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Based on my own experience of teaching from the first edition, and more im-
portantly based on the comments of the adopters and readers, I have made
some significant changes to the new edition of the book: Part I is substan-
tially rewritten, Part VIII has been changed to incorporate Clifford algebras,
Part IX now includes the representation of Clifford algebras, and the new
Part X discusses the important topic of fiber bundles.

I felt that a short section on algebra did not do justice to such an im-
portant topic. Therefore, I expanded it into a comprehensive chapter dealing
with the basic properties of algebras and their classification. This required a
rewriting of the chapter on operator algebras, including the introduction of a
section on the representation of algebras in general. The chapter on spectral
decomposition underwent a complete overhaul, as a result of which the topic
is now more cohesive and the proofs more rigorous and illuminating. This
entailed separate treatments of the spectral decomposition theorem for real
and complex vector spaces.

The inner product of relativity is non-Euclidean. Therefore, in the discus-
sion of tensors, I have explicitly expanded on the indefinite inner products
and introduced a brief discussion of the subspaces of a non-Euclidean (the
so-called semi-Riemannian or pseudo-Riemannian) vector space. This inner
product, combined with the notion of algebra, leads naturally to Clifford al-
gebras, the topic of the second chapter of Part VIII. Motivating the subject
by introducing the Dirac equation, the chapter discusses the general prop-
erties of Clifford algebras in some detail and completely classifies the Clif-
ford algebras CZ (R), the generalization of the algebra Cﬁ(R), the Clifford
algebra of the Minkowski space. The representation of Clifford algebras,
including a treatment of spinors, is taken up in Part IX, after a discussion of
the representation of Lie Groups and Lie algebras.

Fiber bundles have become a significant part of the lore of fundamen-
tal theoretical physics. The natural setting of gauge theories, essential in
describing electroweak and strong interactions, is fiber bundles. Moreover,
differential geometry, indispensable in the treatment of gravity, is most ele-
gantly treated in terms of fiber bundles. Chapter 34 introduces fiber bundles
and their complementary notion of connection, and the curvature form aris-
ing from the latter. Chapter 35 on gauge theories makes contact with physics
and shows how connection is related to potentials and curvature to fields. It
also constructs the most general gauge-invariant Lagrangian, including its
local expression (the expression involving coordinate charts introduced on
the underlying manifold), which is the form used by physicists. In Chap. 36,
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by introducing vector bundles and linear connections, the stage becomes
ready for the introduction of curvature tensor and torsion, two major play-
ers in differential geometry. This approach to differential geometry via fiber
bundles is, in my opinion, the most elegant and intuitive approach, which
avoids the ad hoc introduction of covariant derivative. Continuing with dif-
ferential geometry, Chap. 37 incorporates the notion of inner product and
metric into it, coming up with the metric connection, so essential in the gen-
eral theory of relativity.

All these changes and additions required certain omissions. I was careful
not to break the continuity and rigor of the book when omitting topics. Since
none of the discussions of numerical analysis was used anywhere else in the
book, these were the first casualties. A few mathematical treatments that
were too dry, technical, and not inspiring were also removed from the new
edition. However, I provided references in which the reader can find these
missing details. The only casualty of this kind of omission was the discus-
sion leading to the spectral decomposition theorem for compact operators in
Chap. 17.

Aside from the above changes, I have also altered the style of the book
considerably. Now all mathematical statements—theorems, propositions,
corollaries, definitions, remarks, etc.—and examples are numbered consec-
utively without regard to their types. This makes finding those statements
or examples considerably easier. I have also placed important mathemat-
ical statements in boxes which are more visible as they have dark back-
grounds. Additionally, I have increased the number of marginal notes, and
added many more entries to the index.

Many readers and adopters provided invaluable feedback, both in spot-
ting typos and in clarifying vague and even erroneous statements of the
book. I would like to acknowledge the contribution of the following peo-
ple to the correction of errors and the clarification of concepts: Sylvio An-
drade, Salar Baher, Rafael Benguria, Jim Bogan, Jorun Bomert, John Chaf-
fer, Demetris Charalambous, Robert Gooding, Paul Haines, Carl Helrich,
Ray Jensen, Jin-Wook Jung, David Kastor, Fred Keil, Mike Lieber, Art Lind,
Gary Miller, John Morgan, Thomas Schaefer, Hossein Shojaie, Shreenivas
Somayaji, Werner Timmermann, Johan Wild, Bradley Wogsland, and Fang
Wu. As much as I tried to keep a record of individuals who gave me feed-
back on the first edition, fourteen years is a long time, and I may have omit-
ted some names from the list above. To those people, I sincerely apologize.
Needless to say, any remaining errors in this new edition is solely my re-
sponsibility, and as always, I'll greatly appreciate it if the readers continue
pointing them out to me.

I consulted the following three excellent books to a great extent for the
addition and/or changes in the second edition:

Greub, W., Linear Algebra, 4th ed., Springer-Verlag, Berlin, 1975.
Greub, W., Multilinear Algebra, 2nd ed., Springer-Verlag, Berlin, 1978.
Kobayashi, S., and K. Nomizu, Foundations of Differential Geometry,
vol. 1, Wiley, New York, 1963.

Maury Solomon, my editor at Springer, was immeasurably patient and
cooperative on a project that has been long overdue. Aldo Rampioni has
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been extremely helpful and cooperative as he took over the editorship of
the project. My sincere thanks go to both of them. Finally, I would like to
thank my wife Sarah for her unwavering forbearance and encouragement
throughout the long-drawn-out writing of the new edition.

Normal, IL, USA Sadri Hassani
November, 2012



“Ich kann es nun einmal nicht lassen, in diesem Drama von Mathematik und
Physik—die sich im Dunkeln befruchten, aber von Angesicht zu Angesicht so
gerne einander verkennen und verleugnen—die Rolle des (wie ich geniigsam er-
fuhr, oft unerwiinschten) Boten zu spielen.”

Hermann Weyl

It is said that mathematics is the language of Nature. If so, then physics
is its poetry. Nature started to whisper into our ears when Egyptians and
Babylonians were compelled to invent and use mathematics in their day-
to-day activities. The faint geometric and arithmetical pidgin of over four
thousand years ago, suitable for rudimentary conversations with nature as
applied to simple landscaping, has turned into a sophisticated language in
which the heart of matter is articulated.

The interplay between mathematics and physics needs no emphasis.
What may need to be emphasized is that mathematics is not merely a tool
with which the presentation of physics is facilitated, but the only medium
in which physics can survive. Just as language is the means by which hu-
mans can express their thoughts and without which they lose their unique
identity, mathematics is the only language through which physics can ex-
press itself and without which it loses its identity. And just as language is
perfected due to its constant usage, mathematics develops in the most dra-
matic way because of its usage in physics. The quotation by Weyl above,
an approximation to whose translation is “In this drama of mathematics and
physics—which fertilize each other in the dark, but which prefer to deny and
misconstrue each other face to face—I cannot, however, resist playing the
role of a messenger, albeit, as I have abundantly learned, often an unwel-
come one,’ is a perfect description of the natural intimacy between what
mathematicians and physicists do, and the unnatural estrangement between
the two camps. Some of the most beautiful mathematics has been motivated
by physics (differential equations by Newtonian mechanics, differential ge-
ometry by general relativity, and operator theory by quantum mechanics),
and some of the most fundamental physics has been expressed in the most
beautiful poetry of mathematics (mechanics in symplectic geometry, and
fundamental forces in Lie group theory).

I do not want to give the impression that mathematics and physics cannot
develop independently. On the contrary, it is precisely the independence of
each discipline that reinforces not only itself, but the other discipline as
well—just as the study of the grammar of a language improves its usage and
vice versa. However, the most effective means by which the two camps can
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accomplish great success is through an intense dialogue. Fortunately, with
the advent of gauge and string theories of particle physics, such a dialogue
has been reestablished between physics and mathematics after a relatively
long lull.

Level and Philosophy of Presentation

This is a book for physics students interested in the mathematics they use.
It is also a book for mathematics students who wish to see some of the ab-
stract ideas with which they are familiar come alive in an applied setting.
The level of presentation is that of an advanced undergraduate or beginning
graduate course (or sequence of courses) traditionally called “Mathematical
Methods of Physics” or some variation thereof. Unlike most existing math-
ematical physics books intended for the same audience, which are usually
lexicographic collections of facts about the diagonalization of matrices, ten-
sor analysis, Legendre polynomials, contour integration, etc., with little em-
phasis on formal and systematic development of topics, this book attempts
to strike a balance between formalism and application, between the abstract
and the concrete.

I have tried to include as much of the essential formalism as is neces-
sary to render the book optimally coherent and self-contained. This entails
stating and proving a large number of theorems, propositions, lemmas, and
corollaries. The benefit of such an approach is that the student will recog-
nize clearly both the power and the limitation of a mathematical idea used
in physics. There is a tendency on the part of the novice to universalize the
mathematical methods and ideas encountered in physics courses because the
limitations of these methods and ideas are not clearly pointed out.

There is a great deal of freedom in the topics and the level of presentation
that instructors can choose from this book. My experience has shown that
Parts I, I1, ITI, Chap. 12, selected sections of Chap. 13, and selected sections
or examples of Chap. 19 (or a large subset of all this) will be a reasonable
course content for advanced undergraduates. If one adds Chaps. 14 and 20,
as well as selected topics from Chaps. 21 and 22, one can design a course
suitable for first-year graduate students. By judicious choice of topics from
Parts VII and VIII, the instructor can bring the content of the course to a
more modern setting. Depending on the sophistication of the students, this
can be done either in the first year or the second year of graduate school.

Features

To better understand theorems, propositions, and so forth, students need to
see them in action. There are over 350 worked-out examples and over 850
problems (many with detailed hints) in this book, providing a vast arena in
which students can watch the formalism unfold. The philosophy underly-
ing this abundance can be summarized as “An example is worth a thousand
words of explanation.” Thus, whenever a statement is intrinsically vague or
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hard to grasp, worked-out examples and/or problems with hints are provided
to clarify it. The inclusion of such a large number of examples is the means
by which the balance between formalism and application has been achieved.
However, although applications are essential in understanding mathemati-
cal physics, they are only one side of the coin. The theorems, propositions,
lemmas, and corollaries, being highly condensed versions of knowledge, are
equally important.

A conspicuous feature of the book, which is not emphasized in other
comparable books, is the attempt to exhibit—as much as it is useful and
applicable—interrelationships among various topics covered. Thus, the un-
derlying theme of a vector space (which, in my opinion, is the most primitive
concept at this level of presentation) recurs throughout the book and alerts
the reader to the connection between various seemingly unrelated topics.

Another useful feature is the presentation of the historical setting in
which men and women of mathematics and physics worked. I have gone
against the trend of the “ahistoricism” of mathematicians and physicists by
summarizing the life stories of the people behind the ideas. Many a time,
the anecdotes and the historical circumstances in which a mathematical or
physical idea takes form can go a long way toward helping us understand
and appreciate the idea, especially if the interaction among—and the contri-
butions of—all those having a share in the creation of the idea is pointed out,
and the historical continuity of the development of the idea is emphasized.

To facilitate reference to them, all mathematical statements (definitions,
theorems, propositions, lemmas, corollaries, and examples) have been num-
bered consecutively within each section and are preceded by the section
number. For example, 4.2.9 Definition indicates the ninth mathematical
statement (which happens to be a definition) in Sect. 4.2. The end of a proof
is marked by an empty square [0, and that of an example by a filled square W,
placed at the right margin of each.

Finally, a comprehensive index, a large number of marginal notes, and
many explanatory underbraced and overbraced comments in equations fa-
cilitate the use and comprehension of the book. In this respect, the book is
also useful as a reference.

Organization and Topical Coverage

Aside from Chap. 0, which is a collection of purely mathematical concepts,
the book is divided into eight parts. Part I, consisting of the first four chap-
ters, is devoted to a thorough study of finite-dimensional vector spaces and
linear operators defined on them. As the unifying theme of the book, vector
spaces demand careful analysis, and Part I provides this in the more accessi-
ble setting of finite dimension in a language that is conveniently generalized
to the more relevant infinite dimensions, the subject of the next part.

Following a brief discussion of the technical difficulties associated with
infinity, Part II is devoted to the two main infinite-dimensional vector spaces
of mathematical physics: the classical orthogonal polynomials, and Fourier
series and transform.
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Complex variables appear in Part III. Chapter 9 deals with basic proper-
ties of complex functions, complex series, and their convergence. Chapter 10
discusses the calculus of residues and its application to the evaluation of def-
inite integrals. Chapter 11 deals with more advanced topics such as multi-
valued functions, analytic continuation, and the method of steepest descent.

Part IV treats mainly ordinary differential equations. Chapter 12 shows
how ordinary differential equations of second order arise in physical prob-
lems, and Chap. 13 consists of a formal discussion of these differential equa-
tions as well as methods of solving them numerically. Chapter 14 brings in
the power of complex analysis to a treatment of the hypergeometric dif-
ferential equation. The last chapter of this part deals with the solution of
differential equations using integral transforms.

Part V starts with a formal chapter on the theory of operator and their
spectral decomposition in Chap. 16. Chapter 17 focuses on a specific type
of operator, namely the integral operators and their corresponding integral
equations. The formalism and applications of Sturm-Liouville theory appear
in Chaps. 18 and 19, respectively.

The entire Part VI is devoted to a discussion of Green’s functions. Chap-
ter 20 introduces these functions for ordinary differential equations, while
Chaps. 21 and 22 discuss the Green’s functions in an m-dimensional Eu-
clidean space. Some of the derivations in these last two chapters are new
and, as far as [ know, unavailable anywhere else.

Parts VII and VIII contain a thorough discussion of Lie groups and their
applications. The concept of group is introduced in Chap. 23. The theory of
group representation, with an eye on its application in quantum mechanics,
is discussed in the next chapter. Chapters 25 and 26 concentrate on tensor
algebra and tensor analysis on manifolds. In Part VIII, the concepts of group
and manifold are brought together in the context of Lie groups. Chapter 27
discusses Lie groups and their algebras as well as their representations, with
special emphasis on their application in physics. Chapter 28 is on differential
geometry including a brief introduction to general relativity. Lie’s original
motivation for constructing the groups that bear his name is discussed in
Chap. 29 in the context of a systematic treatment of differential equations
using their symmetry groups. The book ends in a chapter that blends many of
the ideas developed throughout the previous parts in order to treat variational
problems and their symmetries. It also provides a most fitting example of the
claim made at the beginning of this preface and one of the most beautiful
results of mathematical physics: Noether’s theorem on the relation between
symmetries and conservation laws.
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Mathematics and physics are like the game of chess (or, for that matter, like
any game)—you will learn only by “playing” them. No amount of reading
about the game will make you a master. In this book you will find a large
number of examples and problems. Go through as many examples as pos-
sible, and try to reproduce them. Pay particular attention to sentences like
“The reader may check ...” or “It is straightforward to show ...”. These
are red flags warning you that for a good understanding of the material
at hand, you need to provide the missing steps. The problems often fill in
missing steps as well; and in this respect they are essential for a thorough
understanding of the book. Do not get discouraged if you cannot get to the
solution of a problem at your first attempt. If you start from the beginning
and think about each problem hard enough, you will get to the solution, and
you will see that the subsequent problems will not be as difficult.

The extensive index makes the specific topics about which you may be
interested to learn easily accessible. Often the marginal notes will help you
easily locate the index entry you are after.

I have included a large collection of biographical sketches of mathemat-
ical physicists of the past. These are truly inspiring stories, and I encourage
you to read them. They let you see that even under excruciating circum-
stances, the human mind can work miracles. You will discover how these
remarkable individuals overcame the political, social, and economic condi-
tions of their time to let us get a faint glimpse of the truth. They are our true
heroes.
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Mathematical Preliminaries

This introductory chapter gathers together some of the most basic tools and
notions that are used throughout the book. It also introduces some common
vocabulary and notations used in modern mathematical physics literature.
Readers familiar with such concepts as sets, maps, equivalence relations,
and metric spaces may wish to skip this chapter.

1.1 Sets

Modern mathematics starts with the basic (and undefinable) concept of set.
We think of a set as a structureless family, or collection, of objects. We
speak, for example, of the set of students in a college, of men in a city, of
women working for a corporation, of vectors in space, of points in a plane,
or of events in the continuum of space-time. Each member a of a set A is
called an element of that set. This relation is denoted by a € A (read “a is an
element of A” or “a belongs to A” ), and its negation by a ¢ A. Sometimes
a is called a point of the set A to emphasize a geometric connotation.

A set is usually designated by enumeration of its elements between
braces. For example, {2, 4, 6, 8} represents the set consisting of the first
four even natural numbers; {0, £1, £2, £3, ...} is the set of all integers;

2 x3,... } is the set of all nonnegative powers of x; and {1, i, —1, —i}

{1,x,x
is the set of the four complex fourth roots of unity. In many cases, a set is
defined by a (mathematical) statement that holds for all of its elements. Such
a set is generally denoted by {x | P(x)} and read “the set of all x’s such that
P (x) is true.” The foregoing examples of sets can be written alternatively as

follows:
{(n|nisevenand 1 <n <9}
{£n | n is a natural number}

{ y |y =x" and n is a natural number}

{z z* =1 and z is a complex number}.

S. Hassani, Mathematical Physics, DOI 10.1007/978-3-319-01195-0_1, 1
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singleton

(proper) subset
empty set

union, intersection,
complement

universal set

Cartesian product
ordered pairs
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In a frequently used shorthand notation, the last two sets can be abbrevi-
ated as {x” | n > 0 and n is an integer} and {z € C | z* = 1}. Similarly, the
unit circle can be denoted by {z € C | |z] = 1}, the closed interval [a, b] as
{x | @ < x < b}, the open interval (a, b) as {x | a < x < b}, and the set of
all nonnegative powers of x as {x"}> ) or {x"},cn, where N is the set of
natural numbers (i.e., nonnegative integers). This last notation will be used
frequently in this book. A set with a single element is called a singleton.

If a € A whenever a € B, we say that B is a subset of A and write B C A
orADB.If BCAand AC B,then A=B.If BC A and A # B, then B
is called a proper subset of A. The set defined by {a | a # a} is called the
empty set and is denoted by ¢J. Clearly, ¥ contains no elements and is a
subset of any arbitrary set. The collection of all subsets (including @) of a
set A is denoted by 24. The reason for this notation is that the number of
subsets of a set containing n elements is 2" when 7 is finite (Problem 1.1).

If A and B are sets, their union, denoted by A U B, is the set containing
all elements that belong to A or B or both. The intersection of the sets A
and B, denoted by A N B, is the set containing all elements belonging to
both A and B. If {By}se; is a collection of sets,! we denote their union by
Uyes Bo and their intersection by (1),<; Ba-

The complement of a set A is denoted by ~A and defined as

~A={ala¢A}.
The complement of B in A (or their difference) is
A~B={ala€ Aanda ¢ B}.

In any application of set theory there is an underlying universal set
whose subsets are the objects of study. This universal set is usually clear
from the context. For example, in the study of the properties of integers, the
set of integers, denoted by Z, is the universal set. The set of reals, R, is the
universal set in real analysis, and the set of complex numbers, C, is the uni-
versal set in complex analysis. To emphasize the presence of a universal set
X, one can write X ~ A instead of ~A.

From two given sets A and B, it is possible to form the Cartesian prod-
uct of A and B, denoted by A x B, which is the set of ordered pairs (a, b),
where a € A and b € B. This is expressed in set-theoretic notation as

Ax B={(a,b)|ac Aandb € B}.

We can generalize this to an arbitrary number of sets. If A1, A>, ..., A, are
sets, then the Cartesian product of these sets is

Al x Ay x X Ay ={(a1,a2,....an) | a; € Aj},

"Here I is an index set—or a counting set—with its typical element denoted by «. In
most cases, I is the set of (nonnegative) integers, but, in principle, it can be any set, for
example, the set of real numbers.
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which is a set of ordered n-tuples. If A} = A =--- = A, = A, then we
write A” instead of A x A x --- x A, and

A"=|(a1,az,...,a) | a; € A}.

The most familiar example of a Cartesian product occurs when A = R.
Then R? is the set of pairs (x1, x2) with x1, x> € R. This is simply the points
in the plane. Similarly, R3 is the set of triplets (x1, x2, x3), or the points in
space, and R" = {(x1, x2, ..., xp)|x; € R} is the set of real n-tuples.

1.1.1 Equivalence Relations

There are many instances in which the elements of a set are naturally
grouped together. For example, all vector potentials that differ by the gra-
dient of a scalar function can be grouped together because they all give the
same magnetic field. Similarly, all quantum state functions (of unit “length”)
that differ by a multiplicative complex number of unit length can be grouped
together because they all represent the same physical state. The abstraction
of these ideas is summarized in the following definition.

Definition 1.1.1 Let A be a set. A relation on A is a comparison test be-
tween members of ordered pairs of elements of A. If the pair (a,b) € A x A
passes this test, we write a > b and read “a is related to b”. An equivalence
relation on A is a relation that has the following properties:

ava YaeA, (reflexivity)
avcb=bra a,beA, (symmetry)
avb, andbrc=avc a,b,ceA, (transivity).

When a > b, we say that “a is equivalent to b”. The set [a] = {b € A | b>a}
of all elements that are equivalent to « is called the equivalence class of a.

The reader may verify the following property of equivalence relations.

Proposition 1.1.2 [f > is an equivalence relation on A and a,b € A, then
either [a] N [b] =@ or [a] = [D].

Therefore, a’ € [a]] implies that [a'] = [a]. In other words, any element
of an equivalence class can be chosen to be a representative of that class.
Because of the symmetry of equivalence relations, sometimes we denote
them by <.

Example 1.1.3 Let A be the set of human beings. Let a > b be interpreted
as “a is older than ».” Then clearly, > is a relation but not an equivalence
relation. On the other hand, if we interpret a > b as “a and b live in the
same city,” then > is an equivalence relation, as the reader may check. The
equivalence class of a is the population of that city.

relation and equivalence
relation

equivalence class

representative of an
equivalence class
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Let V be the set of vector potentials. Write A= A’ if A — A’ =V f for
some function f. The reader may verify that > is an equivalence relation,
and that [A] is the set of all vector potentials giving rise to the same mag-
netic field.

Let the underlying set be Z x (Z ~ {0}). Say “(a, b) is related to (¢, d)” if
ad = bc. Then this relation is an equivalence relation. Furthermore, [[(a, b)]
can be identified as the ratio a/b.

Definition 1.1.4 Let A be a set and {B,} a collection of subsets of A. We
say that {B,} is a partition of A, or {B,} partitions A, if the B,’s are
disjoint, i.e., have no element in common, and Ua B, =A.

Now consider the collection {[a] | a € A} of all equivalence classes of A.
These classes are disjoint, and evidently their union covers all of A. There-
fore, the collection of equivalence classes of A is a partition of A. This
collection is denoted by A/ < and is called the quotient set or factor set of
A under the equivalence relation <.

Example 1.1.5 Let the underlying set be R?. Define an equivalence relation
on R? by saying that P; € R® and P, € R? are equivalent if they lie on the
same line passing through the origin. Then R3/ < is the set of all lines in
space passing through the origin. If we choose the unit vector with positive
third coordinate along a given line as the representative of that line, then
R3/ <, called the projective space associated with R3, is almost (but not
quite) the same as the upper unit hemisphere. The difference is that any two
points on the edge of the hemisphere which lie on the same diameter ought
to be identified as the same to turn it into the projective space.

On the set Z of integers, define a relation by writing m >n for m,n € Z
if m — n is divisible by k, where & is a fixed integer. Then > is not only a
relation, but an equivalence relation. In this case, we have

zfe={[0], [1],.... [k — 1]},

as the reader is urged to verify.

For the equivalence relation defined on Z x (Z ~ {0}) of Example 1.1.3,
the set (Z x (Z ~ {0}))/ >« can be identified with Q, the set of rational
numbers.

1.2 Maps

To communicate between sets, one introduces the concept of a map. A map

f fromaset X toasetY,denotedby f:X — Y or X —f> Y, is a corre-
spondence between elements of X and those of Y in which all the elements
of X participate, and each element of X corresponds to only one element of
Y (see Fig. 1.1). If y € Y is the element that corresponds to x € X via the
map f, we write

y=f(x) or xr f(x) or xri>y
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Fig. 1.1 The map f maps all of the set X onto a subset of Y. The shaded area in Y is
f(X), the range of f

and call f(x) the image of x under f. Thus, by the definition of map, x €
X can have only one image. The set X is called the domain, and Y the
codomain or the target space. Twomaps f: X — Y and g: X — Y are
said to be equal if f(x) = g(x) for all x € X.

Definition 1.2.1 A map whose codomain is the set of real numbers R or the
set of complex numbers C is commonly called a function.

A special map that applies to all sets A isid4 : A — A, called the identity
map of A, and defined by

idg(@)=a VaeA.
The graph I'y of amap f: A — B is a subset of A x B defined by
ry={(a. f@)lacA}cAxB.

This general definition reduces to the ordinary graphs encountered in alge-
bra and calculus where A = B =R and A x B is the xy-plane.

If A is a subset of X, we call f(A) = {f(x) | x € A} the image
of A. Similarly, if B C f(X), we call f~1(B) ={x € X | f(x) € B} the
inverse image, or preimage, of B. In words, f ~1(B) consists of all ele-
ments in X whose images are in B C Y. If B consists of a single element b,
then f_l(b) ={x € X | f(x) = b} consists of all elements of X that are
mapped to b. Note that it is possible for many points of X to have the same
image in Y. The subset f(X) of the codomain of amap f is called the range
of f (see Fig. 1.1).

If f:X— Y and g:Y — W, then the mapping i : X — W given by
h(x) = g(f(x)) is called the composition of f and g, and is denoted by
h=go f (see Fig. 1.2).2 It is easy to verify that

foidy = f =idyof.

If f(x1) = f(x2) implies that x; = x», we call f injective, or one-fo-
one (denoted 1-1). For an injective map only one element of X corresponds
to an element of Y. If f(X) =Y, the mapping is said to be surjective, or

ZNote the importance of the order in which the composition is written. The reverse order
may not even exist.

function
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8 f

Fig. 1.2 The composition of two maps is another map

onto. A map that is both injective and surjective is said to be bijective, or
to be a one-to-one correspondence. Two sets that are in one-to-one corre-
spondence, have, by definition, the same number of elements. If f: X — Y
is a bijection from X onto Y, then for each y € Y there is one and only one
element x in X for which f(x) = y. Thus, there is a mapping f~':Y — X
given by f~1(y) = x, where x is the unique element such that f(x) = y.
This mapping is called the inverse of f. The inverse of f is also identified
as the map that satisfies f o f~! =idy and f~! o f =idy. For example,
one can easily verify that In"! = exp and exp~! = In, because In(e*) = x
and e!™* = x.

Givenamap f : X — Y, we can define a relation o< on X by saying x| 0<
x2 if f(x1) = f(x2). The reader may check that this is in fact an equivalence
relation. The equivalence classes are subsets of X all of whose elements
map to the same point in Y. In fact, [x] = f~!(f(x)). Corresponding to
f, there is a map f: X/0<— Y, called quotient map or factor map, given
by f([x]) = f(x). This map is injective because if f([x1]) = f([x2]), then
f(x1) = f(x2),s0x1 and x, belong to the same equivalence class; therefore,
[x1] = [x2]- It follows that

Proposition 1.2.2 The map f : X /o< — f(X) is bijective.

1 respectively,

If f and g are both bijections with inverses f~! and g~
then g o f also has an inverse, and verifying that (go f)~! = f~l o g7l is

straightforward.

Example 1.2.3 As an example of the preimage of a set, consider the sine
and cosine functions: sin : R — R and cos : R — R. Then it should be clear
that
T o
in~'0={nm)_, cos™10= {—+n7r}
2 n=—oo
Similarly, sin~ 1[0, %], the preimage of the closed interval [0, %] C R, con-
sists of all the intervals on the x-axis marked by heavy line segments in
Fig. 1.3, i.e., all the points whose sine lies between 0 and %

Example 1.2.4 Let X be any set on which an equivalence relation >« is
defined. Then there is a natural map m, called projection 7 : X — X/«
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+ 1

Fig. 1.3 The union of all the intervals on the x-axis marked by heavy line segments is
-1 L
sin™ [0, 51

given by 7 (x) = [x]. This map is obviously surjective, but not injective, as
m(y) = m(x) if y > x. It becomes injective only if the equivalence relation
becomes the identity map: < = idx. Then the map becomes bijective, and
we write X = X/idy.

Example 1.2.5 As further examples of maps, we consider functions f :
R — R studied in calculus. The two functions f : R — R and g : R —
(=1, +1) given, respectively, by f(x) = x> and g(x) = tanhx are bijective.
The latter function, by the way, shows that there are as many points in the
whole real line as there are in the interval (—1, +1). If we denote the set
of positive real numbers by RT, then the function f : R — R™ given by
fx)= x2is surjective but not injective (both x and —x map to xz). The
function g : R* — R given by the same rule, g(x) = x2, is injective but
not surjective. On the other hand, & : Rt — R* again given by h(x) = x>
is bijective, but # : R — R given by the same rule is neither injective nor
surjective.

Let M"*" denote the set of n x n real matrices. Define a function det :
M — R by det(A) = det A. This function is clearly surjective (why?) but
not injective. The set of all matrices whose determinant is 1 is det_l(l).
Such matrices occur frequently in physical applications.

Another example of interestis f : C — R given by f(z) = |z|. This func-
tion is also neither injective nor surjective. Here f~!(1) is the unit circle,
the circle of radius 1 in the complex plane. It is clear that f(C) = {0} UR™.
Furthermore, f induces an equivalence relation on C: z| >z if 71 and zo
belong to the same circle. Then C/ >« is the set of circles centered at the ori-
gin of the complex plane and f : C/pa— {0} URT is bijective, associating
each circle to its radius.

The domain of a map can be a Cartesian product of a set, as in f : X x
X — Y. Two specific cases are worthy of mention. The first is when Y = R.
An example of this case is the dot product on vectors. Thus, if X is the set
of vectors in space, we can define f(a,b) =a-b. The second case is when
Y = X. Then f is called a binary operation on X, whereby an element in
X is associated with two elements in X. For instance, let X = 7Z, the set of
all integers; then the function f :7Z x Z — Z defined by f(m,n) =mn is

injectivity and
surjectivity depend on
the domain and
codomain

unit circle

binary operation



metric space defined

Euclidean and
Minkowskian metric
spaces

1 Mathematical Preliminaries

the binary operation of multiplication of integers. Similarly, g : R x R - R
given by g(x, y) = x + y is the binary operation of addition of real numbers.

1.3 Metric Spaces

Although sets are at the root of modern mathematics, by themselves they
are only of formal and abstract interest. To make sets useful, it is necessary
to introduce some structures on them. There are two general procedures for
the implementation of such structures. These are the abstractions of the two
major branches of mathematics—algebra and analysis.

We can turn a set into an algebraic structure by introducing a binary op-
eration on it. For example, a vector space consists, among other things, of
the binary operation of vector addition. A group is, among other things, a
set together with the binary operation of “multiplication”. There are many
other examples of algebraic systems, and they constitute the rich subject of
algebra.

When analysis, the other branch of mathematics, is abstracted using the
concept of sets, it leads to topology, in which the concept of continuity plays
a central role. This is also a rich subject with far-reaching implications and
applications. We shall not go into any details of these two areas of math-
ematics. Although some algebraic systems will be discussed and the ideas
of limit and continuity will be used in the sequel, this will be done in an
intuitive fashion, by introducing and employing the concepts when they are
needed. On the other hand, some general concepts will be introduced when
they require minimum prerequisites. One of these is a metric space:

Definition 1.3.1 A metric space is a set X together with a real-valued func-
tiond : X x X — R such that

(@ dx,y)>=0Vx,y,andd(x,y)=0iff x = y.
(b) d(x,y)=d(y,x) (symmetry).
(c) d(x,y)<d(x,z)+d(z,y) (the triangle inequality).

It is worthwhile to point out that X is a completely arbitrary set and
needs no other structure. In this respect, Definition 1.3.1 is very broad and
encompasses many different situations, as the following examples will show.
Before examining the examples, note that the function d defined above is the
abstraction of the notion of distance: (a) says that the distance between any
two points is always nonnegative and is zero only if the two points coincide;
(b) says that the distance between two points does not change if the two
points are interchanged; (c) states the known fact that the sum of the lengths
of two sides of a triangle is always greater than or equal to the length of the
third side.

The fact that the distance between two points of a set is positive and real
is a property of a Euclidean metric space. In relativity, on the other hand,
one has to deal with the possibility of a Minkowskian metric space for which
distance (squared) is negative.
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Example 1.3.2 Here are some examples of metric spaces:

1. Let X =Q, the set of rational numbers, and define d(x, y) = |x — y|.
Let X =R, and again define d(x, y) = |x — y|.

3. Let X consist of the points on the surface of a sphere. We can define
two distance functions on X. Let d; (P, Q) be the length of the chord
joining P and Q on the sphere. We can also define another metric,
dy(P, Q), as the length of the arc of the great circle passing through
points P and Q on the surface of the sphere. It is not hard to convince
oneself that di and d» satisfy all the properties of a metric function.
Note that for d5, if two of the three points are the poles of the sphere,
then the triangle inequality becomes an equality.

4. Let @qa, b] denote the set of continuous real-valued functions on the
closed interval [a, b]. We can define d(f, g) = fab | f(x) —g(x)|dx for
f.g€C%a,b).

5. Let Cp(a, b) denote the set of bounded continuous real-valued func-
tions on the closed interval [a, b]. We then define

d(f. ) =xr33>;]{|f(x> —g()|} for f, g € Cp(a,b).

This notation says: Take the absolute value of the difference in f and
g at all x in the interval [a, b] and then pick the maximum of all these
values.

The metric function creates a natural setting in which to test the “close-
ness” of points in a metric space. One occasion on which the idea of close-
ness becomes essential is in the study of a sequence. A sequence is a map-
ping s : N — X from the set of natural numbers N into the metric space X.
Such a mapping associates with a positive integer n a point s(n) of the met-
ric space X. It is customary to write s, (or x,, to match the symbol X) instead
of s(n) and to enumerate the values of the function by writing {x,};2 ;.

Knowledge of the behavior of a sequence for large values of n is of funda-
mental importance. In particular, it is important to know whether a sequence
approaches a finite value as n increases.

Definition 1.3.3 Suppose that for some x and for any positive real num-
ber €, there exists a natural number N such that d(x,, x) < € whenever
n > N. Then we say that the sequence {x,} >, converges to x and write
lim,— o d(x,,x) =0 or d(x,,x) — 0 or simply x, — x.

It may not be possible to test directly for the convergence of a given
sequence because this requires a knowledge of the limit point x. However,
it is possible to do the next best thing—to see whether the points of the
sequence get closer and closer as n gets larger and larger.

Definition 1.3.4 A Cauchy sequence is a sequence for which

lim d(x;,x,)=0.
m,n— 00

sequence defined

convergence defined

Cauchy sequence
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Fig. 1.4 The distance between the elements of a Cauchy sequence gets smaller and
smaller

Figure 1.4 shows a Cauchy sequence.

We can test directly whether or not a sequence is Cauchy. However, the
fact that a sequence is Cauchy does not guarantee that it converges. For
example, let the metric space be the set of rational numbers Q with the
metric function d(x, y) = |x — y|, and consider the sequence {x,}°° ; where
Xp = Zzzl(—l)k“/k. It is clear that x,, is a rational number for any 7.
Problem 1.7 shows how to prove that |x,, — x,| — 0. Thus, the sequence is
Cauchy. However, it is probably known to the reader that lim,,_, 5 x,, =1n2,
which is not a rational number.

Definition 1.3.5 A metric space in which every Cauchy sequence con-
verges is called a complete metric space.

Complete metric spaces play a crucial role in modern analysis. The pre-
ceding example shows that QQ is not a complete metric space. However, if
the limit points of all Cauchy sequences are added to Q, the resulting space
becomes complete. This complete space is, of course, the real number sys-
tem R. It turns out that any incomplete metric space can be “enlarged” to a
complete metric space.

1.4  Cardinality

The process of counting is a one-to-one comparison of one set with another.
If two sets are in one-to-one correspondence, they are said to have the same
cardinality. Two sets with the same cardinality essentially have the same
“number” of elements. The set F;,, = {1,2, ..., n} is finite and has cardinal-
ity n. Any set from which there is a bijection onto F, is said to be finite with
n elements.

Historical Notes

Although some steps had been taken before him in the direction of a definitive theory of
sets, the creator of the theory of sets is considered to be Georg Cantor (1845-1918), who
was born in Russia of Danish-Jewish parentage but moved to Germany with his parents.
His father urged him to study engineering, and Cantor entered the University of Berlin in
1863 with that intention. There he came under the influence of Weierstrass and turned to



1.4 Cardinality

pure mathematics. He became Privatdozent at Halle in 1869 and professor in 1879. When
he was twenty-nine he published his first revolutionary paper on the theory of infinite sets
in the Journal fiir Mathematik. Although some of its propositions were deemed faulty
by the older mathematicians, its overall originality and brilliance attracted attention. He
continued to publish papers on the theory of sets and on transfinite numbers until 1897.
One of Cantor’s main concerns was to differentiate among infinite sets by “size” and,
likeBolzano before him, he decided that one-to-one correspondence should be the basic
principle. In his correspondence with Dedekind in 1873, Cantor posed the question of
whether the set of real numbers can be put into one-to-one correspondence with the inte-
gers, and some weeks later he answered in the negative. He gave two proofs. The first is
more complicated than the second, which is the one most often used today. In 1874 Can-
tor occupied himself with the equivalence of the points of a line and the points of R” and
sought to prove that a one-to-one correspondence between these two sets was impossible.
Three years later he proved that there is such a correspondence. He wrote to Dedekind,
“I see it but I do not believe it.” He later showed that given any set, it is always possible
to create a new set, the set of subsets of the given set, whose cardinal number is larger
than that of the given set. For the natural numbers N, whose cardinality is denoted by 8o,
the cardinal number of the set of subsets is denoted by 280, Cantor proved that 2% = ¢,
where c is the cardinal number of the continuum; i.e., the set of real numbers.

Cantor’s work, which resolved age-old problems and reversed much previous thought,
could hardly be expected to receive immediate acceptance. His ideas on transfinite ordi-
nal and cardinal numbers aroused the hostility of the powerful Leopold Kronecker, who
attacked Cantor’s theory savagely over more than a decade, repeatedly preventing Can-
tor from obtaining a more prominent appointment in Berlin. Though Kronecker died in
1891, his attacks left mathematicians suspicious of Cantor’s work. Poincaré referred to
set theory as an interesting “pathological case.” He also predicted that “Later generations
will regard [Cantor’s] Mengenlehre as a disease from which one has recovered.” At one
time Cantor suffered a nervous breakdown, but resumed work in 1887.

Many prominent mathematicians, however, were impressed by the uses to which the new
theory had already been put in analysis, measure theory, and topology. Hilbert spread
Cantor’s ideas in Germany, and in 1926 said, “No one shall expel us from the paradise
which Cantor created for us.” He praised Cantor’s transfinite arithmetic as “the most as-
tonishing product of mathematical thought, one of the most beautiful realizations of hu-
man activity in the domain of the purely intelligible.” Bertrand Russell described Cantor’s
work as “probably the greatest of which the age can boast.” The subsequent utility of Can-
tor’s work in formalizing mathematics—a movement largely led by Hilbert—seems at
odds with Cantor’s Platonic view that the greater importance of his work was in its impli-
cations for metaphysics and theology. That his work could be so seamlessly diverted from
the goals intended by its creator is strong testimony to its objectivity and craftsmanship.

Now consider the set of natural numbers N = {1, 2, 3, ...}. If there exists
a bijection between a set A and N, then A is said to be countably infinite.
Some examples of countably infinite sets are the set of all integers, the set
of even natural numbers, the set of odd natural numbers, the set of all prime
numbers, and the set of energy levels of the bound states of a hydrogen atom.

It may seem surprising that a subset (such as the set of all even numbers)
can be put into one-to-one correspondence with the full set (the set of all
natural numbers); however, this is a property shared by all infinite sets. In
fact, sometimes infinite sets are defined as those sets that are in one-to-one
correspondence with at least one of their proper subsets. It is also astonish-
ing to discover that there are as many rational numbers as there are natural
numbers. After all, there are infinitely many rational numbers just in the
interval (0, 1)—or between any two distinct real numbers!?

3The proof involves writing m/n as the mnth entry in an 0o x oo matrix and starting
the “count” with the (1, 1) entry, going to the right to (1, 2), then diagonally to (2, 1),

Georg Cantor 1845-1918

countably infinite
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Fig. 1.5 The Cantor set after one, two, three, and four “dissections”

Sets that are neither finite nor countably infinite are said to be uncount-
able. In some sense they are “more infinite” than any countable set. Ex-
amples of uncountable sets are the points in the interval (—1, +1), the real
numbers, the points in a plane, and the points in space. It can be shown
that these sets have the same cardinality: There are as many points in
three-dimensional space—the whole universe—as there are in the interval
(—1,+1) or in any other finite interval.

Cardinality is a very intricate mathematical notion with many surprising
results. Consider the interval [0, 1]. Remove the open interval (%, %) from
its middle (leaving the points % and % behind). From the remaining portion,
[0, %] U [%, 1], remove the two middle thirds; the remaining portion will then

R

(see Fig. 1.5). Do this indefinitely. What is the cardinality of the remaining
set, which is called the Cantor set? Intuitively we expect hardly anything to
be left. We might persuade ourselves into accepting the fact that the number
of points remaining is at most infinite but countable. The surprising fact is
that the cardinality is that of the continuum! Thus, after removal of infinitely
many middle thirds, the set that remains has as many points as the original
set!

1.5 Mathematical Induction

Many a time it is desirable to make a mathematical statement that is true
for all natural numbers. For example, we may want to establish a formula
involving an integer parameter that will hold for all positive integ