfortunately, the program aborts with an error:

File "integrate_v1.py", line 8
return asin(x)

^
IndentationError: expected an indented block

We go to line 8 and look at that line and the surrounding code:

def f(x):
return asin(x)

Python expects that the return line is indented, because the function body must
always be indented. By the way, we realize that there is a similar error in the g(x)
function as well. We correct these errors:

def f(x):
return asin(x)

def g(x):
return 1

Running the program again makes Python respond with

File "integrate_v1.py", line 24
(I, I_exact)

^
SyntaxError: EOL while scanning single-quoted string

There is nothing wrong with line 24, but line 24 is a part of the statement starting
on line 23:

print "Integral of f equals %g (exact value is %g)’ % \
(I, I_exact)

A SyntaxError implies that we have written illegal Python code. Inspecting line
23 reveals that the string to be printed starts with a double quote, but ends with
a single quote. We must be consistent and use the same enclosing quotes in a string.
Correcting the statement,

print "Integral of f equals %g (exact value is %g)" % \
(I, I_exact)

and rerunning the program yields the output

Traceback (most recent call last):
File "integrate_v1.py", line 18, in <module>

n = sys.argv[1]
NameError: name ’sys’ is not defined
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Obviously, we need to import sys before using it. We add import sys and run
again:

Traceback (most recent call last):
File "integrate_v1.py", line 19, in <module>

n = sys.argv[1]
IndexError: list index out of range

This is a very common error: we index the list sys.argv out of range because we
have not provided enough command-line arguments. Let us use n D 10 in the test
and provide that number on the command line:

In [5]: run integrate_v1.py 10

We still have problems:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>

I = integrate(g, 0, 10, n)
File "integrate_v1.py", line 7, in integrate

for i in range(1, n):
TypeError: range() integer end argument expected, got str.

It is the final File line that counts (the previous ones describe the nested functions
calls up to the point where the error occurred). The error message for line 7 is very
precise: the end argument to range, n, should be an integer, but it is a string. We
need to convert the string sys.argv[1] to int before sending it to the integrate
function:

n = int(sys.argv[1])

After a new edit-and-run cycle we have other error messages waiting:

Traceback (most recent call last):
File "integrate_v1.py", line 20, in <module>

I = integrate(g, 0, 10, n)
File "integrate_v1.py", line 8, in integrate

s += f(a + i*h)
NameError: global name ’h’ is not defined

The h variable is used without being assigned a value. From the formula (F.1) we
see that h D .b � a/=n, so we insert this assignment at the top of the integrate

function:

def integrate(f, a, b, n):
h = (b-a)/n
...
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A new run results in a new error:

Integral of g equals 9
Traceback (most recent call last):

File "integrate_v1.py", line 23, in <module>
I = integrate(f, 0, pi, n)

NameError: name ’pi’ is not defined

Looking carefully at all output, we see that the program managed to call the
integrate function with g as input and write out the integral. However, in the
call to integrate with f as argument, we get a NameError, saying that pi is
undefined. When we wrote the program we took it for granted that pi was � ,
but we need to import pi from math to get this variable defined, before we call
integrate:

from math import pi
I = integrate(f, 0, pi, n)

The output of a new run is now

Integral of g equals 9
Traceback (most recent call last):

File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

NameError: global name ’asin’ is not defined

A similar error occurred: asin is not defined as a function, and we need to import
it from math. We can either do a

from math import pi, asin

or just do the rough

from math import *

to avoid any further errors with undefined names from the math module (we will
get one for the sqrt function later, so we simply use the last “import all” kind of
statement).

There are still more errors:

Integral of g equals 9
Traceback (most recent call last):

File "integrate_v1.py", line 24, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 13, in f
return asin(x)

ValueError: math domain error
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Now the error concerns a wrong x value in the f function. Let us print out x:

def f(x):
print x
return asin(x)

The output becomes

Integral of g equals 9
0.314159265359
0.628318530718
0.942477796077
1.25663706144
Traceback (most recent call last):

File "integrate_v1.py", line 25, in <module>
I = integrate(f, 0, pi, n)

File "integrate_v1.py", line 9, in integrate
s += f(a + i*h)

File "integrate_v1.py", line 14, in f
return asin(x)

ValueError: math domain error

We see that all the asin(x) computations are successful up to and including x D
0:942477796077, but for x D 1:25663706144 we get an error. A math domain

error may point to a wrong x value for sin�1.x/ (recall that the domain of a func-
tion specifies the legal x values for that function).

To proceed, we need to think about the mathematics of our problem: Since sin.x/

is always between �1 and 1, the inverse sine function cannot take x values out-
side the interval Œ�1; 1�. The problem is that we try to integrate sin�1.x/ from 0
to � , but only integration limits within Œ�1; 1� make sense (unless we allow for
complex-valued trigonometric functions). Our test problem is hence wrong from
a mathematical point of view. We need to adjust the limits, say 0 to 1 instead of 0
to � . The corresponding program modification reads

I = integrate(f, 0, 1, n)

We run again and get

Integral of g equals 9
0
0
0
0
0
0
0
0
0
Traceback (most recent call last):

File "integrate_v1.py", line 26, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error
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It is easy to go directly to the ValueError now, but one should always examine the
output from top to bottom. If there is strange output before Python reports an error,
there may be an error indicated by our print statements. This is not the case in the
present example, but it is a good habit to start at the top of the output anyway. We
see that all our print x statements inside the f function say that x is zero. This
must be wrong – the idea of the integration rule is to pick n different points in the
integration interval Œ0; 1�.

Our f(x) function is called from the integrate function. The argument to f,
a + i*h, is seemingly always 0. Why? We print out the argument and the values
of the variables that make up the argument:

def integrate(f, a, b, n):
h = (b-a)/n
s = 0
for i in range(1, n):

print a, i, h, a+i*h
s += f(a + i*h)

return s

Running the program shows that h is zero and therefore a+i*h is zero.
Why is h zero? We need a new print statement in the computation of h:

def integrate(f, a, b, n):
h = (b-a)/n
print b, a, n, h
...

The output shows that a, b, and n are correct. Now we have encountered a very
common error in Python version 2 and C-like programming languages: integer di-
vision (see Sect. 1.3.1). The formula .1 � 0/=10 D 1=10 is zero according to
integer division. The reason is that a and b are specified as 0 and 1 in the call to
integrate, and 0 and 1 imply int objects. Then b-a becomes an int, and n is
an int, causing an int/int division. We must ensure that b-a is float to get the
right mathematical division in the computation of h:

def integrate(f, a, b, n):
h = float(b-a)/n
...

Thinking that the problem with wrong x values in the inverse sine function is re-
solved, we may remove all the print statements in the program, and run again.

The output now reads

Integral of g equals 9
Traceback (most recent call last):

File "integrate_v1.py", line 25, in <module>
I_exact = pi*asin(pi) - sqrt(1 - pi**2) - 1

ValueError: math domain error
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That is, we are back to the ValueError we have seen before. The reason is that
asin(pi) does not make sense, and the argument to sqrt is negative. The error is
simply that we forgot to adjust the upper integration limit in the computation of the
exact result. This is another very common error. The correct line is

I_exact = 1*asin(1) - sqrt(1 - 1**2) - 1

We could have avoided the error by introducing variables for the integration limits,
and a function for

R

f .x/dx would make the code cleaner:

a = 0; b = 1
def int_f_exact(x):

return x*asin(x) - sqrt(1 - x**2)
I_exact = int_f_exact(b) - int_f_exact(a)

Although this is more work than what we initially aimed at, it usually saves time in
the debugging phase to do things this proper way.

Eventually, the program seems to work! The output is just the result of our two
print statements:

Integral of g equals 9
Integral of f equals 5.0073 (exact value is 0.570796)

8. Verify the results Now it is time to check if the numerical results are correct.
We start with the simple integral of 1 from 0 to 10: the answer should be 10, not 9.
Recall that for this particular choice of integration function, there is no approxima-
tion error involved (but there could be a small rounding error). Hence, there must
be a programming error.

To proceed, we need to calculate some intermediate mathematical results by
hand and compare these with the corresponding statements in the program. We
choose a very simple test problem with n D 2 and h D .10 � 0/=2 D 5. The
formula (F.1) becomes

I D 5 � .1C 1/ D 10 :

Running the program with n D 2 gives

Integral of g equals 1

We insert some print statements inside the integrate function:

def integrate(f, a, b, n):
h = float(b-a)/n
s = 0
for i in range(1, n):

print ’i=%d, a+i*h=%g’ % (i, a+i*h)
s += f(a + i*h)

return s
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Here is the output:

i=1, a+i*h=5
Integral of g equals 1
i=1, a+i*h=0.5
Integral of f equals 0.523599 (exact value is 0.570796)

There was only one pass in the i loop in integrate. According to the formula,
there should be n passes, i.e., two in this test case. The limits of i must be wrong.
The limits are produced by the call range(1,n). We recall that such a call results
in integers going from 1 up to n, but not including n. We need to include n as value
of i, so the right call to range is range(1,n+1).

We make this correction and rerun the program. The output is now

i=1, a+i*h=5
i=2, a+i*h=10
Integral of g equals 2
i=1, a+i*h=0.5
i=2, a+i*h=1
Integral of f equals 2.0944 (exact value is 0.570796)

The integral of 1 is still not correct. We need more intermediate results!
In our quick hand calculation we knew that g.x/ D 1 so all the f .aC .i � 1

2
/h/

evaluations were rapidly replaced by ones. Let us now compute all the x coordinates
aC .i � 1

2
/h that are used in the formula:

i D 1 W aC
�

i � 1

2

�

h D 2:5; i D 2 W aC
�

i � 1

2

�

h D 7:5 :

Looking at the output from the program, we see that the argument to g has a differ-
ent value – and fortunately we realize that the formula we have coded is wrong. It
should be a+(i-0.5)*h.

We correct this error and run the program:

i=1, a+(i-0.5)*h=2.5
i=2, a+(i-0.5)*h=7.5
Integral of g equals 2
...

Still the integral is wrong. At this point you may give up programming, but the more
skills you pick up in debugging, the more fun it is to hunt for errors! Debugging
is like reading an exciting criminal novel: the detective follows different ideas and
tracks, but never gives up before the culprit is caught.

Now we read the code more carefully and compare expressions with those in the
mathematical formula. We should, of course, have done this already when writing
the program, but it is easy to get excited when writing code and hurry for the end.
This ongoing story of debugging probably shows that reading the code carefully
can save much debugging time. (Actually, being extremely careful with what you
write, and comparing all formulas with the mathematics, may be the best way to get
more spare time when taking a programming course!)
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We clearly add up all the f evaluations correctly, but then this sum must be mul-
tiplied by h, and we forgot that in the code. The return statement in integrate

must therefore be modified to

return s*h

Eventually, the output is

Integral of g equals 10
Integral of f equals 0.568484 (exact value is 0.570796)

and we have managed to integrate a constant function in our program! Even the
second integral looks promising!

To judge the result of integrating the inverse sine function, we need to run
several increasing n values and see that the approximation gets better. For n D
2; 10; 100; 1000 we get 0.550371, 0.568484, 0.570714, 0.570794, to be compared
to the exact value 0.570796. (This is not the mathematically exact value, because it
involves computations of sin�1.x/, which is only approximately calculated by the
asin function in the math module. However, the approximation error is very small
(� 10�16).) The decreasing error provides evidence for a correct program, but it is
not a strong proof. We should try out more functions. In particular, linear functions
are integrated exactly by the Midpoint rule. We can also measure the speed of the
decrease of the error and check that the speed is consistent with the properties of
the Midpoint rule, but this is a mathematically more advanced topic.

The very important lesson learned from these debugging sessions is that you
should start with a simple test problem where all formulas can be computed by
hand. If you start out with n D 100 and try to integrate the inverse sine function,
you will have a much harder job with tracking down all the errors.

9. Use a debugger Another lesson learned from these sessions is that we needed
many print statements to see intermediate results. It is an open question if it
would be more efficient to run a debugger and stop the code at relevant lines. In an
edit-and-run cycle of the type we met here, we frequently need to examine many
numerical results, correct something, and look at all the intermediate results again.
Plain print statements are often better suited for this massive output than the pure
manual operation of a debugger, unless one writes a program to automate the inter-
action with the debugger.

The correct code for the implementation of the Midpoint rule is found in
integrate_v2.py. Some readers might be frightened by all the energy it took
to debug this code, but this is just the nature of programming. The experience of
developing programs that finally work is very awarding.

People only become computer programmers if they’re obsessive about details, crave power

over machines, and can bear to be told day after day exactly how stupid they are. Gregory
J. E. Rawlins [24], computer scientist.

Refining the user interface We briefly mentioned that the chosen user interface,
where the user can only specify n, is not particularly user friendly. We should

http://tinyurl.com/pwyasaa/debug/integrate_v2.py
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allow f , a, b, and n to be specified on the command line. Since f is a function
and the command line can only provide strings to the program, we may use the
StringFunction object from scitools.std to convert a string expression for
the function to be integrated to an ordinary Python function (see Sect. 4.3.3). The
other parameters should be easy to retrieve from the command line if Sect. 4.2
is understood. As suggested in Sect. 4.7, we enclose the input statements in
a try-except block, here with a specific exception type IndexError (because an
index in sys.argv out of bounds is the only type of error we expect to handle):

try:
f_formula = sys.argv[1]
a = eval(sys.argv[2])
b = eval(sys.argv[3])
n = int(sys.argv[4])

except IndexError:
print ’Usage: %s f-formula a b n’ % sys.argv[0]
sys.exit(1)

Note that the use of eval allows us to specify a and b as pi or exp(5) or another
mathematical expression.

With the input above we can perform the general task of the program:

from scitools.std import StringFunction
f = StringFunction(f_formula)
I = integrate(f, a, b, n)
print I

Writing a test function Instead of having these test statements as a main program
we follow the good habits of Sect. 4.9 and make a module with

� the integrate function,
� a test_integrate function for testing the integrate function’s ability to ex-

actly integrate linear functions,
� a main function for reading data from the command line and calling integrate

for the user’s problem at hand.

Any module should also have a test block, as well as doc strings for the module
itself and all functions.

The test_integrate function can perform a loop over some specified n values
and check that the Midpoint rule integrates a linear function exactly. As always,
we must be prepared for rounding errors, so “exactly” means errors less than (say)
10�14. The relevant code becomes

def test_integrate():
"""Check that linear functions are integrated exactly."""

def g(x):
return p*x + q # general linear function

def int_g_exact(x): # integral of g(x)
return 0.5*p*x**2 + q*x
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a = -1.2; b = 2.8 # "arbitrary" integration limits
p = -2; q = 10
success = True # True if all tests below are passed
for n in 1, 10, 100:

I = integrate(g, a, b, n)
I_exact = int_g_exact(b) - int_g_exact(a)
error = abs(I_exact - I)
if error > 1E-14:

success = False
assert success

We have followed the programming standard that will make this test function auto-
matically work with the nose test framework:

1. the name of the function starts with test_,
2. the function has no arguments,
3. checks of whether a test is passed or not are done with assert.

The assert success statement raises an AssertionError exception if success
is false, otherwise nothing happens. The nose testing framework searches for
functions whose name start with test_, execute each function, and record if an
AssertionError is raised. It is overkill to use nose for small programs, but in
larger projects with many functions in many files, nose can run all tests with a short
command and write back a notification that all tests passed.

The main function is simply a wrapping of the main program given above. The
test block may call or test_integrate function or main, depending on whether
the user will test the module or use it:

if __name__ == ’__main__’:
if sys.argv[1] == ’verify’:

verify()
else:

# Compute the integral specified on the command line
main()

Here is a short demo computing
R 2�

0
.cos.x/ C sin.x//dx with the aid of the

integrate.py file:

Terminal

integrate.py ’cos(x)+sin(x)’ 0 2*pi 10
-3.48786849801e-16

F.2.3 Getting Help from a Code Analyzer

The tools PyLint3 and Flake84 can analyze your code and point out errors and un-
desired coding styles. Before point 7 in the lists above, Run the program, it can

3 http://www.pylint.org/
4 https://flake8.readthedocs.org/en/2.0/

http://tinyurl.com/pwyasaa/debug/integrate.py
http://www.pylint.org/
https://flake8.readthedocs.org/en/2.0/
http://www.pylint.org/
https://flake8.readthedocs.org/en/2.0/
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be wise to run PyLint and/or Flake8 to be informed about problems with the code.
Flake8 complains in general a lot less than PyLint, and might be a more useful tool
for mathematical software (see the examples below), but both tools are very useful
during program development to improve your code and ease further debugging.

Consider the first version of the integrate code, integrate_v1.py. Running
Flake8 gives

Terminal

Terminal> flake8 integrate_v1.py
integrate_v1.py:7:1: E302 expected 2 blank lines, found 1
integrate_v1.py:8:1: E112 expected an indented block
integrate_v1.py:8:7: E901 IndentationError: expected an indented block
integrate_v1.py:10:1: E302 expected 2 blank lines, found 1
integrate_v1.py:11:1: E112 expected an indented block

Flake8 checks if the program obeys the official Style Guide for Python Code5

(known as PEP8). One of the rules in this guide is to have two blank lines before
functions and classes (a habit that is often dropped in this book to reduce the length
of code snippets), and our program breaks the rule before the f and g functions.
More serious and useful is the notification of expected an indented block at
lines 8 and 11, but this error is quickly found by running the program too.

PyLint reports much less about integrate_v1.py:

Terminal

Terminal> pylint integrate_v1.py
E: 8, 0: expected an indented block (syntax-error)

Running Flak8 on integrate_v2.py leads to only three problems: missing two
blank lines before functions and doing from math import *. Applying PyLint to
integrate_v2.py results in many more problems:

Terminal

Terminal> pylint integrate_v2.py
C: 20, 0: Exactly one space required after comma
I = integrate(f, 0, 1, n)

^ (bad-whitespace)
W: 19, 0: Redefining built-in ’pow’ (redefined-builtin)
C: 1, 0: Missing module docstring (missing-docstring)
W: 1,14: Redefining name ’f’ from outer scope (line 8)
W: 1,23: Redefining name ’n’ from outer scope (line 16)
C: 1, 0: Invalid argument name "f" (invalid-name)
C: 1, 0: Invalid argument name "a" (invalid-name)

There is much more output, but let us summarize what PyLint does not like about
the code:

1. Extra whitespace (after comma in a call to integrate)
2. Missing doc string at the beginning of the file

5 http://www.python.org/dev/peps/pep-0008/

http://tinyurl.com/pwyasaa/debug/integrate_v1.py
http://www.python.org/dev/peps/pep-0008/
http://tinyurl.com/pwyasaa/debug/integrate_v2.py
http://www.python.org/dev/peps/pep-0008/
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3. Missing doc strings in the functions
4. Same name f used as local variable in integrate and global function name in

the f(x) function
5. Too short variable names: a, b, n, etc.
6. “Star import” of the form from math import *

In short programs where the one-to-one mapping between mathematical notation
and the variable names is very important to make the code self-explanatory, this
author thinks that only points 1–3 qualify for attention. Nevertheless, for larger
non-mathematical programs all the style violations pointed out are serious and lead
to code that is easier to read, debug, maintain, and use.



GMigrating Python to Compiled Code

Python is a very convenient language for implementing scientific computations as
the code can be made very close to the mathematical algorithms. However, the
execution speed of the code is significantly lower than what can be obtained by
programming in languages such as Fortran, C, or C++. These languages compile the
program to machine language, which enables the computing resources to be utilized
with very high efficiency. Frequently, and this includes almost all examples in the
present book, Python is fast enough. But in the cases where speed really matters,
can we increase the efficiency without rewriting the whole program in Fortran, C,
or C++? The answer is yes, which will be illustrated through a case study in the
forthcoming text.

Fortunately, Python was initially designed for being integrated with C. This
feature has spawned the development of several techniques and tools for calling
compiled languages from Python, allowing us to relatively easily reuse fast and
well-tested scientific libraries in Fortran, C, or C++ from Python, or migrate slow
Python code to compiled languages. It often turns out that only smaller parts of
the code, usually for loops doing heavy numerical computations, suffer from low
speed and can benefit from being implemented in Fortran, C, or C++.

The primary technique to be advocated here is to use Cython. Cython can be
viewed as an extension of the Python language where variables can be declared
with a type and other information such that Cython is able to automatically generate
special-purpose, fast C code from the Python code. We will show how to utilize
Cython and what the computational gain might be.

The present case study starts with stating a computational problem involving
statistical simulations, which are known to cause long execution times, especially if
accurate results are desired.

G.1 Pure Python Code for Monte Carlo Simulation

A short, intuitive algorithm in Python is first developed. Then this code is vectorized
using functionality of the Numerical Python package. Later sections migrate the
algorithm to Cython code and also plain C code for comparison. At the end the
various techniques are ranked according to their computational efficiency.

857



858 G Migrating Python to Compiled Code

G.1.1 The Computational Problem

A die is thrown m times. What is the probability of getting six eyes at least n times?
For example, if m D 5 and n D 3, this is the same as asking for the probability that
three or more out of five dice show six eyes.

The probability can be estimated by Monte Carlo simulation. Chapter 8.3 pro-
vides a background for this technique: We simulate the process a large number of
times, N , and count how many times, M , the experiment turned out successfully,
i.e., when we got at least n out of m dice with six eyes in a throw.

Monte Carlo simulation has traditionally been viewed as a very costly compu-
tational method, normally requiring very sophisticated, fast computer implemen-
tations in compiled languages. An interesting question is how useful high-level
languages like Python and associated tools are for Monte Carlo simulation. This
will now be explored.

G.1.2 A Scalar Python Implementation

Let us introduce the more descriptive variables ndice for m and nsix for n. The
Monte Carlo method is simply a loop, repeated N times, where the body of the loop
may directly express the problem at hand. Here, we draw ndice random integers r
in Œ1; 6� inside the loop and count of many (six) that equal 6. If six >= nsix, the
experiment is a success and we increase the counter M by one.

A Python function implementing this approach may look as follows:

import random

def dice6_py(N, ndice, nsix):
M = 0 # no of successful events
for i in range(N): # repeat N experiments

six = 0 # how many dice with six eyes?
for j in range(ndice):

r = random.randint(1, 6) # roll die no. j
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

The float(M) transformation is important since M/N will imply integer division
when M and N both are integers in Python v2.x and many other languages.

We will refer to this implementation is the plain Python implementation. Timing
the function can be done by:

import time
t0 = time.clock()
p = dice6_py(N, ndice, nsix)
t1 = time.clock()
print ’CPU time for loops in Python:’, t1-t0
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The table to appear later shows the performance of this plain, pure Python code
relative to other approaches. There is a factor of 30+ to be gained in computational
efficiency by reading on.

The function above can be verified by studying the (somewhat simplified) case
m D n where the probability becomes 6�n. The probability quickly becomes small
with increasing n. For such small probabilities the number of successful events
M is small, and M=N will not be a good approximation to the probability unless
M is reasonably large, which requires a very large N . For example, with n D 4

and N D 105 the average probability in 25 full Monte Carlo experiments is 0.00078
while the exact answer is 0.00077. With N D 106 we get the two correct significant
digits from the Monte Carlo simulation, but the extra digit costs a factor of 10 in
computing resources since the CPU time scales linearly with N .

G.1.3 A Vectorized Python Implementation

A vectorized version of the previous program consists of replacing the explicit loops
in Python by efficient operations on vectors or arrays, using functionality in the Nu-
merical Python (numpy) package. Each array operation takes place in C or Fortran
and is hence much more efficient than the corresponding loop version in Python.

First, we must generate all the random numbers to be used in one operation,
which runs fast since all numbers are then calculated in efficient C code. This is
accomplished using the numpy.random module. Second, the analysis of the large
collection of random numbers must be done by appropriate vector/array operations
such that no looping in Python is needed. The solution algorithm must therefore
be expressed through a series of function calls to the numpy library. Vectorization
requires knowledge of the library’s functionality and how to assemble the relevant
building blocks to an algorithm without operations on individual array elements.

Generation of ndice random number of eyes for N experiments is performed by

import numpy as np
eyes = np.random.random_integers(1, 6, size=(N, ndice))

Each row in the eyes array corresponds to one Monte Carlo experiment.
The next step is to count the number of successes in each experiment. This

counting should not make use of any loop. Instead we can test eyes == 6 to get
a boolean array where an element i,j is True if throw (or die) number j in Monte
Carlo experiment number i gave six eyes. Summing up the rows in this boolean
array (True is interpreted as 1 and False as 0), we are interested in the rows where
the sum is equal to or greater than nsix, because the number of such rows equals
the number of successful events. The vectorized algorithm can be expressed as

def dice6_vec1(N, ndice, nsix):
eyes = np.random.random_integers(1, 6, size=(N, ndice))
compare = eyes == 6
throws_with_6 = np.sum(compare, axis=1) # sum over columns
nsuccesses = throws_with_6 >= nsix
M = np.sum(nsuccesses)
p = float(M)/N
return p
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The use of np.sum instead of Python’s own sum function is essential for the
speed of this function: using M = sum(nsucccesses) instead slows down the
code by a factor of almost 10! We shall refer to the dice6_vec1 function as the
vectorized Python, version1 implementation.

The criticism against the vectorized version is that the original problem descrip-
tion, which was almost literally turned into Python code in the dice6_py function,
has now become much more complicated. We have to decode the calls to various
numpy functionality to actually realize that dice6_py and dice6_vec correspond
to the same mathematics.

Here is another possible vectorized algorithm, which is easier to understand,
because we retain the Monte Carlo loop and vectorize only each individual experi-
ment:

def dice6_vec2(N, ndice, nsix):
eyes = np.random.random_integers(1, 6, (N, ndice))
six = [6 for i in range(ndice)]
M = 0
for i in range(N):

# Check experiment no. i:
compare = eyes[i,:] == six
if np.sum(compare) >= nsix:

M += 1
p = float(M)/N
return p

We refer to this implementation as vectorized Python, version 2. As will be
shown later, this implementation is significantly slower than the plain Python im-
plementation (!) and very much slower than the vectorized Python, version 1

approach. A conclusion is that readable, partially vectorized code, may run slower
than straightforward scalar code.

G.2 Migrating Scalar Python Code to Cython

G.2.1 A Plain Cython Implementation

A Cython program starts with the scalar Python implementation, but all variables
are specified with their types, using Cython’s variable declaration syntax, like cdef
int M = 0 where we in standard Python just write M = 0. Adding such variable
declarations in the scalar Python implementation is straightforward:

import random

def dice6_cy1(int N, int ndice, int nsix):
cdef int M = 0 # no of successful events
cdef int six, r
cdef double p
for i in range(N): # repeat N experiments

six = 0 # how many dice with six eyes?
for j in range(ndice):

r = random.randint(1, 6) # roll die no. j
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if r == 6:
six += 1

if six >= nsix: # successful event?
M += 1

p = float(M)/N
return p

This code must be put in a separate file with extension .pyx. Running Cython on
this file translates the Cython code to C. Thereafter, the C code must be compiled
and linked to form a shared library, which can be imported in Python as a module.
All these tasks are normally automated by a setup.py script. Let the dice6_cy1

function above be stored in a file dice6.pyx. A proper setup.py script looks as
follows:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
name=’Monte Carlo simulation’,
ext_modules=[Extension(’_dice6_cy’, [’dice6.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

Running

Terminal

Terminal> python setup.py build_ext --inplace

generates the C code and creates a (shared library) file _dice6_cy.so (known as
a C extension module) which can be loaded into Python as a module with name
_dice6_cy:

from _dice6_cy import dice6_cy1
import time
t0 = time.clock()
p = dice6_cy1(N, ndice, nsix)
t1 = time.clock()
print t1 - t0

We refer to this implementation as Cython random.randint. Although most of the
statements in the dice6_cy1 function are turned into plain and fast C code, the
speed is not much improved compared with the original scalar Python code.

To investigate what takes time in this Cython implementation, we can perform
a profiling. The template for profiling a Python function whose call syntax is stored
in some string statement, reads

import cProfile, pstats
cProfile.runctx(statement, globals(), locals(), ’tmp_profile.dat’)
s = pstats.Stats(’tmp_profile.dat’)
s.strip_dirs().sort_stats(’time’).print_stats(30)
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Data from the profiling are here stored in the file tmp_profile.dat. Our interest
now is the dice6_cy1 function so we set

statement = ’dice6_cy1(N, ndice, nsix)’

In addition, a Cython file in which there are functions we want to profile must start
with the line

# cython: profile=True

to turn on profiling when creating the extension module. The profiling output from
the present example looks like

5400004 function calls in 7.525 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
1800000 4.511 0.000 4.863 0.000 random.py:160(randrange)
1800000 1.525 0.000 6.388 0.000 random.py:224(randint)

1 1.137 1.137 7.525 7.525 dice6.pyx:6(dice6_cy1)
1800000 0.352 0.000 0.352 0.000 {method ’random’ ...

1 0.000 0.000 7.525 7.525 {dice6_cy.dice6_cy1}

We easily see that it is the call to random.randint that consumes almost all the
time. The reason is that the generated C code must call a Python module (random),
which implies a lot of overhead. The C code should only call plain C functions, or
if Python functions must be called, they should involve so much computations that
the overhead in calling Python from C is negligible.

Instead of profiling the code to uncover inefficient constructs we can generate
a visual representation of how the Python code is translated to C. Running

Terminal

Terminal> cython -a dice6.pyx

creates a file dice6.html which can be loaded into a web browser to inspect what
Cython has done with the Python code.
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White lines indicate that the Python code is translated into C code, while the
yellow lines indicate that the generated C code must make calls back to Python
(using the Python C API, which implies overhead). Here, the random.randint

call is in yellow, so this call is not translated to efficient C code.

G.2.2 A Better Cython Implementation

To speed up the previous Cython code, we have to get rid of the random.randint
call every time we need a random variable. Either we must call some C function
for generating a random variable or we must create a bunch of random numbers
simultaneously as we did in the vectorized functions shown above. We first try the
latter well-known strategy and apply the numpy.randommodule to generate all the
random numbers we need at once:

import numpy as np
cimport numpy as np

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices ([-1,-1])
def dice6_cy2(int N, int ndice, int nsix):

# Use numpy to generate all random numbers
...
cdef np.ndarray[np.int_t, ndim=2, mode=’c’] eyes = \

np.random.random_integers(1, 6, (N, ndice))

This code needs some explanation. The cimport statement imports a special ver-
sion of numpy for Cython and is needed after the standard numpy import. The
declaration of the array of random numbers could just go as

cdef np.ndarray eyes = np.random.random_integers(1, 6, (N, ndice))

However, the processing of the eyes array will then be slow because Cython does
not have enough information about the array. To generate optimal C code, we must
provide information on the element types in the array, the number of dimensions
of the array, that the array is stored in contiguous memory, that we do not want
the overhead of checking whether indices are within their bounds or not, and that
we do not need negative indices (which slows down array indexing). The latter
two properties are taken care of by the @cython.boundscheck(False) and the
@cython.wraparound(False) statements (decorators) right before the function,
respectively, while the rest of the information is specified within square brackets in
the cdef np.ndarray declaration. Inside the brackets, np.int_t denotes integer
array elements (np.int is the usual data type object, but np.int_t is a Cython
precompiled version of this object), ndim=2 tells that the array has two dimensions
(indices), and mode=’c’ indicates contiguous storage of the array. With all this
extra information, Cython can generate C code that works with numpy arrays as
efficiently as native C arrays.

The rest of the code is a plain copy of the dice6_py function, but with the
random.randint call replaced by an array look-up eyes[i,j] to retrieve the next
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random number. The two loops will now be as efficient as if they were coded
directly in pure C.

The complete code for the efficient version of the dice6_cy1 function looks as
follows:

import numpy as np
cimport numpy as np
import cython
@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices ([-1,-1])
def dice6_cy2(int N, int ndice, int nsix):

# Use numpy to generate all random numbers
cdef int M = 0 # no of successful events
cdef int six, r
cdef double p
cdef np.ndarray[np.int_t, ndim=2, mode=’c’] eyes = \

np.random.random_integers(1, 6, (N, ndice))
for i in range(N):

six = 0 # how many dice with six eyes?
for j in range(ndice):

r = eyes[i,j] # roll die no. j
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

This Cython implementation is named Cython numpy.random.
The disadvantage with the dice6_cy2 function is that large simulations (large

N) also require large amounts of memory, which usually limits the possibility for
high accuracy much more than the CPU time. It would be advantageous to have
a fast random number generator a la random.randint in C. The C library stdlib

has a generator of random integers, rand(), generating numbers from 0 to up
RAND_MAX. Both the rand function and the RAND_MAX integer are easy to access
in a Cython program:

from libc.stdlib cimport rand, RAND_MAX

r = 1 + int(6.0*rand()/RAND_MAX) # random integer 1,...,6

Note that rand() returns an integer so we must avoid integer division by ensur-
ing that the denominator is a real number. We also need to explicitly convert the
resulting real fraction to int since r is declared as int.

With this way of generating random numbers we can create a version of
dice6_cy1 that is as fast as dice6_cy, but avoids all the memory demands
and the somewhat complicated array declarations of the latter:

from libc.stdlib cimport rand, RAND_MAX
def dice6_cy3(int N, int ndice, int nsix):

cdef int M = 0 # no of successful events
cdef int six, r
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cdef double p
for i in range(N):

six = 0 # how many dice with six eyes?
for j in range(ndice):

# Roll die no. j
r = 1 + int(6.0*rand()/RAND_MAX)
if r == 6:

six += 1
if six >= nsix: # successful event?

M += 1
p = float(M)/N
return p

This final Cython implementation will be referred to as Cython stdlib.rand.

G.3 Migrating Code to C

G.3.1 Writing a C Program

A natural next improvement would be to program the Monte Carlo simulation loops
directly in a compiled programming language, which guarantees optimal speed.
Here we choose the C programming language for this purpose. The C version of
our dice6 function and an associated main program take the form

#include <stdio.h>
#include <stdlib.h>

double dice6(int N, int ndice, int nsix)
{

int M = 0;
int six, r, i, j;
double p;

for (i = 0; i < N; i++) {
six = 0;
for (j = 0; j < ndice; j++) {

r = 1 + rand()/(RAND_MAX*6.0); /* roll die no. j */
if (r == 6)

six += 1;
}
if (six >= nsix)

M += 1;
}
p = ((double) M)/N;
return p;

}

int main(int nargs, const char* argv[])
{

int N = atoi(argv[1]);
int ndice = 6;
int nsix = 3;
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double p = dice6(N, ndice, nsix);
printf("C code: N=%d, p=%.6f\n", N, p);
return 0;

}

This code is placed in a file dice6_c.c. The file can typically be compiled and
run by

Terminal

Terminal> gcc -O3 -o dice6.capp dice6_c.c
Terminal> ./dice6.capp 1000000

This solution is later referred to as C program.

G.3.2 Migrating Loops to C Code via F2PY

Instead of programming the whole application in C, we may consider migrating the
loops to the C function dice6 shown above and then have the rest of the program
(essentially the calling main program) in Python. This is a convenient solution if
we were to do many other, less CPU time critical things for convenience in Python.

There are many alternative techniques for calling C functions from Python. Here
we shall explain two. The first applies the program f2py to generate the necessary
code that glues Python and C. The f2py program was actually made for gluing
Python and Fortran, but it can work with C too. We need a specification of the
C function to call in terms of a Fortran 90 module. Such a module can be writ-
ten by hand, but f2py can also generate it. To this end, we make a Fortran file
dice6_c_signature.fwith the signature of the C function written in Fortran 77
syntax with some annotations:

real*8 function dice6(n, ndice, nsix)
Cf2py intent(c) dice6

integer n, ndice, nsix
Cf2py intent(c) n, ndice, nsix

return
end

The annotations intent(c) are necessary to tell f2py that the Fortran variables
are to be treated as plain C variables and not as pointers (which is the default inter-
pretation of variables in Fortran). The C2fpy are special comment lines that f2py
recognizes, and these lines are used to provide extra information to f2py which
have no meaning in plain Fortran 77.

We must run f2py to generate a .pyf file with a Fortran 90 module specification
of the C function to call:

Terminal

Terminal> f2py -m _dice6_c1 -h dice6_c.pyf \
dice6_c_signature.f
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Here _dice6_c1 is the name of the module with the C function that is to be im-
ported in Python, and dice6_c.pyf is the name of the Fortran 90 module file to be
generated. Programmers who know Fortran 90 may want to write the dice6_c.pyf
file by hand.

The next step is to use the information in dice6_c.pyf to generate a (C ex-
tension) module _dice6_c1. Fortunately, f2py generates the necessary code, and
compiles and links the relevant files, to form a shared library file _dice6_c1.so,
by a short command:

Terminal

Terminal> f2py -c dice6_c.pyf dice6_c.c

We can now test the module:

>>> import _dice6_c1
>>> print dir(_dice6_c1) # module contents
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’dice6’]

>>> print _dice6_c1.dice6.__doc__
dice6 - Function signature:

dice6 = dice6(n,ndice,nsix)
Required arguments:

n : input int
ndice : input int
nsix : input int

Return objects:
dice6 : float

>>> _dice6_c1.dice6(N=1000, ndice=4, nsix=2)
0.145

The method of calling the C function dice6 via an f2py generated module is re-
ferred to as C via f2py.

G.3.3 Migrating Loops to C Code via Cython

The Cython tool can also be used to call C code, not only generating C code from
the Cython language. Our C code is in the file dice6_c.c, but for Cython to see
this code we need to create a header file dice6_c.h listing the definition of the
function(s) we want to call from Python. The header file takes the form

extern double dice6(int N, int ndice, int nsix);

The next step is to make a .pyx file with a definition of the C function from the
header file and a Python function that calls the C function:

cdef extern from "dice6_c.h":
double dice6(int N, int ndice, int nsix)

def dice6_cwrap(int N, int ndice, int nsix):
return dice6(N, ndice, nsix)
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Cython must use this file, named dice6_cwrap.pyx, to generate C code, which
is to be compiled and linked with the dice6_c.c code. All this is accomplished in
a setup.py script:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’dice6_cwrap.pyx’, ’dice6_c.c’]

setup(
name=’Monte Carlo simulation’,
ext_modules=[Extension(’_dice6_c2’, sources)],
cmdclass={’build_ext’: build_ext},

)

This setup.py script is run as

Terminal

Terminal> python setup.py build_ext --inplace

resulting in a shared library file _dice6_c2.so, which can be loaded into Python
as a module:

>>> import _dice6_c2
>>> print dir(_dice6_c2)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’dice6_cwrap’]

We see that the module contains the function dice6_cwrap, which was made to
call the underlying C function dice6.

G.3.4 Comparing Efficiency

All the files corresponding to the various techniques described above are avail-
able in the directory src/cython. A file make.sh performs all the compilations,
while compare.py runs all methods and prints out the CPU time required by each
method, normalized by the fastest approach. The results for N D 450; 000 are
listed below (MacBook Air running Ubuntu in a VMWare Fusion virtual machine).
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Method Timing
C program 1.0
Cython stdlib.rand 1.2
Cython numpy.random 1.2
C via f2py 1.2
C via Cython 1.2
vectorized Python, version 1 1.9
Cython random.randint 33.6
plain Python 37.7
vectorized Python, version 2 105.0

The CPU time of the plain Python version was 10 s, which is reasonably fast for
obtaining a fairly accurate result in this problem. The lesson learned is therefore that
a Monte Carlo simulation can be implemented in plain Python first. If more speed
is needed, one can just add type information and create a Cython code. Studying
the HTML file with what Cython manages to translate to C may give hints about
how successful the Cython code is and point to optimizations, like avoiding the
call to random.randint in the present case. Optimal Cython code runs here at
approximately the same speed as calling a handwritten C function with the time-
consuming loops. It is to be noticed that the stand-alone C program here ran faster
than calling C from Python, probably because the amount of calculations is not
large enough to make the overhead of calling C negligible.

Vectorized Python do give a great speed-up compared to plain loops in Python,
if done correctly, but the efficiency is not on par with Cython or handwritten C.
Even more important is the fact that vectorized code is not at all as readable as
the algorithm expressed in plain Python, Cython, or C. Cython therefore provides
a very attractive combination of readability, ease of programming, and high speed.
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H.1 Getting Access to Python

A comprehensive eco system for scientific computing with Python used to be quite
a challenge to install on a computer, especially for newcomers. This problem is
more or less solved today. There are several options for getting easy access to
Python and the most important packages for scientific computations, so the biggest
issue for a newcomer is to make a proper choice. An overview of the possibilities
together with my own recommendations appears next.

H.1.1 Required Software

The strictly required software packages for working with this book are

� Python1 version 2.7 [23]
� Numerical Python2 (NumPy) [19, 20] for array computing
� Matplotlib3 [8, 9] for plotting

Desired add-on packages are

� IPython4 [21, 22] for interactive computing
� SciTools5 [14] for add-ons to NumPy
� pytest6 or nose7 for testing programs
� pip8 for installing Python packages
� Cython9 for compiling Python to C

1 http://python.org
2 http://www.numpy.org
3 http://matplotlib.org
4 http://ipython.org
5 https://github.com/hplgit/scitools
6 http://pytest.org/latest/
7 https://nose.readthedocs.org
8 http://www.pip-installer.org
9 http://cython.org
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� SymPy10 [2] for symbolic mathematics
� SciPy11 [10] for advanced scientific computing

There are different ways to get access to Python with the required packages:

1. Use a computer system at an institution where the software is installed. Such
a system can also be used from your local laptop through remote login over
a network.

2. Install the software on your own laptop.
3. Use a web service.

A system administrator can take the list of software packages and install the missing
ones on a computer system. For the two other options, detailed descriptions are
given below.

Using a web service is very straightforward, but has the disadvantage that you
are constrained by the packages that are allowed to install on the service. There are
services at the time of this writing that suffice for working with most of this book,
but if you are going to solve more complicated mathematical problems, you will
need more sophisticated mathematical Python packages, more storage and more
computer resources, and then you will benefit greatly from having Python installed
on your own computer.

This author’s experience is that installation of mathematical software on personal
computers quickly becomes a technical challenge. Linux Ubuntu (or any Debian-
based Linux version) contains the largest repository today of pre-built mathematical
software and makes the installation trivial without any need for particular com-
petence. Despite the user-friendliness of the Mac and Windows systems, getting
sophisticated mathematical software to work on these platforms requires consider-
able competence.

H.1.2 Installing Software on Your Laptop: Mac OS X andWindows

There are various possibilities for installing the software on a Mac OS X or Win-
dows platform:

1. Use .dmg (Mac) or .exe (Windows) files to install individual packages
2. Use Homebrew or MacPorts to install packages (Mac only)
3. Use a pre-built rich environment for scientific computing in Python:
� Anaconda12

� Enthought Canopy13

4. Use a virtual machine running Ubuntu:
� VMWare Fusion14

10 http://sympy.org
11 http://scipy.org
12 https://store.continuum.io/cshop/anaconda/
13 https://www.enthought.com/products/canopy/
14 http://www.vmware.com/products/fusion

http://sympy.org
http://scipy.org
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
http://www.vmware.com/products/fusion
http://sympy.org
http://scipy.org
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/
http://www.vmware.com/products/fusion


H.1 Getting Access to Python 873

� VirtualBox15

� Vagrant16

Alternative 1 is the obvious and perhaps simplest approach, but usually requires
quite some competence about the operating system as a long-term solution when
you need many more Python packages than the basic three. This author is not
particularly enthusiastic about Alternative 2. If you anticipate to use Python exten-
sively in your work, I strongly recommend operating Python on an Ubuntu platform
and going for Alternative 4 because that is the easiest and most flexible way to build
and maintain your own software ecosystem. Alternative 3 is recommended for those
who are uncertain about the future needs for Python and think Alternative 4 is too
complicated. My preference is then to use Anaconda for the Python installation
and Spyder17 (comes with Anaconda) as a graphical interface with editor, an output
area, and flexible ways of running Python programs.

H.1.3 Anaconda and Spyder

Anaconda18 is a free Python distribution produced by Continuum Analytics and
contains over 400 Python packages, as well as Python itself, for doing a wide range
of scientific computations. Anaconda can be downloaded from http://continuum.io/
downloads. Choose Python version 2.7.

The Integrated Development Environment (IDE) Spyder is included with Ana-
conda and is my recommended tool for writing and running Python programs on
Mac and Windows, unless you have preference for a plain text editor for writing
programs and a terminal window for running them.

Spyder on Mac Spyder is started by typing spyder in a (new) Terminal applica-
tion. If you get an error message unknown locale, you need to type the following
line in the Terminal application, or preferably put the line in your $HOME/.bashrc
Unix initialization file:

export LANG=en_US.UTF-8; export LC_ALL=en_US.UTF-8

Installation of additional packages After installing Anaconda you have the
conda tool at hand for installing additional packages registered on binstar.org19.
For example,

Terminal

Terminal> sudo conda install --channel johannr scitools

(You do not need sudo on Windows.)

15 https://www.virtualbox.org/
16 http://www.vagrantup.com/
17 https://code.google.com/p/spyderlib/
18 https://store.continuum.io/cshop/anaconda/
19 https://binstar.org

https://www.virtualbox.org/
http://www.vagrantup.com/
https://code.google.com/p/spyderlib/
https://store.continuum.io/cshop/anaconda/
http://continuum.io/downloads
http://continuum.io/downloads
https://binstar.org
https://www.virtualbox.org/
http://www.vagrantup.com/
https://code.google.com/p/spyderlib/
https://store.continuum.io/cshop/anaconda/
https://binstar.org
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Anaconda also installs the pip tool that is handy for installing additional pack-
ages that are not on binstar.org. In a Terminal application on Mac or in a Pow-
erShell terminal on Windows, write

Terminal

Terminal> sudo pip install --user packagename

(Drop sudo on Windows.)

Installing SciTools on Windows If the commands conda install or pip

install do not succeed on Windows, the safest procedure is to download the
source of the packages you want and run setup.py. To install SciTools, go to
https://github.com/hplgit/scitools/ and click on Download ZIP. Double-click on the
downloaded file in Windows Explorer and perform Extract all files to create a new
folder with all the SciTools files. Find the location of this folder, open a PowerShell
window, and move to the location, e.g.,

Terminal

Terminal> cd C:\Users\username\Downloads\scitools-2db3cbb5076a

Installation is done by

Terminal

Terminal> python setup.py install

H.1.4 VMWare Fusion Virtual Machine

A virtual machine allows you to run another complete computer system in a separate
window. For Mac users, I recommend VMWare Fusion over VirtualBox for running
a Linux (or Windows) virtual machine. (VMWare Fusion’s hardware integration
seems superior to that of VirtualBox.) VMWare Fusion is commercial software, but
there is a free trial version you can start with. Alternatively, you can use the simpler
VMWare Player, which is free for personal use.

Installing Ubuntu The following recipe will install a Ubuntu virtual machine un-
der VMWare Fusion.

1. Download Ubuntu20. Choose a version that is compatible with your computer,
usually a 64-bit version nowadays.

2. Launch VMWare Fusion (the instructions here are for version 7).
3. Click on File - New and choose to Install from disc or image.
4. Click on Use another disc or disc image and choose your .iso file with the

Ubuntu image.

20 http://www.ubuntu.com/desktop/get-ubuntu/download

https://github.com/hplgit/scitools/
http://www.ubuntu.com/desktop/get-ubuntu/download
http://www.ubuntu.com/desktop/get-ubuntu/download
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5. Choose Easy Install, fill in password, and check the box for sharing files with
the host operating system.

6. Choose Customize Settings and make the following settings (these settings can
be changed later, if desired):
� Processors and Memory: Set a minimum of 2 Gb memory, but not more

than half of your computer’s total memory. The virtual machine can use all
processors.

� Hard Disk: Choose how much disk space you want to use inside the virtual
machine (20 Gb is considered a minimum).

7. Choose where you want to store virtual machine files on the hard disk. The
default location is usually fine. The directory with the virtual machine files
needs to be frequently backed up so make sure you know where it is.

8. Ubuntu will now install itself without further dialog, but it will take some time.
9. You may need to define a higher resolution of the display in the Ubuntu machine.

Find the System settings icon on the left, go to Display, choose some display
(you can try several, click Keep this configuration when you are satisfied).

10.You can have multiple keyboards on Ubuntu. Launch System settings, go to
Keyboard, click the Text entry hyperlink, add keyboard(s) (Input sources to use),
and choose a shortcut, say Ctrl+space or Ctrl+backslash, in the Switch

to next source using field. Then you can use the shortcut to quickly switch
keyboard.

11.A terminal window is key for programmers. Click on the Ubuntu icon on the top
of the left pane, search for gnome-terminal, right-click its new icon in the left
pane and choose Lock to Launcher such that you always have the terminal
easily accessible when you log in. The gnome-terminal can have multiple
tabs (Ctrl+shift+t to make a new tab).

Installing software on Ubuntu You now have a full Ubuntu machine, but there is
not much software on a it for doing scientific computing with Python. Installation is
performed through the Ubuntu Software Center ( a graphical application) or through
Unix commands, typically

Terminal

Terminal> sudo apt-get install packagename

To look up the right package name, run apt-cache search followed by typical
words of that package. The strength of the apt-get way of installing software is
that the package and all packages it depends on are automatically installed through
the apt-get install command. This is in a nutshell why Ubuntu (or Debian-
based Linux systems) are so user-friendly for installing sophisticated mathematical
software.

Python packages are better installed via pip:

Terminal

Terminal> sudo pip install --user packagename
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To install a lot of useful packages for scientific work, go to http://goo.gl/RVHixr,
click on install_minimal_ubuntu.sh, click on Raw, download the file, and run
it:

Terminal

Terminal> cd ~/Downloads
Terminal> bash install_minimal.sh

The program install_minimal.shwill run pip install and apt-get install

commands for quite some time, hopefully without problems. If it stops, set a com-
ment sign # in front of the line where it stopped and rerun.

File sharing The Ubuntu machine can see the files on your host system if you
download VMWare Tools. Go to the Virtual Machine pull-down menu in VMWare
Fusion and choose Install VMWare Tools. A tarfile is downloaded. Click on it and it
will open a folder vmware-tools-distrib, normally in your home folder. Move
to the new folder and run sudo perl vmware-install.pl. You can go with the
default answers to all the questions.

On a Mac, you must open Virtual Machine - Settings. . . and choose Sharing to
bring up a dialog where you can add the folders you want to be visible in Ubuntu.
Just choose your home folder. Then turn on the file sharing button (or turn off and
on again). Go to Ubuntu and check if you can see all your host system’s files in
/mnt/hgfs/.

If you later detect that /mnt/hgfs/ folder has become empty, VMWare Tools
must be reinstalled by first turning shared folders off, and then running

Terminal

Terminal> sudo /usr/bin/vmware-config-tools.pl

Occasionally it is necessary to do a full reinstall by sudo perl vmware-

install.pl as above.

Backup of a VMWare virtual machine on a Mac

The entire Ubuntu machine is a folder on the host computer, typically with
a name like Documents/Virtual Machines/Ubuntu 64-bit. Backing up
the Ubuntu machine means backing up this folder. However, if you use tools
like Time Machine and work in Ubuntu during backup, the copy of the state
of the Ubuntu machine is likely to be corrupt. You are therefore strongly rec-
ommended to shut down the virtual machine prior to running Time Machine or
simply copying the folder with the virtual machine to some backup disk.

If something happens to your virtual machine, it is usually a straightforward
task to make a new machine and import data and software automatically from
the previous machine.

http://goo.gl/RVHixr
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H.1.5 Dual Boot onWindows

Instead of running Ubuntu in a virtual machine, Windows users also have the option
of deciding on the operating system when turning on the machine (so-called dual
boot). The Wubi21 tool makes it very easy to get Ubuntu on a Windows machine
this way. There are problems with Wubi on Windows 8, see instructions22 for how
to get around them. It is also relatively straightforward to perform a direct install of
Ubuntu by downloading an Ubuntu image, creating a bootable USB stick on Win-
dows23 or Mac24, restarting the machine and finally installing Ubuntu25. However,
with the powerful computers we now have, a virtual machine is more flexible since
you can switch between Windows and Ubuntu as easily as going from one window
to another.

H.1.6 Vagrant Virtual Machine

A vagrant machine is different from a standard virtual machine in that it is run in
a terminal window on a Mac or Windows computer. You will write programs in
Mac/Windows, but run them inside a Vagrant Ubuntu machine that can work with
your files and folders on Mac/Windows. This is a bit simpler technology than a full
VMWare Fusion virtual machine, as described above, and allows you to work in
your original operating system. There is need to install VirtualBox and Vagrant,
and on Windows also Cygwin. Then you can download a Vagrant machine with
Ubuntu and either fill it with software as explained above, or you can download
a ready-made machine. A special machine26 has been made for this book. We also
have a larger and richer machine27. The username and password are fenics.

Pre-i3/5/7 Intel processors and 32 vs. 64 bit

If your computer has a pre-i3/5/7 Intel processor and the processor does not have
VT-x enabled, you cannot use the pre-packaged 64-bit virtual machines referred
to above. Instead, you have to download a plain 32-bit Ubuntu image and install
the necessary software (see Sect. H.1.4). To check if your computer has VT-x
(hardware virtualization) enabled, you can use this tool: https://www.grc.com/
securable.htm.

21 http://wubi-installer.org
22 https://www.youtube.com/watch?v=gZqsXAoLBDI
23 http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
24 http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx
25 http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
26 http://goo.gl/hrdhGt
27 http://goo.gl/uu5Kts

http://wubi-installer.org
https://www.youtube.com/watch?v=gZqsXAoLBDI
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-windows
http://www.ubuntu.com/download/desktop/create-a-usb-stick-on-mac-osx
http://www.ubuntu.com/download/desktop/install-ubuntu-desktop
http://goo.gl/hrdhGt
http://goo.gl/uu5Kts
https://www.grc.com/securable.htm
https://www.grc.com/securable.htm
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H.2 How toWrite and Run a Python Program

You have basically three choices to develop and test a Python program:

1. use the IPython notebook
2. use an Integrated Development Environment (IDE), like Spyder, which offers

a window with a text editor and functionality to run programs and observe the
output

3. use a text editor and a terminal window

The IPython notebook is briefly descried in Sect. H.4, while the other two options
are outlined below.

H.2.1 The Need for a Text Editor

Since programs consist of plain text, we need to write this text with the help of
another program that can store the text in a file. You have most likely extensive
experience with writing text on a computer, but for writing your own programs you
need special programs, called editors, which preserve exactly the characters you
type. The widespread word processors, Microsoft Word being a primary example,
are aimed at producing nice-looking reports. These programs format the text and
are not acceptable tools for writing your own programs, even though they can save
the document in a pure text format. Spaces are often important in Python programs,
and editors for plain text give you complete control of the spaces and all other
characters in the program file.

Spyder Spyder is a graphical application for developing and running Python pro-
grams, available on all major platforms. Spyder comes with Anaconda and some
other pre-built environments for scientific computing with Python. On Ubuntu it is
conveniently installed by sudo apt-get install spyder.

The left part of the Spyder window contains a plain text editor. Click in this
window and write print ’Hello!’ and return. Choose Run from the Run pull-
down menu, and observe the output Hello! in the lower right window where the
output from programs is visible.

You may continue with more advanced statements involving graphics:

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0, 4, 101)
y = np.exp(-x)*np.sin(np.pi*x)
plt.plot(x,y)
plt.title(’First test of Spyder’)
plt.savefig(’tmp.png’)
plt.show()

Choosing Run - Run now leads to a separate window with a plot of the function
e�x sin.�x/. Figure H.1 shows how the Spyder application may look like.
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Fig. H.1 The Spyder Integrated Development Environment.

The plot file we generate in the above program, tmp.png, is by default found
in the Spyder folder listed in the default text in the top of the program. You can
choose Run - Configure . . . to change this folder as desired. The program you write
is written to a file .temp.py in the same default folder, but any name and folder
can be specified in the standard File - Save as. . . menu.

A convenient feature of Spyder is that the upper right window continuously dis-
plays documentation of the statements you write in the editor to the left.

Text editors The most widely used editors for writing programs are Atom, Sub-
lime Text, Emacs, and Vim, which are available on all major platforms. Some
simpler alternatives for beginners are

� Linux: Gedit
� Mac OS X: TextWrangler
� Windows: Notepad++

We may mention that Python comes with an editor called Idle, which can be used
to write programs on all three platforms, but running the program with command-
line arguments is a bit complicated for beginners in Idle so Idle is not my favorite
recommendation.

Gedit is a standard program on Linux platforms, but all other editors must be
installed in your system. This is easy: just google the name, download the file, and
follow the standard procedure for installation. All of the mentioned editors come
with a graphical user interface that is intuitive to use, but the major popularity of
Atom, Sublime Text, Emacs, and Vim is due to their rich set of key commands so
that you can avoid using the mouse and consequently edit at higher speed.
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H.2.2 Terminal Windows

To run the Python program, you need a terminal window. This is a window where
you can issue Unix commands in Linux and Mac OS X systems and DOS com-
mands in Windows. On a Linux computer, gnome-terminal is my favorite, but
other choices work equally well, such as xterm and konsole. On a Mac computer,
launch the application Utilities - Terminal. On Windows, launch PowerShell.

You must first move to the right folder using the cd foldername command.
Then running a python program prog.py is a matter of writing python prog.py.
Whatever the program prints can be seen in the terminal window.

Using a plain text editor and a terminal window

1. Create a folder where your Python programs can be located, say with name
mytest under your home folder. This is most conveniently done in the terminal
window since you need to use this window anyway to run the program. The
command for creating a new folder is mkdir mytest.

2. Move to the new folder: cd mytest.
3. Start the editor of your choice.
4. Write a program in the editor, e.g., just the line print ’Hello!’. Save the

program under the name myprog1.py in the mytest folder.
5. Move to the terminal window and write python myprog1.py. You should see

the word Hello! being printed in the window.

H.3 The SageMathCloud andWakari Web Services

You can avoid installing Python on your machine completely by using a web service
that allows you to write and run Python programs. Computational science projects
will normally require some kind of visualization and associated graphics packages,
which is not possible unless the service offers IPython notebooks. There are two
excellent web services with notebooks: SageMathCloud at https://cloud.sagemath.
com/ and Wakari at https://www.wakari.io/wakari. At both sites you must create an
account before you can write notebooks in the web browser and download them to
your own computer.

H.3.1 Basic Intro to SageMathCloud

Sign in, click on New Project, give a title to your project and decide whether it
should be private or public, click on the project when it appears in the browser,
and click on Create or Import a File, Worksheet, Terminal or Directory. . . . If your
Python program needs graphics, you need to choose IPython Notebook, otherwise
you can choose File. Write the name of the file above the row of buttons. As-
suming we do not need any graphics, we create a plain Python file, say with name
py1.py. By clicking File you are brought to a browser window with a text editor
where you can write Python code. Write some code and click Save. To run the
program, click on the plus icon (New), choose Terminal, and you have a plain Unix

https://cloud.sagemath.com/
https://cloud.sagemath.com/
https://www.wakari.io/wakari
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terminal window where you can write python py1.py to run the program. Tabs
over the terminal (or editor) window make it easy to jump between the editor and
the terminal. To download the file, click on Files, point on the relevant line with the
file, and a download icon appears to the very right. The IPython notebook option
works much in the same way, see Sect. H.4.

H.3.2 Basic Intro toWakari

After having logged in at the wakari.io site, you automatically enter an IPython
notebook with a short introduction to how the notebook can be used. Click on
the New Notebook button to start a new notebook. Wakari enables creating and
editing plain Python files too: click on the Add file icon in pane to the left, fill in the
program name, and you enter an editor where you can write a program. Pressing
Execute launches an IPython session in a terminal window, where you can run the
program by run prog.py if prog.py is the name of the program. To download
the file, select test2.py in the left pane and click on the Download file icon.

There is a pull-down menu where you can choose what type of terminal window
you want: a plain Unix shell, an IPython shell, or an IPython shell with Matplotlib
for plotting. Using the latter, you can run plain Python programs or commands with
graphics. Just choose the type of terminal and click on +Tab to make a new terminal
window of the chosen type.

H.3.3 Installing Your Own Python Packages

Both SageMathCloud and Wakari let you install your own Python packages. To
install any package packagename available at PyPi28, run

Terminal

pip install --user packagename

To install the SciTools package, which is useful when working with this book, run
the command

Terminal

pip install --user -e \
git+https://github.com/hplgit/scitools.git#egg=scitools

28 https://pypi.python.org/pypi

https://pypi.python.org/pypi
https://pypi.python.org/pypi
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H.4 Writing IPython Notebooks

The IPython notebook is a splendid interactive tool for doing science, but it can
also be used as a platform for developing Python code. You can either run it
locally on your computer or in a web service like SageMathCloud or Wakari. In-
stallation on your computer is trivial on Ubuntu, just sudo apt-get install

ipython-notebook, and also on Windows and Mac29 by using Anaconda or En-
thought Canopy for the Python installation.

The interface to the notebook is a web browser: you write all the code and see
all the results in the browser window. There are excellent YouTube videos on how
to use the IPython notebook, so here we provide a very quick “step zero” to get
anyone started.

H.4.1 A Simple Program in the Notebook

Start the IPython notebook locally by the command ipython notebook or go to
SageMathCloud or Wakari as described above. The default input area is a cell for
Python code. Type

g = 9.81
v0 = 5
t = 0.6
y = v0*t - 0.5*g*t**2

in a cell and run the cell by clicking on Run Selected (notebook running locally
on your machine) or on the “play” button (notebook running in the cloud). This
action will execute the Python code and initialize the variables g, v0, t, and y. You
can then write print y in a new cell, execute that cell, and see the output of this
statement in the browser. It is easy to go back to a cell, edit the code, and re-execute
it.

To download the notebook to your computer, choose the File - Download as

menu and select the type of file to be downloaded: the original notebook format
(.ipynb file extension) or a plain Python program version of the notebook (.py file
extension).

H.4.2 Mixing Text, Mathematics, Code, and Graphics

The real strength of IPython notebooks arises when you want to write a report to
document how a problem can be explored and solved. As a teaser, open a new
notebook, click in the first cell, and choose Markdown as format (notebook running
locally) or switch from Code to Markdown in the pull-down menu (notebook in
the cloud). The cell is now a text field where you can write text with Markdown30

syntax. Mathematics can be entered as LATEX code. Try some text with inline math-
ematics and an equation on a separate line:

29 http://ipython.org/install.html
30 http://daringfireball.net/projects/markdown/syntax

http://ipython.org/install.html
http://daringfireball.net/projects/markdown/syntax
http://ipython.org/install.html
http://daringfireball.net/projects/markdown/syntax
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Plot the curve $y=f(x)$, where

$$
f(x) = e^{-x}\sin (2\pi x),\quad x\in [0, 4]
$$

Execute the cell and you will see nicely typeset mathematics in the browser. In the
new cell, add some code to plot f .x/:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline # make plots inline in the notebook

x = np.linspace(0, 4, 101)
y = np.exp(-x)*np.sin(2*pi*x)
plt.plot(x, y, ’b-’)
plt.xlabel(’x’); plt.ylabel(’y’)

Executing these statements results in a plot in the browser, see Fig. H.2. It was
popular to start the notebook by ipython notebook –pylab to import everything
from numpy and matplotlib.pyplot and make all plots inline, but the –pylab

option is now officially discouraged31. If you want the notebook to behave more as
MATLAB and not use the np and plt prefix, you can instead of the first three lines
above write %pylab.

Fig. H.2 Example on an IPython notebook.

31 http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html

http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html
http://carreau.github.io/posts/10-No-PyLab-Thanks.ipynb.html
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H.5 Different Ways of Running Python Programs

Python programs are compiled and interpreted by another program called python.
To run a Python program, you need to tell the operating system that your program
is to be interpreted by the python program. This section explains various ways of
doing this.

H.5.1 Executing Python Programs in iPython

The simplest and most flexible way of executing a Python program is to run it inside
IPython. See Sect. 1.5.3 for a quick introduction to IPython. You start IPython
either by the command ipython in a terminal window, or by double-clicking the
IPython program icon (on Windows). Then, inside IPython, you can run a program
prog.py by

In [1]: run prog.py arg1 arg2

where arg1 and arg2 are command-line arguments.
This method of running Python programs works the same way on all platforms.

One additional advantage of running programs under IPython is that you can au-
tomatically enter the Python debugger if an exception is raised (see Sect. F.1).
Although we advocate running Python programs under IPython in this book, you
can also run them directly under specific operating systems. This is explained next
for Unix, Windows, and Mac OS X.

H.5.2 Executing Python Programs in Unix

There are two ways of executing a Python program prog.py in Unix-based sys-
tems. The first explicitly tells which Python interpreter to use:

Terminal

Unix> python prog.py arg1 arg2

Here, arg1 and arg2 are command-line arguments.
There may be many Python interpreters on your computer system, usually cor-

responding to different versions of Python or different sets of additional packages
and modules. The Python interpreter (python) used in the command above is the
first program with the name python appearing in the folders listed in your PATH en-
vironment variable. A specific python interpreter, say in /home/hpl/local/bin,
can easily be used as default choice by putting this folder name first in the PATH

variable. PATH is normally controlled in the .bashrc file. Alternatively, we may
specify the interpreter’s complete file path when running prog.py:

Terminal

Unix> /home/hpl/bin/python prog.py arg1 arg2
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The other way of executing Python programs in Unix consists of just writing the
name of the file:

Terminal

Unix> ./prog.py arg1 arg2

The leading ./ is needed to tell that the program is located in the current folder.
You can also just write

Terminal

Unix> prog.py arg1 arg2

but then you need to have the dot in the PATH variable, which is not recommended
for security reasons.

In the two latter commands there is no information on which Python interpreter
to use. This information must be provided in the first line of the program, normally
as

#!/usr/bin/env python

This looks like a comment line, and behaves indeed as a comment line when we
run the program as python prog.py. However, when we run the program as
./prog.py, the first line beginning with #! tells the operating system to use the
program specified in the rest of the first line to interpret the program. In this ex-
ample, we use the first python program encountered in the folders in your PATH
variable. Alternatively, a specific python program can be specified as

#!/home/hpl/special/tricks/python

H.5.3 Executing Python Programs inWindows

In a DOS or PowerShell window you can always run a Python program by

Terminal

PowerShell> python prog.py arg1 arg2

if prog.py is the name of the program, and arg1 and arg2 are command-line
arguments. The extension .py can be dropped:

Terminal

PowerShell> python prog arg1 arg2

If there are several Python installations on your system, a particular installation can
be specified:
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Terminal

PowerShell> E:\hpl\myprogs\Python2.7.5\python prog arg1 arg2

Files with a certain extension can in Windows be associated with a file type,
and a file type can be associated with a particular program to handle the file. For
example, it is natural to associate the extension .py with Python programs. The
corresponding program needed to interpret .py files is then python.exe. When
we write just the name of the Python program file, as in

Terminal

PowerShell> prog arg1 arg2

the file is always interpreted by the specified python.exe program. The details of
getting .py files to be interpreted by python.exe go as follows:

Terminal

PowerShell> assoc .py=PyProg
PowerShell> ftype PyProg=python.exe "%1" %*

Depending on your Python installation, such file extension bindings may already be
done. You can check this with

Terminal

PowerShell> assoc | find "py"

To see the programs associated with a file type, write ftype name where name is
the name of the file type as specified by the assoc command. Writing help ftype

and help assoc prints out more information about these commands along with
examples.

One can also run Python programs by writing just the basename of the pro-
gram file, i.e., prog.py instead of prog.py, if the file extension is registered in the
PATHEXT environment variable.

Double-clicking Python files The usual way of running programs in Windows is
to double click on the file icon. This does not work well with Python programs
without a graphical user interface. When you double click on the icon for a file
prog.py, a DOS window is opened, prog.py is interpreted by some python.exe
program, and when the program terminates, the DOS window is closed. There is
usually too little time for the user to observe the output in this short-lived DOS
window.

One can always insert a final statement that pauses the program by waiting for
input from the user:

raw_input(’Type CR:’)
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or

sys.stdout.write(’Type CR:’); sys.stdin.readline()

The program will hang until the user presses the Return key. During this pause the
DOS window is visible and you can watch the output from previous statements in
the program.

The downside of including a final input statement is that you must always hit
Return before the program terminates. This is inconvenient if the program is moved
to a Unix-type machine. One possibility is to let this final input statement be active
only when the program is run in Windows:

if sys.platform[:3] == ’win’:
raw_input(’Type CR:’)

Python programs that have a graphical user interface can be double-clicked in
the usual way if the file extension is .pyw.

H.5.4 Executing Python Programs in Mac OS X

Since a variant of Unix is used as core in the Mac OS X operating system, you
can always launch a Unix terminal and use the techniques from Sect. H.5.2 to run
Python programs.

H.5.5 Making a Complete Stand-Alone Executable

Python programs need a Python interpreter and usually a set of modules to be in-
stalled on the computer system. Sometimes this is inconvenient, for instance when
you want to give your program to somebody who does not necessarily have Python
or the required set of modules installed.

Fortunately, there are tools that can create a stand-alone executable program out
of a Python program. This stand-alone executable can be run on every computer
that has the same type of operating system and the same chip type. Such a stand-
alone executable is a bundling of the Python interpreter and the required modules,
along with your program, in a single file.

The leading tool for creating a stand-alone executable (or alternatively a folder
with all necessary files) is PyInstaller32. Say you have program myprog.py that
you want to distribute to people without the necessary Python environment on their
computer. You run

Terminal

Terminal> pyinstaller --onefile myprog.py

32 http://www.pyinstaller.org/

http://www.pyinstaller.org/
http://www.pyinstaller.org/
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and a folder dist is created with the (big) stand-alone executable file myprog (or
myprog.exe in Windows).

H.6 Doing Operating System Tasks in Python

Python has extensive support for operating system tasks, such as file and folder
management. The great advantage of doing operating system tasks in Python and
not directly in the operating system is that the Python code works uniformly on
Unix/Linux, Windows, and Mac (there are exceptions, but they are few). Below
we list some useful operations that can be done inside a Python program or in an
interactive session.

Make a folder Python applies the term directory instead of folder. The equivalent
of the Unix mkdir mydir is

import os
os.mkdir(’mydir’)

Ordinary files are created by the open and close functions in Python.

Make intermediate folders Suppose you want to make a subfolder under your
home folder:

$HOME/python/project1/temp

but the intermediate folders python and project1 do not exist. This requires each
new folder to be made separately by os.mkdir, or you can make all folders at once
with os.makedirs:

foldername = os.path.join(os.environ[’HOME’], ’python’,
’project1’, ’temp’)

os.makedirs(foldername)

With os.environ[var] we can get the value of any environment variable var

as a string. The os.path.join function joins folder names and a filename in
a platform-independent way.

Move to a folder The cd command reads os.chdir and cwd is os.getcwd:

origfolder = os.getcwd() # get name of current folder
os.chdir(foldername) # move ("change directory")
...
os.chdir(origfolder) # move back

Rename a file or folder The cross-platform mv command is

os.rename(oldname, newname)
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List files Unix wildcard notation can be used to list files. The equivalent of ls
*.py and ls plot*[1-4]*.dat reads

import glob
filelist1 = glob.glob(’*.py’)
filelist2 = glob.glob(’plot*[1-4]*.dat’)

List all files and folders in a folder The counterparts to ls -a mydir and just
ls -a are

filelist1 = os.listdir(’mydir’)
filelist1 = os.listdir(os.curdir) # current folder (directory)
filelist1.sort() # sort alphabetically

Check if a file or folder exists The widely used constructions in Unix scripts for
testing if a file or folder exist are if [ -f $filename ]; then and if [ -d

$dirname ]; then. These have very readable counterparts in Python:

if os.path.isfile(filename):
inputfile = open(filename, ’r’)
...

if os.path.isdir(dirnamename):
filelist = os.listdir(dirname)
...

Remove files Removing a single file is done with os.rename, and a loop is re-
quired for doing rm tmp_*.df:

import glob
filelist = glob.glob(’tmp_*.pdf’)
for filename in filelist:

os.remove(filename)

Remove a folder and all its subfolders The rm -rf mytree command removes
an entire folder tree. In Python, the cross-platform valid command becomes

import shutil
shutil.rmtree(foldername)

It goes without saying that this command must be used with great care!

Copy a file to another file or folder The cp fromfile tofile construction ap-
plies shutil.copy in Python:

shutil.copy(’fromfile’, ’tofile’)
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Copy a folder and all its subfolders The recursive copy command cp -r for
folder trees is in Python expressed by shell.copytree:

shutil.copytree(sourcefolder, destination)

Run any operating system command The simplest way of running another pro-
gram from Python is to use os.system:

cmd = ’python myprog.py 21 --mass 4’ # command to be run
failure = os.system(cmd)
if failure:

print ’Execution of "%s" failed!\n’ % cmd
sys.exit(1)

The recommended way to run operating system commands is to use the
subprocess module. The above command is equivalent to

import subprocess
cmd = ’python myprog.py 21 --mass 4’
failure = subprocess.call(cmd, shell=True)

# or
failure = subprocess.call(

[’python’, ’myprog.py’, ’21’, ’--mass’, ’4’])

The output of an operating system command can be stored in a string object:

try:
output = subprocess.check_output(cmd, shell=True,

stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as e:

# Raise a more informative exception
msg = ’Execution of "%s" failed! (error code: %s)’ + \

’\nOutput: %s’ % (cmd, e.returncode, e.output)
raise subprocess.CalledProcessError(msg)
# or do sys.exit(1)

# Process output
for line in output.splitlines():

...

The stderr argument ensures that the output string contains everything that the
command cmd wrote to both standard output and standard error.

The constructions above are mainly used for running stand-alone programs. Any
file or folder listing or manipulation should be done by the functionality in the os

and shutil modules.

Split file or folder name Given data/file1.dat as a file path relative to the
home folder /users/me ($HOME/data/file1.dat in Unix). Python has tools for
extracting the complete folder name /users/me/data, the basename file1.dat,
and the extension .dat:
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>>> path = os.path.join(os.environ[’HOME’], ’data’, ’file1.dat’)
>>> path
’/users/me/data/file1.dat’
>>> foldername, basename = os.path.split(path)
>>> foldername
’/users/me/data’
>>> basename
’file1.dat’
>>> stem, ext = os.path.splitext(basename)
>>> stem
’file1’
>>> ext
’.dat’
>>> outfile = stem + ’.out’
>>> outfile
’file1.out’

H.7 Variable Number of Function Arguments

Arguments to Python functions are of four types:

� positional arguments, where each argument has a name,
� keyword arguments, where each argument has a name and a default value,
� a variable number of positional arguments, where each argument has no name,

but just a location in a list,
� a variable number of keyword arguments, where each argument is a name-value

pair in a dictionary.

The corresponding general function definition can be sketched as

def f(pos1, pos2, key1=val1, key2=val2, *args, **kwargs):

Here, pos1 and pos2 are positional arguments, key1 and key2 are keyword ar-
guments, args is a tuple holding a variable number of positional arguments, and
kwargs is a dictionary holding a variable number of keyword arguments. This ap-
pendix describes how to program with the args and kwargs variables and why
these are handy in many situations.

H.7.1 Variable Number of Positional Arguments

Let us start by making a function that takes an arbitrary number of arguments and
computes their sum:

>>> def add(*args):
... print ’args:’, args
... s = 0
... for arg in args:
... s = s + arg
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... return s

...
>>> add(1)
args: (1,)
1
>>> add(1,5,10)
args: (1, 5, 10)
16

We observe that args is a tuple and that all the arguments we provide in a call to
add are stored in args.

Combination of ordinary positional arguments and a variable number of argu-
ments is allowed, but the *args argument must appear after the ordinary positional
arguments, e.g.,

def f(pos1, pos2, pos3, *args):

In each call to f we must provide at least three arguments. If more arguments are
supplied in the call, these are collected in the args tuple inside the f function.

Example Consider a mathematical function with one independent variable t and
a parameter v0, as in y.t I v0/ D v0t � 1

2
gt2. A more general case with n parameters

is f .xIp1; : : : ; pn/. The Python implementation of such functions can take both
the independent variable and the parameters as arguments: y(t, v0) and f(x,

p1, p2, ...,pn). Suppose that we have a general library routine that operates
on functions of one variable. The routine can, e.g., perform numerical differentia-
tion, integration, or root finding. A simple example is a numerical differentiation
function

def diff(f, x, h):
return (f(x+h) - f(x))/h

This diff function cannot be used with functions f that take more than one argu-
ment. For example, passing an y(t, v0) function as f leads to the exception

TypeError: y() takes exactly 2 arguments (1 given)

Section 7.1.1 provides a solution to this problem where y becomes a class instance.
Here we shall describe an alternative solution that allows our y(t, v0) function to
be used as is.

The idea is that we pass additional arguments for the parameters in the f function
through the diff function. That is, we view the f function as f(x, *f_prms) in
diff. Our diff routine can then be written as

def diff(f, x, h, *f_prms):
print ’x:’, x, ’h:’, h, ’f_prms:’, f_prms
return (f(x+h, *f_prms) - f(x, *f_prms))/h

Before explaining this function in detail, we demonstrate that it works in an exam-
ple:
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def y(t, v0):
g = 9.81
return v0*t - 0.5*g*t**2

dydt = diff(y, 0.1, 1E-9, 3) # t=0.1, h=1E-9, v0=3

The output from the call to diff becomes

x: 0.1 h: 1e-09 f_prms: (3,)

The point is that the v0 parameter, which we want to pass on to our y function, is
now stored in f_prms. Inside the diff function, calling

f(x, *f_prms)

is the same as if we had written

f(x, f_prms[0], f_prms[1], ...)

That is, *f_prms in a call takes all the values in the tuple *f_prms and places them
after each other as positional arguments. In the present example with the y function,
f(x, *f_prms) implies f(x, f_prms[0]), which for the current set of argument
values in our example becomes a call y(0.1, 3).

For a function with many parameters,

def G(x, t, A, a, w):
return A*exp(-a*t)*sin(w*x)

the output from

dGdx = diff(G, 0.5, 1E-9, 0, 1, 0.6, 100)

becomes

x: 0.5 h: 1e-09 f_prms: (0, 1, 1.5, 100)

We pass here the arguments t, A, a, and w, in that sequence, as the last four argu-
ments to diff, and all the values are stored in the f_prms tuple.

The diff function also works for a plain function f with one argument:

from math import sin
mycos = diff(sin, 0, 1E-9)

In this case, *f_prms becomes an empty tuple, and a call like f(x, *f_prms) is
just f(x).

The use of a variable set of arguments for sending problem-specific parameters
through a general library function, as we have demonstrated here with the diff

function, is perhaps the most frequent use of *args-type arguments.
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H.7.2 Variable Number of Keyword Arguments

A simple test function

>>> def test(**kwargs):
... print kwargs

exemplifies that kwargs is a dictionary inside the test function, and that we can
pass any set of keyword arguments to test, e.g.,

>>> test(a=1, q=9, method=’Newton’)
{’a’: 1, ’q’: 9, ’method’: ’Newton’}

We can combine an arbitrary set of positional and keyword arguments, provided all
the keyword arguments appear at the end of the call:

>>> def test(*args, **kwargs):
... print args, kwargs
...
>>> test(1,3,5,4,a=1,b=2)
(1, 3, 5, 4) {’a’: 1, ’b’: 2}

From the output we understand that all the arguments in the call where we provide
a name and a value are treated as keyword arguments and hence placed in kwargs,
while all the remaining arguments are positional and placed in args.

Example We may extend the example in Sect. H.7.1 to make use of a variable
number of keyword arguments instead of a variable number of positional arguments.
Suppose all functions with parameters in addition to an independent variable take
the parameters as keyword arguments. For example,

def y(t, v0=1):
g = 9.81
return v0*t - 0.5*g*t**2

In the diff function we transfer the parameters in the f function as a set of keyword
arguments **f_prms:

def diff(f, x, h=1E-10, **f_prms):
print ’x:’, x, ’h:’, h, ’f_prms:’, f_prms
return (f(x+h, **f_prms) - f(x, **f_prms))/h

In general, the **f_prms argument in a call

f(x, **f_prms)

implies that all the key-value pairs in **f_prms are provided as keyword argu-
ments:
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f(x, key1=f_prms[key1], key2=f_prms[key2], ...)

In our special case with the y function and the call

dydt = diff(y, 0.1, h=1E-9, v0=3)

f(x, **f_prms) becomes y(0.1, v0=3). The output from diff is now

x: 0.1 h: 1e-09 f_prms: {’v0’: 3}

showing explicitly that our v0=3 in the call to diff is placed in the f_prms dictio-
nary.

The G function from Sect. H.7.1 can also have its parameters as keyword argu-
ments:

def G(x, t=0, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)

We can now make the call

dGdx = diff(G, 0.5, h=1E-9, t=0, A=1, w=100, a=1.5)

and view the output from diff,

x: 0.5 h: 1e-09 f_prms: {’A’: 1, ’a’: 1.5, ’t’: 0, ’w’: 100}

to see that all the parameters get stored in f_prms. The h parameter can be placed
anywhere in the collection of keyword arguments, e.g.,

dGdx = diff(G, 0.5, t=0, A=1, w=100, a=1.5, h=1E-9)

We can allow the f function of one variable and a set of parameters to have the
general form f(x, *f_args, **f_kwargs). That is, the parameters can either
be positional or keyword arguments. The diff function must take the arguments
*f_args and **f_kwargs and transfer these to f:

def diff(f, x, h=1E-10, *f_args, **f_kwargs):
print f_args, f_kwargs
return (f(x+h, *f_args, **f_kwargs) -

f(x, *f_args, **f_kwargs))/h

This diff function gives the writer of an f function full freedom to choose posi-
tional and/or keyword arguments for the parameters. Here is an example of the G

function where we let the t parameter be positional and the other parameters be
keyword arguments:

def G(x, t, A=1, a=1, w=1):
return A*exp(-a*t)*sin(w*x)
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A call

dGdx = diff(G, 0.5, 1E-9, 0, A=1, w=100, a=1.5)

gives the output

(0,) {’A’: 1, ’a’: 1.5, ’w’: 100}

showing that t is put in f_args and transferred as positional argument to G, while
A, a, and w are put in f_kwargs and transferred as keyword arguments. We re-
mark that in the last call to diff, h and t must be treated as positional arguments,
i.e., we cannot write h=1E-9 and t=0 unless all arguments in the call are on the
name=value form.

In the case we use both *f_args and **f_kwargs arguments in f and there is
no need for these arguments, *f_args becomes an empty tuple and **f_kwargs

becomes an empty dictionary. The example

mycos = diff(sin, 0)

shows that the tuple and dictionary are indeed empty since diff just prints out

() {}

Therefore, a variable set of positional and keyword arguments can be incorporated
in a general library function such as diff without any disadvantage, just the benefit
that diff works with different types of f functions: parameters as global variables,
parameters as additional positional arguments, parameters as additional keyword
arguments, or parameters as instance variables (Sect. 7.1.2).

The program varargs1.py in the src/varargs33 folder implements the exam-
ples in this appendix.

H.8 Evaluating Program Efficiency

H.8.1 Making TimeMeasurements

The term time has multiple meanings on a computer. The elapsed time or wall

clock time is the same time as you can measure on a watch or wall clock, while
CPU time is the amount of time the program keeps the central processing unit busy.
The system time is the time spent on operating system tasks like I/O. The concept
user time is the difference between the CPU and system times. If your computer is
occupied by many concurrent processes, the CPU time of your program might be
very different from the elapsed time.

33 http://tinyurl.com/pwyasaa/tech

http://tinyurl.com/pwyasaa/tech
http://tinyurl.com/pwyasaa/tech
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The time module Python has a time module with some useful functions for mea-
suring the elapsed time and the CPU time:

import time
e0 = time.time() # elapsed time since the epoch
c0 = time.clock() # total CPU time spent in the program so far
<do tasks...>
elapsed_time = time.time() - e0
cpu_time = time.clock() - c0

The term epoch means initial time (time.time() would return 0), which is
00:00:00 January 1, 1970. The time module also has numerous functions for
nice formatting of dates and time, and the newer datetime module has more func-
tionality and an improved interface. Although the timing has a finer resolution than
seconds, one should construct test cases that last some seconds to obtain reliable
results.

Using timeit from IPython To measure the efficiency of a certain set of state-
ments, an expression, or a function call, the code should be run a large number of
times so the overall CPU time is of order seconds. Python’s timeit module has
functionality for running a code segment repeatedly. The simplest and most conve-
nient way of using timeit is within an IPython shell. Here is a session comparing
the efficiency of sin(1.2) versus math.sin(1.2):

In [1]: import math

In [2]: from math import sin

In [3]: %timeit sin(1.2)
10000000 loops, best of 3: 198 ns per loop

In [4]: %timeit math.sin(1.2)
1000000 loops, best of 3: 258 ns per loop

That is, looking up sin through the math prefix degrades the performance by a fac-
tor of 258=198 � 1:3.

Any statement, including function calls, can be timed the same way. Timing of
multiple statements is possible by using %%timeit. The timeit module can be
used inside ordinary programs as demonstrated in the file pow_eff.py.

Hardware information Along with CPU time measurements it is often conve-
nient to print out information about the hardware on which the experiment was
done. Python has a module platform with information on the current hardware.
The function scitools.misc.hardware_infoapplies the platformmodule and
other modules to extract relevant hardware information. A sample call is

>>> import scitools.misc, pprint
>>> pprint.pprint(scitools.misc.hardware_info())
{’numpy.distutils.cpuinfo.cpu.info’: [
{’address sizes’: ’40 bits physical, 48 bits virtual’,

http://tinyurl.com/pwyasaa/random/pow_eff.py
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’bogomips’: ’4598.87’,
’cache size’: ’4096 KB’,
’cache_alignment’: ’64’,
’cpu MHz’: ’2299.435’,
...

},
’platform module’: {
’identifier’: ’Linux-3.11.0-12-generic-x86_64-with-Ubuntu-13.10’,
’python build’: (’default’, ’Sep 19 2013 13:48:49’),
’python version’: ’2.7.5+’,
’uname’: (’Linux’, ’hpl-ubuntu2-mac11’, ’3.11.0-12-generic’,

’#19-Ubuntu SMP Wed Oct 9 16:20:46 UTC 2013’,
’x86_64’, ’x86_64’)}}

}

H.8.2 Profiling Python Programs

A profiler computes the time spent in the various functions of a program. From the
timings a ranked list of the most time-consuming functions can be created. This is
an indispensable tool for detecting bottlenecks in the code, and you should always
perform a profiling before spending time on code optimization. The golden rule is
to first write an easy-to-understand program, then verify it, then profile it, and then
think about optimization.

I Premature optimization is the root of all evil.

Donald Knuth, computer scientist, 1938–.

Python 2.7 comes with two recommended profilers, implemented in the mod-
ules cProfile and profiles. The section The Python Profilers34 in the Python
Standard Library documentation [3] has a good introduction to the usage of these
modules. The results produced by the modules are normally processed by a spe-
cial statistics utility pstats developed for analyzing profiling results. The usage
of the profile, cProfile, and pstats modules is straightforward, but some-
what tedious. The SciTools package therefore comes with a command scitools

profiler that allows you to profile any program (say) m.py by just writing

Terminal

Terminal> scitools profiler m.py c1 c2 c3

Here, c1, c2, and c3 are command-line arguments to m.py.
A sample output might read

1082 function calls (728 primitive calls) in 17.890 CPU s

Ordered by: internal time
List reduced from 210 to 20 due to restriction <20>

34 http://docs.python.org/2/library/profile.html

http://docs.python.org/2/library/profile.html
http://docs.python.org/2/library/profile.html
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ncalls tottime percall cumtime percall filename:lineno
5 5.850 1.170 5.850 1.170 m.py:43(loop1)
1 2.590 2.590 2.590 2.590 m.py:26(empty)
5 2.510 0.502 2.510 0.502 m.py:32(myfunc2)
5 2.490 0.498 2.490 0.498 m.py:37(init)
1 2.190 2.190 2.190 2.190 m.py:13(run1)
6 0.050 0.008 17.720 2.953 funcs.py:126(timer)

...

In this test, loop1 is the most expensive function, using 5.85 seconds, which is to
be compared with 2.59 seconds for the next most time-consuming function, empty.
The tottime entry is the total time spent in a specific function, while cumtime re-
flects the total time spent in the function and all the functions it calls. We refer to the
documentation of the profiling tools in the Python Standard Library documentation
for detailed information on how to interpret the output.

The CPU time of a Python program typically increases with a factor of about
five when run under the administration of the profile module. Nevertheless, the
relative CPU time among the functions are not much affected by the profiler over-
head.

H.9 Software Testing

Unit testing is widely a used technique for verifying software implementation. The
idea is to identify small units of code and test each unit, ideally in a way such
that one test does not depend on the outcome of other tests. Several tools, often
referred to as testing frameworks, exist for automatically running all tests in a soft-
ware package and report if any test failed. The value of such tools during software
development cannot be exaggerated. Below we describe how to write tests that can
be used by either the nose35 or the pytest36 testing frameworks. Both these have
a very low barrier for beginners, so there is no excuse for not using nose or pytest
as soon as you have learned about functions in programming.

Model software We need a piece of software we want to test. Here we choose
a function that runs Newton’s method for solving algebraic equations f .x/ D 0.
A very simple implementation goes like

def Newton_basic(f, dfdx, x, eps=1E-7):
n = 0 # iteration counter
while abs(f(x)) > eps:

x = x - f(x)/dfdx(x)
n += 1

return x, f(x), n

35 https://nose.readthedocs.org/
36 http://pytest.org/latest/

https://nose.readthedocs.org/
http://pytest.org/latest/
https://nose.readthedocs.org/
http://pytest.org/latest/
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H.9.1 Requirements of the Test Function

The simplest way of using the pytest or nose testing frameworks is to write a set of
test functions, scattered around in files, such that pytest or nose can automatically
find and run all the test functions. To this end, the test functions need to follow
certain conventions.

Test function conventions

1. The name of a test function starts with test_.
2. A test function cannot take any arguments.
3. Any test must be formulated as a boolean condition.
4. An AssertionError exception is raised if the boolean condition is false

(i.e., when the test fails).

There are many ways of raising the AssertionError exception:

# Formulate a test
tol = 1E-14 # comparison tolerance for real numbers
success = abs(reference - result) < tol
msg = ’computed_result=%d != %d’ % (result, reference)

# Explicit raise
if not success:

raise AssertionError(msg)

# assert statement
assert success, msg

# nose tools
import nose.tools as nt
nt.assert_true(success, msg)
# or
nt.assert_almost_equal(result, reference, msg=msg, delta=tol)

This book contains a lot of test functions that follow the conventions of the pytest
and nose testing frameworks, and we almost exclusively use the plain assert state-
ment to have full control of what the test condition really is.

H.9.2 Writing the Test Function; Precomputed Data

Newton’s method for solving an algebraic equation f .x/ D 0 results in only an
approximate root xr , making f .xr / ¤ 0, but jf .xr /j � �, where � is supposed to be
a prescribed number close to zero. The problem is that we do not know beforehand
what xr and f .xr / will be. However, if we strongly believe the function we want to
test is correctly implemented, we can record the output from the function in a test
case and use this output as a reference for later testing.

Assume we try to solve sin.x/ D 0 with x D ��=3 as start value. Running
Newton_basicwithamoderate-sizeeps (�)of10�2 givesx D 0:000769691024206,
f .x/ D 0:000769690948209, and n D 3. A test function can now compare
new computations with these reference results. Since new computations on another
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computer may lead to rounding errors, we must compare real numbers with a small
tolerance:

def test_Newton_basic_precomputed():
from math import sin, cos, pi

def f(x):
return sin(x)

def dfdx(x):
return cos(x)

x_ref = 0.000769691024206
f_x_ref = 0.000769690948209
n_ref = 3

x, f_x, n = Newton_basic(f, dfdx, x=-pi/3, eps=1E-2)

tol = 1E-15 # tolerance for comparing real numbers
assert abs(x_ref - x) < tol # is x correct?
assert abs(f_x_ref - f_x) < tol # is f_x correct?
assert n == 3 # is n correct?

The assert statements involving comparison of real numbers can alternatively be
carried out by nose.tools functionality:

nose.tools.assert_almost_equal(x_ref, x, delta=tol)

For simplicity we dropped the optional messages explaining what went wrong if
tests fail.

H.9.3 Writing the Test Function; Exact Numerical Solution

Approximate numerical methods are sometimes exact in certain special cases. An
exact answer known beforehand is a good starting point for a test since the imple-
mentation should reproduce the known answer to machine precision. For Newton’s
method we know that it finds the exact root of f .x/ D 0 in one iteration if f .x/ is
a linear function of x. This fact leads us to a test with f .x/ D ax C b, where we
can choose a and b freely, but it is always wise to choose numbers different from 0
and 1 since these have special arithmetic properties that can hide the consequences
of programming errors.

The test function contains the problem setup, a call to the function to be verified,
and assert tests on the output, this time also with an error message in case tests
fail:

def test_Newton_basic_linear():
"""Test that a linear func. is handled in one iteration."""
f = lambda x: a*x + b
dfdx = lambda x: a
a = 0.25; b = -4
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x_exact = 16
eps = 1E-5
x, f_x, n = Newton_basic(f, dfdx, -100, eps)

tol = 1E-15 # tolerance for comparing real numbers
assert abs(x - 16) < tol, ’wrong root x=%g != 16’ % x
assert abs(f_x) < eps, ’|f(root)|=%g > %g’ % (f_x, eps)
assert n == 1, ’n=%d, but linear f should have n=1’ % n

H.9.4 Testing of Function Robustness

Our Newton_basic function is very basic and suffers from several problems:

� for divergent iterations it will iterate forever,
� it can divide by zero in f(x)/dfdx(x),
� it can perform integer division in f(x)/dfdx(x),
� it does not test whether the arguments have acceptable types and values.

A more robust implementation dealing with these potential problems look as fol-
lows:

def Newton(f, dfdx, x, eps=1E-7, maxit=100):
if not callable(f):

raise TypeError(
’f is %s, should be function or class with __call__’
% type(f))

if not callable(dfdx):
raise TypeError(

’dfdx is %s, should be function or class with __call__’
% type(dfdx))

if not isinstance(maxit, int):
raise TypeError(’maxit is %s, must be int’ % type(maxit))

if maxit <= 0:
raise ValueError(’maxit=%d <= 0, must be > 0’ % maxit)

n = 0 # iteration counter
while abs(f(x)) > eps and n < maxit:

try:
x = x - f(x)/float(dfdx(x))

except ZeroDivisionError:
raise ZeroDivisionError(
’dfdx(%g)=%g - cannot divide by zero’ % (x, dfdx(x)))

n += 1
return x, f(x), n

The numerical functionality can be tested as described in the previous example,
but we should include additional tests for testing the additional functionality. One
can have different tests in different test functions, or collect several tests in one test
function. The preferred strategy depends on the problem. Here it may be natural to
have different test functions only when the f .x/ formula differs to avoid repeating
code.
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To test for divergence, we can choose f .x/ D tanh.x/, which is known to lead
to divergent iterations if not x is sufficiently close to the root x D 0. A start value
x D 20 reveals that the iterations are divergent, so we set maxit=12 and test that
the actual number of iterations reaches this limit. We can also add a test on x, e.g.,
that x is a big as we know it will be: x > 1050 after 12 iterations. The test function
becomes

def test_Newton_divergence():
from math import tanh
f = tanh
dfdx = lambda x: 10./(1 + x**2)

x, f_x, n = Newton(f, dfdx, 20, eps=1E-4, maxit=12)
assert n == 12
assert x > 1E+50

To test for division by zero, we can find an f .x/ and an x such that f 0.x/ D
0. One simple example is x D 0, f .x/ D cos.x/, and f 0.x/ D � sin.x/. If
x D 0 is the start value, we know that a division by zero will take place in the first
iteration, and this will lead to a ZeroDivisionError exception. We can explicitly
handle this exception and introduce a boolean variable success that is True if the
exception is raised and otherwise False. The corresponding test function reads

def test_Newton_div_by_zero1():
from math import sin, cos
f = cos
dfdx = lambda x: -sin(x)
success = False
try:

x, f_x, n = Newton(f, dfdx, 0, eps=1E-4, maxit=1)
except ZeroDivisionError:

success = True
assert success

There is a special nose.tools.assert_raises helper function that can be
used to test if a function raises a certain exception. The arguments to assert_

raises are the exception type, the name of the function to be called, and all posi-
tional and keyword arguments in the function call:

import nose.tools as nt

def test_Newton_div_by_zero2():
from math import sin, cos
f = cos
dfdx = lambda x: -sin(x)
nt.assert_raises(

ZeroDivisionError, Newton, f, dfdx, 0, eps=1E-4, maxit=1)

Let us proceed with testing that wrong input is caught by function Newton. Since
the same type of exception is raised for different type of errors we shall now also
examine (parts of) the exception messages. The first test involves an argument f
that is not a function:
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def test_Newton_f_is_not_callable():
success = False
try:

Newton(4.2, ’string’, 1.2, eps=1E-7, maxit=100)
except TypeError as e:

if "f is <type ’float’>" in e.message:
success = True

As seen, success = True demands that the right exception is raised and that its
message starts with f is <type ’float’>. What text to expect in the message is
evident from the source in function Newton.

The nose.tools module also has a function for testing the exception type and
the message content. This is illustrated when dfdx is not callable:

def test_Newton_dfdx_is_not_callable():
nt.assert_raises_regexp(

TypeError, "dfdx is <type ’str’>", Newton,
lambda x: x**2, ’string’, 1.2, eps=1E-7, maxit=100)

Checking that Newton catches maxit of wrong type or with a negative value can
be carried out by these test functions:

def test_Newton_maxit_is_not_int():
nt.assert_raises_regexp(

TypeError, "maxit is <type ’float’>",
Newton, lambda x: x**2, lambda x: 2*x,
1.2, eps=1E-7, maxit=1.2)

def test_Newton_maxit_is_neg():
nt.assert_raises_regexp(

ValueError, "maxit=-2 <= 0",
Newton, lambda x: x**2, lambda x: 2*x,
1.2, eps=1E-7, maxit=-2)

The corresponding support for testing exceptions in pytest is

import pytest
with pytest.raises(TypeError) as e:

Newton(lambda x: x**2, lambda x: 2*x, 1.2, eps=1E-7, maxit=-2)

H.9.5 Automatic Execution of Tests

Our code for the Newton_basic and Newton functions is placed in a file eq_

solver.py together with the tests. To run all test functions with names of the
form test_*() in this file, use the nosetests or py.test commands, e.g.:

http://tinyurl.com/pwyasaa/tech/eq_solver.py
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Terminal

Terminal> nosetests -s eq_solver.py
..........
-------------------------------------------------------------------
Ran 10 tests in 0.004s

OK

The -s option causes all output from the called functions in the program eq_

solver.py to appear on the screen (by default, nosetests and py.test suppress
all output). The final OK points to the fact that no test failed. Adding the option
-v prints out the outcome of each individual test function. In case of failure, the
AssertionError exception and the associated message, if existing, are displayed.
Pytest also displays the code that failed.

Warning

Do not use more than one period in the names of files with test functions
(e.g., avoid names like ex7.23.py). Also, do not use hyphens in the name of
(sub)directories. Both constructions confuse nosetests and py.test.

One can also collect test functions in separate files with names starting with
test. A simple command nosetests -s -v will look for all such files in this
folder as well as in all subfolders if the folder names start with test or end with
_test or _tests. By following this naming convention, nosetests can auto-
matically run a potentially large number of tests and give us quick feedback. The
py.test -s -v command will look for and run all test files in the entire tree of
any subfolder.

Remark on classical class-based unit testing

The pytest and nose testing frameworks allow ordinary functions, as explained
above, to perform the testing. The most widespread way of implementing unit
tests, however, is to use class-based frameworks. This is also possible with nose
and with a module unittest that comes with standard Python. The class-based
approach is very accessible for people with experience from JUnit in Java and
similar tools in other languages. Without such a background, plain functions
that follow the pytest/nose conventions are faster and cleaner to write than the
class-based counterparts.
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PEP8, 41, 853
plot (from scitools), 245
plotting, 238
plotting data vs date, 348
Poisson distribution, 224
Poisson process, 224
polymorphism, 591
positional arguments, 103, 891
pprint2 (from scitools), 69
pprint.pformat, 69
pprint.pprint, 69
pretty print, 69
printf syntax, 9
private attributes (class), 457
probability, 507
profiler.py script, 898
profiling, 898
protected attributes (class), 445, 457
pydoc program, 81
PyLint, 853
pysketcher, 599
py.test command, 904
pytest tests, 120, 126, 192, 431, 899
PYTHONPATH environment variable, 198

R

r_ (array creation), 271
raise, 183
randint (from numpy.random), 537
randn (from numpy.random), 496
random module, 489, 493
random numbers, 489

histogram, 492
integers, 497
integration, 526
Monte Carlo simulation, 507
normal distribution, 496
random walk, 534
statistics, 494
uniform distribution, 491
vectorization, 493

random strings, 118
random walk, 534
random_integers (from numpy.random),

537

random.normalvariate function, 496
rank of a matrix, 288
raw_input function, 150
recursive function calls, 614
refactoring, 212
remove files (in Python), 253, 680, 889
remove folders (in Python), 889
rename file/folder (in Python), 888
replace (string method), 353
resolution (mesh), 684
round function, 26
rounding errors, 23
rounding float to integer, 26
rstrip (string method), 354
run programs (from Python), 890
run Python program, 4, 27, 884

S

scalar (math quantity), 229
scalar code, 237
scalar differential equation, 724, 758
scalar function, 758
scaling, 653
scitools.pprint2 module, 69
scitools.std, 244
search for module files, 197
Secant method, 674
second-order ODEs, 724, 734, 797
seed, 490
sequence (data type), 76
sequence (mathematical), 645
shape (of an array), 271, 277
shutil.copy function, 889
shutil.copytree function, 890
shutil.rmtree function, 889
slicing, 70, 351
software testing

nose, 899
pytest, 899

sort (list), 144
source code, 12
special methods (class), 432
split (string method), 353
split filename, 890
splitlines (string method), 353
spread of a disease (model), 727
standard deviation, 494
standard error, 174
standard input, 173
standard output, 173
startswith (string method), 353
statements, 13
static class attributes, 463
static class methods, 463
static class variables, 463
static typing, 459
std (from numpy), 495, 543
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str2obj (from scitools), 204
string, 9

case change, 353
find, 352
joining words, 355
replace, 353
searching, 352
splitting, 353
stripping leading/trailing blanks, 354
substitution, 353
substrings, 351
testing for number, 354

string iteration, 114
string slicing, 351
StringFunction (from scitools), 160
strip (string method), 354
strong typing, 459
subarrays, 234
subclass, 568
Sublime Text, 879
sublist, 70
subprocess module, 890
substitution (in text), 353
substrings, 351
sum, 116, 117, 284, 337, 498
sum (˙ ) implementation, 77
summing a list, 337
summing over an iterator, 337
superclass, 568
symbolic computing, 439
SymPy, 33

differentiation, 33, 436
equation solving, 34
integration, 33, 439
Taylor series, 35

sympy, 33, 439
syntax, 14
SyntaxError, 182, 839
sys module, 151
sys.argv, 151
sys.exit function, 179
sys.path, 197
sys.stderr, 174
sys.stdin, 173
sys.stdout, 173
system time, 896
systems of differential equations, 724, 772

T

terminal window, 4
test block (in module files), 190
test function, 120, 126, 192, 431, 434, 448,

761
test_*() function, 120, 126, 192, 212, 431,

434, 448, 761, 767, 852
TextWrangler, 879
time module, 88, 121, 533, 535, 896

CPU, 896
elapsed, 896
system, 896
user, 896

timeit, 897
timing utilities, 896
transpose (in numpy), 286
Trapezoidal rule for integration, 130, 318, 330,

589, 592, 640, 655
triple-quoted strings, 10
try, 179
tuples, 74
type function, 26, 75
type conversion, 26
TypeError, 182, 840

U

UML class diagram, 412
uniform (from numpy.random), 493
uniformly distributed random numbers, 491
unit testing, 126, 192, 899
Unix, 15
upper (string method), 353
urllib, 387
user (of a program), 15
user time, 896
user-defined datatype (class), 413
using a debugger, 835

V

ValueError, 181, 182, 840
var (from numpy), 495, 543
variable no. of function arguments, 891
variance, 494
vector computing, 229
vectorization, 233, 236
vectorized drawing of random numbers, 493
vectors, 228
verification, 849
Vim, 879

W

weak typing, 459
where (from numpy), 263
whitespace, 15, 354
widgets, 186
Windows, 15
with statement, 167
wrap2callable, 763
wrapper code, 438

X

xrange function, 236, 498

Z

ZeroDivisionError, 182
zeros (from numpy), 234
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zeros_like (from numpy), 234
zip function, 66

zombies, 821
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