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Preface

The Absolute R Beginner

For whom was this book written?

Since 2000, we have taught statistics to over 5000 life scientists. This sounds a

lot, and indeed it is, but with some classes of 200 undergraduate students,

numbers accumulate rapidly (although some courses have involved as few as

6 students). Most of our teaching has been done in Europe, but we have also

conducted courses in South America, Central America, the Middle East, and

New Zealand. Of course teaching at universities and research organisations

means that our students may be from almost anywhere in the world. Partici-

pants have included undergraduates, but most have been MSc students, post-

graduate students, post-docs, or senior scientists, along with some consultants

and nonacademics.

This experience has given us an informed awareness of the typical life

scientist’s knowledge of statistics. The word ‘‘typical’’ may be misleading, as

those scientists enrolling in a statistics course are likely to be those who are

unfamiliar with the topic or have become rusty. In general, we have worked

with people who, at some stage in their education or career, have completed a

statistics course covering such topics as mean, variance, t-test, Chi-square test,

and hypothesis testing, and perhaps including half an hour devoted to linear

regression.

There are many books available on doing statistics with R. But this book

does not deal with statistics, as, in our experience, teaching statistics and R at

the same time means two steep learning curves, one for the statistical metho-

dology and one for the R code. This is more than many students are prepared to

undertake. This book is intended for people seeking an elementary introduction

to R. Obviously, the term ‘‘elementary’’ is vague; elementary in one person’s

view may be advanced in another’s.

R contains a high ‘‘you need to know what you are doing’’ content, and its

application requires a considerable amount of logical thinking. As statisticians,

it is easy to sit in an ivory tower and expect the life scientist to knock on our door

and ask to learn our language. This book aims to make that language as simple
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as possible. If the phrase ‘‘absolute beginner’’ offends, we apologize, but it

answers the question: For whom is this book intended?

All authors of this book areWindows users and have limited experience with

Linux and with Mac OS. R is also available for computers with these operating

systems, and all the R code we present should run properly on them. However,

there may be small differences with saving graphs. Non-Windows users will also

need to find an alternative to the text editor Tinn-R (Chapter 1 discusses where

you can find information on this).

Datasets used in This book

This book uses mainly life science data. Nevertheless, whatever your area of

study and whatever your data, the procedures presented will apply. Scientists in

all fields need to import data, massage data, make graphs, and, finally, perform

analyses. The R commands will be very similar in every case. A 200-page book

does not offer a great deal of scope for presenting a variety of dataset types,

and, in our experience, widely divergent examples confuse the reader. The

optimal approachmay be to use a single dataset to demonstrate all techniques,

but this does not make many people happy. Therefore, we have used ecologi-

cal datasets (e.g., involving plants, marine benthos, fish, birds) and epidemio-

logical datasets.

All datasets used in this book are downloadable from www.highstat.com.

Newburgh Alain F. Zuur

Newburgh Elena N. Ieno

Den Burg Erik H.W.G. Meesters
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Chapter 1

Introduction

We begin with a discussion of obtaining and installing R and provide an over-
view of its uses and general information on getting started. In Section 1.6 we
discuss the use of text editors for the code and provide recommendations for the
general working style. In Section 1.7 we focus on obtaining assistance using help
files and news groups. Installing R and loading packages is discussed in Section
1.8, and an historical overview and discussion of the literature are presented in
Section 1.10. In Section 1.11, we provide some general recommendations for
reading this book and how to use it if you are an instructor, and finally, in the
last section, we summarise the R functions introduced in this chapter.

1.1 What Is R?

It is a simple question, but not so easily answered. In its broadest definition, R is a
computer language that allows the user to program algorithms and use tools that
have been programmed by others. This vague description applies tomany comput-
ing languages. It may bemore helpful to say what R can do. During ourR courses,
we tell the students, ‘‘R can do anything you can imagine,’’ and this is hardly an
overstatement. With R you can write functions, do calculations, apply most avail-
able statistical techniques, create simple or complicated graphs, and evenwrite your
own library functions. A large user group supports it. Many research institutes,
companies, and universities havemigrated to R. In the past five years, many books
have been published containing references toR and calculations usingR functions.
A nontrivial point is that R is available free of charge.

Thenwhy isn’t everyone using it? This is an easier question to answer. R has a
steep learning curve! Its use requires programming, and, although various
graphical user interfaces exist, none are comprehensive enough to completely
avoid programming. However, once you have mastered R’s basic steps, you are
unlikely to use any other similar software package.

The programming used in R is similar across methods. Therefore, once you
have learned to apply, for example, linear regression, modifying the code so that
it does generalised linear modelling, or generalised additive modelling, requires
only the modification of a few options or small changes in the formula. In

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_1, � Springer ScienceþBusiness Media, LLC 2009
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addition, R has excellent statistical facilities. Nearly everything youmay need in
terms of statistics has already been programmed andmade available in R (either
as part of the main package or as a user-contributed package).

There are many books that discuss R in conjunction with statistics
(Dalgaard, 2002; Crawley, 2002, 2005; Venables andRipley, 2002; among others.
See Section 1.10 for a comprehensive list of R books). This book is not one of
them. Learning R and statistics simultaneously means a double learning curve.
Based on our experience, that is something for which not many people are
prepared. On those occasions that we have taught R and statistics together, we
found the majority of students to be more concerned with successfully running
the R code than with the statistical aspects of their project. Therefore, this book
provides basic instruction in R, and does not deal with statistics. However, if you
wish to learn both R and statistics, this book provides a basic knowledge of R
that will aid in mastering the statistical tools available in the program.

1.2 Downloading and Installing R

We now discuss acquiring and installing R. If you already have R on your
computer, you can skip this section.

The starting point is the R website at www.r-project.org. The homepage
(Fig. 1.1) shows several nice graphs as an appetiser, but the important feature is

Fig. 1.1 The R website homepage
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the CRAN link under Download. This cryptic notation stands for Comprehen-

sive RArchive Network, and it allows selection of a regional computer network

fromwhich you can downloadR. There is a great deal of other relevantmaterial

on this site, but, for the moment, we only discuss how to obtain the R installa-

tion file and save it on your computer.
If you click on the CRAN link, you will be shown a list of network servers all

over the planet. Our nearest server is in Bristol, England. Selecting the Bristol

server (or any of the others) gives the webpage shown in Fig. 1.2. Clicking the

Linux, MacOS X, or Windows link produces the window (Fig. 1.3) that allows

us to choose between the base installation file and contributed packages. We

discuss packages later. For the moment, click on the link labelled base.
Clicking base produces the window (Fig. 1.4) from which we can download

R. Select the setup program R-2.7.1-win32.exe and download it to your com-

puter. Note that the size of this file is 25–30 Mb, not something you want to

download over a telephone line. Newer versions of R will have a different

designation and are likely to be larger.
To install R, click the downloadedR-2.7.1-win32.exe file. The simplest procedure

is to accept all default settings. Note that, depending on the computer settings, there

may be issues with system administration privileges, firewalls, VISTA security set-

tings, and so on. These are all computer- or network-specific problems and are not

furtherdiscussedhere.Whenyouhave installedR,youwill haveabluedesktop icon.

Fig. 1.2 The R local server page. Click the Linux, MacOS X, or Windows link to go to the
window in Fig. 1.3
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To upgrade an installed R program, you need to follow the downloading

process described above. It is not a problem to have multiple R versions on your

computer; they will be located in the same R directory with different subdir-

ectories and will not influence one another. If you upgrade from an older R

version, it is worthwhile to read the CHANGES files. (Some of the information in

the CHANGES file may look intimidating, so do not paymuch attention to it if you

are a novice user.)

1.3 An Initial Impression

We now discuss opening the R program and performing some simple tasks.

Startup of R depends upon how it is installed. If you have downloaded it from

www.r-project.org and installed it on a standalone computer, R can be started

by double-clicking the desktop shortcut icon or by going to Start->Pro-

gram->R. On network computers with a preinstalled version, you may need

to ask your system administrator where to find the shortcut to R.
The program will open with the window in Fig. 1.5. This is the starting point

for all that is to come.

Fig. 1.3 The webpage that allows a choice of downloading R base or contributed packages
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Fig. 1.4 The window that allows you to download the setup file R-2.7.1-win32.exe. Note that
this is the latest version at the time of writing, and you may see a more recent version

Fig. 1.5 The R startup window. It is also called the console or command window
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There are a few things that are immediately noticeable from Fig. 1.5. (1) the R

version we use is 2.7.1; (2) there is no nice looking graphical user interface (GUI);

(3) it is free software and comes with absolutely no warranty; (4) there is a help

menu; and (5) the symbol> and the cursor. As to the first point, it does notmatter

which version you are running, provided it is not too dated. Hardly any software

package comes with a warranty, be it free or commercial. The consequence of the

absence of a GUI and of using the help menu is discussed later. Moving on to the

last point, type 2 + 2 after the > symbol (which is where the cursor appears):

> 2 + 2

and click enter. The spacing in your command is not relevant. You could also type

2+2, or 2+2. We use this simple R command to emphasise that you must type

something into the command window to elicit output fromR. 2+ 2 will produce:

[1] 4

The meaning of [1] is discussed in the next chapter, but it is apparent that R

can calculate the sum of 2 and 2. The simple example shows how R works; you

type something, press enter, andRwill carry out your commands. The trick is to

type in sensible things. Mistakes can easily be made. For example, suppose you

want to calculate the logarithm of 2 with base 10. You may type:

> log(2)

and receive:

[1] 0.6931472

but 0.693 is not the correct answer. This is the natural logarithm. You should

have used:

> log10(2)

which will give the correct answer:

[1] 0.30103

Although the log and log10 command can, and should, be committed to

memory, we later show examples of code that is impossible tomemorise. Typing

mistakes can also cause problems. Typing 2 + 2w will produce the message

> 2 + 2w

Error: syntax error in "2+2w"
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R does not know that the key for w is close to 2 (at least for UK keyboards),

and that we accidentally hit both keys at the same time.
The process of entering code is fundamentally different from using a GUI in

which you select variables from drop-down menus, click or double-click an

option and/or press a ‘‘go’’ or ‘‘ok’’ button. The advantages of typing code are

that it forces you to think what to type and what it means, and that it gives more

flexibility. The major disadvantage is that you need to know what to type.
R has excellent graphing facilities. But again, you cannot select options from

a convenient menu, but need to enter the precise code or copy it from a previous

project. Discovering how to change, for example, the direction of tick marks,

may require searching Internet newsgroups or digging out online manuals.

1.4 Script Code

1.4.1 The Art of Programming

At this stage it is not important that you understand anything of the code below.

We suggest that you do not attempt to type it in. We only present it to illustrate

that, with some effort, you can produce very nice graphs using R.

>setwd("C:/RBook/")

>ISIT<-read.table("ISIT.txt",header=TRUE)

>library(lattice)

>xyplot(Sources�SampleDepth|factor(Station),data=ISIT,

xlab="Sample Depth",ylab="Sources",

strip=function(bg=’white’, ...)

strip.default(bg=’white’, ...),

panel = function(x, y) {

panel.grid(h=-1, v= 2)

I1<-order(x)

llines(x[I1], y[I1],col=1)})

All the code from the third line (where the xyplot starts) onward forms

a single command, hence we used only one > symbol. Later in this section,

we improve the readability of this script code. The resulting graph is pre-

sented in Fig. 1.6. It plots the density of deep-sea pelagic bioluminescent

organisms versus depth for 19 stations. The data were gathered in 2001 and

2002 during a series of four cruises of the Royal Research Ship Discovery in

the temperate NE Atlantic west of Ireland (Gillibrand et al., 2006). Gen-

erating the graph took considerable effort, but the reward is that this single

graph gives all the information and helps determine which statistical meth-

ods should be applied in the next step of the data analysis (Zuur et al.,

2009).
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1.4.2 Documenting Script Code

Unless you have an exceptional memory for computing code, blocks of R

code, such as those used to create Fig. 1.6, are nearly impossible to remem-

ber. It is therefore fundamentally important that you write your code to be as

general and simple as possible and document it religiously. Careful docu-

mentation will allow you to reproduce the graph (or other analysis) for

another dataset in only a matter of minutes, whereas, without a record, you

may be alienated from your own code and need to reprogram the entire

project. As an example, we have reproduced the code used in the previous

section, but have now added comments. Text after the symbol ‘‘#’’ is ignored

by R. Although we have not yet discussed R syntax, the code starts to make

sense. Again, we suggest that you do not attempt to type in the code at this

stage.

>setwd("C:/RBook/")

>ISIT<-read.table("ISIT.txt",header=TRUE)

#Start the actual plotting

#Plot Sources as a function of SampleDepth, and use a

#panel for each station.

#Use the colour black (col=1), and specify x and y

#labels (xlab and ylab). Use white background in the

#boxes that contain the labels for station

Sample Depth
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u
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Fig. 1.6 Deep-sea pelagic
bioluminescent organisms
versus depth (in metres) for
19 stations. Data were taken
from Zuur et al. (2009). It is
relatively easy to allow for
different ranges along the
y-axes and x-axes. The data
were provided by Monty
Priede, Oceanlab,
University of Aberdeen,
Aberdeen, UK
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>xyplot(Sources�SampleDepth|factor(Station),

data = ISIT,xlab="Sample Depth",ylab="Sources",

strip=function(bg=’white’, ...)

strip.default(bg=’white’, ...),

panel = function(x,y) {

#Add grid lines

#Avoid spaghetti plots

#plot the data as lines (in the colour black)

panel.grid(h=-1,v= 2)

I1<-order(x)

llines(x[I1],y[I1],col=1)})

Although it is still difficult to understand what the code is doing, we can at

least detect some structure in it. You may have noticed that we use spaces to

indicate which pieces of code belong together. This is a common programming

style and is essential for understanding your code. If you do not understand

code that you have programmed in the past, do not expect that others will!

Another way to improve readability of R code is to add spaces around com-

mands, variables, commas, and so on. Compare the code below and above, and

judge for yourself what looks easier. We prefer the code below (again, do not

attempt to type the code).

> setwd("C:/RBook/")

> ISIT <- read.table("ISIT.txt", header = TRUE)

> library(lattice) #Load the lattice package

#Start the actual plotting

#Plot Sources as a function of SampleDepth, and use a

#panel for each station.

#Use the colour black (col=1), and specify x and y

#labels (xlab and ylab). Use white background in the

#boxes that contain the labels for station

> xyplot(Sources � SampleDepth | factor(Station),

data = ISIT,

xlab = "Sample Depth", ylab = "Sources",

strip = function(bg = ’white’, ...)

strip.default(bg = ’white’, ...),

panel = function(x, y) {

#Add grid lines

#Avoid spaghetti plots

#plot the data as lines (in the colour black)

panel.grid(h = -1, v = 2)

I1 <- order(x)

llines(x[I1], y[I1], col = 1)})
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We later discuss further steps that can be taken to improve the readability of

this particular piece of code.

1.5 Graphing Facilities in R

One of the most important steps in data analysis is visualising the data, which

requires software with good plotting facilities. The graph in Fig. 1.7, showing the

laying dates of the Emperor Penguin (Aptenodytes forsteri), was created in R

with five lines of code. Barbraud andWeimerskirch (2006) and Zuur et al. (2009)

looked at the relationship of arrival and laying dates of several bird species to

climatic variables, measured near the Dumont d’Urville research station in Terre

Adélie, East Antarctica.

It is possible to have a small penguin image in a corner of the graph, or it can

also be stretched so that it covers the entire plotting region.
Whilst it is an attractive graph, its creation took three hours, even using

sample code from Murrell (2006). Additionally, it was necessary to reduce the

resolution and size of the photo, as initial attempts caused serious memory

problems, despite using a recent model computer.
Hence, not all things in R are easy. The authors of this book have often found

themselves searching the R newsgroup to find answers to relatively simple
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Fig. 1.7 Laying dates of Emperor Penguins in Terre Adélie, East Antarctica. To create the
background image, the original jpeg image was reduced in size and exported to portable
pixelmap (ppm) from a graphics package. The R package pixmap was used to import the
background image intoR, theplot commandwas applied to produce the plot and theaddlogo
command overlaid the ppm file. The photograph was provided by Christoph Barbraud
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questions. When asked by an editor to alter line thickness in a complicated

multipanel graph, it took a full day. However, whereas the graph with the

penguins could have been made with any decent graphics package, or even in

Microsoft Word, we show graphs that cannot be easily made with any other

program.
Figure 1.8 shows the nightmare of many statisticians, the Excel menu for pie

charts. Producing a scientific paper, thesis, or report in which the only graphs

are pie charts or three-dimensional bar plots is seen by many experts as a sign of

incompetence. We do not wish to join the discussion of whether a pie chart is a

good or bad tool. Google ‘‘pie chart bad’’ to see the endless list of websites

expressing opinions on this. We do want to stress that R’s graphing tools are a

considerable improvement over those in Excel. However, if the choice is

between the menu-driven style in Fig. 1.8 and the complicated looking code

given in Section 1.3, the temptation to use Excel is strong.

Fig. 1.8 The pie chart menu in Excel
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1.6 Editors

As explained above, the process of running R code requires the user to type the

code and click enter. Typing the code into a special text editor for copying and

pasting into R is strongly recommended. This allows the user to easily save code,

document it, and rerun it at a later stage. The question is which text editor to use.

Our experience is with Windows operating systems, and we are unable to recom-

mend editors for Mac, UNIX, or LINUX. A detailed description of a large

number of editors is given at http://www.sciviews.org/_rgui/projects/Editors.html.

This page contains some information on Mac, UNIX, and LINUX editors.
For Windows operating systems, we strongly advise against using Microsoft

Word. Word automatically wraps text over multiple lines and adds capitals to

words at the beginning of the line. Both will cause error messages in R. R’s own

text editor (click File->New script as shown in Fig. 1.5) and Notepad are

alternatives, although neither have the bells and whistles available in R-specific

text editors such as Tinn-R (http://www.sciviews.org/Tinn-R/) and RWindEdt

(this is an R package).
R is case sensitive, and programming requires the use of curly brackets {},

round brackets (), and square brackets []. It is important that an opening bracket

Fig. 1.9 The Tinn-R text editor. Each bracket style has a distinctive colour. Under Options-

>Main->Editor, the font size can be increased. Under Options->Main->Application->R,
you can specify the path for R. Select the Rgui.exe file in the directoryC:\Program Files\R\R-

2.7.1\bin (assuming default installation settings). Adjust the R directory if you use a different
R version. This option allows sending blocks of code directly to R by highlighting code and
clicking one of the icons above the file name
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{ is matched by a closing bracket } and that it is used in the correct position for the

task. Some of the errors made by an R novice are related to omitting a bracket or

using the wrong type of bracket. Tinn-R and RWinEdt use colours to indicate
matching brackets, and this is an extremely useful tool. They also use different

colours to identify functions from other code, helping to highlight typingmistakes.
Tinn-R is available free, whereas RWinEdt is shareware and requires a small

payment after a period of time. Both programs allow highlighting text in the
editor and clicking a button to send the code directly to R, where it is executed.

This bypasses copying and pasting, although the option may not work on some
network systems. We refer to the online manuals of Tinn-R and RWinEdt for

their use with R.
AsnapshotofTinn-R,ourpreferrededitor, is showninFig.1.9.Tore-emphasise,

write your R code in an editor such as Tinn-R, even if it is only a few commands,

before copying and pasting (or sending it directly) to R.

1.7 Help Files and Newsgroups

When working in R, you will have multiple options for nearly every task, and,

because there is no single source that describes all the possibilities, it is essential
that you know where to look for help. Suppose you wish to learn to make a

boxplot. Your best friend in R is the question mark. Type:

> ?boxplot

and hit the enter key. Alternatively, you can also use:

> help(boxplot)

A help window opens, showing a document with the headings Description,

Usage, Arguments, Details, Values, References, See also, and Examples. These

help files are not ‘‘guides for dummies’’ and may look intimidating. We recom-
mend that you read the description, quickly browse the usage section (marvel-

ling at the undecipherable options), and proceed to the examples to get an idea
of R’s boxplot capabilities. Copy some of the sample code and paste it into R.

The following lines of code from the example in the help file,

> boxplot(count � spray, data = InsectSprays,

col = "lightgray")

produce the boxplot in Fig. 1.10. The syntax, count � spray, ensures that one

boxplot per level of insect sprays is generated. Information on the insect spray
data can be obtained by typing:

> ?InsectSprays
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It is important to copy entire pieces of code and not a segment that contains only

part of the code. With long pieces of code, it can be difficult to identify beginning

and endpoints, and sometimes guesswork is needed todeterminewhere aparticular

command ends. For example, if you only copy and paste the text

> boxplot(count � spray, data = InsectSprays,

you will see a ‘‘+’’ symbol (Fig. 1.11), indicating that R expects more code.

Either paste in the remainder of the code, or press escape to cancel the action

and proceed to copy and paste in the entire command.
Nearly all help files have a structure similar to the help file of the boxplot

function.
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Fig. 1.10 Boxplot obtained
by copying and pasting code
from the boxplot help file
into R. To see the data on
which the graph is based,
type: ?InsectSprays

Fig. 1.11 R is waiting for more code, as an incomplete command has been typed. Either add
the remaining code or press ‘‘escape’’ to abort the boxplot command
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If you cannot find the answer in a help file, click Help->Html help in the

menu (Fig. 1.5). The window in Fig. 1.12 will appear (provided your pop-up

blocker is switched off), and the links in the browser will provide a wealth of

information. The Search Engine & Keywords link allows you to search for

functions, commands, and keywords.

If the help files haven’t provided the answer to your question(s), it is time for a

search on theR newsgroup. It is likely that others have discussed your question in

the past. The R newsgroup can be found by going to www.r-project.org. Click

Mailing Lists, go to the R-help section, and click web-interface. To access the

hundreds of thousands of postings go to one of the searchable archives. It is now

a matter of using relevant keywords to find similar problems.
If you still cannot find the answer to your question, then as a last resort you

can try posting amessage to the newsgroup. First read the posting guidelines, or

you may be reminded that you should have done so, especially if your question

turns out to have been discussed before, or is answered in the help files.

Fig. 1.12 The window that is obtained by clickingHelp->Html help from the help menu in R.
Search Engine & Keywords allows searching for functions, commands, and keywords. You
will need to switch off any pop-up blockers
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1.8 Packages

R comes with a series of default packages. A package is a collection of pre-

viously programmed functions, often including functions for specific tasks. It is

tempting to call this a library, but the R community refers to it as a package.
There are two types of packages: those that come with the base installation of

R and packages that you must manually download and install. With the base

installation we mean the big executable file that you downloaded and installed

in Section 1.2. If you use R on a university network, installing R will have been

carried out by the IT people, and you probably have only the base version. The

base version contains the most common packages. To see which packages you

have, click Packages -> Load package (Fig. 1.5).
There are literally hundreds of user-contributed packages that are not part of

the base installation, most of which are available on the R website. Many

packages are available that will allow you to execute the same statistical

calculations as commercial packages. For example, the multivariate vegan

package can execute methods that are possible using commercial packages

such as PRIMER, PCORD, CANOCO, and Brodgar.

1.8.1 Packages Included with the Base Installation

Loading a package that came with the base installation may be accomplished

either by a mouse click or by entering a specific command.
You can click Packages->Load package (Fig. 1.5), select a package, and

click ok. Those who hate clicking (as we do), may find it more efficient to use the

library command. For instance, to load the MASS package, type the

command:

> library(MASS)

and press enter. You now have access to all functions in the MASS package. So

what next? You could read a book, such as that by Venables and Ripley (2002),

to learn all that you can do with this package. More often the process is

reversed. Suppose you have a dataset to which you want to apply generalised

linear mixed modelling (GLMM).1 Consulting Venables and Ripley (2002) will

show that you can do this with the function glmmPQL in the MASS package

(other options exist). Hence, you load MASS with the library command as

explained above and type ?glmmPQL to receive instructions in applying GLMM.

1 AGLMM is an advanced linear regression model. Instead of the Normal distribution, other
types of distributions can be used, for example, the Poisson or negative binomial distribution
for count data and the binomial distribution for binary data.
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1.8.2 Packages Not Included with the Base Installation

Sometimes the process of loading a package is slightly more complicated. For

example, suppose you see a paper in which data are plotted versus their spatial

locations (latitude and longitude), and the size of the dots is proportional to the

data values. The text states that the graph was made with the bubble function

from the gstat package. If you click Packages->Load package (as shown in

Fig. 1.5), you will not see gstat. If a package does not appear in the list, it has

not been installed. Hence this method can also be used to determine whether a

package is part of the base installation. To obtain and install gstat, or any

other available package, you can download the zipped package from the R

website and tell R to install it, or you can install it from within R. We discuss

both options. In addition there is a third option, which is described in the help

file of the function install.packages

Note that the process of installing a package need only be done once.

Option 1. Manual Download and Installation

On your Internet browser, go to the R website (www.r-project.org), click

CRAN, select a server, and click Packages under the Software heading.

You are presented with a list of user-contributed packages. Select gstat

(which is a long way down). You can now download the zipped package

(for Windows operating systems this is the file called Windows binary) and

a manual. Once you have downloaded the file to your hard disk, go to R

and click Packages->Install packages from local zip file. Select the file that

you just downloaded.
The websites for packages generally have a manual in PDF format which

may provide additional useful information. A potential problem with manual

downloads is that sometimes a package is dependent upon other packages that

are also not included in the base installation, and you need to download those as

well. Any dependencies on other packages are mentioned on the website, but it

can be like a family tree; these secondary packages may be dependent on yet

other packages.
The following method installs any dependent packages automatically.

Option 2. Download and Install a Package from Within R

As shown in Fig. 1.5, click Packages->set the CRAN mirror and select a server

(e.g., Bristol, UK). Now go back to Packages and click Install package(s) which

will present a list of packages from which you can select gstat. You only need

to execute this process once, unless you update R to a newer version. (Updates

appear on a regular basis, but there is no need to update R as soon as there is a

new version. Updating once or twice per year is enough.)
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Note that there may be installation problems on networked computers, and
when usingWindows VISTA, related to your firewall or other security settings. These
are computer-specific problems, and are not discussed here.

1.8.2.1 Loading the Package

There is a difference between installing and loading. Install denotes adding the
package to the base version of R. Load means that we can access all the
functions in the package, and are ready to use it. You cannot load a package
if it is not installed. To load the gstat package we can use one of the two
methods described in Section 1.8.1. Once it has been loaded, ?bubble will give
instructions for using the function.

We have summarised the process of installing and loading packages in Fig. 1.13.

1.8.2.2 How Good Is a Package?

During courses, participants sometimes ask about the quality of these user-

contributed packages. Some of the packages contain hundreds of functions
written by leading scientists in their field, who have often written a book in

which the methods are described. Other packages contain only a few functions

that may have been used in a published paper. Hence, you have packages from a
range of contributors from the enthusiastic PhD student to the professor who

Fig. 1.13 Overview of the process of installing and loading packages in R. If a package is part
of the base installation, or has previously been installed, use the library function. If a
package’s operation depends upon other packages, they will be automatically loaded, pro-
vided they have been installed. If not, they can bemanually installed. Once a package has been
installed, you do not have to install it again
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has published ten books. There is no way to say which is better. Check how

often a package has been updated, and enter it into the R newsgroup to see

other’s experiences.

1.9 General Issues in R

In this section, we discuss various issues in working with R, as well as methods

of making the process simpler.
If you are an instructor who gives presentations using R, or if you have

difficulties reading small-sized text, the ability to adjust font size is essential.

This can be done in R by clicking Edit-<GUI preferences.
First-time users may be confused by the behaviour of the console once a graph

has beenmade. For an example, seeFig. 1.14.Note that the graphic device is active.
If you attempt to copy andpaste code intoR, therewill be no response.Youneed to

make the R console window (on the left) active before you can paste R code. If the

R console window is maximised when pasting code, the graphic device (behind the
R consolewindow)will not be visible. Either change the size of the consolewindow,

or use the CRTL/TAB keys to alternate between windows.

To save a graph, click to make it active and right-click the mouse. You can
then copy it as a metafile directly into another program such as Microsoft
Word. Later, we discuss commands to save graphics to files.

A commonmistake that many people make when using Tinn-R (or any other
text editor) is that they do not copy the ‘‘hidden enter’’ notation on the last line

Fig. 1.14 R after making a graph. To run new commands, you must first click on the console
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of code. To show what we mean by this, see Figs. 1.15 and 1.16. In the first

figure, we copied the R code for the xyplot command previously entered into

Tinn-R. Note that we stopped selecting immediately after the final round

bracket. Pasting this segment of code into R produces Fig. 1.16. R is now

waiting for us to press enter, which will make the graph appear. This situation

can cause panic as R seems to do nothing even though the code is correct and

was completely copied into R—with the exception of the enter command on the

final line of the code. The solution is simple: press enter, and, next time, high-

light an extra line beneath the final round bracket before copying.

Fig. 1.15 Our Tinn-R code. Note that we copied the code up to, and including, the final round
bracket.We should have dragged themouse one line lower to include the hidden enter that will
execute the xyplot command

Cursor

Fig. 1.16 Our code pasted
into R. R is waiting for us to
press enter to execute the
xyplot command. Had we
copied an extra line in Tinn-
R, the command would have
been executed
automatically, and the
graph would have appeared
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1.9.1 Quitting R and Setting the Working Directory

Another useful command is:

> q()

It exits R. Before it does so, it will ask whether it should save the workspace.

If you decide to save it, we strongly advise that you do not save it in its default

directory. Doing so will cause R to load all your results automatically when it is

restarted. To avoid R asking whether it should save your data, use:

> q(save = "no")

Rwill then quit without saving. To change the default working directory use:

> setwd(file = "C:\\AnyDirectory\\")

This command only works if the directory AnyDirectory already exists;

choose a sensible name (ours isn’t). Note that you must use two backward

slashes on Windows operating systems. The alternative is to use:

> setwd(file = "C:/AnyDirectory/")

Use simple names in the directory structure. Avoid directory names that

contain symbols such as *, &, �, $, £, ‘‘, and so on. R also does not accept

alphabetic symbols with diacritical marks, ä, ı́, á, ö, è, é, and so on.
Our recommendation is that, rather than saving your workspace, you save

your R code in your text editor. Next time, open your well-documented saved

file, copy the code, and paste it into R. Your results and graphs will reappear.

Saving your workspace only serves to clutter your hard disk withmore files, and

also in a week’s time youmay not remember how you obtained all the variables,

matrices, and so on. Retrieving this information from your R code is much

easier. The only exception is if your calculations take a long time to complete. If

this is the case, it’s advisable to save the workspace somewhere in your working

directory. To save a workspace, click File-<Save Workspace. To load an

existing workspace, use File-<Load Workspace.
If you want to begin a new analysis on a different dataset, it may be useful to

remove all variables. One option is to quit R and restart it. Alternatively, click

Misc-<Remove all objects. This will execute the command

> rm(list = ls(all = TRUE))

Other useful options can be found under Edit. For example, you can click

Select all and copy every command and output to Microsoft Word.
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1.10 A History and a Literature Overview

1.10.1 A Short Historical Overview of R

If you are ready to begin working with R, a history lesson is the last thing you
want. However, we can guarantee that at some stage someone is going to ask
you why the package is called R. To provide you with an impressive response,
we spend a few words on how, why, and when the package was developed, as
well as by whom. After all, a bit of historical knowledge does no harm!

R is based on the computer language S, which was developed by John
Chambers and others at Bell Laboratories in 1976. In the early 1990s, Ross
Ihaka and Robert Gentleman (University of Auckland, in Auckland, New
Zealand) experimented with the language and called their product R. Note
that both their first names begin with the letter R. Also when modifying a
language called S, it is tempting to call it T or R.

Since 1997, R has been developed by the R Development Core Team.
A list of team members can be found at The R FAQ (Hornik, 2008;
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html).

TheWikipedia website gives a nice overview of R milestones. In 2000, version
1.0.0 was released, and since then various extensions have been made available.
This book was written using version 2.7, which was released in April 2008.

1.10.2 Books on R and Books Using R

The problem with providing an overview of books using R is that there is a good
chance of omitting some books, or writing a purely subjective overview. There is
also a time aspect involved; by the time you read this, many new books on R will
have appeared. Hence, we limit our discussion to books that we have found useful.

Although there are surprisingly few books onR; many use R to do statistics.
We do not make a distinction between these.

Our number one is Statistical Models in S, by Chambers and Hastie (1992),
informally called thewhite bookas it has awhite cover. It does notdeal directlywith
R, but rather with the language on which R is based. However, there is little
practical difference. This book gives a detailed explanation of S and how to apply
a large number of statistical techniques in S. It also contains some statistical theory.

Our second most used book is Modern Applied Statistics with S, 4th ed., by
Venables and Ripley (2002), closely followed by Introductory Statistics with R

from Dalgaard (2002). At the time of this writing, the second edition of
Dalgaard is in press. Both books are ‘‘must-haves’’ for the R user.

There are also books describing general statisticalmethodology that useR in the
implementation. Some of those on our shelves, along with our assessment, are:

� The R book, by Crawley (2007). This is a hefty book which quickly intro-
duces a wide variety of statistical methods and demonstrates how they can be
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applied in R. A disadvantage is that once you start using a particular
method, you will need to obtain further literature to dig deeper into the
underlying statistical methodology.

� Statistics. An Introduction Using R, by Crawley (2005).
� A Handbook of Statistical Analysis Using R, by Everitt and Hothorn (2006).
� Linear Models with R, by Faraway (2005). We highly recommend this book,

as well as its sequel, Extending the Linear Model with R, from the same
author.

� Data Analysis and Graphics Using R: An Example-Based Approach, by
Maindonald and Braun (2003). This book has a strong regression and
generalised linear modelling component and also some general text on R.

� An R and S-PLUS Companion to Multivariate Analysis, by Everitt (2005).
This book deals with classical multivariate analysis techniques, such as
factor analysis, multidimensional scaling, and principal component analysis,
and also contains a mixed effects modelling chapter.

� Using R for Introductory Statistics by Verzani (2005). The title describes the
content; it is useful for an undergraduate statistics course.

� R Graphics by Murrell (2006). A ‘‘must-have’’ if you want to delve more
deeply into R graphics.

There are also a large number ofmore specialised books that useR, for example:

� Time Series Analysis and Its Application. With R Examples — Second Edi-

tion, by Shumway and Stoffer. This is a good time series book.
� Data Analysis Using Regression and Multilevel/Hierarchical Models, by Gel-

man andHill. A book onmixed effects models for social science using R code
and R output.

� In mixed effects models, the ‘‘must-buy’’ and ‘‘must-cite’’ book is Mixed

Effects Models in S and S-Plus, from Pinheiro and Bates (2000).
� On the same theme, the ‘‘must-buy’’ and ‘‘must-cite’’ book for generalised

additive modelling is Generalized Additive Models: An Introduction with R,
by Wood (2006).

� The latter two books are not easy to read for the less mathematically oriented
reader, and an alternative isMixed Effects Models and Extensions in Ecology

with R, by Zuur et al. (2009). Because its first two authors are also authors of
the book that you are currently reading, it is a ‘‘must buy immediately’’ and
‘‘must read from A to Z’’ book!

� Another easy-to-read book on generalised additive modelling with R is
Semi-Parametric Regression for the Social Sciences, by Keele (2008).

� If you work with genomics and molecular data, Bioinformatics and Compu-

tational Biology Solutions Using R and Bioconductor, by Gentleman et al.
(2005) is a good first step.

� We also highly recommend An R and S-Plus Companion to Applied Regres-

sion, from Fox (2002).
� At the introductory level, you may want to consider A First Course in

Statistical Programming with R, by Braun and Murdoch (2007).
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� Because we are addicted to the lattice package with its beautiful multi-
panel figures (see Chapter 8), we highly recommend Lattice. Multivariate

Data Visualization with R written by Sarkar (2008). This book has not left
our desk since it arrived.

1.10.2.1 The Use R! Series

This book is a part of the Springer series ‘‘Use R!,’’ which at the time of writing
comprises at least 15 books, each describing a particular statistical method and
its use in R, with more books being in press.

If you are lucky, your statistical problem is discussed in one of the books in
this series. For example, if you work with morphometric data, you should
definitely have a look atMorphometrics with R, from Claude (2008). For spatial
data try Applied Spatial Data Analysis with R, by Bivand et al. (2008), and for
wavelet analysis, see Wavelet Methods in Statistics with R, by Nason (2008).
Another useful volume in this series is Data Manipulation with R, from Spector
(2008); no more tedious Excel or Access data preparation with this book! For
further suggestions we recommend that you consult http://www.springer.com/
series/6991 for an updated list.

We have undoubtedly omitted books, and in so doing may have upset read-
ers and authors, but this is what we have on our shelves at the time of writing. A
more comprehensive list can be found at: http://www.r-project.org/doc/bib/R-
publications.html.

1.11 Using This Book

Before deciding which chapters you should focus on and which you can skip
upon first reading, think about the question, ‘‘Why would I use R?’’ We have
heard a wide variety of answers to this question, such as:

1. My colleagues are using it.
2. I am interested in it.
3. I need to apply statistical techniques that are only available in R.
4. It is free.
5. It has fantastic graphing facilities.
6. It is the only statistics package installed on the network.
7. I am doing this as part of an education programme (e.g., BSc, MSc, PhD).
8. I have been told to do this by my supervisor.
9. It is in my job description to learn R.

In our courses, we’ve had a range of participants from the unmotivated, ‘‘I
have been told to do it’’ to the supermotivated, ‘‘I am interested.’’ How you can
best use this book depends somewhat on your ownmotivation for learning R. If
you are the, ‘‘I am interested,’’ person, read this book from A to Z. The
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following gives general recommendations on consuming the information pre-
sented, depending on your own situation.

Some of the sections in this book are marked with an asterisk (*); these are
slightly more technical, and you may skip them upon first reading.

1.11.1 If You Are an Instructor

Because the material in this book has been used in our own R and statistics
courses, we have seen the reactions of many students exposed to it. Our first
recommendation is simple:Do not go too fast!You will waste your time, and that
of your students, by trying to cover as much material as possible in a one or two-
day R course. We have taught statistics (and R) to over 5000 life scientists and
found the main element in positive feedback to be ensuring that the participants
understand what they have been doing.Most participants begin with a ‘‘showme
all’’ mentality, and it is your task to change this to ‘‘understand it all.’’

No one wants to do a five-day R course, and this is not necessary. We
recommend three-day courses (where a day is eight hours), with the title ‘‘Intro-
duction to R.’’ On the first day, you can cover Chapters 1, 2, and 3, and give
plenty of exercises. On the second day, introduce basic plotting tools (Chapter 5),
and, depending on aims and interests, you can either continue with making
functions (Chapter 6) or advanced plotting tools (Chapters 7 and 8) on day
three. Chapter 9 contains commonmistakes, and these are relevant for everyone.

If you proceed more rapidly, you are likely to end up with frustrated
participants. Our recommendation is not to include statistics in such a three-
day course. If you do need to cover statistics, extend the course to five days.

1.11.2 If You Are an Interested Reader with Limited R Experience

We suggest reading Chapters 1, 2, 3, and 5. What comes next depends on your
interests. Do youwant to write your own functions? Chapter 6 is relevant. Or do
you want to make fancy graphs? In that case, continue with Chapters 7 and 8.

1.11.3 If You Are an R Expert

If you have experience in using R, we recommend beginning with Chapters 6, 8,
and 9.

1.11.4 If You Are Afraid of R

‘‘My colleague has tried R and it was a nightmare. It is beyond many biologists
unless they have a very mathematical leaning!’’ This was taken verbatim from
our email inbox, and is indicative of many comments we hear. R is a language,
like Italian, Dutch, Spanish, English, or Chinese. Some people have a natural
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talent for languages, others struggle, and, for some, learning a language is a
nightmare. Using R requires that you learn a language. If you try to proceed too
rapidly, use the wrong reading material, or have the wrong teacher, then, yes,
mastering R may be challenging.

The term ‘‘mathematical’’ comes in because R is a language where tasks
proceed in logical steps. Your work in R must be approached in a structured
and organized way. But that is essentially all that is necessary, plus a good book.

However, we also want to be honest. Based on our experience, a small
fraction of the ‘‘typical’’ scientists attending our courses are not destined to
work with R. We have seen people frustrated after a single day of R program-
ming. We have had people tell us that they will never use R again. Luckily,
this is only a very small percentage. If you are one of these, we recommend a
graphical user interface driven software package such as SPLUS or SAS. These
are rather expensive programs. An alternative is to try one of the graphical
user interfaces in R (on the R website, select Related Projects from the menu
Misc, and then click R GUIs), but these will not give you the full range of
options available in R.

1.12 Citing R and Citing Packages

You have access to a free package that is extremely powerful. In recognition, it
is appropriate therefore, to cite R, or any associated package that you use. Once
in R, type:

> citation()

To cite R in publications use:

R Development Core Team (2008). R: A language and

environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

ISBN 3-900051-07-0, URL http://www.R-project.org.

...

We have invested a lot of time and effort in creating R,

please cite it when using it for data analysis. See also

’citation("pkgname")’ for citing R packages.

For citing a package, for example the lattice package, you should type:

> citation("lattice")

It gives the full details on how to cite this package. In this book, we use
various packages; wemention and cite them all below: foreign (R-core members
et al., 2008), lattice (Sarkar, 2008), MASS (Venables and Ripley, 2002), nlme
(Pinheiro et al., 2008), plotrix (Lemon et al., 2008), RODBC (Lapsley, 2002;
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Ripley, 2008), and vegan (Oksanen et al., 2008). The reference for R itself is: R
Development Core Team (2008). Note that some references may differ depend-
ing on the version of R used.

1.13 Which R Functions Did We Learn?

We conclude each chapter with a section in which we repeat the R functions that
were introduced in the chapter. In this chapter, we only learned a few com-
mands. We do not repeat the functions for the bioluminescent lattice plot and
the penguin plot here, as these were used only for illustration. The functions
discussed in this chapter are given in Table 1.1.

Table 1.1 R functions introduced in Chapter 1

Function Purpose Example

? Access help files ?boxplot

# Add comments #Add your comments here

boxplot Makes a boxplot boxplot (y) boxplot (y�factor (x))

log Natural logarithm log (2)

log10 Logarithm with base 10 log10 (2)

library Loads a package library (MASS)

setwd Sets the working directory setwd ("C:/AnyDirectory/")

q Closes R q()

citation Provides citation for R citation()
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Chapter 2

Getting Data into R

In the following chapter we address entering data into R and organising it as

scalars (single values), vectors, matrices, data frames, or lists. We also demon-

strate importing data from Excel, ascii files, databases, and other statistical

programs.

2.1 First Steps in R

2.1.1 Typing in Small Datasets

We begin by working with an amount of data that is small enough to type into

R. We use a dataset (unpublished data, Chris Elphick, University of Connecti-

cut) containing seven body measurements taken from approximately 1100

saltmarsh sharp-tailed sparrows (Ammodramus caudacutus) (e.g., size of the

head and wings, tarsus length, weight, etc.). For our purposes we use only four

morphometric variables of eight birds (Table 2.1).

The simplest, albeit laborious, method of entering the data into R is to type it

in as scalars (variables containing a single value). For the first five observations

of wing length, we could type:

Table 2.1 Morphometric measurements of eight birds. The symbol NA stands for a missing
value. The measured variables are the lengths of the wing (measured as the wing chord), leg
(a standard measure of the tarsus), head (from the bill tip to the back of the skull), and weight.

Wingcrd Tarsus Head Wt

59 22.3 31.2 9.5

55 19.7 30.4 13.8

53.5 20.8 30.6 14.8

55 20.3 30.3 15.2

52.5 20.8 30.3 15.5

57.5 21.5 30.8 15.6

53 20.6 32.5 15.6

55 21.5 NA 15.7

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_2, � Springer ScienceþBusiness Media, LLC 2009
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> a <- 59

> b <- 55

> c <- 53.5

> d <- 55

> e <- 52.5

Alternatively, you can use the ‘‘=’’ symbol instead of ‘‘<–’’. If you type these

commands into a text editor, then copy and paste them into R, nothing appears

to happen. To see R’s calculations, type ‘‘a’’ and click enter.

> a

[1] 59

Hence, ‘‘a’’ has the value of 59, as we intended. The problem with this

approach is that we have a large amount of data and will quickly run out of

characters. Furthermore, the variable names a, b, c, and so on are not very useful

as aids for recalling what they represent. We could use variable names such as

> Wing1 <- 59

> Wing2 <- 55

> Wing3 <- 53.5

> Wing4 <- 55

> Wing5 <- 52.5

More names will be needed for the remaining data. Before we improve the

naming process of the variables, we discuss what you can dowith them. Once we

have defined a variable and given it a value, we can do calculations with it; for

example, the following lines contain valid commands.

> sqrt(Wing1)

> 2 * Wing1

> Wing1 + Wing2

> Wing1 + Wing2 + Wing3 + Wing4 + Wing5

> (Wing1 + Wing2 + Wing3 + Wing4 + Wing5) / 5

Although R performs the calculations, it does not store the results. It is

perhaps better to define new variables:

> SQ.wing1 <- sqrt(Wing1)

> Mul.W1 <- 2 * Wing1

> Sum.12 <- Wing1 + Wing2

> SUM12345 <- Wing1 + Wing2 + Wing3 + Wing4 + Wing5

> Av <- (Wing1 + Wing2 + Wing3 + Wing4 + Wing5) / 5

These five lines are used to demonstrate that you can use any name. Note

that the dot is a component of the name. We advise the use of variable names

that aid in remembering what they represent. For example, SQ.wing1 reminds
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us that it is the square root of the wing length for bird 1. Sometimes, a bit of
imagination is needed in choosing variable names. However, you should avoid
names that contain characters like ‘‘£, $,%, ^ *,+,�, ( ), [ ], #, !, ?,<,>, and so
on, as most of these characters are operators, for example, multiplication,
power, and so on.

As we already explained above, if you have defined

> SQ.wing1 <- sqrt(Wing1)

to display the value of SQ.wing1, you need to type:

> SQ.wing1

[1] 7.681146

An alternative is to put round brackets around the command; R will now
produce the resulting value:

> (SQ.wing1 <- sqrt(Wing1))

[1] 7.681146

2.1.2 Concatenating Data with the c Function

As mentioned above, with eight observations of four morphometric variables,
we need 32 variable names. R allows the storage of multiple values within a
variable. For this we need the c()function, where c stands for concatenate. It is
used as follows.

> Wingcrd <- c(59, 55, 53.5, 55, 52.5, 57.5, 53, 55)

Youmay put spaces on either side of the commas to improve the readability of
the code. Spaces can also be used on either side of the ‘‘+’’ and ‘‘<-’’ commands.
In general, this improves readability of the code, and is recommended.

It is important to use the round brackets ( and ) in the c function and not the
square [ and ] or the curly brackets { and }. These are used for other purposes.

Just as before, copying and pasting the above command into R only assigns the
data to the variableWingcrd. To see the data, typeWingcrd intoRandpress enter:

> Wingcrd

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

The c function has created a single vector of length 8. To view the first value
of Wingcrd, type Wingcrd [1] and press enter:
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> Wingcrd [1]

[1] 59

This gives the value 59. To view the first five values type:

> Wingcrd [1 : 5]

[1] 59.0 55.0 53.5 55.0 52.5

To view all except the second value, type:

> Wingcrd [-2]

[1] 59.0 53.5 55.0 52.5 57.5 53.0 55.0

Hence, the minus sign omits a value. R has many built-in functions, the most
elementary of which are functions such as sum, mean, max, min, median, var,
and sd, among othersn. They can be applied by typing

> sum(Wingcrd)

[1] 440.5

Obviously, we can also store the sum in a new variable

> S.win <- sum(Wingcrd)

> S.win

[1] 440.5

Again, the dot is part of the variable name. Now, enter the data for the other
three variables from Table 2.1 into R. It is laborious, but typing the following
code into an editor, then copying and pasting it into R does the job.

> Tarsus <- c(22.3, 19.7, 20.8, 20.3, 20.8, 21.5, 20.6,

21.5)

> Head <- c(31.2, 30.4, 30.6, 30.3, 30.3, 30.8, 32.5,

NA)

> Wt <- c(9.5, 13.8, 14.8, 15.2, 15.5, 15.6, 15.6,

15.7)

Note that we are paying a price for the extra spaces; each command now
extends into two lines. As long as you end the line with a backslash or a comma,
R will consider it as one command.

It may be a good convention to capitalize variable names. This avoids
confusion with existing function commands. For example, ‘‘head’’ is an exist-
ing function in R (see ?head). Most internal functions do not begin with a
capital letter; hence we can be reasonably sure that Head is not an existing
function. If you are not completely sure, try typing, for example,?Head. If a
help file pops up, you know that you need to come up with another variable
name.
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Note that there is one bird for which the size of the head was not measured. It

is indicated by NA. Depending on the function, the presence of an NA may, or

may not, cause trouble. For example:

> sum(Head)

[1] NA

You will get the same result with the mean, min, max, and many other

functions. To understand why we get NA for the sum of the head values, type

?sum. The following is relevant text from the sum help file.

...

sum(..., na.rm = FALSE)

...

If na.rm is FALSE, an NA value in any of the arguments

will cause a value of NA to be returned, otherwise NA

values are ignored.

...

Apparently, the default ‘‘na.rm = FALSE’’ option causes the R function

sum to return an NA if there is a missing value in the vector (rm refers to

remove). To avoid this, use ‘‘na.rm = TRUE’’

> sum(Head, na.rm = TRUE)

[1] 216.1

Now, the sum of the seven values is returned. The same can be done for the

mean, min, max, and median functions. On most computers, you can also use

na.rm = T instead of na.rm = TRUE. However, because we have been con-

fronted with classroom PCs running identical R versions on the same operating

system, and a few computers give an error message with the na.rm= T option,

we advise using na.rm = TRUE.
You should always read the help file for any function before use to ensure

that you know how it deals with missing values. Some functions use na.rm,

some use na.action, and yet others use a different syntax. It is nearly

impossible to memorise how all functions treat missing values.
Summarising, we have entered data for four variables, and have applied

simple functions such as mean, min, max, and so on.We now discuss methods

of combining the data of these four variables: (1) the c, cbind, and rbind

functions; (2) the matrix and vector functions; (3) data frames; and (4)

lists.

Do Exercise 1 in Section 2.4 in the use of the c and sum functions.
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2.1.3 Combining Variables with the c, cbind, and rbind

Functions

We have four columns of data, each containing observations of eight birds.

The variables are labelled Wingcrd, Tarsus, Head, and Wt. The c function

was used to concatenate the eight values. In the same way as the eight values

were concatenated, so can we concatenate the variables containing the values

using:

> BirdData <- c(Wingcrd, Tarsus, Head, Wt)

Our use of the variable name BirdData instead of data, means that we are

not overwriting an existing R function (see ?data). To see the result of this

command, type BirdData and press enter:

> BirdData

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3

[10] 19.7 20.8 20.3 20.8 21.5 20.6 21.5 31.2 30.4

[19] 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8

[28] 15.2 15.5 15.6 15.6 15.7

BirdData is a single vector of length 32 (4 � 8). The numbers [1], [10], [19],

and [28] are the index numbers of the first element on a new line. On your

computer theymay be different due to a different screen size. There is no need to

pay any attention to these numbers yet.
R produces all 32 observations, including the missing value, as a single

vector, because it does not distinguish values of the different variables (the

first 8 observations are of the variableWingcrd, the second 8 fromTarsus, etc.) .

To counteract this we can make a vector of length 32, call it Id (for ‘‘identity’’),

and give it the following values.

> Id <- c(1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4)

> Id

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

[24] 3 4 4 4 4 4 4 4 4

Because R can now put more digits on a line, as compared to in BirdData,

only the indices [1] and [24] are produced. These indices are completely irrele-

vant for the moment. The variable Id can be used to indicate that all observa-

tions with a similar Id value belong to the same morphometric variable.

However, creating such a vector is time consuming for larger datasets, and,

fortunately, R has functions to simplify this process.What we need is a function

that repeats the values 1 –4, each eight times:
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> Id <- rep(c(1, 2, 3, 4), each = 8)

> Id

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

[24] 3 4 4 4 4 4 4 4 4

This produces the same long vector of numbers as above. The rep designa-
tion stands for repeat. The command can be further simplified by using:

> Id <- rep(1 : 4, each = 8)

> Id

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

[24] 3 4 4 4 4 4 4 4 4

Again, we get the same result. To see what the 1 : 4 command does, type
into R:

> 1 : 4

It gives

[1] 1 2 3 4

So the : operator does not indicate division (as is the case with some other
packages). You can also use the seq function for this purpose. For example, the
command

> a <- seq(from = 1, to = 4, by = 1)

> a

creates the same sequence from 1 to 4,

[1] 1 2 3 4

So for the bird data, we could also use:

> a <- seq(from = 1, to = 4, by = 1)

> rep(a, each = 8)

[1] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3

[24] 3 4 4 4 4 4 4 4 4

Each of the digits in ‘‘a’’ is repeated eight times by the rep function. At this
stage you may well be of the opinion that in considering so many different
options we are making things needlessly complicated. However, some functions
in R need the data as presented in Table 2.1 (e.g, the multivariate analysis
function for principal component analysis or multidimensional scaling),
whereas the organisation of data into a single long vector, with an extra variable
to identify the groups of observations (Id in this case), is needed for other
functions such as the t-test, one-way anova, linear regression, and also for some
graphing tools such as the xyplot in the lattice package (see Chapter 8).
Therefore, fluency with the rep function can save a lot of time.
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So far, we have only concatenated numbers. But suppose we want to create a

vector ‘‘Id’’ of length 32 that contains the word ‘‘Wingcrd’’ 8 times, the word

‘‘Tarsus’’ 8 times, and so on.We can create a new variable called VarNames,

containing the four morphometric variable designations. Once we have created

it, we use the rep function to create the requested vector:

> VarNames <- c("Wingcrd", "Tarsus", "Head", "Wt")

> VarNames

[1] "Wingcrd" "Tarsus" "Head" "Wt"

Note that these are names, not the variables with the data values. Finally, we

need:

> Id2 <- rep(VarNames, each = 8)

> Id2

[1] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"

[5] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"

[9] "Tarsus" "Tarsus" "Tarsus" "Tarsus"

[13] "Tarsus" "Tarsus" "Tarsus" "Tarsus"

[17] "Head" "Head" "Head" "Head"

[21] "Head" "Head" "Head" "Head"

[25] "Wt" "Wt" "Wt" "Wt"

[29] "Wt" "Wt" "Wt" "Wt"

Id2 is a string of characters with the names in the requested order. The

difference between Id and Id2 is just a matter of labelling. Note that you

should not forget the "each=" notation. To see what happens if it is omitted,

try typing:

> rep(VarNames, 8)

[1] "Wingcrd" "Tarsus" "Head" "Wt"

[5] "Wingcrd" "Tarsus" "Head" "Wt"

[9] "Wingcrd" "Tarsus" "Head" "Wt"

[13] "Wingcrd" "Tarsus" "Head" "Wt"

[17] "Wingcrd" "Tarsus" "Head" "Wt"

[21] "Wingcrd" "Tarsus" "Head" "Wt"

[25] "Wingcrd" "Tarsus" "Head" "Wt"

[29] "Wingcrd" "Tarsus" "Head" "Wt"

It will produce a repetition of the entire vector VarNames with the four

variable names listed eight times, not what we want in this case.
The c function is a way of combining data or variables. Another option is the

cbind function. It combines the variables in such a way that the output

contains the original variables in columns. For example, the output of the

cbind function below is stored in Z. If we type Z and press enter, it shows the

values in columns:
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> Z <- cbind(Wingcrd, Tarsus, Head, Wt)

> Z

Wingcrd Tarsus Head Wt

[1,] 59.0 22.3 31.2 9.5

[2,] 55.0 19.7 30.4 13.8

[3,] 53.5 20.8 30.6 14.8

[4,] 55.0 20.3 30.3 15.2

[5,] 52.5 20.8 30.3 15.5

[6,] 57.5 21.5 30.8 15.6

[7,] 53.0 20.6 32.5 15.6

[8,] 55.0 21.5 NA 15.7

The data must be in this format if we are to apply, for example, principal
component analysis. Suppose you want to access some elements of Z, for

instance, the data in the first column. This is done with the command Z [, 1]:

> Z[, 1]

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

Alternatively, use

> Z[1 : 8, 1]

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

It gives the same result. The second row is given by Z [2,] :

> Z[2, ]

Wingcrd Tarsus Head Wt

55.0 19.7 30.4 13.8

Alternatively, you can use:

> Z[2, 1:4]

Wingcrd Tarsus Head Wt

55.0 19.7 30.4 13.8

The following commands are all valid.

> Z[1, 1]

> Z[, 2 : 3]

> X <- Z[4, 4]

> Y <- Z[, 4]

> W <- Z[, -3]

> D <- Z[, c(1, 3, 4)]

> E <- Z[, c(-1, -3)]

The first command accesses the value of the first bird for Wingcrd; the

second command gives all the data for columns 2 and 3; X contains the weight
for bird 4; and Y, all the Wt data. The minus sign is used to exclude columns or

rows. Hence, W contains all variables except Head.We can also use the c function
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to access nonsequential rows or columns of Z. D contains the first, third, and fourth

columns of Z, and E contains all but the first and third. You must ensure that the

subscripts do not go outside the range of allowable values. For example, Z [8, 4] is

valid, butZ[9, 5],Z[8, 6], orZ[10, 20] are not defined (we only have 8 birds

and 4 variables). If you type one of these commands, R will give the error message:

Error: subscript out of bounds

If you would like to know the dimensions of Z, use:

> dim(Z)

[1] 8 4

The output is a vector with two elements: the number of rows and the

number of columns of Z. At this point you may want to consult the help files

of nrow and ncol for alternative options. In some situations, it may be useful

to store the output of the dim function. In that case, use

> n <- dim(Z)

> n

[1] 8 4

or, if you only need to store the number of rows in Z, use

> nrow <- dim(Z)[1]

> nrow

[1] 8

Instead of nrow, the variable name zrowmay be more appropriate. As you

would expect, similar to the cbind function to arrange the variables in col-

umns, the rbind function combines the data in rows. To use it, type:

> Z2 <- rbind(Wingcrd, Tarsus, Head, Wt)

> Z2

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

Wingcrd 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

Tarsus 22.3 19.7 20.8 20.3 20.8 21.5 20.6 21.5

Head 31.2 30.4 30.6 30.3 30.3 30.8 32.5 NA

Wt 9.5 13.8 14.8 15.2 15.5 15.6 15.6 15.7

This gives the same data as in the previous examples, with the morphometric

variables in rows and the individual birds in columns.
Other interesting tools to change Z or Z2 are the edit and fix functions;

see their help files.

Do Exercise 2 in Section 2.4 in the use of the c and cbind func-

tions. This is an exercise using an epidemiological dataset.
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2.1.4 Combining Data with the vector Function*

To avoid introducing too much information, we did not mention the vector

function in the previous discussion, and upon first reading, you may skip this
section. Instead of the c function, we could have used the vector function.
Suppose we want to create a vector of length 8 containing data Wingcrd of all

eight birds. In R, we can do this as follows.

> W <- vector(length = 8)

> W[1] <- 59

> W[2] <- 55

> W[3] <- 53.5

> W[4] <- 55

> W[5] <- 52.5

> W[6] <- 57.5

> W[7] <- 53

> W[8] <- 55

If you type W into R immediately after the first command, R shows a vector
with values FALSE. This is normal. Typing W into R after all elements have
been entered gives:

> W

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0

Note that the result is identical to that of the c function. The advantage of

the vector function is that we can define a priori how many elements a
variable should have. This can be useful when doing specific tasks such as
loops. However, for common applications, it is easier to use the c function to

concatenate data.
Just as with the output of the c function, we can access particular elements of

W using W [1], W [1 : 4], W [2 : 6], W [-2], W [c (1, 3, 5)], but W
[9]produces an NA, as element 9 is not defined.

Do Exercise 3 in Section 2.4 in the use of the vector function. This
is an exercise using an epidemiological dataset.

2.1.5 Combining Data Using a Matrix*

Upon first reading, you may skip this section.
Instead of vectors showing the 4 variables Wingcrd, Tarsus, Head, and

Wt, each of length 8, we can create amatrix of dimension 8 by 4 that contains the
data. Such a matrix is created by the command:
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> Dmat <- matrix(nrow = 8, ncol = 4)

> Dmat

[,1] [,2] [,3] [,4]

[1,] NA NA NA NA

[2,] NA NA NA NA

[3,] NA NA NA NA

[4,] NA NA NA NA

[5,] NA NA NA NA

[6,] NA NA NA NA

[7,] NA NA NA NA

[8,] NA NA NA NA

We first wanted to call this matrix D, but subsequently discovered that Tinn-

R uses a blue font for D, meaning that it is an existing function. Entering ?D

gives the information that it is a function to calculate derivates, hence we will

not overwrite it. We instead use the designator ‘‘Dmat,’’ where ‘‘mat’’ indicates

matrix.
Note that Dmat is an 8 by 4 matrix containing only NAs. We need to fill in

the values. This can be done by

> Dmat[, 1] <- c(59, 55, 53.5, 55, 52.5, 57.5, 53, 55)

> Dmat[, 2] <- c(22.3, 19.7, 20.8, 20.3, 20.8, 21.5,

20.6, 21.5)

> Dmat[, 3] <- c(31.2, 30.4, 30.6, 30.3, 30.3, 30.8,

32.5, NA)

> Dmat[, 4] <- c(9.5, 13.8, 14.8, 15.2, 15.5, 15.6,

15.6, 15.7)

The elements of Dmat, in this case, are entered by column, but we could have

filled them in by row. Typing Dmat into R gives the same data matrix as we

obtained with the cbind function, except that Dmat does not have column labels:

> Dmat

[,1] [,2] [,3] [,4]

[1,] 59.0 22.3 31.2 9.5

[2,] 55.0 19.7 30.4 13.8

[3,] 53.5 20.8 30.6 14.8

[4,] 55.0 20.3 30.3 15.2

[5,] 52.5 20.8 30.3 15.5

[6,] 57.5 21.5 30.8 15.6

[7,] 53.0 20.6 32.5 15.6

[8,] 55.0 21.5 NA 15.7
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We can use the existing colnames function to add column names to Dmat:

> colnames(Dmat) <- c("Wingcrd", "Tarsus", "Head","Wt")

> Dmat

Wingcrd Tarsus Head Wt

[1,] 59.0 22.3 31.2 9.5

[2,] 55.0 19.7 30.4 13.8

[3,] 53.5 20.8 30.6 14.8

[4,] 55.0 20.3 30.3 15.2

[5,] 52.5 20.8 30.3 15.5

[6,] 57.5 21.5 30.8 15.6

[7,] 53.0 20.6 32.5 15.6

[8,] 55.0 21.5 NA 15.7

Obviously, there is also a rownames function, the use of which is explained

in the help file.
To summarise, we first defined a matrix of a specific size, then filled in its

elements by column. You must define the matrix before you enter its elements.

You can also fill in element by element, for example,

> Dmat[1, 1] <- 59.0

> Dmat[1, 2] <- 22.3

and so on, but this takes more time. If we have the data already categorized in

variables, such as Wingcrd, Tarsus, Head, Wt, we would not normally create

the matrix and fill in its elements. This command will do the job as well:

> Dmat2 <- as.matrix(cbind(Wingcrd, Tarsus, Head, Wt))

Dmat2 and Dmat are identical. Once again learning more than one path to the

same outcome is necessary because some functions require a matrix as input and

will give an error message if a data frame (see next subsection) is used, and vice

versa. Therefore, functions such asas.matrix,is.matrix (this function gives a

TRUE if its argument is a matrix, and FALSE otherwise), as.data.frame, is.

date.frame can come in handy.
Special operators for matrices A and B are t(A) for transpose, A %*% B for

matrix multiplication, and solve (A) for inverse.

Do Exercise 4 in Section 2.4 dealing with matrices.
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2.1.6 Combining Data with the data.frame Function

So far, we have used the c, cbind, rbind, vector, and matrix functions to
combine data. Yet another option is the data frame. In a data frame we can
combine variables of equal length, with each row in the data frame containing
observations on the same sampling unit. Hence, it is similar to the matrix or
cbind functions. Using the four bird morphometric variables from the pre-
vious section, a data frame is created as follows.

> Dfrm <- data.frame(WC = Wingcrd,

TS = Tarsus,

HD = Head,

W = Wt)

> Dfrm

WC TS HD W

1 59.0 22.3 31.2 9.5

2 55.0 19.7 30.4 13.8

3 53.5 20.8 30.6 14.8

4 55.0 20.3 30.3 15.2

5 52.5 20.8 30.3 15.5

6 57.5 21.5 30.8 15.6

7 53.0 20.6 32.5 15.6

8 55.0 21.5 NA 15.7

Basically, the data.frame function creates an object, called Dfrm in this case,
and within Dfrm it stores values of the four morphometric variables. The advan-
tage of a data frame is that you canmake changes to the data without affecting the
original data. For example, it is possible to combine the original (but renamed)
weight and the square root transformed weights in the data frame Dfrm:

> Dfrm <- data.frame(WC = Wingcrd,

TS = Tarsus,

HD = Head,

W = Wt

Wsq = sqrt(Wt))

In the data frame, we can also combine numerical variables, character
strings, and factors. Factors are nominal (categorical) variables and are dis-
cussed later in this chapter.

It is important to realise that the variable Wt that we created in the c function
and the W in the data frame Dfrm are two different entities. To see this, let us
remove the variable Wt (this is the one we typed in with the c function):

> rm(Wt)

If you now type in Wt, R gives an error message:
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> Wt

Error: object "Wt" not found

But the variable W still exists in the data frame Dfrm:

> Dfrm$W

[1] 9.5 13.8 14.8 15.2 15.5 15.6 15.6 15.7

It may seem that the data frame is unnecessary, because we have the cbin-

dand matrix functions, However, neither of these can be used to combine

different types of data. Our use of the data frame is often as follows. First we

enter the data into R, mainly using methods discussed in Section 2.2. We then

make changes to the data (e.g., remove extreme observations, apply transfor-

mations, add categorical variables, etc.) and store the modified data in a data

frame which we use in the follow-up analyses.

2.1.7 Combining Data Using the list Function*

You may also skip this section at first reading. So far, the tools we have used

to combine data produce a table with each row being a sampling unit (a bird

in this case). Suppose you want a black box into which you can put as many

variables as you want; some may be related, some may have similar dimen-

sions, some may be vectors, others matrices, and yet others may contain

character strings of variable names. This is what the listfunction can do.

The main difference from our previously used methods is that the resulting

rows will not necessarily represent a single sampling unit. A simple example is

given below. The variables x1, x2, x3, and x4 contain data: x1 is a vector of

length 3, x2 contains 4 characters, x3 is a variable of dimension 1, and x4 is a

matrix of dimension 2-by-2. All these variables are entered into the list

function:

> x1 <- c(1, 2, 3)

> x2 <- c("a", "b", "c", "d")

> x3 <- 3

> x4 <- matrix(nrow = 2, ncol = 2)

> x4[, 1] <- c(1, 2)

> x4[, 2] <- c( 3, 4)

> Y <- list(x1 = x1, x2 = x2, x3 = x3, x4 = x4)

If you now type Y into R, you get the following output.
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> Y

$x1

[1] 1 2 3

$x2

[1] "a" "b" "c" "d"

$x3

[1] 3

$x4

[,1] [,2]

[1,] 1 3

[2,] 2 4

All information contained in Y is accessible by typing, for example, Y$x1,
Y$x2, and so on. Again, you may wonder why we need to go to all this trouble.
The reason is that nearly all functions (e.g., linear regression, generalised linear
modelling, t-test, etc.) in R produce output that is stored in a list. For example,
the following code applies a linear regression model in which wing length is
modelled as a function of weight.

> M <- lm(WC � Wt, data = Dfrm)

We do not wish to go into detail of the lm function, or how to do linear
regression in R (see its helpfile obtained by typing ?lm). All what we want to
emphasise is that R stores all results of the linear regression function in the
object M. If you type

> names(M)

you receive this fancy output:

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

You can access the coefficients or residuals by using M$coefficients,
M$residuals, and so on. Hence, M is a list containing objects of different
dimensions, just as our earlier example with Y. The good news is that R contains
various functions to extract required information (e.g., estimated values, p-values,
etc.) and presents it in nice tables. See the lm help file.
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For the birdmorphometric data, it does notmake sense to store the data in a list,
as the rows in Table 2.1 contain data from the same bird. However, if the task is to
create a list that contains all data in a long vector, an extra vector that identifies the
groups of variables (ID in this case), a matrix that contains the data in a 8 by 4
format, and, finally, a vector that contains the 4 morphometric names, we can use:

> AllData <- list(BirdData = BirdData, Id = Id2, Z = Z,

VarNames = VarNames)

to produce:

> AllData

$BirdData

[1] 59.0 55.0 53.5 55.0 52.5 57.5 53.0 55.0 22.3

[10] 19.7 20.8 20.3 20.8 21.5 20.6 21.5 31.2 30.4

[19] 30.6 30.3 30.3 30.8 32.5 NA 9.5 13.8 14.8

[28] 15.2 15.5 15.6 15.6 15.7

$Id

[1] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"

[5] "Wingcrd" "Wingcrd" "Wingcrd" "Wingcrd"

[9] "Tarsus" "Tarsus" "Tarsus" "Tarsus"

[13] "Tarsus" "Tarsus" "Tarsus" "Tarsus"

[17] "Head" "Head" "Head" "Head"

[21] "Head" "Head" "Head" "Head"

[25] "Wt" "Wt" "Wt" "Wt"

[29] "Wt" "Wt" "Wt" "Wt"

$Z

Wingcrd Tarsus Head Wt

[1,] 59.0 22.3 31.2 9.5

[2,] 55.0 19.7 30.4 13.8

[3,] 53.5 20.8 30.6 14.8

[4,] 55.0 20.3 30.3 15.2

[5,] 52.5 20.8 30.3 15.5

[6,] 57.5 21.5 30.8 15.6

[7,] 53.0 20.6 32.5 15.6

[8,] 55.0 21.5 NA 15.7

$VarNames

[1]"Wingcrd""Tarsus" "Head" "Wt"

Obviously, storing the data in this format is unnecessary, as we only need one
format. An advantage, perhaps, with multiple formats, is that we are prepared
for most functions. However, our own programming style is such that we only
change the format if, and when, needed.
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Typing AllData in R produces the data in most formats that we have seen

in this section. It is nice to know that we can do it.
You cannot use the ‘‘<-’’ symbols in the list function, only the ‘‘=’’ sign is

accepted. Figure 2.1 shows an overview of themethods of storing data discussed

so far.

Do Exercise 5 in Section 2.4. This is an exercise that deals again

with an epidemiological dataset and the use of the data.frame

and list commands.

2.2 Importing Data

With large datasets, typing them in, as we did in the previous section, is not

practical. The most difficult aspect of learning to use a new package is import-

ing your data. Once you have mastered this step, you can experiment with other

commands. The following sections describe various options for importing data.

We make a distinction between small and large datasets and whether they are

stored in Excel, ascii text files, a database program, or in another statistical

package.

Data

data.frame ( )

list( )

c( )

cbind( )

vector( )
&

matrix( )

Combine data of
any size

Tidy up data and store in
new object

Inverse, transpose,
etc.

Define size a
priori

Fig. 2.1 Overview of various methods of storing data. The data stored by cbind, matrix, or
data.frame assume that data in each row correspond to the same observation (sample,
case)
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2.2.1 Importing Excel Data

There are two main options for importing data from Excel (or indeed any
spreadsheet or database program) into R. The easy, and recommended, option
is (1) to prepare the data in Excel, (2) export it to a tab-delimited ascii file,
(3) close Excel, and (4) use the read.table function in R to import the data.
Each of these steps is discussed in more detail in the following sections. The
second option is a special R package, RODBC, which can access selected rows
and columns from an Excel spreadsheet. However, this option is not for the
fainthearted. Note that Excel is not particularly suitable for working with large
datasets, due to its limitation in the number of columns.

2.2.1.1 Prepare the Data in Excel

In order to keep things simple, we recommend that you arrange the data in a sample-
by-variable format. By this, wemeanwith the columns containing variables, and the
rows containing samples, observations, cases, subjects, or whatever you call your
sampling units. Enter NA (in capitals) into cells representing missing values. It is
good practice to use the first column in Excel for identifying the sampling unit, and
the first row for the names of the variables. As mentioned earlier, using names
containing symbols such as £, $,%, ^, &, *, (, ),�, #, ?, , ,. ,<,>, /, |, \, ,[ ,] ,{, and }
will result in an errormessage inR.You should also avoid names (or fields or values)
that contain spaces. Short names are advisable in order to avoid graphs containing
many long names, making the figure unreadable.

Figure 2.2 shows an Excel spreadsheet containing a set of data on the
Gonadosomatic index (GSI, i.e., the weight of the gonads relative to total
body weight) of squid (Graham Pierce, University of Aberdeen, UK, unpub-
lished data). Measurements were taken from squid caught at various locations
in Scottish waters in different months and years.

2.2.1.2 Export Data to a Tab-Delimited ascii File

In Excel, go to File->Save As->Save as Type, and select Text (Tab delimited).
If you have a computer running in a non-English language, it may be a
challenge to determine how ‘‘Tab delimited’’ is translated. We exported the
squid data in Fig. 2.2 to a tab-delimited ascii file named squid.txt, in the
directory C:\RBook. Both the Excel file and the tab-delimited ascii file can be
downloaded from the book’s website. If you download them to a different
directory, then you will need to adjust the ‘‘C:\RBook’’ path.

At this point it is advisable to close Excel so that it cannot block other
programs from accessing your newly created text file.

Warning:Excel has the tendency to add extra columns full of NAs to the ascii
file if you have, at some stage, typed comments into the spreadsheet. In R, these
columns may appear as NAs. To avoid this, delete such columns in Excel before
starting the export process.
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2.2.1.3 Using the read.table Function

With a tab-delimited ascii file that contains no blank cells or names with spaces,

we can now import the data into R. The function that we use is read.table,

and its basic use is as follows.

> Squid <- read.table(file = "C:\\RBook\\squid.txt",

header = TRUE)

This command reads the data from the file squid.txt and stores the data in

Squid as a data frame. We highly recommend using short, but clear, variable

labels. For example, we would not advise using the name SquidNorthSea-

MalesFemales, as you will need to write out this word frequently. A spelling

mistake andRwill complain. The header= TRUE option in the read.table

function tells R that the first row contains labels. If you have a file without

headers, change it to header = FALSEThere is another method of specifying

the location of the text file:

> Squid <- read.table(file = "C:/RBook/squid.txt",

header = TRUE)

Fig. 2.2 Example of the organisation of a dataset in Excel prior to importing it into R. The
rows contain the cases (each row represents an individual squid) and the columns the vari-
ables. The first column and the first row contain labels, there are no labels with spaces, and
there are no empty cells in the columns that contain data
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Note the difference in the slashes. If you have error messages at this stage,
make sure that the file name and directory path were correctly specified. We
strongly advise keeping the directory names simple. We have seen too many
people struggling for half an hour to get the read.table function to run when
they have a typing error in the 150–200-character long directory structure. In
our case, the directory structure is short, C:/RBook. Inmost cases, the directory
path will be longer. It is highly likely that you will make a mistake if you type in
the directory path from memory. Instead, you can right-click the file Squid.txt
(inWindows Explorer), and click Properties (Fig. 2.3). From here, you can copy
and paste the full directory structure (and the file name) into your R text editor.
Don’t forget to add the extra slash \.

Fig. 2.3 Properties of the file squid.txt. The file name is Squid.txt, and the location is
C:\Bookdata. You can highlight the location, copy it, paste it into the read.table function
in your text R editor, and add the extra \ on Windows operating systems
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If you use names that include ‘‘My Files,’’ be sure to include the space and the

capitals. Another common reason for an error message is the character used for
decimal points. By default, R assumes that the data in the ascii text file have

point separation, and the read.table function is actually using:

> Squid <- read.table(file = "C:/RBook/squid.txt",

header = TRUE, dec = ".")

If you are using comma separation, change the last option to dec = ",",
and rerun the command.

Warning: If your computer uses comma separation, and you export the data
from Excel to a tab-delimited ascii file, then you must use the dec = ","

option. However, if someone else has created the ascii file using point separa-
tion, you must use the dec = "." option. For example, the ascii files for this

book are on the book website and were created with point separation. Hence all
datasets in this book have to be imported with the dec = "." option, even if

your computer uses comma separation. If you use the wrong setting, R will
import all numerical data as categorical variables. In the next chapter, we

discuss the str function, and recommend that you always execute it immedi-
ately after importing the data to verify the format.

If the data have spaces in the variable names, and if you use the read.-

table function as specified above, you will get the following message. (We
temporarily renamed GSI to G S I in Excel in order to create the error
message.)

Error in scan(file,what,nmax,sep,dec,quote,skip,nlines,

na.strings,: line 1 did not have 8 elements

R is now complaining about the number of elements per line. The easy option
is to remove any spaces from names or data fields in Excel and repeat the steps

described above. The same error is obtained if the data contain an empty cell or
fields with spaces. Instead of modifying the original Excel file, it is possible to

tell the read.table function that there will be fields with spaces. There are
many other options for adapting the read.table function to your data. The

best way to see them all is to go to the read.table help file. The first part of
the help file is shown below. You are not expected to know the meaning of all

the options, but it is handy to know that it is possible to change certain settings.

read.table(file, header = FALSE, sep = "",

quote = "\"’", dec = ".", row.names, col.names,

as.is = !stringsAsFactors,

na.strings = "NA", colClasses = NA, nrows=-1,

skip = 0, check.names = TRUE,

fill = !blank.lines.skip,
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strip.white = FALSE, blank.lines.skip = TRUE,

comment.char = "#", allowEscapes = FALSE,

flush = FALSE,

stringsAsFactors = default.stringsAsFactors())

This is a function with many options. For example if you have white space in
the fields, use the option strip.white = TRUE. An explanation of the other
options can be found under the Arguments section in the help file. The help file
also gives information on reading data in csv format. It is helpful to know that the
read.table can contain an URL link to a text file on an Internet webpage.

If you need to read multiple files from the same directory, it is more efficient
(in terms of coding) to set the working directory with the setwd function. You
can then omit the directory path in front of the text file in the read.table

function. This works as follows.

> setwd("C:\\RBook\\")

> Squid <- read.table(file = "squid.txt",

header = TRUE)

In this book, we import all datasets by designating the working directory
with the setwd function, followed by the read.table function. Our motiva-
tion for this is that not all users of this bookmay have permission to save files on
the C drive (and some computers may not have a C drive!). Hence, they only
need to change the directory in the setwd function.

In addition to the read.table function, you can also import data with the
scan function. The difference is that the read.table stores the data in a data
frame, whereas the scan function stores the data as a matrix. The scan

function will work faster (which is handy for large datasets, where large refers
to millions of data points), but all the data must be numerical. For small
datasets, you will hardly know the difference in terms of computing time. For
further details on the scan function, see its help file obtained with ?scan.

Do Exercises 6 and 7 in Section 2.4 in the use of the read.table
and scan functions. These exercises use epidemiological and deep
sea research data.

2.2.2 Accessing Data from Other Statistical Packages**

In addition to accessing data from an ascii file, R can import data from other
statistical packages, for example, Minitab, S-PLUS, SAS, SPSS, Stata, and
Systat, among others. However, we stress that it is best to work with the original
data directly, rather than importing data possibly modified by another statis-
tical software package. You need to type:

> library(foreign)
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in order to access these options. The help file for reading Minitab files is

obtained by typing:

> ?read.mtp

and provides a good starting point. There is even a write.foreign function

with the syntax:

write.foreign(df, datafile, codefile,

package = c("SPSS", "Stata", "SAS"), ...)

Hence, you can export information created in R to some of the statistical

packages. The options in the function write.foreign are discussed in its

help file.

2.2.3 Accessing a Database***

This is a rathermore technical section, and is only relevant if youwant to import

data from a database. Accessing or importing data from a database is relatively

easy. There is a special package available in R that provides the tools you need

to quickly gain access to any type of database. Enter:

> library(RODBC)

to make the necessary objects available. The package implements Open

DataBase Connectivity (ODBC) with compliant databases when drivers

exist on the host system. Hence, it is essential that the necessary drivers

were set up when installing the database package. In Windows, you can

check this through the Administrative Tools menu or look in the Help and

Support pages under ODBC. Assuming you have the correct drivers installed,

start by setting up a connection to a Microsoft Access database using the

odbcConnectAccess: command. Let us call that connection channel1; so

type in:

> setwd("C:/RBook")

> channel1 <- odbcConnectAccess(file =

"MyDb.mdb", uid = "", pwd = "")

As you can see, the database, called MyDB.mdb, does not require a user

identification (uid) or password (pwd) which, hence, can be omitted. You could

have defined a database on your computer through the DSN naming protocol

as shown in Fig. 2.4.
Now we can connect to the database directly using the name of the database:

> Channel1 <- odbcConnect("MyDb.mdb")
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Once we have set up the connection it is easy to access the data in a table:

> MyData <- sqlFetch(channel1, "MyTable")

We use sqlFetch to fetch the data and store it in MyData. This is not

all you can do with an ODBC connection. It is possible to select only certain

rows of the table in the database, and, once you have mastered the necessary

database language, to do all kinds of fancy queries and table manipulations

from within R. This language, called Structured Query Language, or SQL, is

not difficult to learn. The command used in RODBC to send an SQL query

to the database is sqlQuery(channel, query) in which query is

simply an SQL query between quotes. However, even without learning

SQL, there are some commands available that will make working with

databases easier. You can use sqlTables to retrieve table information in your

database with the command SqlTables(channel) or sqlColumns(chan-

nel, "MyTable") to retrieve information in the columns in a database table

called MyTable. Other commands are sqlSave, to write or update a table in an

ODBC database; sqlDrop, to remove a table; and sqlClear, to delete the

content.

Fig. 2.4 Windows Data Source Administrator with the database MyDb added to the system
data source names
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Windows users can use odbcConnectExcel to connect directly to Excel

spreadsheet files and can select rows and columns from any of the sheets in the

file. The sheets are represented as different tables.
There are also special packages for interfacing with Oracle (ROracle) and

MySQL (RMySQL).

2.3 Which R Functions Did We Learn?

Table 2.2 shows the R functions introduced in this chapter.

2.4 Exercises

Exercise 1. The use of the c and sum functions.

This exercise uses epidemiological data. Vicente et al. (2006) analysed data from
observations of wild boar and red deer reared on a number of estates in Spain.
The dataset contains information on tuberculosis (Tb) in both species, and on
the parasite Elaphostrongylus cervi, which only infects red deer.

Table 2.2 R functions introduced in this chapter

Function Purpose Example

sum Calculated the sum sum (x, na.rm = TRUE)

median Calculated the median median (x, na.rm = TRUE)

max Calculated the maximum max (x, na.rm = TRUE)

min Calculated the minimum min (x, na.rm = TRUE)

c() Concatenate data c (1, 2, 3)

cbind Combine variables
in columns

cbind (x, y, z)

rbind Combine variables in rows rbind (x, y, z)

vector Combine data in a vector vector (length = 10)

matrix Combine data in a matrix matrix (nrow = 5, ncol = 10)

data.frame Combine data in a data frame data.frame (x = x, y = y,

z = z)

list Combine data in a list list (x = x, y = y, z = z)

rep Repeat values or variables rep (c (1, 2, 3), each = 10)

seq Create a sequence of numbers seq (1, 10)

dim Dimension of a matrix or
cbind output

dim (MyData)

colnames Column names of a matrix or
cbind output

colnames (MyData)

rownames Row names of a
matrix or cbind output

rownames (MyData)

setwd Sets the working directory setwd ("C:/Rbook/")

read.table Read data from an ascii file read.table (file = " test.txt",

header = TRUE)

scan Read data from an ascii file scan (file =’’test.txt")

54 2 Getting Data into R



In Zuur et al. (2009), Tb was modelled as a function of the continuous
explanatory variable, length of the animal, denoted by LengthCT (CT is an
abbreviation of cabeza-tronco, which is Spanish for head-body). Tb and Ecervi
are shown as a vector of zeros and ones representing absence or presence of Tb
and E. cervi larvae. Below, the first seven rows of the spreadsheet containing the
deer data are given.

Farm Month Year Sex LengthClass LengthCT Ecervi Tb

MO 11 00 1 1 75 0 0

MO 07 00 2 1 85 0 0

MO 07 01 2 1 91.6 0 1

MO NA NA 2 1 95 NA NA

LN 09 03 1 1 NA 0 0

SE 09 03 2 1 105.5 0 0

QM 11 02 2 1 106 0 0

Using the c function, create a variable that contains the length values of the
seven animals. Also create a variable that contains the Tb values. Include the
NAs. What is the average length of the seven animals?

Exercise 2. The use of the cbind function using epidemiological data.

We continue with the deer from Exercise 1. First create variables Farm and
Month that contain the relevant information. Note that Farm is a string of
characters. Use the cbind command to combine month, length, and Tb data,
and store the results in the variable, Boar. Make sure that you can extract rows,
columns, and elements of Boar. Use the dim, nrow, and ncol functions to
determine the number of animals and variables in Boar.

Exercise 3. The use of the vector function using epidemiological data.

We continue with the deer from Exercise 1. Instead of the cfunction that you
used in Exercise 2 to combine the Tb data, can you do the same with the
vectorfunction? Give the vector a different name, for example, Tb2.

Exercise 4. Working with a matrix.

Create the following matrix in R and determine its transpose, its inverse, and
multiple D with its inverse (the outcome should be the identity matrix).

D ¼

1 2 3

4 2 1

2 3 0

0

B

@

1

C

A

Exercise 5. The use of the data.frame and list functions using

epidemiological data.

We continue with the deer from Exercises 1 to 3. Make a data frame that
contains all the data presented in the table in Exercise 1. Suppose that you
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decide to square root transform the length data. Add the square root trans-
formed data to the data frame. Do the same exercise with a list instead of a
data.frame.What are the differences?

Exercise 6. The use of the read.table and scan functions using deep sea

research data.

The file ISIT.xls contains the bioluminescent data that were used tomakeFig. 1.6.
See the paragraph above this graph for a description. Prepare the spreadsheet (there
are 4–5 problems you will need to solve) and export the data to an ascii file. Import
the data into R using first the read.table function and then the scan function.
Use two different names under which to store the data. What is the difference
between them? Use the is.matrix and is.data.frame functions to answer
this question.

Exercise 7. The use of the read.table or scan function using epidemiological

data.

The file Deer.xls contains the deer data discussed in Exercise 1, but includes
all animals. Export the data in the Excel file to an ascii file, and import it into R.
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Chapter 3

Accessing Variables and Managing Subsets
of Data

In the previous chapter we demonstrated importing data from a spreadsheet or

database into R. We also showed how to type in small datasets and store them

in a data frame. We now discuss accessing subsets of the data.

3.1 Accessing Variables from a Data Frame

Assuming that no errors were encountered when importing the squid data in the

previous section, we can now move on to working with the data.
During statistical analysis it can be important to remove portions of the data,

select certain subsets, or sort them. Most of these operations can be done in

Excel or other spreadsheet (or database) program prior to importing into

R, but, for various reasons, it is best not to do this. You may end up needing

to reimport your data each time you make a subselection. Also some data files

may be too large to import from a spreadsheet. Hence, a certain degree of

knowledge of manipulating data files in R is useful. However, the reader is

warned that this may be the most difficult aspect of R, but once mastered it is

rewarding, as it means that all the tedious data manipulation in Excel (or any

other spreadsheet) can be done in R.
We use the squid data imported in the previous chapter. If you have not

already done this, use the following commands to import the data and store it in

the data frame Squid.

> setwd("C:/RBook/")

> Squid <- read.table(file = "squid.txt",

header = TRUE)

The read.table function produces a data frame, and, because most func-

tions in R work with data frames, we prefer it over the scan function.

We advise using the names command immediately after the read.table

command to see the variables we are dealing with:

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_3, � Springer ScienceþBusiness Media, LLC 2009
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> names(Squid)

[1] "Sample" "Year" "Month" "Location" "Sex" "GSI"

We often notice that our course participants continue typing code directly

into the R console. As mentioned in Chapter 1, we strongly recommend typing

commands into a good text editor, such as Tinn-R on Windows operating

systems. (See Chapter 1 for sources of editors using non-Windows operating

systems.) To emphasise this, Fig. 3.1 shows a snapshot of our R code so far.

Note that we copied and pasted the results of the names command back into

our Tinn-R file. This allows us to see quickly which variables we will work with,

and reduces the chance of typing errors.

Fig. 3.1 Snapshot of our Tinn-R file. Note that the ‘‘#’’ symbol is put before comments, and
that the code is well documented, including the date when it was written. Copying and pasting
all variable names into the text file allows us to quickly check the spelling of the variable
names. It is important that you structure your file as transparently as possible and add
comments. Also ensure that you have a backup of this file and the data file
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3.1.1 The str Function

The str (structure) command informs us of the status of each variable in a data

frame:

> str(Squid)

’data.frame’: 2644 obs. of 6 variables:

$ Sample : int 1 2 3 4 5 6 7 8 9 10 ...

$ Year : int 1 1 1 1 1 1 1 1 1 1 ...

$ Month : int 1 1 1 1 1 1 1 1 1 2 ...

$ Location : int 1 3 1 1 1 1 1 3 3 1 ...

$ Sex : int 2 2 2 2 2 2 2 2 2 2 ...

$ GSI : num 10.44 9.83 9.74 9.31 8.99 ...

This cryptic output tells us that the variables Sample, Year, Month, Loca-

tion, and Sex are integers, and GSI is numeric. Suppose that you made a

mistake with the point separation:

> setwd("C:/RBook/")

> Squid2 <- read.table(file = "squidGSI.txt",

dec = ",", header = TRUE)

We (wrongly) told R that the decimal separation in the ascii file is a comma.

The Squid2 data frame still contains the same data, but using the str com-

mand allows us to detect a major problem:

> str(Squid2)

’data.frame’: 2644 obs. of 6 variables:

$ Sample : int 1 2 3 4 5 6 7 8 9 10 ...

$ Year : int 1 1 1 1 1 1 1 1 1 1 ...

$ Month : int 1 1 1 1 1 1 1 1 1 2 ...

$ Location : int 1 3 1 1 1 1 1 3 3 1 ...

$ Sex : int 2 2 2 2 2 2 2 2 2 2 ...

$ GSI : Factor w/ 2472 levels "0.0064","0.007" ...

TheGSIvariable is nowconsidered tobea factor.Thismeans that if, in continuing,

weuse functions such as themeanor aboxplot,Rwill produce cryptic errormessages,

as GSI is not numerical. We have seen a lot of confusion due to this type of mistake.
Therefore we strongly recommend that you always combine theread.table

function with the names and str functions.
The variable of interest is GSI, and, in any follow-up statistical analysis, we

may want to model it as a function of year, month, location, and sex. Before

doing any statistical analysis, one should always visualise the data (i.e., make

plots). Useful tools are boxplots, Cleveland dotplots, scatterplots, pair plots,

and the like (see Zuur et al., 2007; 2009). However, R does not recognize the

variable GSI (or any of the other variables). To demonstrate this, type
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> GSI

Error: object "GSI" not found

The problem is that the variable GSI is stored in the data frame Squid.

There are several ways to access it, both good ways and bad ways, and we

discuss them next.

3.1.2 The Data Argument in a Function

The most efficient method of accessing variables in a data frame is as follows.

Identify a function in R, for instance, lm for linear regression; specify the model

in terms of the variables GSI, Month, Year, and Location; and tell the

function lm that the data can be found in the data frame Squid. Although

we are not further discussing linear regression in this book, the code would look

as follows.

> M1 <- lm(GSI � factor(Location) + factor(Year),

data = Squid)

We ignore the first part, which specifies the actual linear regression model. It

is the last part of the statement (data=) which tells R that the variables are in

the data frame Squid. This is a neat approach, as there is no need to define

variables outside the data frame; everything is nicely stored in a data frame

Squid. The major problem with this approach is that not all functions support

the data option. For example,

> mean(GSI, data = Squid)

gives an error message:

Error in mean (GSI, data = Squid) : object "GSI" not

found

because the function mean does not have a data argument. And sometimes a

help file tells you that there is a data argument, and it may work in some cases,

but not in other cases. For example, the code below gives a boxplot (not shown

here).

> boxplot(GSI � factor(Location), data = Squid)

But this command gives an error message:

> boxplot(GSI, data = Squid)

Error in boxplot(GSI, data = Squid) : object "GSI" not

found
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To summarise, if a function has a data argument, use it; it is the neatest

programming approach.

3.1.3 The $ Sign

So, what can you do if a function does not have a data argument? There are two

ways to access a variable. The first option is the $ sign:

> Squid$GSI

[1] 10.4432 9.8331 9.7356 9.3107 8.9926

[6] 8.7707 8.2576 7.4045 7.2156 6.8372

[11] 6.3882 6.3672 6.2998 6.0726 5.8395

< Cut to reduce space >

We only copied and pasted the first few lines of the output as the dataset

contains 2644 observations. The other variables can be accessed in the same

way. Type the name of the data frame followed by a $ and the name of the

variable. In principle, you can put spaces between the $ sign and the variable

names:

> Squid$GSI

[1] 10.4432 9.8331 9.7356 9.3107 8.9926

[6] 8.7707 8.2576 7.4045 7.2156 6.8372

[11] 6.3882 6.3672 6.2998 6.0726 5.8395

< Cut to reduce space >

We do not recommend this (it looks odd).
The second approach is to select the sixth column if you want to access the

GSI data:

> Squid[, 6]

[1] 10.4432 9.8331 9.7356 9.3107 8.9926

[6] 8.7707 8.2576 7.4045 7.2156 6.8372

[11] 6.3882 6.3672 6.2998 6.0726 5.8395

< Cut to reduce space >

It gives exactly the same result. Using either Squid$GSI or Squid[,6], you

can now calculate the mean:

> mean(Squid$GSI)

[1] 2.187034
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Our preference is the coding with $GSI. A week after you typed Squid[, 6],
you will have forgotten that the GSI data are in the sixth column, and the
notation $GSI is clearer.

To add to the confusion, you can also use Squid[,‘‘GSI’’]. Note that in some
functions, the use of the Squid$ approach gives an error message, for example,
the gls function from the nlme package.

3.1.4 The attach Function

Let us now discuss a bad way of accessing variables.We have used "$" to access
variables from the data frame Squid. It can be tedious typing Squid$ each
time we want to use certain variables from the GSI dataset. It is possible to
avoid this by using the attach command. This command makes all variables
inside the data frame Squid available. To be more precise, the attach

command adds Squid to the search path of R. As a result, you can now type
GSI or Location without using Squid$.

> attach(Squid)

> GSI

[1] 10.4432 9.8331 9.7356 9.3107 8.9926

[6] 8.7707 8.2576 7.4045 7.2156 6.8372

[11] 6.3882 6.3672 6.2998 6.0726 5.8395

< Cut to reduce space >
The same holds for the other variables. As a result, you can now use each

function without a data argument:

> boxplot(GSI) #Graph not shown here

> mean(GSI)

[1] 2.187034

The attach command sounds too good to be true. It can be a useful
command, if used with great care. Problems occur if you attach a dataset that
has variable names that also exist outside the data frame. Or if you attach two
data frames, and variables with the same names appear in both. Another problem
may occur if you attach a dataset that has variable names that match some of R’s
own function names or names of variables in example datasets (e.g., the variable
name ‘‘time’’ and the function ‘‘time’’). In all these cases, you may discover that R
will not use the variable in your calculations as you expected. This is a major
problem in classroom teachingwhen students do different exercises and each time
load a new dataset with similar names such as ‘‘Location,’’ ‘‘Month,’’ ‘‘Sex,’’ and
so on. In such situations it is better to use the detach command, or simply close
and restart R each time you work with a new dataset. If you use only one dataset
for a research project and are careful with variable names, the attach command
is extremely useful. But use it with care.
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To summarise the use of the attach command,

1. To avoid duplicate variables, do not type the attach (Squid) command
twice.

2. If you use the attach command, make sure that you use unique variable
names. Refrain from common names such as Month, Location, and the like.

3. If you import multiple datasets, and only work with one dataset at a time,
consider removing a data frame from the search path of R with the detach
command.

In the remaining sections of this chapter, we assume that you did not type in
the attach(Squid) command. If you did, type

> detach(Squid)

Do Exercise 1 in Section 3.7. This is an exercise in using the read.
table function and accessing variables using an epidemiological
dataset.

3.2 Accessing Subsets of Data

In this section, we discuss how to access and extract components of the data
frame Squid. The methods can be applied on a data frame that you created
yourself by typing in data, as in Chapter 2.

The situation may arise in which you only want to work with, for example,
the female data, data from a certain location, or data from the females of a
certain location. To extract the subsets of data, we need to know how sex was
coded. We could type in

> Squid$Sex

[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[23] 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[45] 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1 1
[67] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1

< Cut to reduce space >

but this shows all values in the variable Sex. A better option is to use the
unique command that shows how many unique values there are in this
variable:

> unique(Squid$Sex)

[1] 2 1
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The 1 stands for male, and the 2 for female. To access all the male data, use

> Sel <- Squid$Sex == 1

> SquidM <- Squid[Sel, ]

> SquidM

Sample Year Month Location Sex GSI

24 24 1 5 1 1 5.2970

48 48 1 5 3 1 4.2968

58 58 1 6 1 1 3.5008

60 60 1 6 1 1 3.2487

61 61 1 6 1 1 3.2304

< Cut to reduce space >

The first line creates a vector Sel that has the same length as the variable

Sex, with values that are TRUE if Sex equals 1, and FALSE otherwise. Such a

vector is also called a Boolean vector, and can be used to select rows, hence our

name Sel. On the next line, we select the rows of Squid for which Sel equals

TRUE, and we store the selected data in SquidM. Because we are selecting rows

of Squid, we need to use the square brackets [ ], and, as we want rows, the

vector Selwith Boolean values must go before the comma. It is also possible to

do both lines in one command:

> SquidM <- Squid[Squid$Sex == 1, ]

> SquidM

Sample Year Month Location Sex GSI

24 24 1 5 1 1 5.2970

48 48 1 5 3 1 4.2968

58 58 1 6 1 1 3.5008

60 60 1 6 1 1 3.2487

61 61 1 6 1 1 3.2304

< Cut to reduce space >

The data for females are obtained by

> SquidF <- Squid[Squid$Sex == 2, ]

> SquidF

Sample Year Month Location Sex GSI

1 1 1 1 1 2 10.4432

2 2 1 1 3 2 9.8331

3 3 1 1 1 2 9.7356

4 4 1 1 1 2 9.3107

5 5 1 1 1 2 8.9926
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< Cut to reduce space >

The process of selecting variable data (or data frames) conditional on the
values of a second variable is called conditional selection. The unique com-
mand applied on Squid$Location shows that there are four locations coded
as 1, 2, 3, and 4. To extract the data from location 1, 2, or 3 we can use the
following statements that all give the same result (the | symbol stands for the
Boolean ‘‘or’’ and the != for ‘‘not equal’’).

> Squid123 <- Squid[Squid$Location == 1 |

Squid$Location == 2 | Squid$Location == 3, ]

> Squid123 <- Squid[Squid$Location != 4, ]

> Squid123 <- Squid[Squid$Location < 4, ]

> Squid123 <- Squid[Squid$Location <= 3, ]

> Squid123 <- Squid[Squid$Location >= 1 &

Squid$Location <= 3, ]

You can choose any of these options. Next we use the ‘‘&,’’ which is the
Boolean ‘‘and’’ operator. Suppose we want to extract the male data from
location 1. This means that the data have to be both from male squid and

from location 1. The following code extracts data that comply with these
conditions.

> SquidM.1 <- Squid[Squid$Sex == 1 &

Squid$Location == 1,]

Sample Year Month Location Sex GSI

24 24 1 5 1 1 5.2970

58 58 1 6 1 1 3.5008

60 60 1 6 1 1 3.2487

61 61 1 6 1 1 3.2304

63 63 1 6 1 1 3.1848

< Cut to reduce space >

The data from males and from location 1 or 2 are given by

> SquidM.12 <- Squid[Squid$Sex == 1 &

(Squid$Location == 1 | Squid$Location == 2), ]

Do not use the following command.

> SquidM <- Squid[Squid$Sex == 1, ]

> SquidM1 <- SquidM[Squid$Location == 1, ]

> SquidM1

Sample Year Month Location Sex GSI

24 24 1 5 1 1 5.2970

58 58 1 6 1 1 3.5008
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60 60 1 6 1 1 3.2487

61 61 1 6 1 1 3.2304

62 62 1 5 3 1 3.2263

. . .

NA.1113 NA NA NA NA NA NA

NA.1114 NA NA NA NA NA NA

NA.1115 NA NA NA NA NA NA

NA.1116 NA NA NA NA NA NA

The first line extracts the male data and allocates it to SquidM, which is

therefore of a smaller dimension (fewer rows) than Squid (assuming there are

female squid in the data). On the next line, the Boolean vector Squid$Loca-

tion== 1 is longer than the number of rows in SquidM, and Rwill add extra

rows with NAs to SquidM. As a result, we get a data frame, SquidM1, that

contains NAs. The problem is that we are trying to access elements of SquidM

using a Boolean vector that has the same number of rows as Squid.
Don’t panic if the output of a subselecting command shows the following

message.

> Squid[Squid$Location == 1 & Squid$Year == 4 &

Squid$Month == 1, ]

[1] Sample Year Month Location Sex

GSI fSex fLocation

<0 rows> (or 0-length row.names)

This simply means that nomeasurements were taken at location 1 inmonth 1

of the fourth year.

3.2.1 Sorting the Data

In addition to extracting subsets of data, at times it is useful to rearrange the

data. For the squid data, you may want to sort the GSI data from low to high

values of the variable ‘‘month’’, even if only for a quick observation. The

following code can be used.

> Ord1 <- order(Squid$Month)

> Squid[Ord1, ]

Sample Year Month Location Sex GSI

1 1 1 1 1 2 10.4432

2 2 1 1 3 2 9.8331

3 3 1 1 1 2 9.7356

4 4 1 1 1 2 9.3107

5 5 1 1 1 2 8.9926
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<Cut to reduce space>

As we are manipulating the rows of Squid, we need to put Ord1 before the
comma.We can also perform this exercise on only one variable, for instance the
GSI. In this case, use

> Squid$GSI[Ord1]

[1] 10.4432 9.8331 9.7356 9.3107 8.9926 8.7707

[7] 8.2576 7.4045 7.2156 6.3882 6.0726 5.7757

[13] 1.2610 1.1997 0.8373 0.6716 0.5758 0.5518

[19] 0.4921 0.4808 0.3828 0.3289 0.2758 0.2506

<Cut to reduce space>

DoExercise 2 in Section 3.7. This is an exercise in using the read.-
table function and accessing subsets from a data frame using a
deep sea research dataset.

3.3 Combining Two Datasets with a Common Identifier

So far, we have seen examples inwhich all data points were stored in the same file.
However, this may not always be the case. The authors of this book have been
involved in various projects in which the data consisted of different types of
measurements on the same animals. For example, in one project the measure-
ments were made on approximately 1000 fish at different research institutes; one
institute calculated morphometric measurements, another measured chemical
variables, and yet another counted number of parasites. Each institute created
its own spreadsheet containing the workgroup-specific variables. The crucial
point was that, at each institute, researchers measured each fish, so all spread-
sheets contained a column identifying the fish. Some fish were lost during the
process or were unsuitable for certain procedures. Hence, the end result was a
series of Excel spreadsheets, each with thousands of observations on 5–20 group-
specific variables, but with a common identifier for the individual fish (case).

As a simple example of such a dataset, see the spreadsheets in Fig. 3.2.
Imagine that the squid data were organised in this way, two different files or
worksheets but with a common identifier. The task is now to merge the two
datasets in such a way that data for sample j in the first dataset are put next to
the data for sample j in the second dataset. For illustrative purposes, we have
removed the fourth row from the second spreadsheet; just assume that someone
forgot to type in Year, Month, Location, and Sex for observation 4. R has a
useful tool for merging files, namely the merge function. It is run using the
following code. The first two lines are used to read the two separate squid files:
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> setwd("C:/RBook/")

> Sq1 <- read.table(file = "squid1.txt",

header = TRUE)

> Sq2 <- read.table(file = "squid2.txt",

header = TRUE)

> SquidMerged <- merge(Sq1, Sq2, by = "Sample")

> SquidMerged

Sample GSI Year Month Location Sex

1 1 10.4432 1 1 1 2

2 2 9.8331 1 1 3 2

3 3 9.7356 1 1 1 2

4 5 8.9926 1 1 1 2

5 6 8.7707 1 1 1 2

6 7 8.2576 1 1 1 2

7 8 7.4045 1 1 3 2

8 9 7.2156 1 1 3 2

9 10 6.8372 1 2 1 2

10 11 6.3882 1 1 1 2

<Cut to reduce space>

The merge command takes as argument the two data frames Sq1 and Sq2

and combines the two datasets using as a common identifier the variable

Sample. A useful option within the merge function is all. By default it is set

to FALSE, which means that rows in which either Sq1 or Sq2 has missing

Fig. 3.2 GSI data with sample number (left) and the other variables with sample number
(right). To illustrate the merge function, we deleted row number four in the right-hand
spreadsheet
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values are omitted. When set to TRUE, NAs are filled in if Sq1 has no data for a

sample that is present in Sq2, and vice versa. Using this option, we get

> SquidMerged <- merge(Sq1, Sq2, by = "Sample",

all = TRUE)

> SquidMerged

Sample GSI Year Month Location Sex

1 1 10.4432 1 1 1 2

2 2 9.8331 1 1 3 2

3 3 9.7356 1 1 1 2

4 4 9.3107 NA NA NA NA

5 5 8.9926 1 1 1 2

6 6 8.7707 1 1 1 2

7 7 8.2576 1 1 1 2

8 8 7.4045 1 1 3 2

9 9 7.2156 1 1 3 2

10 10 6.8372 1 2 1 2

<Cut to reduce space>

Note the missing values for Year, Month, Location, and Sex for observation

(fish/case) 4. To avoid confusion, recall that we only removed the observations

from row four for illustrative purposes. Further options and examples are given

in the merge help file.

3.4 Exporting Data

In addition to the read.table command, R also has a write.table

command. With this function, you can export numerical information to an

ascii file. Suppose you extracted the male squid data, and you want to export it

to another software package, or send it to a colleague. The easiest way to do this

is to export the male squid data to an ascii file, then import it to the other

software package, or email it to your colleague. The following commands

extract the male data (in case you didn’t type it in yet), and exports the data

to the file, MaleSquid.txt.

> SquidM <- Squid[Squid$Sex == 1, ]

> write.table(SquidM,

file = "MaleSquid.txt",

sep = " ", quote = FALSE, append = FALSE, na = "NA")

The first argument in the write.table function is the variable that you

want to export, and, obviously, you also need a file name. The sep = " "

ensures that the data are separated by a space, the quote = FALSE avoids
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quotation marks around character strings (headings), na="NA" allows you to

specify howmissing values are represented, and append= FALSE opens a new

file. If it were set to TRUE, it would append the variable SquidM to the end of an

existing file.
Let us illustrate some of these options. When we run the code above, the first

six lines in the ascii file MaleSquid.txt are as follows.

Sample Year Month Location Sex GSI fLocation fSex

24 24 1 5 1 1 5.297 1 M

48 48 1 5 3 1 4.2968 3 M

58 58 1 6 1 1 3.5008 1 M

60 60 1 6 1 1 3.2487 1 M

61 61 1 6 1 1 3.2304 1 M

<Cut to reduce space>

Hence, the elements are separated by a space. Note that we are missing the

name of the first column. If you import these data into Excel, you may have to

shift the first row one column to the right. We can change the sep and quote

options:

> write.table(SquidM,

file = "MaleSquid.txt",

sep = ",", quote = TRUE, append = FALSE, na = "NA")

It gives the following output in the ascii file MalesSquid.txt.

"Sample","Year","Month","Location","Sex","GSI",

"fLocation","fSex"

"24",24,1,5,1,1,5.297,"1","M"

"48",48,1,5,3,1,4.2968,"3","M"

"58",58,1,6,1,1,3.5008,"1","M"

"60",60,1,6,1,1,3.2487,"1","M"

"61",61,1,6,1,1,3.2304,"1","M"

The fact that the headers extend over two lines is due to our text editor. The

real differences are the comma separations and the quotation marks around

categorical variables, and headers and labels. For some packages this is impor-

tant. The append = TRUE option is useful if, for example, you have to apply

linear regression on thousands of datasets and you would like to have all the

numerical output in one file.

Do Exercise 3 in Section 3.7. This is an exercise in the write.

table function using a deep sea research dataset.
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3.5 Recoding Categorical Variables

In Section 3.1, we used the str function to give the following output for the
Squid data frame.

> str(Squid)

’data.frame’: 2644 obs. of 6 variables:

$ Sample : int 1 2 3 4 5 6 7 8 9 10 ...

$ Year : int 1 1 1 1 1 1 1 1 1 1 ...

$ Month : int 1 1 1 1 1 1 1 1 1 2 ...

$ Location : int 1 3 1 1 1 1 1 3 3 1 ...

$ Sex : int 2 2 2 2 2 2 2 2 2 2 ...

$ GSI : num 10.44 9.83 9.74 9.31 8.99 ...

The variable Location is coded as 1, 2, 3, or 4, and Sex as 1 or 2. Such
variables are categorical or nominal variables. In Excel, we could have coded
sex as male and female. It is good programming practice to create new variables
in the data frame that are recoded as nominal variables, for example:

> Squid$fLocation <- factor(Squid$Location)

> Squid$fSex <- factor(Squid$Sex)

These two commands create two new variables inside the data frame Squid,
fLocation andfSex.Weused the f in front of the variable name to remindus that
these are nominal variables. In R, we can also call them factors, hence the f. Type

> Squid$fSex

[1] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[18] 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2

[35] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2

. . .

[2602] 1 2 1 1 2 1 1 1 2 1 2 1 1 2 1 1 2

[2619] 1 2 2 1 1 1 1 1 1 1 1 1 2 1 1 1 2

[2636] 1 2 1 2 1 2 1 1 1

Levels: 1 2

Note the extra line at the end. It tells us that fSex has two levels, 1 and 2. It is
also possible to relabel these levels as ‘‘male’’ and ‘‘female’’, or, perhaps more
efficiently, M and F:

> Squid$fSex <- factor(Squid$Sex, levels = c(1, 2),

labels = c("M", "F"))

> Squid$fSex

[1] F F F F F F F F F F F F F F F F F

[18] F F F F F F M F F F F F F F F F F

[35] F F F F F F F F F F F F F M F F F

. . .
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[2602] M F M M F M M M F M F M M F M M F

[2619] M F F M M M M M M M M M F M M M F

[2636] M F M F M F M M M

Levels: M F

Every 1 has been converted to an ‘‘M’’, and every 2 to an ‘‘F’’. You can now
use fSex in functions such as lm or boxplot:

> boxplot(GSI � fSex, data = Squid) #Result not shown

> M1 <- lm(GSI � fSex + fLocation, data = Squid)

Another advantage of using predefined nominal variables in a linear regres-
sion function is that its output becomesmuch shorter. Althoughwe do not show
the output here, compare that of the following commands.

> summary(M1)

> M2 <- lm(GSI � factor(Sex) + factor(Location),

data = Squid)

> summary(M2)

The estimated parameters are identical, but the second model needs more
space on the screen (and on paper). This becomes a serious problem with
second- and third-order interaction terms.

Instead of the command factor, you can also use as.factor. To convert
a factor to a numerical vector, use as.numeric. This can be useful for making
plots with different colours for males and females (if you have lost, for some
reason, the original vector, Sex). See also Chapter 5.

The same can be done for fLocation:

> Squid$fLocation

[1] 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 3

[18] 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

[35] 1 1 1 1 1 3 1 1 1 1 3 1 1 3 1 1 1

. . .

[2602] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[2619] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[2636] 1 1 1 1 1 1 1 1 1

Levels: 1 2 3 4

Note that this nominal variable has four levels. In this case, the levels are
sorted from small to large. And this means that in a boxplot, the data from
location 1 are next to location 2, 2 is next to 3, and so on. Sometimes it can be
useful to change the order (e.g., in an xyplot function from the lattice

package). This is done as follows.

> Squid$fLocation <- factor(Squid$Location,

levels = c(2, 3, 1, 4))
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> Squid$fLocation

[1] 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 3

[18] 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1

[35] 1 1 1 1 1 3 1 1 1 1 3 1 1 3 1 1 1

...

[2602] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[2619] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[2636] 1 1 1 1 1 1 1 1 1

Levels: 2 3 1 4

The data values remain the same, but a command such as

> boxplot(GSI � fLocation, data = Squid)

produces a slightly different boxplot because the order of the levels is different.

Relevelling is also useful for conducting a posthoc test in linear regression

(Chapter 10 in Dalgaard, 2002).
We began this chapter with selecting the male data:

> SquidM <- Squid[Squid$Sex == 1, ]

We can also do this with fSex, but now we need:

> SquidM <- Squid[Squid$fSex == "1", ]

The quotation marks around the 1 are needed because fSex is a factor. The

effect of defining new nominal variables can also be seen with the str

command:

> Squid$fSex <- factor(Squid$Sex, labels = c("M", "F"))

> Squid$fLocation <- factor(Squid$Location)

> str(Squid)

’data.frame’: 2644 obs. of 8 variables:

$ Sample : int 1 2 3 4 5 6 7 8 9 10 ...

$ Year : int 1 1 1 1 1 1 1 1 1 1 ...

$ Month : int 1 1 1 1 1 1 1 1 1 2 ...

$ Location : int 1 3 1 1 1 1 1 3 3 1 ...

$ Sex : int 2 2 2 2 2 2 2 2 2 2 ...

$ GSI : num 10.44 9.83 9.74 9.31 8.99 ...

$ fSex : Factor w/ 2 levels "M","F": 2 2 2 2 2 ...

$ fLocation: Factor w/ 4 levels "1","2","3","4": 1 ...

Note that fSex and fLocation are now factors (categorical variables), and

the levels are shown. Any function will now recognise them as factors, and there

is no further need to use the factor command with these two variables.
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Do Exercise 4 in Section 3.7. This is an exercise in use of the

factor function using a deep sea research dataset.

3.6 Which R Functions Did We Learn?

Table 3.1 shows the R commands introduced in this chapter.

3.7 Exercises

Exercise 1. Using the read.table function and accessing variables from a data

frame with epidemiological data.

The file BirdFlu.xls contains the annual number of confirmed cases of human

Avian Influenza A/(H5N1) for several countries reported to the World Health

Organization (WHO). The data were taken from the WHO website

(www.who.int/en/) and reproduced for educational purposes. Prepare the

spreadsheet and import these data into R. If you are a non-Windows user,

start with the file BirdFlu.txt. Note that you will need to adjust the column

names and some of the country names.
Use the names and str command in R to view the data. Print the number of

bird flu cases in 2003. What is the total number of bird flu cases in 2003 and in

2005? Which country has had the most cases? Which country has had the least

bird flu deaths?
Using methods from Chapter 2, what is the total number of bird flu cases per

country? What is the total number of cases per year?

Exercise 2. Using the read.table function and accessing subsets of a data

frame with deep sea research data.

Table 3.1 R functions introduced in this chapter

Function Purpose Example

write.table Write a variable to an
ascii file

write.table (Z,file=’’test.txt’’)

order Determine the order of
the data

order(x)

merge Merge two data frames merge (x,y,by=’’ID’’)

attach Make variables inside a
data frame available

attach (MyData)

str Shows the internal
structure of an object

str (MyData)

factor Defines a variable as a
factor

factor (x)
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If you have not completed Exercise 6 in Chapter 2, do so and import the data
from the ISIT.xls file.

In R, extract the data from station 1. How many observations were made at
this station? What are the minimum, median, mean, and maximum sampled
depth at station 1? What are the minimum, median, mean, and maximum
sampled depth at station 2? At station 3?

Identify any stations with considerably fewer observations. Create a new
data frame omitting these stations.

Extract the data from 2002. Extract the data fromApril (of all years). Extract
the data that were measured at depths greater than 2000 meters (from all years
and months). Show the data according to increasing depth values.

Show the data that were measured at depths greater than 2000 meters in
April.

Exercise 3. Using the write.table function with deep sea research data.

In the final step of the previous exercise, datameasured at depths greater than
2000 meters in April were extracted. Export these data to a new ascii file.

Exercise 4. Using the factor function and accessing subsets of a data frame with

deep sea research data.

Stations 1 through 5 were sampled in April 2001, stations 6 through 11 in
August 2001, stations 12 through 15 in March 2002, and stations 16 through
19 in October 2002. Create two new variables in R to identify the month and the
year. Note that these are factors. Do this by adding the new variables inside the
data frame.
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Chapter 4

Simple Functions

In previous chapters, we demonstrated how to enter data; read data from a

spreadsheet, ascii file, or a database; and extract subsets of data. In this chapter,

we discuss applying some simple functions to the data, such as the mean or the

mean of a single data subset. These are functions that may be useful; however,

they are not the tools that will convince you to become an R user. Use them

when it is convenient. Upon first reading of the book, youmay skip this chapter.

4.1 The tapply Function

R provides functions for calculating the mean, length, standard deviation,

minimum, maximum, variance, and any other function of a single variable,

multiple variables, or on subsets of observations. For illustration, we use a

vegetation dataset. Sikkink et al. (2007) analysed grassland data from a

monitoring program conducted in two temperate communities, Yellowstone

National Park and the National Bison Range, USA. The aim of the study was

to determine whether the biodiversity of these bunchgrass communities chan-

ged over time, and, if so, whether the changes in biodiversity related to

particular environmental factors. For our purposes we use only the Yellow-

stone National Park data. To quantify biodiversity, the researchers calculated

species richness, defined as the number of different species per site. The study

identified about 90 species. The data were measured in 8 transects, with each

transect being assessed at intervals of 4–10 years, for a total of 58

observations.

The following code can be used to import the data and gain basic informa-

tion on the variables.

> setwd("C:/RBook/")

> Veg <- read.table(file="Vegetation2.txt",

header= TRUE)

> names(Veg)

A.F. Zuur et al., A Beginner’s Guide to R, Use R,

DOI 10.1007/978-0-387-93837-0_4, � Springer ScienceþBusiness Media, LLC 2009
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[1] "TransectName" "Samples" "Transect"

[4] "Time" "R" "ROCK"

[7] "LITTER" "ML" "BARESOIL"

[10] "FallPrec" "SprPrec" "SumPrec"

[13] "WinPrec" "FallTmax" "SprTmax"

[16] "SumTmax" "WinTmax" "FallTmin"

[19] "SprTmin" "SumTmin" "WinTmin"

[22] "PCTSAND" "PCTSILT" "PCTOrgC"

> str(Veg)

‘data.frame’: 58 obs. of 24 variables:

$ TransectName: Factor w/ 58 levels ...

$ Samples : int 1 2 3 4 5 6 7 8 9 10 ...

$ Transect : int 1 1 1 1 1 1 1 2 2 2 ...

$ Time : int 1958 1962 1967 1974 1981 1994...

$ R : int 8 6 8 8 10 7 6 5 8 6 ...

$ ROCK : num 27 26 30 18 23 26 39 25 24 21 ...

$ LITTER : num 30 20 24 35 22 26 19 26 24 16 ...

<Cut to reduce space>

The data are stored in the ascii file ‘‘Vegetation2.txt.’’ Once the read.table

function has been executed, we need to ensure that richness is indeed a numerical

vector or integer. If, for some reason, R imports richness as a factor (e.g., because

there is an alphanumerical in the column, or there are problems with the decimal

separator), functions such as mean, sd, and the like will give an error message1.

4.1.1 Calculating the Mean Per Transect

One of the first things we would like to know is whether the mean richness per

transect differs. The code below calculates the mean richness, as well as mean

richness for each transect (see Chapter 3 for selecting subsets of data):

> m <- mean(Veg$R)

> m1<- mean(Veg$R[Veg$Transect == 1])

> m2<- mean(Veg$R[Veg$Transect == 2])

> m3<- mean(Veg$R[Veg$Transect == 3])

1 If you import data that are decimal comma separated with the default settings (i.e., with

decimal point separation) or vice versa, R will see all variables as factors, and the strcom-

mand will tell you so. Hence, to check that data were imported correctly, we recommend

always using the str command on the imported data frame immediately after importing the

data.
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> m4<- mean(Veg$R[Veg$Transect == 4])

> m5<- mean(Veg$R[Veg$Transect == 5])

> m6<- mean(Veg$R[Veg$Transect == 6])

> m7<- mean(Veg$R[Veg$Transect == 7])

> m8<- mean(Veg$R[Veg$Transect == 8])

> c(m, m1, m2, m3, m4, m5, m6, m7, m8)

[1] 9.965517 7.571429 6.142857 10.375000 9.250000

[6] 12.375000 11.500000 10.500000 11.833333

The variable m contains the mean richness of all 8 transects, and m1 through

m8 show the mean richness values per transect. Note that the mean command is

applied to Veg $R, which is a vector of data. It is not a matrix; hence there is no

need for a comma between the square brackets.

4.1.2 Calculating the Mean Per Transect More Efficiently

It is cumbersome to type eight commands to calculate the mean value per

transect. The R function tapply performs the same operation as the code

above (for m1 through m8 ), but with a single line of code:

> tapply(Veg$R, Veg$Transect, mean)

1 2 3 4 5

7.571429 6.142857 10.375000 9.250000 12.375000

6 7 8

11.500000 10.500000 11.833333

You can also run this code as

> tapply(X = Veg$R, INDEX = Veg$Transect, FUN = mean)

The tapply function splits the data of the first variable (R), based on the levels

of the second variable (Transect). To each subgroup of data, it applies a func-

tion, in this case the mean, but we can also use the standard deviation (function

sd), variance (function var), length (function length), and so on. The following

lines of code calculate some of these functions for the vegetation data.

> Me <- tapply(Veg$R, Veg$Transect, mean)

> Sd <- tapply(Veg$R, Veg$Transect, sd)

> Le <- tapply(Veg$R, Veg$Transect, length)

> cbind(Me, Sd, Le)

Me Sd Le

1 7.571429 1.3972763 7

2 6.142857 0.8997354 7

3 10.375000 3.5831949 8
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4 9.250000 2.3145502 8

5 12.375000 2.1339099 8

6 11.500000 2.2677868 8

7 10.500000 3.1464265 6

8 11.833333 2.7141604 6

Each row in the output gives the mean richness, standard deviation, and

number of observations per transect. In a later chapter we discuss graphic tools

to visualise these values.

4.2 The sapply and lapply Functions

To calculate the mean, minimum, maximum, standard deviation, and length of

the full series, we still need to use mean (Veg$R), min (Veg$R), max (Veg$R),

sd (Veg$R), and length (Veg$R). This is laborious if we wish to calculate the

mean of a large number of variables such as all the numerical variables of

the vegetation data. We specifically say ‘‘numerical’’ as one cannot calculate

the mean of a factor. There are 20 numerical variables in the vegetation dataset,

columns 5–25 of the data frame Veg. However, we do not need to type in the

mean command 20 times. R provides other functions similar to the tapply to

address this situation: the lapply and the sapply. The use of sapply and its

output is given below:

> sapply(Veg[, 5:9], FUN= mean)

R ROCK LITTER ML BARESOIL

9.965517 20.991379 22.853448 1.086207 17.594828

To save space, we only present the results of the first five variables. It is

important to realise that tapply calculates the mean (or any other function)

for subsets of observations of a variable, whereas lapply and sapply calcu-

late the mean (or any other function) of one or more variables, using all

observations.

The word FUN stands for function, and must be written in capitals. Instead

of the mean, you can use any other function as an argument for FUN, and you

can write your own functions. So what is the difference between sapply and

lapply? The major differences lie in the presentation of output, as can be seen

in the following example.

> lapply(Veg[, 5:9], FUN= mean)

$R

[1] 9.965517

$ROCK

[1] 20.99138
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$LITTER

[1] 22.85345

$ML

[1] 1.086207

$BARESOIL

[1] 17.59483

The output of lapply is presented as a list, whereas sapply gives it as a

vector. The choice depends on the format in which you would like the output.

The variable that contains the data in lapply and sapply needs to be a

data frame. This will not work:

> sapply(cbind(Veg$R, Veg$ROCK, Veg$LITTER, Veg$ML,

Veg$BARESOIL), FUN = mean)

It will produce one long vector of data, because the output of the cbind

command is not a data frame. It can easily be changed to a data frame:

> sapply(data.frame(cbind(Veg$R, Veg$ROCK, Veg$LITTER,

Veg$ML, Veg$BARESOIL)), FUN = mean)

X1 X2 X3 X4 X5

9.965517 20.991379 22.853448 1.086207 17.594828

Note that we have lost the variable labels. To avoid this, make a proper data

frame (Chapter 2) before running the sapply function. Alternatively, use the

colnames function after combining the data with the cbind function.

Do Exercise 1 in Section 4.6. This is an exercise in the use of the

tapply, sapply, and lapply functions with a temperature

dataset.

4.3 The summary Function

Another function that gives basic information on variables is the summary

command. The argument can be a variable, the output from a cbind com-

mand, or a data frame. It is run by the following commands.

> Z <-cbind(Veg$R, Veg$ROCK, Veg$LITTER)

> colnames(Z) <- c("R", "ROCK", "LITTER")

> summary(Z)
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R ROCK LITTER

Min. : 5.000 Min. : 0.00 Min. : 5.00

1st Qu. : 8.000 1st Qu. : 7.25 1st Qu. :17.00

Median :10.000 Median :18.50 Median :23.00

Mean : 9.966 Mean :20.99 Mean :22.85

3rd Qu. :12.000 3rd Qu. :27.00 3rd Qu. :28.75

Max. :18.000 Max. :59.00 Max. :51.00

The summary command gives the minimum, first quartile, median, mean,

third quartile, and maximum value of the variable. An alternative R code gives

the same result:

> summary(Veg[ , c("R","ROCK","LITTER")])

or

> summary(Veg[ , c(5, 6, 7)])

Output is not presented here.

4.4 The table Function

In Exercises 1 and 7 in Section 2.4, we introduced the deer data from Vicente

et al. (2006). The data were from multiple farms, months, years, and sexes. One

of the aims of the study was to find a relationship between length of the animal

and the number of E. cervi parasites. It may be the case that this relationship

changes with respect to sex, year, month, farm, or even year and month. To test

this, one needs to include interactions in the statistical models. However,

problems may be encountered if there are no sampled females in some years,

or if some farms were not sampled in every year. The table function can be

used to learn how many animals per farm were sampled, as well as the number

of observations per sex and year. The following code imports the data, and

shows the results.

> setwd("c:/RBook/")

> Deer <- read.table(file="Deer.txt", header= TRUE)

> names (Deer)

[1] "Farm" "Month" "Year" "Sex" "clas1_4"

[6] "LCT" "KFI" "Ecervi" "Tb"

> str(Deer)

[1] "Farm" "Month" "Year" "Sex" "clas1_4"
[6] "LCT" "KFI" "Ecervi" "Tb"
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> str(Deer)

‘data.frame’: 1182 obs. of 9 variables:

$ Farm : Factor w/ 27 levels"AL","AU","BA",..: 1...

$ Month : int 10 10 10 10 10 10 10 10 10 10 ...

$ Year : int 0 0 0 0 0 0 0 0 0 0 ...

$ Sex : int 1 1 1 1 1 1 1 1 1 1 ...

$ clas1_4 : int 4 4 3 4 4 4 4 4 4 4 ...

$ LCT : num 191 180 192 196 204 190 196 200 19 ...

$ KFI : num 20.4 16.4 15.9 17.3 NA ...

$ Ecervi : num 0 0 2.38 0 0 0 1.21 0 0.8 0 ...

$ Tb : int 0 0 0 0 NA 0 NA 1 0 0 ...

Farm has been coded as AL, AU, and so on, and is automatically imported

as a factor. The other variables are all vectors of numerical or integer values.

The number of observations per farm is obtained by

> table(Deer$Farm)

AL AU BA BE CB CRC HB LCV LN MAN MB

15 37 98 19 93 16 35 2 34 76 41

MO NC NV PA PN QM RF RÑ RO SAL SAU

278 32 35 11 45 75 34 25 44 1 3

SE TI TN VISO VY

26 21 31 15 40

At one farm, 278 animals were sampled and, at others, only one. This dataset

typically requires a mixed effects modelling2 approach in which ‘‘farm’’ is used as a

random effect (see Zuur et al., 2009). This method can cope with unbalanced

designs. However, the inclusion of a sex/year interaction term3 in such models for

these data will give an errormessage. This is because both sexes were notmeasured

in every year, as can be seen from the following contingency table. (The labels 0, 1,

2, 3, 4, 5, and 99 in the horizontal direction refer to 2000, 2001, 2002, 2003, 2004,

2005, and 1999, respectively. In the vertical direction 1 and 2 indicate sex).

> table(Deer$Sex, Deer$Year)

0 1 2 3 4 5 99

1 115 85 154 75 78 34 21

2 76 40 197 123 60 35 0

In 1999, animals of only one sex were measured. We recommend always

using the table command before including interactions between two catego-

rical variables in regression type models.

2 A mixed effects model is an extension of linear regression.
3 A sex/year interaction term allows the effect of sex to differ over the years.
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Do Exercise 2 in Section 4.6. This is an exercise in using the table

function with a temperature dataset.

4.5 Which R Functions Did We Learn?

Table 4.1 shows the R functions that were introduced in this chapter.

4.6 Exercises

Exercise 1. The use of the tapply, sapply, and lapply functions to calculate

mean temperature per month.

The file temperature.xls contains temperature observations made at 31 loca-

tions along the Dutch coastline. The data were collected and provided by the

Dutch institute RIKZ (under the monitoring program MWTL; Monitoring

Waterstaatkundige Toestand des Lands). Sampling began in 1990, and the final

measurements in the spreadsheet were taken in December 2005, a period of

16 years. Sampling frequency was 0–4 times per month, depending on the season.

Calculate a one-time series of monthly averages using data from all stations.

The end result should be a variable of dimension 16 � 12. Also calculate the

standard deviation and number of observations per month.

Exercise 2. The use of the table function for the temperature data.

Using the data in Exercise 1, determine the number of observations per

station. How many observations were made per year? How many observations

were made at each station per year?

Table 4.1 R functions introduced in this chapter

Function Purpose Example

tapply Apply FUN on y for each level of x tapply (y, x, FUN = mean)

sapply Apply FUN on each variable in y sapply (y, FUN = mean)

lapply Apply FUN on each variable in y tapply (y, FUN = mean)

sd Calculate the standard deviation of y sd (y)

length Determine the length of y. length(y)

summary Calculate general information summary(y)

table Calculate a contingency table table(x, y)
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Chapter 5

An Introduction to Basic Plotting Tools

We have demonstrated the use of R tools for importing data, manipulating
data, extracting subsets of data, and making simple calculations, such as mean,
variance, standard deviation, and the like. In this chapter, we introduce basic
graph plotting tools. If you are interested in only simple graphing, this chapter
will suffice; however, to construct more sophisticated graphs, or to add more
complicated embellishments such as tick marks, or specialized fonts and font
sizes, to basic graphs, you will need the more advanced plotting techniques
presented in Chapters 7 and 8.

A discussion of elementary plotting tools may seem out of place at this stage,
rather than being included in the sections on graphing beginning with Chapter 7.
However, when teaching the material presented in this book, we became aware
that, after discussing the relatively pedestrian material of the first four sections,
the course participants were eagerly awaiting the lively, more visual, and easier,
plotting tools. Therefore, we present a first encounter with graphing here, which
allows the presentation of the more complex subjects in the next chapter with the
aid of active tools such as the plot function.

5.1 The plot Function

This section uses the vegetation data introduced in Chapter 4. Recall that these
are grassland data from a monitoring program conducted in two temperate
communities in Yellowstone National Park and the National Bison Range,
USA. To quantify biodiversity, species richness was calculated. In a statistical
analysis, we may want to model richness as a function of BARESOIL (or any of
the other soil and climate variables). Suppose we want to make a plot of species
richness versus the substrate variable ‘‘exposed soil,’’ denoted by BARESOIL.
The R commands to create such a graph is

> setwd("c:/RBook/")

> Veg <- read.table(file = "Vegetation2.txt",

header = TRUE)

> plot(Veg$BARESOIL, Veg$R)

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_5, � Springer ScienceþBusiness Media, LLC 2009
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The resulting graph is presented in Fig. 5.1. The first argument of the

plot command is displayed on the horizontal axis with the second argument

along the vertical axis. Richness, in this case, is the response, or dependent,

variable, and BARESOIL is the explanatory, or independent, variable. It is

conventional to plot the response variable along the vertical axis and the

explanatory variable along the horizontal axis. Be aware that for some

statistical functions in R, you must specify the response variable first, fol-

lowed by the explanatory variables. You would not be the first to acciden-

tally type

> plot(Veg$R, Veg$BARESOIL)

and discover that the order should have been reversed. Alternatively, you can use

> plot(x = Veg$BARESOIL, y = Veg$R)

to avoid confusion over which variables will be plotted on the x-axis (horizon-

tal) and which on the y-axis (vertical).
The plot function does have a data argument, but we cannot use
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Fig. 5.1 Graph showing a scatterplot of BARESOIL versus species richness for the vegetation
data. To import a graph from R into Microsoft Word, right-click on the graph in R to copy
and paste it into Word, or save it as a metafile (recommended, as it produces a good quality
graph), bitmap, or postscript file. This will also work with non-Windows operating systems.
Importing the latter two formats into Word is more complicated. If the R console window
(Fig. 1.5) is maximised, you may not see the panel with the graph. To access it, press Control-
Tab, or minimise the R console
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> plot(BARESOIL, R, data = Veg)

Error in plot(BARESOIL, R, data = Veg): object

"BARESOIL" not found

This is unfortunate, and forces us to use Veg$ in the command (recall
from Chapter 2 that we do not use the attach command). This is one of the
reasons (if not the only one) that we chose the variable name Veg instead of
the longer, Vegetation.It is also possible to use:

> plot(R � BARESOIL, data = Veg)

This does produce a graph (not shown here), but our objection against this
notation is that in some functions, the R� BARESOIL notation is used to tell R
that richness is modelled as a function of baresoil. Athough that may be the case
here, not every scatterplot involves variables that have a cause–effect
relationship.

The most common modifications to any graph are adding a title and x- and
y-labels and setting the x- and y-limits, as with the graph in Fig. 5.1. This is
accomplished by extending the plot command:

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19))

The resulting graph is presented in Fig. 5.2A. The four panels (A–D) were
imported into the text document (Microsoft Word) by using the text editor to
construct a 2-by-2 table with no borders. (Using R to create a graph with
multiple panels is demonstrated in Chapter 8.)

The order in which xlab, ylab , main, xlim, and ylim are entered is
irrelevant, but they must be in lowercase letters. The xlab and ylab options
are used for labels and the main option for the title. The xlim and ylim options
are used to specify the lower and upper limits on the axes. You can also use

xlim = c(min(Veg$BARESOIL), max(Veg$BARESOIL))

within the plot command, but, if there are missing values in the plotted variable,
you should extend the min and max functions with the na.rm= TRUE option.
This produces

xlim = c(min(Veg$BARESOIL, na.rm = TRUE),

max(Veg$BARESOIL, na.rm = TRUE))

In Chapters 7 and 8, we demonstrate changing the style and size of the font
used for the labels and title, and adding symbols, such as, 0C, and so on.
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5.2 Symbols, Colours, and Sizes

During our courses, the most frequently asked questions concerning graphs are
whether (1) the plotting symbols can be changed, (2) different colours can be
used, and (3) the size of the plotting symbols can be varied conditional on the
values of another variable. We discuss these three options in this section and
leave the more sophisticated modifications such as altering tick marks, and
adding subscripts and superscripts, among other things, for Chapters 7 and 8.

5.2.1 Changing Plotting Characters

By default, the plot function uses open circles (open dots) as plotting char-
acters, but characters can be selected from about 20 additional symbols. The
plotting character is specified with the pch option in the plot function; its
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Fig. 5.2 Examples of various plotting options. A: Scatterplot of species richness versus
exposed soil (BARESOIL ). B: The same scatterplot as in A, with observations plotted using
a filled circle (or dot). C: The same scatterplot as in A, with observations from each transect
indicated by a different symbol. D: The same scatterplot as in A, but with observations
measured before 1975 plotted as open circles and those after 1975 as filled circles
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default value is 1 (which is the open dot or circle). Figure 5.3 shows the symbols

that can be obtained with the different values of pch. For solid points the

command is pch =16. As an example, the following code produces Fig. 5.2B,

in which we replaced the open dots with filled dots.

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19), pch = 16)

In Fig. 5.2A, B, all observations are represented by the same plotting symbol
(the open circles in panel A were obtained with the default, pch = 1, and the
closed circles in panel B with pch = 16).

The grassland data were measured over the course of several years in eight
transects. It would be helpful to add this information to the graph in Fig. 5.2A.
At this point, the flexibility of R begins to emerge. Suppose you want to use a
different symbol for observations from each transect. To do this, use a numer-
ical vector that has the same length as BARESOIL and richness R and contains
the value 1 for all observations from transect 1, the value 2 for all observations
from transect 2, and so on. Of course it is not necessary to use 1, 2, and so on.
The values can be any valid pch number (Fig. 5.3). You only need to ensure
that, in the new numerical vector, the values for observations within a single
transect are the same and are different from those of the other transects. In this
case you are lucky; the variable Transect is already coded with numbers 1
through 8 designating the eight transects. To see this, type

> Veg$Transect

[1] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
[23] 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 6 6 6 6 6 6
[45] 6 6 7 7 7 7 7 7 8 8 8 8 8 8
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25Fig. 5.3 Symbols that can be
obtained with the pch
option in the plot function.
The number left of a symbol
is the pch value (e.g., pch=
16 gives �)
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Thus, there is no need to create a new vector; you can use the variable
Transect (this will not work if Transect is defined as a factor, see below):

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil", ylab = "Species richness",

main = "Scatter plot", xlim = c(0, 45),

ylim = c(4, 19), pch = Veg$Transect)

The resulting graph is presented in Fig. 5.2C. It shows no clear transect
effect. It is not a good graph, as there is too much information, but you have
learned the basic process.

There are three potential problems with the pch =Transect approach:

1. If Transect had been coded as 0, 1, 2, and so on, the transect for which
pch =0 would not have been plotted.

2. If the variable Transect did not have the same length as BARESOIL and
richness R, assume it was shorter; R would have repeated (iterated) the first
elements in the vector used for the pch option, which would obviously
produce a misleading plot. In our example, we do not have this problem, as
BARESOIL, richness, and transect have the same length.

3. In Chapter 2, we recommended that categorical (or nominal) variables be
defined as such in the data frame using the factor command. If you select
a nominal variable as the argument for pch, R will give an error message.
This error message is illustrated below:

> Veg$fTransect <- factor(Veg$Transect)

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = Veg$fTransect)

Error in plot.xy(xy, type, ...): invalid plotting symbol

On the first line of the R code above, we defined fTransect as a nominal
variable inside the Veg data frame, and went on to use it as argument for the
pch option. As you can see, R will not accept a factor as pch argument; it must
be a numerical vector.

5.2.1.1 Use of a Vector for pch

The use of a vector forpch (and for the col and cex options discussed later)
can be confusing.

The vegetation data were measured in 1958, 1962, 1967, 1974, 1981, 1989,
1994, and 2002. We arbitrarily selected an open circle to represent observations
measured from 1958 to 1974 and a filled circle for those made after 1974.
Obviously, the option pch =Veg$Time is out of the question, as it tries to
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use eight different symbols, and, also, the pch value 1958 (or of any year) does
not exist. We must create a new numerical vector of the same length as Veg
$Time, using the value 1 when Time is 1958, 1962, 1967, and 1974 and 16 for
the more recent years. The values 1 and 16 were chosen because we like open
and filled circles as they show a greater contrast than other combinations. Here
is the R code (you can also do this in one line with the ifelse command):

> Veg$Time2 <- Veg$Time

> Veg$Time2 [Veg$Time <= 1974] <- 1

> Veg$Time2 [Veg$Time > 1974] <- 16

> Veg$Time2

[1] 1 1 1 1 16 16 16 1 1 1 1 6 16 16 1
[16] 1 1 1 16 16 16 16 1 1 1 1 16 16 16 16
[31] 1 1 1 1 16 16 16 16 1 1 1 1 16 16 16
[46] 16 1 1 1 16 16 16 1 1 1 16 16 16

The first command creates a new numerical vector of the same length as Veg
$Time, and the following two commands allocate the values 1 and 16 to the
proper places. The rest of the R code is easy; simply use Veg $Time2 as the pch
option. The resulting graph is presented in Fig. 5.2D:

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = Veg$Time2)

In the text above, we mentioned that you should not use pch=Veg $Time

as Time contains values that are not valid pch commands. The use of Veg
$Time will result in

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = Veg$Time)

There were 50 or more warnings (use warnings() to see

the first 50)

> warnings()

Warning messages:

1: In plot.xy(xy, type, ...) : unimplemented pch value

’1958’
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2: In plot.xy(xy, type, ...) : unimplemented pch value

’1962’

3: In plot.xy(xy, type, ...) : unimplemented pch value

’1967’

4: In plot.xy(xy, type, ...) : unimplemented pch value

’1974’

5: In plot.xy(xy, type, ...) : unimplemented pch value

’1981’

. . ..

We typed warnings () as instructed by R. The warning message speaks for

itself.
To learn more about the pch option, look at the help file of the function

points, obtained with the ?points command.

5.2.2 Changing the Colour of Plotting Symbols

The plotting option for changing colours is useful for graphics presented on a

screen or in a report, but is less so for scientific publications, as these are most

often printed in black and white. We recommend that you read Section 5.2.1

before reading this section, as the procedure for colour is the same as that for

symbols.
To replace the black dots in Fig. 5.2 with red, use

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

col = 2)

For green, use col =3. Run the following code to see the other available

colours.

> x <- 1:8

> plot(x, col = x)

We do not present the results of the two commands as this book is

without colour pages. In fact, there are considerably more colours available

in R than these eight. Open the par help file with the ?par command, and

read the ‘‘Color Specification’’ section near the end. It directs you to the

function colors (or colours ), where, apparently, you can choose from

hundreds.

92 5 An Introduction to Basic Plotting Tools



5.2.2.1 Use of a Vector for col

You can also use a vector for the col option in the plot function. Suppose you
want to plot the observations from 1958 to 1974 as black filled squares and the
observations from 1981 to 2002 as red filled circles (shown here as light grey). In
the previous section, you learned how to create filled squares and circles using
the variable Time2 with values 15 (square) and 16 (circle). Using two colours is
based on similar R code. First, create a new variable of the same length as
BARESOIL and richness R, which can be called Col2 . For those observations
from1958 to 1974, Col2 takes the value 1 (= black) and, for the following
years, 2 (= red). The R code is

> Veg$Time2 <- Veg$Time

> Veg$Time2 [Veg$Time <= 1974] <- 15

> Veg$Time2 [Veg$Time > 1974] <- 16

> Veg$Col2 <- Veg$Time

> Veg$Col2 [Veg$Time <= 1974] <- 1

> Veg$Col2 [Veg$Time > 1974] <- 2

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = Veg$Time2, col = Veg$Col2)

The resulting graph is presented in Fig. 5.4A. The problems that were out-
lined for the pch option also apply to the col option. If you use col =0, the
observations will not appear in a graph having a white background; the vector
with values for the colours should have the same length as BARESOIL and
richness R; and you must use values that are linked to a colour in R.

Before expending a great deal of effort on producing colourful graphs, it may
be worth considering that, in some populations, 8% of the male population is
colourblind!

5.2.3 Altering the Size of Plotting Symbols

The size of the plotting symbols can be changed with the cex option, and again,
this can be added as an argument to the plot command. The default value for
cex is 1. Adding cex=1.5 to the plot command produces a graph in which all
points are 1.5 times the default size:

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil", ylab = "Species richness",

main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = 16, cex = 1.5)
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We used filled circles. The resulting graph is presented in Fig. 5.4B.

5.2.3.1 Use of a Vector for cex

As with the pch and col options, we demonstrate the use of a vector as the
argument of the cex option. Suppose you want to plot BARESOIL against species
richness using a large filled dot for observations made in 2002 and a smaller filled
dot for all other observations. Begin by creating a new vector with values of 2 for
observations made in 2002 and 1 for those from all other years. The values 1 and 2
are good starting points for finding, through trial and error, the optimal size
difference. Try 3 and 1, 1.5 and 1, or 2 and 0.5, and so on, and decide which
looks best.
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Fig. 5.4 Examples of various plot commands. A: Scatterplot of species richness versus
BARESOIL. Observations from 1958 to 1974 are represented as filled squares in black and
observations from 1981 to 2002 as filled circles in red. Colours were converted to greyscale in
the printing process. B: The same scatterplot as in Fig. 5.2A, with all observations represented
as black filled dots 1.5 times the size of the dots in Fig. 5.2A. C: The same scatterplot as in
Fig. 5.2A with observations from 2002 represented by dots twice those of Fig. 5.2A
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> Veg$Cex2 <- Veg$Time

> Veg$Cex2[Veg$Time == 2002] <- 2

> Veg$Cex2[Veg$Time != 2002] <- 1

Using the vector Cex2 , our code can easily be adjusted:

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil", ylab = "Species richness",

main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19),

pch = 16, cex = Veg$Cex2)

The resulting graph is presented in Fig. 5.4C. Altering the symbol size

can also be accomplished by using cex =1.5 * Veg$Cex2 or cex =Veg

$Cex2 /2.

5.3 Adding a Smoothing Line

It is difficult to see a pattern in Fig. 5.1. The information that you want to

impart to the viewer will become clearer if you add a smoothing curve1 to aid in

visualising the relationship between species richness and BARESOIL. The

underlying principle of smoothing is not dealt with in this book, and we refer

the interested reader to Hastie and Tibshirani (1990), Wood (2006), or Zuur

et al. (2007).
The following code redraws the plot, applies the smoothing method, and

superimposes the fitted smoothing curve over the plot, through the use of the

lines command.

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil", ylab = "Species richness",

main = "Scatter plot", xlim = c(0, 45),

ylim = c(4, 19))

> M.Loess <- loess(R � BARESOIL, data = Veg)

> Fit <- fitted(M.Loess)

> lines(Veg$BARESOIL, Fit)

The resulting graph is presented in Fig. 5.5A. The command

1 A smoothing curve is a line that follows the shape of the data. For our purposes, it is
sufficient to know that a smoothing curve serves to capture the important patterns in, or
features of, the data.
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> M.Loess <- loess(R � BARESOIL, data = Veg)

is the step that applies the smoothing method, and its output is stored in the

object M.Loess . To see what it comprises, type:

> M.Loess

Call:

loess(formula = R � BARESOIL, data = Veg)

Number of Observations: 58

Equivalent Number of Parameters: 4.53

Residual Standard Error: 2.63

That is not very useful.M.Loess contains a great deal of informationwhich can

be extracted through the use of special functions. Knowing the proper functions

and how to apply them brings us into the realm of statistics; the interested reader is

referred to the help files ofresid,summary, orfitted (and, obviously,loess).
The notation R�BARESOILmeans that the species richness R is modelled as

a function of BARESOIL. The loess function allows for various options, such

as the amount of smoothing, which is not discussed here as it brings us even

further into statistical territory. As long as we do not impose further specifica-

tions on the loess function, R will use the default settings, which are perfect

for our purpose: drawing a smoothing curve.
The output from the loess function, M.Loess , is used as input into the

function, fitted. As the name suggests, this function extracts the fitted values,

and we allocate it to the variable Fit. The last command,

> lines(Veg$BARESOIL, Fit)
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Fig. 5.5 A: The same scatterplot as in Fig. 5.2A, with a smoothing curve. Problems occur with
the lines command because BARESOIL is not sorted from low to high. B: The same
scatterplot as in Fig. 5.2A, but with a properly drawn smoothing curve
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superimposes a line onto the plot that captures the main pattern in the data and
transfers it onto the graph. The first argument goes along the x-axis and the
second along the y-axis. The resulting plot is given in Fig. 5.5A. However, the
smoothed curve is not what we expected, as the lines form a spaghetti pattern
(multiple lines). This is because the lines command connects points that are
sequential in the first argument.

There are two options for solving this problem.We can sort BARESOIL from
small to high values and permute the second argument in the lines command
accordingly, or, alternatively, we can determine the order of the values in
BARESOIL, and rearrange the values of both vectors in the lines command.
The second option is used below, and the results are given in Fig. 5.5B. Here is
the R code.

> plot(x = Veg$BARESOIL, y = Veg$R,

xlab = "Exposed soil",

ylab = "Species richness", main = "Scatter plot",

xlim = c(0, 45), ylim = c(4, 19))

> M.Loess <- loess(R � BARESOIL, data = Veg)

> Fit <- fitted(M.Loess)

> Ord1 <- order(Veg$BARESOIL)

> lines(Veg$BARESOIL[Ord1], Fit[Ord1],

lwd = 3, lty = 2)

The order command determines the order of the elements in BARESOIL ,
and allows rearranging of the values from low to high in the lines command.
This is a little trick that you only need to see once, and youwill use it many times
thereafter. We also added two more options to the lines command, lwd and
lty, indicating line width and line type. These are further discussed in Chapter
7, but to see their effect, change the numbers and note the change in the graph.
Within the lines command, the col option can also be used to change the
colour, but obviously the pch option will have no effect.

The smoothing function seems to indicate that there is a negative effect of
BARESOIL on species richness.

5.4 Which R Functions Did We Learn?

Table 5.1 shows the R functions that were introduced in this chapter.

5.5 Exercises

Exercise 1. Use of the plot function using terrestrial ecology data. In Chapter
16 of Zuur et al. (2009), a study is presented analysing numbers of amphibians
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killed along a road in Portugal using generalised additive mixed modelling
techniques. In this exercise, we use the plot command to visualise a segment
of the data. Open the file Amphibian_road_Kills.xls, prepare a spreadsheet, and
import the data into R.

The variable, TOT_N, is the number of dead animals at a sampling site,
OLIVE is the number of olive groves at a sampling site, and D Park is the
distance from each sampling point to the nearby natural park. Create a plot of
TOT_N versus D_park. Use appropriate labels. Add a smoothing curve. Make
the same plot again, but use points that are proportional to the value of OLIVE
(this may show whether there is an OLIVE effect).

Table 5.1 R functions introduced in this chapter

Function Purpose Example

plot Plots y versus x plot (y, x, xlab="X label",
xlim=c (0, 1 ), pch=1,

main="Main ", ylim=c (0, 2 ),
ylab="Y label ", col=1 )

lines Adds lines to an existing graph lines (x, y, lwd=3, lty=1,

col=1 )

order Determines the order of the data order (x )

loess Applies LOESS smoothing M<-loess (y�x )

fitted Obtains fitted values fitted (M )
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Chapter 6

Loops and Functions

When reading this book for the first time, youmay skip this chapter, as building

functions1 and programming loops2 are probably not among the first R proce-

dures you want to learn, unless these subjects are your prime interests. In

general, people perceive these techniques as difficult, hence the asterisk in the

chapter title. Once mastered, however, these tools can save enormous amounts

of time, especially when executing a large number of similar commands.

6.1 Introduction to Loops

One of R’s more convenient features is the provision for easily making your

own functions. Functions are useful in a variety of scenarios. For example,

suppose you are working with a large number of multivariate datasets, and for

each of them you want to calculate a diversity index. There are many diversity

indices, and new ones appear regularly in the literature. If you are lucky, the

formula for your chosen diversity index has already been programmed by

someone else, and, if you are very lucky, it is available in one of the popular

packages, the software code is well documented, fully tested, and bug free. But if

you cannot find software code for the chosen diversity index, it is time to

program it yourself!

If you are likely to use a set of calculationsmore than once, youwould be well

advised to present the code in such a way that it can be reused with minimal

typing. Quite often, this brings you into the world of functions and loops (and

conditional statements such as the if command).

The example presented below uses a dataset on owls to produce a large

number of graphs. The method involved is repetitive and time consuming,

and a procedure that will do the hard work will be invaluable.

1 A function is a collection of codes that performs a specific task.
2 A loop allows the program to repeatedly execute commands. It does this by iteration

(iteration is synonymous with repetition).

A.F. Zuur et al., A Beginner’s Guide to R, Use R,

DOI 10.1007/978-0-387-93837-0_6, � Springer ScienceþBusiness Media, LLC 2009
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Developing this procedure requires programming and some logical thinking.

You will need to work like an architect who draws up a detailed plan for

building a house. You should definitely not begin entering code for a function

or loop until you have an overall design.

You also must consider how foolproof your function needs to be. Do you

intend to use it only once? Should it work next year on a similar dataset (when

you have forgotten most settings and choices in your function)? Will you share

it with colleagues?

Functions often go hand in hand with loops, as they both help to automate

commands.

Suppose you have 1000 datasets, and for each dataset you need to make a

graph and save it as a jpeg. It would take a great deal of time to do this

manually, and a mechanism that can repeat the same (or similar) commands

any number of times without human intervention would be invaluable. This is

where a loop comes in. A plan for the 1000 datasets could be

For i is from 1 to 1000:

Extract dataset i
Choose appropriate labels for the graph for dataset i
Make a graph for dataset i
Save the graph for dataset i

End of loop

Note that this is not R code. It is merely a schematic overview, which is the

reason that we put the text in a box and did not use the ‘‘>’’ symbol and the

Courier New font that we have been using for R code. The sketch involves a

loop, meaning that, once the code is syntax correct, R executes 1000 iterations,

with the first iteration having i= 1, the second iteration i= 2, and in the final

iteration i = 1000. In each iteration, the commands inside the loop are

executed.

This plan has only four steps, but, if we want to domore with the data, it may

make sense to group certain commands and put them in a function. Suppose we

not only want a graph for each dataset, but also to calculate summary statistics

and apply a multivariate analysis. We will very quickly end up with 10–15

commands inside the loop, and the code becomes difficult to manage. In such

a scenario, using functions can keep the code simple:

For i is from 1 to 1000:

Extract dataset i
Execute a function to calculate summary statistics for dataset i.
Execute a function to make and save a graph for dataset i.
Execute a function that applies multivariate analysis on dataset i.

End of loop
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Each function is a small collection of commands acting on individual datasets.

Each function works independently, unaffected by what happens elsewhere, and

does only what it has been told to do. There is a mechanism in place to allow only

the dataset into the function and to return information for this dataset. Once

programmed, the function should work for any dataset. Program it once, and, if

all goes according to plan, you never have to think about it again.

Just as a house can be designed to be built in different ways, your plan can

take more than one approach. In the sketch above, we created a loop for i from
1 to 1000, which, in each iteration, extracts data and passes the data to a

function. You can also do it the other way around:

Execute a function to calculate summary statistics for each dataset.

Execute a function to make and save a graph for each dataset.

Execute a function to apply multivariate analysis on each dataset.

Each function will contain a loop in which the data are extracted and

subjected to a series of relevant commands. The building of the code depends

entirely on personal programming style, length of the code, type of problem,

computing time required, and so on.

Before addressing the creation of functions, we focus on loops.

6.2 Loops

If you are familiar with programming languages like FORTRAN, C, C++, or

MATLAB,3 you are likely to be familiar with loops. AlthoughR hasmany tools

for avoiding loops, there are situations where it is not possible. To illustrate a

situation in which a loop saves considerable time, we use a dataset on begging

behaviour of nestling barn owls. Roulin and Bersier (2007) looked at nestlings’

response to the presence of the mother and the father. Using microphones

inside, and a video camera outside, the nests, they sampled 27 nests, studying

vocal begging behaviour when the parents bring prey. A full statistical analysis

using mixed effects modelling is presented in Roulin and Bersier (2007) and also

in Zuur et al. (2009).

For this example, we use ‘‘sibling negotiation,’’ defined as the number of calls

by the nestlings in the 30-second interval immediately prior to the arrival of a

parent, divided by the number of nestlings. Data were collected between 21.30

hours and 05.30 hours on two consecutive nights. The variable ArrivalTime

indicates the time at which a parent arrived at the perch with prey.

Suppose that you have been commissioned to write a report on these data

and to produce a scatterplot of sibling negotiation versus arrival time for each

nest, preferably in jpeg format. There are 27 nests, so you will need to produce,

3 These are just different types of programming languages, similar to R.
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and save, 27 graphs. This is not an uncommon type of task. We have been

involved in similar undertakings (e.g., producing multiple contour plots

for >75 bird species in the North Sea). Keep in mind that they may ask you

to do it all again with a different plotting character or a different title! Note that

R has tools to plot 27 scatterplots in a single graph (we show this in Chapter 8),

but assume that the customer has explicitly asked for 27 separate jpeg files. This

is not something you will not want to do manually.

6.2.1 Be the Architect of Your Code

Before writing the code, you will need to plan and produce an architectural

design outlining the steps in your task:

1. Import the data and familiarise yourself with the variable names, using the

read.table, names, and str commands.

2. Extract the data of one nest and make a scatterplot of begging negotiation

versus arrival time for this subset.

3. Add a figure title and proper labels along the x- and y-axes. The name of the

nest should be in the main header.

4. Extract data from a second nest, and determine what modifications to the

original graph are needed.

5. Determine how to save the graph to a jpeg file.

6. Write a loop to extract data for nest i, plot the data from nest i, and save the

graph to a jpeg file with an easily recognized name.

If you can implement this algorithm, you are a good architect!

6.2.2 Step 1: Importing the Data

The following code imports the data and shows the variable names and their

status. There is nothing new here in terms of R code; the read.table, names,

and str commands were discussed in Chapters 2 and 3.

> setwd("C:/RBook/")

> Owls <- read.table(file = "Owls.txt", header = TRUE)

> names(Owls)

[1] "Nest" "FoodTreatment"

[3] "SexParent" "ArrivalTime"

[5] "SiblingNegotiation" "BroodSize"

[7] "NegPerChick"

> str(Owls)

’data.frame’: 599 obs. of 7 variables:

$ Nest : Factor w/ 27 levels ...
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$ FoodTreatment : Factor w/ 2 levels ...

$ SexParent : Factor w/ 2 levels ...

$ ArrivalTime : num 22.2 22.4 22.5 22.6 ...

$ SiblingNegotiation: int 4 0 2 2 2 2 18 4 18 0 ...

$ BroodSize : int 5 5 5 5 5 5 5 5 5 5 ...

$ NegPerChick : num 0.8 0 0.4 0.4 0.4 0.4 ...

The variables Nest, FoodTreatment, and SexParent are defined using

alphanumerical values in the ascii file, and therefore R considers them (cor-

rectly) as factors (see the output of the str command for these variables).

6.2.3 Steps 2 and 3: Making the Scatterplot and Adding Labels

To extract the data from one nest, you first need to know the names of the nests.

This can be done with the unique command

> unique(Owls$Nest)

[1] AutavauxTV Bochet Champmartin

[4] ChEsard Chevroux CorcellesFavres

[7] Etrabloz Forel Franex

[10] GDLV Gletterens Henniez

[13] Jeuss LesPlanches Lucens

[16] Lully Marnand Moutet

[19] Murist Oleyes Payerne

[22] Rueyes Seiry SEvaz

[25] StAubin Trey Yvonnand

27 Levels: AutavauxTV Bochet Champmartin ... Yvonnand

There are 27 nests, and their names are given above. Extracting the data of

one nest follows the code presented in Chapter 3:

> Owls.ATV <- Owls[Owls$Nest=="AutavauxTV", ]

Note the comma after Owls$Nest=="AutavauxTV" to select rows of the

data frame. We called the extracted data for this nest Owls.ATV, where ATV

refers to the nest name. The procedure for making a scatterplot such as that

needed to show arrival time versus negotiation behaviour for the data in

Owls.ATV was discussed in Chapter 5. The code is as follows.

> Owls.ATV <- Owls[Owls$Nest == "AutavauxTV", ]

> plot(x = Owls.ATV$ArrivalTime,

y = Owls.ATV$NegPerChick,

xlab = "Arrival Time", main = "AutavauxTV"

ylab = "Negotiation behaviour)
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Youwill be plotting the variable ArrivalTime versus NegPerChick from

the data frame Owls.ATV, hence the use of the $ sign. The resulting graph is

presented in Fig. 6.1. So far, the procedure requires no new R code.

6.2.4 Step 4: Designing General Code

To investigate the universality of the code, go through the same procedure for

data from another nest. The code for the second nest requires only a small

modification; where you entered AutavauxTV, you now need Bochet.

> Owls.Bot <- Owls[Owls$Nest == "Bochet", ]

> plot(x = Owls.Bot$ArrivalTime,

y = Owls.Bot$NegPerChick,

xlab = "Arrival Time",

ylab = "Negotiation behaviour", main = "Bochet")

The graph is not shown here. Note that we stored the data from this

particular nest in the data frame Owls.Bot, where ‘‘Bot’’ indicates ‘‘Bochet.’’

If you were to make the same graph for another nest, you need only replace the

main title and the name of the data frame and the actual data (the loop will do

this for us).

The question is, in as much as you must do this another 25 times, how can

you minimise the typing required? First, change the name of the data frame to

something more abstract. Instead of Owls.ATV or Owls.Bot, we used

Owls.i. The following construction does this.
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Fig. 6.1 Scatterplot of

arrival time (horizontal axis)
versus average negotiation

behaviour per visit (vertical
axis) for a single nest

(AutavauxTV). Time is

coded from 22 (22.00) to 29

(4.00). Measurements were

conducted on two

consecutive nights
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> Owls.i <- Owls[Owls$Nest == "Bochet", ]

> plot(x = Owls.i$ArrivalTime,

y = Owls.i$NegPerChick, xlab = "Arrival Time",

ylab = "Negotiation behaviour", main = "Bochet")

Instead of a specific name for the extracted data, we used a name that can

apply to any dataset and pass it on to the plot function. The resulting graph is

not presented here. The name ‘‘Bochet’’ still appears at two places in the code,

and they need to be changed each time you work with another dataset. To

minimise typing effort (and the chance of mistakes), you can define a variable,

Nest.i, containing the name of the nest, and use this for the selection of the

data and the main header:

> Nest.i <- "Bochet"

> Owls.i <- Owls[Owls$Nest == Nest.i, ]

> plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time", main = Nest.i,

ylab = "Negotiation behaviour")

In order to make a plot for another nest, you only need to change the nest

name in the first line of code, and everything else will change accordingly.

6.2.5 Step 5: Saving the Graph

You now need to save the graph to a jpeg file (see also the help file of the jpeg

function):

1. Choose a file name. This can be anything, for example, ’’AnyName.jpg’’.

2. Open a jpeg file by typing jpeg(file = ’’AnyName.jpg’’).

3. Use the plot command to make graphs. Because you typed the jpeg

command, R will send all graphs to the jpeg file, and the graphic output

will not appear on the screen.

4. Close the jpeg file by typing: dev.off().

You can execute multiple graphing commands in Step 3 (e.g., plot, lines,

points, text) and the results of each will go into the jpeg file, until R executes

the dev.off (device off) command which closes the file. Any graphing com-

mand entered after the dev.off command will not go into the jpeg file, but to

the screen again. This process is illustrated in Fig. 6.2.

At this point, you should consider where you want to save the file(s), as it is

best to keep them separate from your R working directory. In Chapter 3 we

discussed how to set the working directory with the setwd command. We set it

to ‘‘C:/AllGraphs/’’ in this example, but you can easily modify this to your own

choice.
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The final challenge is to create a file name that automatically changes when

we change the name of the nest (the variable Nest.i). You will need a file name

that consists of the nest name (e.g., Bochet) and the file extension jpg. To

connect ‘‘Bochet’’ and ‘‘.jpg’’ with no separation between these two strings

(i.e., ‘‘Bochet.jpg’’) use the paste command:

> paste(Nest.i, ".jpg", sep = "")

[1] "Bochet.jpg"

The output of the paste command is a character string that can be used as

the file name. You can store it in a variable and use it in the jpeg command.We

called the variable YourFileName in the code below, and R sends all graphic

output created between the jpeg and dev.off commands to this file.

> setwd("C:/AllGraphs/")

> Nest.i <- "Bochet"

> Owls.i <- Owls[Owls$Nest == Nest.i, ]

> YourFileName <- paste(Nest.i, ".jpg", sep="")

> jpeg(file = YourFileName)

> plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time", main = Nest.i,

ylab = "Negotiation behaviour")

> dev.off()

}

}

}

All output goes to a graph on the screen

All output goes to a jpg file

All output goes to a graph on the screen

Fig. 6.2 Summary of the jpeg and dev.off commands. The results of all graphing com-

mands between the jpeg and dev.off commands are sent to a jpg file. The x- and y-
coordinates were arbitrarily chosen
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Once this code has been executed, you can open the file Bochet.jpg in your

working directorywith any graphic or photo editing package. The help file for the

jpeg function contains further information on increasing the size and quality of

the jpeg file. Alternative file formats are obtained with the functions bmp, png,

tiff, postscript, pdf, and windows. See their help files for details.

6.2.6 Step 6: Constructing the Loop

You still have to modify the variable Nest.i 27 times, and, each time, copy

and paste the code into R.Here is where Step 6 comes in, the loop. The syntax of

the loop command in R is as follows.

for (i in 1 : 27) {

do something

do something

do something

}

‘‘Do something’’ is not valid R syntax, hence the use of a box. Note that the

commands must be between the two curly brackets { and }. We used 27 because

there are 27 nests. In each iteration of the loop, the index i will take one of the
values from 1 to 27. The ‘‘do something’’ represent orders to execute a specific

command using the current value of i. Thus, you will need to enter into the loop

the code for opening the jpeg file, making the plot, and closing the jpeg file for a

particular nest. It is only a small extension of the code from Step 5.

On the first line of the code below, we determined the unique names of the

nests. On the first line in the loop, we set Nest.i equal to the name of the ith

nest. So, if i is 1, Nest.i is equal to ’’AutavauxTV’’; i = 2 means that

Nest.i= ’’Bochet’’; and, if i is 27, Nest.i equals ’’Yvonnand’’ The

rest of the code was discussed in earlier steps. If you run this code, your working

directory will contain 27 jpeg files, exactly as planned.

> AllNests <- unique(Owls$Nest)

> for (i in 1:27){

Nest.i <- AllNests[i]

Owls.i <- Owls[Owls$Nest == Nest.i, ]

YourFileName <- paste(Nest.i, ".jpg", sep = "")

jpeg(file = YourFileName)

plot(x = Owls.i$ArrivalTime, y = Owls.i$NegPerChick,

xlab = "Arrival Time",

ylab = "Negotiation behaviour", main = Nest.i)

dev.off()

}
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Do Exercise 1 in Section 6.6. This is an exercise in creating loops,
using a temperature dataset.

6.3 Functions

The principle of a functionmay be new tomany readers. If you are not familiar with

it, envision a function as a box with multiple holes on one side (for the input) and a

single hole on the other side (for the output). The multiple holes can be used to

introduce information into thebox; theboxwill act asdirectedupon the information

and feed the results out the single hole.When a function is running properly, we are

not really interested in knowing how it obtains the results.We have already used the

loess function in Chapter 5. The input consisted of two variables and the output

was a list that contained, among other things, the fitted values. Other examples of

existing functions are the mean, sd, sapply, and tapply, among others.

The underlying concept of a function is sketched in Fig. 6.3. The input of the

function is a set of variables, A, B, and C, which can be vectors, matrices, data

frames, or lists. It then carries out the programmed calculations and passes the

information to the user.

The best way to learn how to use a function is by seeing some examples.

6.3.1 Zeros and NAs

Before executing a statistical analysis, it is important to locate and deal with any

missing values, as they may present some difficulties. Certain techniques, such as

linear regression, will remove any case (observation) containing a missing value.

Variables with many zeros cause trouble as well, particularly in multivariate

analysis. For example, do we say that dolphins and elephants are similar because

they are both absent on the moon? For a discussion on double zeros in multi-

variate analysis, see Legendre and Legendre (1998). In univariate analysis, a

response variablewithmany zeros can also be problematical (See theZero Inflated

Data chapter in Zuur et al., 2009).

We recommend creating a table that gives the number of missing values, and

the number of zeros, per variable. A table showing the number of missing values

(or zeros) per case is also advisable. The following demonstrates using R code to

   Function carries out 

tasks
A                                 x 
B                                 y
C                                 z

Results

Fig. 6.3 Illustration of the principle of a function. A function allows for the input of multiple

variables, carries out calculations, and passes the results to the user. According to the order in

which the variables are entered, A, B, and C are called x, y, and z within the function. This is

called positional matching
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create the tables, but before continuing, we suggest that you do Exercise 2 in

Section 6.6, as it guides you through the R code in this section.

Our example uses the vegetation data from Chapter 4. We imported the data

with the read.table command, and used the names command to see the list

of variables:

> setwd("C:/RBook/")

> Veg <- read.table(file = "Vegetation2.txt",

header = TRUE)

> names(Veg)

[1] "TransectName" "Samples" "Transect"

[4] "Time" "R" "ROCK"

[7] "LITTER" "ML" "BARESOIL"

[10] "FallPrec" "SprPrec" "SumPrec"

[13] "WinPrec" "FallTmax" "SprTmax"

[16] "SumTmax" "WinTmax" "FallTmin"

[19] "SprTmin" "SumTmin" "WinTmin"

[22] "PCTSAND" "PCTSILT" "PCTOrgC"

The first four variables contain transect name, transect number, and time of

survey. The column labelled R contains species richness (the number of species)

per observation. The remaining variables are covariates.

Suppose you want a function that takes as input a data frame that contains

the data, and calculates the number of missing values in each variable. The

syntax of such a function is

NAPerVariable <- function(X1) {

D1 <- is.na(X1)

colSums(D1)

}

If you type this code into a text editor and paste it into R, you will see that

nothing happens. The code defines a function with the name NAPerVariable,

but it does not execute the function. This is done with the command

> NAPerVariable(Veg[,5:24])

R ROCK LITTER ML BARESOIL FallPrec

0 0 0 0 0 0

SprPrec SumPrec WinPrec FallTmax SprTmax SumTmax

0 0 0 0 0 0

WinTmax FallTmin SprTmin SumTmin WinTmin PCTSAND

0 0 0 0 0 0

PCTSILT PCTOrgC

0 0
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We omitted the first four columns of the data frame Veg, as these contain the

transect and time information. There appear to be no missing values in the listed

variables. Take a closer look atwhat is going on inside the function. The first, and

only, argument of the function isX1.We assume that the variables are in columns

and the observations in rows. The command is.na(X1) creates a Boolean

matrix of the same dimension as X1, with the value TRUE if the corresponding

element of X1 is a missing value and FALSE if not. The colSums function is an

existing R function that takes the sum of the elements in each column (variable).

Normally, colSums is applied to a data matrix with numbers, but if it is applied

to a Boolean matrix, it converts a TRUE to 1, and a FALSE to 0. As a result, the

output of colSums(D1) is the number of missing values per variable.

If you replace the colSums command with the rowSums command, the

function gives the number of missing values per observation.

6.3.2 Technical Information

There are a few aspects of the function that we need to address: first, the names

of the variables used inside the function.Note that we used X1 and D1. Youmay

wonder why the code inside the function runs at all, as X1 seems to come out of

the blue. The application here is called positional matching. The first and, in this

case, only, argument in NAPerVariable, is a subset of the data frame Veg.

Inside the function, these data are allocated to X1, because X1 is the first

variable in the argument of the function. Hence, X1 contains columns 5 – 24

of the data frame Veg.

The principle of positional matching was illustrated in Fig. 6.1. The external

variables A, B, and C are called x, y, and zwithin the function. R knows that x is

A, because both are the first argument in the call to the function.We have already

seen this type of action with the arguments in the plot, lines,and loess

functions. The reason for changing the variable designations is that you should

not use nameswithin a function that also exist outside the function. If youmake a

programming mistake, for example, if you use D1 <- is.na(X) instead of D1

<- is.na(X1), R will look first inside the function for the values of X. If it does

not find this variable inside the function, it will look outside the function. If such a

variable exists outside the function, R will happily use it without telling you.

Instead of calculating the number of missing values in the variable Veg, it will

show you the number of missing values in X, whatever Xmay be. The convention

of using different, or new, names for the variables inside a function applies to all

variables, matrices, and data frames used in the function.

A second important aspect of functions is the form in which the resulting

information is returned to the user. FORTRAN and C++ users may assume

that this is done via the arguments of the function, but this is not the case. It is

the information coded for on the final line of the function that is returned. The
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function NAPerVariable has colSums(D1) on the last line, so this is the

information provided. If you use

> H <- NAPerVariable(Veg[ , 4 : 24])

H will contain the number of missing values in vector format. If the final line

of the function is a list, then Hwill be a list as well. In an example presented later

in this chapter, we see that this is useful for taking back multiple variables (see

also Chapter 3).

As always, you should document your code well. Add comments (with the

# symbol) to the function, saying that the data must be in an ‘‘observation by

variable’’ format, and that it calculate the number of missing values per column.

You should also ensure that the function will run for every possible dataset

that you may enter into it in the future. Our function, for example, will give an

error message if the input is a vector (one variable) instead of a matrix; colSums

only works if the data contain multiple columns (or at least are a matrix). You

need to document this, provide an understandable error message, or extend the

function so that it will run properly if the input consists of a vector.

6.3.3 A Second Example: Zeros and NAs

The red king crab Paralithodes camstchaticuswas introduced to the Barents Sea

in the 1960 s and 1970 s from its native area in the North Pacific. The leech

Johanssonia arctica deposits its eggs into the carapace of this crab. The leech is

a vector for a trypanosome blood parasite of marine fish, including cod.

Hemmingsen et al. (2005) examined a large number of cod for trypanosome

infections during annual cruises along the coast of Finnmark in North Norway.

We use their data here. The data included the presence or absence of the parasite

in fish as well as the number of parasites per fish. Information on the length,

weight, age, stage, sex, and location of the host fish was recorded. The familiar

read.table and names functions are used to import the data and show the

variable names:

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> names(Parasite)

[1] "Sample" "Intensity" "Prevalence" "Year"

[5] "Depth" "Weight" "Length" "Sex"

[9] "Stage" "Age" "Area"

Because we already copied and pasted the function NAPerVariable into R

in Section 6.3.1, there is no need to do this again. To obtain the number of

missing values per variable, type
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> NAPerVariable(Parasite)

Sample Intensity Prevalence Year Depth

0 57 0 0 0

Weight Length Sex Stage Age

6 6 0 0 0

Area

0

There are 57 missing values in the variable Intensity, and 6 in each of the

variables Length and Weight.

In a statistical analysis, we would model the number of parasites as a

function of year and length or weight, sex, and location of host fish. This is

typically done with generalised linear modelling for count data. Problems may

occur if the response variable is zero inflated (too many zeros). Therefore,

we need to determine how many zeros are in each variable, especially in

Intensity. Our first attempt is the function

ZerosPerVariable <- function(X1) {

D1 = (X1 == 0)

colSums(D1)

}

It is similar to the earlier function NAPerVariable, except that D1 is now

amatrix with values TRUE if an element of X1 equals 1, and FALSE otherwise.

To execute the function, use

> ZerosPerVariable(Parasite)

Sample Intensity Prevalence Year Depth

0 NA 654 0 0

Weight Length Sex Stage Age

NA NA 82 82 84

Area

0

There are 654 fish with no parasites, and 82 observations with a value of 0 for

Sex. The fact that Sex and Stage have a certain number of observations equal to

0 is amatter of coding; these are nominal variables. So it is not a problem. There

are NAs for the variables Intensity, Weight, and Length. This is because

the colSums function gives NA as output if there is an NA anywhere in the

variable. The help file of colSums (obtained by typing ?colSums) shows that

the option na.rm = TRUE can be added. This leads to:

ZerosPerVariable <- function(X1) {

D1 = (X1 == 0)
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colSums(D1, na.rm = TRUE)

}

Missing values are now ignored because of the na.rm = TRUE option. To

execute the new function, we use

> ZerosPerVariable(Parasite)

Sample Intensity Prevalence Year Depth

0 654 654 0 0

Weight Length Sex Stage Age

0 0 82 82 84

Area

0

The output now shows no observations with weight or length equal to

0, and this makes sense. The fact that both Intensity and Prevalence

have 654 zeros also makes sense; absence is coded as 0 in the variable

Prevalence.

6.3.4 A Function with Multiple Arguments

In the previous section, we created two functions, one to determine the number

of missing values per variable and another to find the number of zeros per

variable. In this section, we combine them and tell the function to calculate the

sum of the number of observations equal to zero or the number of observations

equal to NA. The code for the new function is given below.

VariableInfo <- function(X1, Choice1) {

if (Choice1 == "Zeros"){ D1 = (X1 == 0) }

if (Choice1 == "NAs") { D1 <- is.na(X1)}

colSums(D1, na.rm = TRUE)

}

The function has two arguments: X1 and Choice1. As before, X1 should

contain the data frame, and Choice1 is a variable that should contain either

the value ‘‘Zeros’’ or ‘‘NAs.’’ To execute the function, use

> VariableInfo(Parasite, "Zeros")

Sample Intensity Prevalence Year Depth

0 654 654 0 0

Weight Length Sex Stage Age

0 0 82 82 84

Area

0
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For the missing values, we can use

> VariableInfo(Parasite, "NAs")

Sample Intensity Prevalence Year Depth

0 57 0 0 0

Weight Length Sex Stage Age

6 6 0 0 0

Area

0

As you can see, the output is the same as in the previous section. So, the

function performs as we intended. We can also allocate the output of the

function to a variable in order to store it.

> Results <- VariableInfo(Parasite, "Zeros")

If you now type Results into the console, you will get the same numbers as

above. Figure 6.4 gives a schematic overview of the function up to this point.

The function takes as input the data frame Parasite and the character string

"Zeros", and internally calls them X1 and Choice1, respectively. The func-

tion then performs its calculations and the final result is stored in D1. Outside

the function, the results are available as Results. Once everything is perfectly

coded and bug free, you can forget about X1, Choice1, and D1, and what is

going on inside the function; all that matters is the input and the results.

The only problem is that our current function is not robust against user

error. Suppose you make a typing mistake, spelling ‘‘Zeros’’ as ‘‘zeroos’’:

> VariableInfo(Parasite, "zeroos")

Error in inherits(x, "data.frame"): object "D1" not

found

The variable Choice1 is equal to the nonexistent ‘‘zeroos’’, and there-

fore none of the commands is executed. Hence, D1 has no value, and an

Parasite
X1

”Zeros”
Choice1

D1

Based on Choice1, 

calculate D1
Results

Fig. 6.4 Illustration of the function to calculate the number of zeros or the number of missing

values of a dataset. Due to positional matching, the data frame Parasite and the argument

’’ are called X1 and Choice1 within the function
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error message is given on the last line. Another possible mistake is to

forget to include a value for the second argument:

> VariableInfo(Parasite)

Error in VariableInfo(Parasite): argument "Choice1" is

missing, with no default

The variable Choice1 has no value; the code crashes at the first line. The

challenge in making a function is anticipating likely errors. Here, we have seen

two silly (but common) mistakes, but the function can be written to provide a

safety net for these types of errors.

6.3.5 Foolproof Functions

Tomake a foolproof function, you have to give it to hundreds of people and ask

them all to try it and report any errors, or apply it on hundreds of datasets. Even

then, youmay be able to crash it. But there are a few common things you can do

to make it as stable as possible.

6.3.5.1 Default Values for Variables in Function Arguments

The variable Choice1 can be given a default value so that if you forget to enter

a value for Choice1, the function will do the calculations for the default value.

This is done with

VariableInfo <- function(X1, Choice1 = "Zeros") {

if (Choice1 == "Zeros"){ D1 = (X1 == 0) }

if (Choice1 == "NAs") { D1 <- is.na(X1)}

colSums(D1, na.rm = TRUE)

}

The default value is now ‘‘Zeros.’’ Executing this function without specifying

a value for Choice1 produces valid output. To test it, type

> VariableInfo(Parasite)

Sample Intensity Prevalence Year Depth

0 654 654 0 0

Weight Length Sex Stage Age

0 0 82 82 84

Area

0
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To calculate the number of missing values, use as before:

> VariableInfo(Parasite, "NAs")

In this case, the second if command in the function is executed. The output

of this command is not shown here. Don’t forget to write a help file to document

the default value!

6.3.5.2 Misspelling

We also want a function that executes the appropriate code, depending on the

value of Choice1, and gives a warning message if Choice1 is not equal to

‘‘Zeros’’ or ‘‘NAs’’. The following code does just that.

VariableInfo <- function(X1, Choice1 = "Zeros") {

if (Choice1 == "Zeros"){ D1 = (X1 == 0) }

if (Choice1 == "NAs") { D1 <- is.na(X1)}

if (Choice1 != "Zeros" & Choice1 != "NAs") {

print("You made a typo")} else {

colSums(D1, na.rm = TRUE)}

}

The third if statement will print a message if Choice1 is not equal to either

‘‘Zeros’’ or ‘‘NAs’’. If one of these conditions is TRUE, then the colSums

command is executed. To see it in action, type:

> VariableInfo(Parasite, "abracadabra")

[1] "You made a typo"

Note that internally the function is doing the following steps.

If A then blah blah

If B then blah blah

If C then blah blah, ELSE blah blah

A professional programmer will criticise this structure, as each if statement is

inspected by R, even if the argument is ‘‘Zero’’ and only the first if statement is

relevant. In this case, this does not matter, as there are only three if statements

which won’t take much time, but suppose there are 1000 if statements, only one

of which needs to be executed. Inspecting the entire list is a waste of time. The

help file for the if command, obtained by ?if, provides some tools to address

this situation. In the ‘‘See also’’ section, there is a link to the ifelse command.

This can be used to replace the first two commands in the function:
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> ifelse(Choice1 == "Zeros", D1 <- (X1 == 0),

D1 <- is.na(X1))

If the value of Choice1 is equal to ‘‘Zeros’’, then the D1 <-(X1 == 0)

command is executed, and, in all other situations, it is D1 <- is.na(X1). Not

exactly what we had in mind, but it illustrates the range of options available in

R. In Section 6.4, we demonstrate the use of the if else construction to avoid

inspecting a large number of if statements.

Do Exercise 2 in Section 6.6 on creating a new categorical variable

with the ifelse command, using the owl data.

6.4 More on Functions and the if Statement

In the following we discuss passing multiple arguments out of a function and the

ifelse command, with the help of a multivariate dataset. The Dutch govern-

ment institute RIKZ carried out a marine benthic sampling program in the

summer of 2002. Data on approximately 75 marine benthic species were col-

lected at 45 sites on nine beaches along the Dutch coastline. Further information

on these data and results of statistical analyses such as linear regression, general-

ised additive modelling, and linear mixed effects modelling, can be found in Zuur

et al. (2007, 2009).

The data matrix consists of 45 rows (sites) and 88 columns (75 species and 13

explanatory variables). You could apply multivariate analysis techniques to see

which species co-occur, which sites are similar in species composition, and which

environmental variables are driving the species abundances. However, before

doing any of this, you may want to start simply, by calculating a diversity index

and relating this index to the explanatory variables.

A diversity index means that, for each site, you will characterise the 75 species

with a single value. There are different ways of doing this, and Magurran (2004)

describes various diversity indices. We do not want to engage in a discussion of

which is better. You only need to develop an R function that takes as input an

observation-by-species matrix, potentially with missing values, and a variable

that tells the function which diversity index to calculate. To keep it simple, we

limit the code to three indices. Interested readers can extend this R function and

add their own favourite diversity indices. The three indices we use are:

1. Total abundance per site.

2. Species richness, defined as the number of different species per site.

3. The Shannon index. This takes into account both the presence/absence

nature of the data and the actual abundance. It is defined by

Hi ¼ �

Xm

i
pij � log10 pij
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pij is calculated by

pij ¼
Yij

Pn

j¼1

Yij

where pij is the proportion of a particular species j at site i, and m (in the

first equation) is the total number of species. The total number of species is n.

6.4.1 Playing the Architect Again

Just as with the previous example presented in this chapter, begin by making a

sketch of the tasks to be carried out.

1. Import the data and investigate what you have in terms of types of

variables, variable names, dimension of the data, and so on.

2. Calculate total abundance for site 1. Repeat this for site 2. Automate this

process, making the code as general as possible. Use elegant and efficient

coding.

3. Calculate the different number of species for site 1. Repeat this process for

site 2. Automate this process, and make the code as general as possible.

4. Do the same for the Shannon index.

5. Combine the code, and use an if statement to choose between the indices.

Use elegant coding.

6. Put all the code in a function and allow the user to specify the data and the

diversity index. The function should return the actual index and also

indicate which diversity index was chosen (as a string).

In the following, we transform this sketch into fully working R code.

6.4.2 Step 1: Importing and Assessing the Data

Import the RIKZ data, separate the species data from the environmental data,

and determine the size of the data with the following R code.

> Benthic <- read.table("C:/RBook/RIKZ.txt",

header = TRUE)

> Species <- Benthic[ , 2:76]

> n <- dim(Species)

> n

[1] 45 75

The first column in the data frame Benthic contains labels, columns 2–76

contain species data, and columns 77–86 are the explanatory variables. The
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species data are extracted and stored in the data frame Species. Its dimension

is 45 rows and 75 columns, and these values are obtained and stored in n using

the dim command. To save space, results of the names and str command are

not shown here; all variables are coded numerically.

6.4.3 Step 2: Total Abundance per Site

Calculate the sum of all species at site 1 by using

> sum(Species[1, ], na.rm = TRUE)

[1] 143

The total number of species at site 1 is 143. The same can be done for site 2:

> sum(Species[2, ], na.rm = TRUE)

[1] 52

To avoid typing this command 45 times, construct a loop that calculates the

sum of all species per site. Obviously, we need to store these values. The

following code does this.

> TA <- vector(length = n[1])

> for (i in 1:n[1]){

TA[i] <- sum(Species[i, ], na.rm = TRUE)

}

The vector TA is of length 45 and contains the sum of all species per

site:

> TA

[1] 143 52 70 199 67 944 241 192 211 48 35

[12] 1 47 38 10 1 47 73 8 48 6 42

[23] 29 0 43 33 34 67 46 5 7 1 1

[34] 102 352 6 99 27 85 0 19 34 23 0

[45] 11

Three sites have no species at all, whereas at one site the total abun-

dance is 944. Note that you must define TA as a vector of length 45 before

constructing the loop or TA[i] will give an error message (see the code

above). You also need to ensure that the index i in the loop is indeed

between 1 and 45; T[46] is not defined. Instead of using length = 45 in
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the vector command, we used length = n[1]; remember that the task was

to make the code as general as possible. The loop is what we call the brute

force approach, as more elegant programming, producing identical results,

is given by:

> TA <- rowSums(Species, na.rm = TRUE)

> TA

[1] 143 52 70 199 67 944 241 192 211 48 35

[12] 1 47 38 10 1 47 73 8 48 6 42

[23] 29 0 43 33 34 67 46 5 7 1 1

[34] 102 352 6 99 27 85 0 19 34 23 0

[45] 11

The rowSums command takes the sum for each row. Note that this

requires only one line of coding and also involves less computing time

(albeit for such a small dataset the difference is very small), and is prefer-

able to the loop.

6.4.4 Step 3: Richness per Site

The number of species at site 1 is given by

> sum(Species[1, ] > 0, na.rm = TRUE)

[1] 11

There are 11 different species at site 1. Species[1, ] > 0 creates a

Boolean vector of length 75 with elements TRUE and FALSE. The function

sum converts the value TRUE to 1, and FALSE to 0, and adding these

values does the rest.

For site 2, use

> sum(Species[2, ] > 0, na.rm = TRUE)

[1] 10

To calculate the richness at each site, create a loop as for total abun-

dance. First define a vector Richness of length 45, then execute a loop

from 1 to 45. For each site, richness is determined and stored.

> Richness <- vector(length = n[1])

> for (i in 1:n[1]){
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Richness[i] <- sum(Species[i, ] > 0, na.rm = TRUE)

}

> Richness

[1] 11 10 13 11 10 8 9 8 19 17 6 1 4 3 3

[16] 1 3 3 1 4 3 22 6 0 6 5 4 1 6 4

[31] 2 1 1 3 4 3 5 7 5 0 7 11 3 0 2

The elegant approach uses the rowSums command and gives the same result:

> Richness <- rowSums(Species > 0, na.rm = TRUE)

> Richness

[1] 11 10 13 11 10 8 9 8 19 17 6 1 4 3 3

[16] 1 3 3 1 4 3 22 6 0 6 5 4 1 6 4

[31] 2 1 1 3 4 3 5 7 5 0 7 11 3 0 2

6.4.5 Step 4: Shannon Index per Site

To calculate the Shannon index, we need only three lines of elegant R code that

include the equations of the index:

> RS <- rowSums(Species, na.rm = TRUE)

> prop <- Species / RS

> H <- -rowSums(prop * log10(prop), na.rm = TRUE)

> H

[1] 0.76190639 0.72097224 0.84673524

[4] 0.53083926 0.74413939 0.12513164

[7] 0.40192006 0.29160667 1.01888185

[10] 0.99664096 0.59084434 0.00000000

< Cut to reduce space>

We could have used code with a loop instead. The calculation can be done

even faster with the function ‘‘diversity’’, which can be found in the vegan

package in R. This package is not part of the base installation; to install it, see

Chapter 1. Once installed, the following code can be used.

> library(vegan)

> H <- diversity(Species)

> H
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1 2 3 4 5

1.7543543 1.6600999 1.9496799 1.2223026 1.7134443

6 7 8 9 10

0.2881262 0.9254551 0.6714492 2.3460622 2.2948506

11 12 13 14 15

1.3604694 0.0000000 0.4511112 0.5939732 0.9433484

16 17 18 19 20

0.0000000 0.7730166 0.1975696 0.0000000 0.8627246

< Cut to reduce space>

Note that the values are different. The diversity help file shows that this

function uses the natural logarithmic transformation, whereas we used the

logarithm with base 10. The diversity help file gives instructions for chan-

ging this when appropriate.

A limitation of using the vegan package is that this package must be

installed on the computer of the user of your code.

6.4.6 Step 5: Combining Code

Enter the code for all three indices and use an if statement to select a

particular index.

> Choice <- "Richness"

> if (Choice == "Richness") {

Index <- rowSums(Species >0, na.rm = TRUE)}

> if (Choice == "Total Abundance") {

Index <- rowSums(Species, na.rm = TRUE) }

> if (Choice =="Shannon") {

RS <- rowSums(Species, na.rm = TRUE)

prop <- Species / RS

Index <- -rowSums(prop*log10(prop), na.rm = TRUE)}

Just change the value ofChoice to’’Total Abundance’’ or’’Shannon’’

to calculate the other indices.

6.4.7 Step 6: Putting the Code into a Function

You can now combine all the code into one function and ensure that the

appropriate index is calculated and returned to the user. The following code

does this.

Index.function <- function(Spec, Choice1){

if (Choice1 == "Richness") {
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Index <- rowSums(Spec > 0, na.rm = TRUE)}

if (Choice1 == "Total Abundance") {

Index <- rowSums(Spec, na.rm = TRUE) }

if (Choice1 == "Shannon") {

RS <- rowSums(Spec, na.rm = TRUE)

prop <- Spec / RS

Index <- -rowSums(prop * log10(prop),

na.rm = TRUE)}

list(Index = Index, MyChoice = Choice1)

}

The if statement ensures that only one index is calculated. For small

datasets, you could calculate them all, but for larger datasets this is not good

practice. Before executing the code, it may be wise to ensure that none of the

variables within the function also exists outside the function. If they do, remove

them with the rm command (see Chapter 1), or quit and restart R. We renamed

all input variables so that no duplication of variable names is possible. In order

to execute the function, copy the code for the function, paste it into the console,

and type the command:

> Index.function(Species, "Shannon")

$Index

[1] 0.76190639 0.72097224 0.84673524 0.53083926

[5] 0.74413939 0.12513164 0.40192006 0.29160667

[9] 1.01888185 0.99664096 0.59084434 0.00000000

[13] 0.19591509 0.25795928 0.40969100 0.00000000

[17] 0.33571686 0.08580337 0.00000000 0.37467654

[21] 0.37677792 1.23972435 0.62665477 0.00000000

[25] 0.35252466 0.39057516 0.38359186 0.00000000

[29] 0.58227815 0.57855801 0.17811125 0.00000000

[33] 0.00000000 0.12082909 0.08488495 0.43924729

[37] 0.56065567 0.73993117 0.20525195 0.00000000

[41] 0.65737571 0.75199627 0.45767851 0.00000000

[45] 0.25447599

$MyChoice

[1] "Shannon"

Note that the function returns information from of the final command,

which in this case is a list command. Recall from Chapter 2 that a list

allows us to combine data of different dimensions, in this case a variable with 45

values and also the selected index.

6.4 More on Functions and the if Statement 123



Is this function perfect? The answer is no, as can be verified by typing

> Index.function(Species, "total abundance")

The error message produced by R is

Error in Index.function(Species, "total abundance"):

object "Index" not found

Note that we made a typing error in not capitalizing ‘‘total abundance’’.

In the previous section, we discussed how to avoid such errors. We extend

the function so that it inspects all if statements and, if none of them

is executed, gives a warning message. We can use the if else command

for this.

Index.function <- function(Spec,Choice1){

if (Choice1 == "Richness") {

Index <- rowSums(Spec > 0, na.rm = TRUE) } else

if (Choice1 == "Total Abundance") {

Index <- rowSums(Spec, na.rm = TRUE) } else

if (Choice1 == "Shannon") {

RS <- rowSums(Spec, na.rm = TRUE)

prop <- Spec / RS

Index <- -rowSums(prop*log(prop),na.rm=TRUE)} else {

print("Check your choice")

Index <- NA }

list(Index = Index, MyChoice = Choice1)}

Rwill look at the first if command, and, if the argument is FALSE, it will go

to the second if statement, and so on. If the variable Choice1 is not equal to

‘‘Richness’’, ‘‘Total Abundance’’, or ‘‘Shannon’’, the function will execute the

command,

print("Check your choice")

Index <- NA

You can replace the text inside the print command with anything appro-

priate. It is also possible to use the stop command to halt R. This is useful if the

function is part of a larger calculation process, for example, a bootstrap

procedure. See the help files on stop, break, geterrmessage, or warning.

These will help you to create specific actions to deal with unexpected errors in

your code.
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6.5 Which R Functions Did We Learn?

Table 6.1 shows the R functions that were introduced in this chapter.

6.6 Exercises

Exercise 1. Using a loop to plot temperature per location.

In Section 6.2, sibling negotiation behaviour was plotted versus arrival

time for each nest in the owl data. A graph for each nest was created and

saved as a jpg file. Do the same for the temperature data; see Exercise 4.1 for

details. The file temperature.xls contains temperature observations made at

31 locations (denoted as stations in the spreadsheet) along the Dutch coast-

line. Plot the temperature data versus time for each station, and save the

graph as a jpg file.

Exercise 2. Using the ifelse command for the owl data.

The owl data were sampled on two consecutive nights. If you select the data

from one nest, the observations will cover both nights. The two nights differed

as to the feeding regime (satiated or deprived). To see observations from a single

night, select all observations from a particular nest and food treatment. Use the

ifelse and paste functions to make a new categorical variable that defines

the observations from a single night at a particular nest. Try rerunning the code

from Exercise 1 to make a graph of sibling negotiation versus arrival time for

observations of the same nest and night.

Exercise 3. Using the function and if commands with the benthic dataset.

In this exercise we provide the steps for the function that was presented in

Section 6.4: the calculation of diversity indices. Read the introductory text in

Section 6.4 on diversity indices. Import the benthic data and extract columns

2–76; these are the species.

Table 6.1 R functions introduced in this chapter

Function Purpose Example

jpeg Opens a jpg file jpeg(file = ’’AnyName.jpg’’)

dev.off Closes the jpg file dev.off()

function Makes a function z <- function(x, y){ }

paste Concatenates variables as characters paste(’’a’’, ’’b’’, sep = ’’ ’’)

if Conditional statement if (a) { x<-1 }

ifelse Conditional statement ifelse (a, x<-1, x<-2)

if elseif Conditional statement if (a) { x<-1 } elseif (b)

{ x<-2 }
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Calculate total abundance at site 1. Calculate total abundance at site 2.

Calculate total abundance at site 3. Calculate the total abundance at site 45.

Find a function that can do this in one step (sum per row). Brute forcemaywork

as well (loop), but is less elegant.

Calculate the total number of different species in site 1 (species richness).

Calculate species richness for site 2. Do the same for sites 3 and 45. Find a

function that can do this in one step.

Create a function using the code for all the diversity indices. Make sure that

the user can choose which index is calculated. Ensure that the code can deal with

missing values.

If you are brave, add the Shannon index. Apply the same function to the

vegetation data.
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Chapter 7

Graphing Tools

Chapter 5, the plot function was introduced. We demonstrated elementary
scatterplots, modifying plotting characters, and adding x- and y-labels and a

main title. In this chapter, we introduce more graphing tools. Not all of them
are among our favourites. For example, we have never used pie charts or bar
charts. However, these graphs seem to be on the shortlist of so many scientists

that we find it necessary to include them in this book. They are discussed in
Sections 7.1 and 7.2. Tools to detect outliers—the boxplot and Cleveland

dotplot—are presented in Sections 7.3 and 7.4, respectively. We also demon-
strate graphs illustrating the mean with lines added to represent the standard

error. Scatterplots are further discussed in Section 7.5. Multipanel scatterplots
are discussed in Sections 7.6 and 7.7, and advanced tools to display multiple
graphs in a single window are presented in Section 7.8.

7.1 The Pie Chart

7.1.1 Pie Chart Showing Avian Influenza Data

We demonstrate the pie chart using the avian influenza dataset from Exercise 1

in Section 3.7. Recall that the data represent the numbers of confirmed human
cases of Avian Influenza A/(H5N1) reported to theWorld Health Organization
(WHO). The data for several countries were taken from the WHO website at

www.who.int and are reproduced only for educational purposes. We exported
the data in the Excel file, BidFlu.xls, to a tab-separated ascii file with the name

Birdflucases.txt. The following code imports the data and presents the usual
information.

> setwd("C:/RBook/")

> BFCases <- read.table(file = "Birdflucases.txt",

header = TRUE)

> names(BFCases)

[1] "Year" "Azerbaijan" "Bangladesh"

[4] "Cambodia" "China" "Djibouti"

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_7, � Springer ScienceþBusiness Media, LLC 2009
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[7] "Egypt" "Indonesia." "Iraq"

[10] "LaoPDR" "Myanmar" "Nigeria"

[13] "Pakistan" "Thailand" "Turkey"

[16] "VietNam"

> str(BFCases)

’data.frame’: 6 obs. of 16 variables:

$Year : int 2003 2004 2005 2006 2007 2008

$Azerbaijan: int 0 0 0 8 0 0

$Bangladesh: int 0 0 0 0 0 1

$Cambodia : int 0 0 4 2 1 0

$China : int 1 0 8 13 5 3

$Djibouti : int 0 0 0 1 0 0

$Egypt : int 0 0 0 18 25 7

$Indonesia.: int 0 0 20 55 42 18

$Iraq : int 0 0 0 3 0 0

$LaoPDR : int 0 0 0 0 2 0

$Myanmar : int 0 0 0 0 1 0

$Nigeria : int 0 0 0 0 1 0

$Pakistan : int 0 0 0 0 3 0

$Thailand : int 0 17 5 3 0 0

$Turkey : int 0 0 0 12 0 0

$VietNam : int 3 29 61 0 8 5

We have annual data from the years 2003–2008. The first variable contains
the years. There are various things we can learn from this dataset. An interesting
question is whether the number of bird flu cases has increased over time.We can
address this question for individual countries or for the total number of cases.
The latter is calculated by

> Cases <- rowSums(BFCases[, 2:16])

> names(Cases) <- BFCases[, 1]

> Cases

2003 2004 2005 2006 2007 2008

4 46 98 115 88 34

Columns 2–16 of BFCases contain the information per country. The row-
Sums function calculates totals per year and the names function adds the labels
2003–2008 to the variable Cases. (Note that the 34 cases in 2008 is misleading,
as this was written halfway through 2008. If this were a proper statistical
analysis, the 2008 data would be dropped.) The function for a pie chart in R
is pie. It has various options, some of which are illustrated in Fig. 7.1. The pie
function requires as input a vector of nonnegative numerical quantities; any-
thing more is optional and deals with labels, colours, and the like.

128 7 Graphing Tools



Figure 7.1 was made with the following R code.

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))

> pie(Cases, main = "Ordinary pie chart") #A

> pie(Cases, col = gray(seq(0.4, 1.0, length = 6)),

clockwise = TRUE, main = "Grey colours") #B

> pie(Cases, col = rainbow(6), clockwise = TRUE,

main = "Rainbow colours") #C

> library(plotrix)

> pie3D(Cases, labels = names(Cases), explode = 0.1,

main = "3D pie chart", labelcex = 0.6) #D

The par function is discussed in the next section. The variable Cases is of
length 6 and contains totals per year. The command pie (Cases) creates the

pie chart in Fig. 7.1A. Note that the direction of the slices is anticlockwise,
which may be awkward, because our variable is time related. We reversed this
in the second pie chart (Fig. 7.1B) with the option clockwise = TRUE. We

also changed the colours, but, because this book is printed without colour, try
this yourself: type in the code and see the colours of the pie charts in panels
A–C. Because most of your work is likely to end up in a greyscale paper or
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Ordinary pie chart

2003
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2007

2008

Grey colours
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Rainbow colours

3D pie chart

2003
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2007

2008

A

C

D

B

Fig. 7.1 A: Standard pie chart. B: Pie chart with clockwise direction of the slices. C: Pie chart
with rainbow colours (which have been converted to greyscale during the printing process).
D: Three-dimensional pie chart
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report, we recommend using greyscale from the beginning. The only exception
is for a PowerPoint presentation, where it is useful to present coloured pie
charts. Note that the term ‘‘useful’’ refers to ‘‘coloured,’’ rather than to pie
charts per se. The main problem with the pie chart is illustrated in Fig. 7.1:
Although 2005 and 2006 have the largest slices, it is difficult to determine
whether you should stay at home and close the windows and doors to survive
the next pandemic, or whether ‘‘only’’ a handful of people were unfortunate
enough to contract the disease. The pie chart does not give information on
sample size.

Finally, Fig. 7.1D shows a three-dimensional pie chart. Although it
now looks more like a real pie, it is, if anything, even less clear in its
presentation than the other three graphs. To make this graph, you need
to install the package plotrix. The function pie3D has many options,
and we suggest that you consult its help file to improve the readability of
labels.

7.1.2 The par Function

The par function has an extensive list of graph parameters (see ?par) that can
be changed. Some options are helpful; others you may never use.

The mfrow =c (2, 2) creates a graphic window with four panels. Chan-
ging the c (2, 2) to c (1, 4) or c (4, 1) produces a row (or column) of
four pie charts. If you have more than four graphs, for instance 12, use mfrow
=c(3, 4), although now things can become crowded.

The mar option specifies the amount of white space around each graph (each
pie chart in this case). The white space is defined by the number of lines of
margin at the four sides; bottom, left, top, and right. The default values are,
respectively, c (5, 4, 4, 2)+0.1. Increasing the values gives more white
space. Using trial and error, we chose c (3, 3, 2, 1).

A problem arises with the par function if you execute the code for the four
pie charts above and, subsequently, make another graph. R is still in the 26 2
mode, and will overwrite Figure 7.1A, leaving the other three graphs as they are.
The next graph will overwrite panel B, and so on. There are two ways to avoid
this. The first option is simply to close the four-panel graph in R before making
a new one. This is a single mouse click. The alternative is a bit more program-
ming intensive:

> op <- par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))

> pie(Cases, main = "Ordinary pie chart")

> pie(Cases, col = gray(seq(0.4, 1.0, length = 6)),

clockwise = TRUE, main = "Grey colours")

> pie(Cases, col = rainbow(6), clockwise = TRUE,

main = "Rainbow colours")
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> pie3D(Cases, labels = names(Cases), explode = 0.1,

main = "3D pie chart", labelcex = 0.6)

> par(op)

The graph parameter settings are stored in the variable op on the first line.
The graphs are made as before, and the last line of code converts to the default
settings. Any new graph created after the par (op) command will be plotted as
if the par function had not been used. This is useful if you need to create many
graphs in sequence. It is neat programming, but takes more typing. It is often
tempting to be lazy and go for the first approach. However, for good program-
ming practice, we recommend making the extra effort. You will also see this
style of programming in the help files.

Do Exercise 1 in Section 7.10 using the pie function.

7.2 The Bar Chart and Strip Chart

We give two examples of the bar chart, another type of graph that is not part of
our toolbox. In the first example, we continue with the avian influenza data and
present a bar chart showing the total number of bird flu cases and deaths per
year. In the second example, a marine benthic dataset is used, with mean values
per beach plotted as bars. In the last section, we show a strip chart to visualise
similar information.

7.2.1 The Bar Chart Using the Avian Influenza Data

In the previous section, an avian influenza dataset was used to create pie charts
showing the total number of cases per year. In addition to bird flu cases, the
number of deaths is also available and can be found in the tab-separated ascii
file, Birdfludeaths.txt. The data are loaded with the commands:

> BFDeaths <- read.table(file = "Birdfludeaths.txt",

header = TRUE)

> Deaths <- rowSums(BFDeaths[, 2:16])

> names(Deaths) <- BFDeaths[, 1]

> Deaths

2003 2004 2005 2006 2007 2008

4 32 43 79 59 26
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The data are structured in the same manner as the bird flu cases. We can

visualise the change in the number of cases over time, and then compare number

of cases to deaths.
The bar chart in Fig. 7.2A shows the change in the number of cases

over time using the data from the variable Cases (see Section 7.1 for

code to calculate Cases). Recall that Cases has six values with the

labels 2003–2008. Each year is presented as a vertical bar. This graph is

more useful than the pie chart, as we can read the absolute values from

the y-axis. However, a great deal of ink and space is consumed by only

six values.

The first two lines of the code below were used to make the bar chart in panel

A. The remaining code is for panels B–D:

> par(mfrow = c(2, 2), mar = c(3, 3, 2, 1))

> barplot(Cases , main = "Bird flu cases") #A

> Counts <- cbind(Cases, Deaths)

> barplot(Counts) #B

> barplot(t(Counts), col = gray(c(0.5, 1))) #C

> barplot(t(Counts), beside = TRUE) #D
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Fig. 7.2 A: Standard bar chart showing the annual number of bird flu cases. B: Stacked bar
chart showing the accumulated totals per year for cases and deaths (note that values for 2003
can hardly be seen). C: Stacked cases (grey) and deaths (white) per year. D: Number of cases
and deaths per year represented by adjoining bars
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In panels B–D, we used the combined data for cases and deaths; these are

called Counts and are of dimension 66 2:

> Counts

Cases Deaths

2003 4 4

2004 46 32

2005 98 43

2006 115 79

2007 88 59

2008 34 26

In panel B the bars represent data for each year. The graph gives little usable

information. Also, years with small numbers (e.g., 2003) are barely visible. To

produce panel C, we took the transposed values of Counts using the function

t, making the input for the barplot function a matrix of dimension 26 6.

> t(Counts)

2003 2004 2005 2006 2007 2008

Cases 4 46 98 115 88 34

Deaths 4 32 43 79 59 26

Although you see many such graphs in the literature, they can be misleading.

If you compare the white boxes with one another, your eyes tend to compare the

values along the y-axis, but these are affected by the length of the grey boxes. If

your aim is to show that in each year there are more cases than deaths, this

graph may be sufficient (comparing compositions). Among the bar charts,

panel D is probably the best. It compares cases and deaths within each year,

and, because there are only two classes per year, it is also possible to compare

cases and deaths among years.

7.2.2 A Bar Chart ShowingMean Values with Standard Deviations

In Chapter 27 of Zuur et al. (2007), core samples were taken at 45 stations on

nine beaches along the Dutch coastline. The marine benthic species were

determined in each sample with over 75 identified. In Chapter 6, we developed

a function to calculate species richness, the number of different species. The file

RIKZ2.txt contains the richness values for the 45 stations and also a column

identifying the beach.
The following R code imports the data and calculates the mean richness and

standard deviation per beach. The tapply function was discussed in Chapter 41.

1 Note that we could have omitted the text INDEX = and FUN = .
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> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)

> Bent.M <- tapply(Benthic$Richness,

INDEX = Benthic$Beach, FUN = mean)

> Bent.sd <- tapply(Benthic$Richness,

INDEX = Benthic$Beach, FUN = sd)

> MSD <- cbind(Bent.M, Bent.sd)

The variable Bent.M contains the mean richness values, and Bent.sd the

standard deviation, for each of the nine beaches.We combined them in a matrix

MSD with the cbind command. The values are as follows:

> MSD

Bent.M Bent.sd

1 11.0 1.224745

2 12.2 5.357238

3 3.4 1.816590

4 2.4 1.341641

5 7.4 8.532292

6 4.0 1.870829

7 2.2 1.303840

8 4.0 2.645751

9 4.6 4.393177

To make a graph in which the mean values are plotted as a bar and the

standard deviations as vertical lines extending above the bars (Fig. 7.3A) use the

following procedure. For the graph showing mean values, enter
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Fig. 7.3 A: Bar chart showing the benthic data.Mean values are represented by the barswith a
vertical line showing standard deviations. The colours were changed to greyscale during the
printing process.B: Strip chart for the raw data. Themean value per beach is plotted as a filled
dot, and the lines represent the mean +/– the standard error
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> barplot(Bent.M)

Add labels and perhaps some colour for interest:

> barplot(Bent.M, xlab = "Beach", ylim = c(0, 20),

ylab = "Richness", col = rainbow(9))

The vertical lines indicating standard deviations are added using the function

arrows to draw an arrow between two points with coordinates (x1, y1) and (x2,

y2). TellingR to draw an arrowbetween the points (x, y1) and (x, y2), will produce a

vertical arrow, as both points have the same x-value. The y1-value is themean, and

the y2-value is the mean plus the standard deviation. The x is the coordinate of the

midpoint of a bar. The following code obtains these values and creates Fig. 7.3A.

> bp <- barplot(Bent.M, xlab = "Beach", ylim = c(0,20),

ylab = "Richness", col = rainbow(9))

> arrows(bp, Bent.M, bp, Bent.M + Bent.sd, lwd = 1.5,

angle = 90, length = 0.1)

> box()

It is the bp<–barplot (Bent.M, ...) that helps us out. The best way to

understand what it does is by typing:

> bp

[,1]

[1,] 0.7

[2,] 1.9

[3,] 3.1

[4,] 4.3

[5,] 5.5

[6,] 6.7

[7,] 7.9

[8,] 9.1

[9,] 10.3

They are the midpoints along the x-axis of each bar, which are used as input

for the arrows function. The angle = 90 and length = 0. 1 options

change the head of the arrow into a perpendicular line. The lwd stands for line

width with 1 as the default value. The box function draws a box around the

graph. Run the code without it and see what happens.

7.2.3 The Strip Chart for the Benthic Data

In the previous section, a marine benthic dataset was used, and the mean

species richness values per beach were presented as bars with a line
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representing standard deviation. Section 7.4 in Zar (1999) contains a dis-

cussion of when to present the standard deviation, standard error, or twice

the standard error (assuming a large sample). It is relatively easy to produce

a graph with the raw data, mean values, and either the standard deviation

or standard error around the mean. An example is given in Fig. 7.3B.

Instead of using the plot function, we used the stripchart function.

The open dots show the raw data. We have added random jittering (varia-

tion) to distinguish observations with the same value, which would other-

wise coincide. The filled dots are the mean values per beach, and were

calculated in the previous section. We illustrate the standard errors, which

are calculated by dividing the standard deviation by the square root of the

sample size (we have five observations per beach). In R, this is done as

follows.

> Benth.le <- tapply(Benthic$Richness,

INDEX = Benthic$Beach, FUN = length)

> Bent.se <- Bent.sd / sqrt(Benth.le)

The variable Bent.se now contains the standard errors. Adding the

lines for standard error to the graph is now a matter of using the arrow

function; an arrow is drawn from the mean to the mean plus the standard

error, and also from the mean to the mean minus the standard error. The

code is below.

> stripchart(Benthic$Richness ~ Benthic$Beach,

vert = TRUE, pch = 1, method = "jitter",

jit = 0.05, xlab = "Beach", ylab = "Richness")

> points(1:9, Bent.M, pch = 16, cex = 1.5)

> arrows(1:9, Bent.M,

1:9, Bent.M + Bent.se, lwd = 1.5,

angle = 90, length = 0.1)

> arrows(1:9, Bent.M,

1:9, Bent.M - Bent.se, lwd = 1.5,

angle = 90, length = 0.1)

The options in the stripchart function are self-explanatory. Change them

to see what happens. The points function adds the dots for the mean values.

Instead of the stripchart function, you can also use the plot function, but

it does not have a method = "jitter" option. Instead you can use jitter

(Benthic$Richness). Similar R code is given in Section 6.1.3 in Dalgaard

(2002).

Do Exercise 2 in Section 7.10. This is an exercise in the barchart

and stripchart functions using vegetation data.
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7.3 Boxplot

7.3.1 Boxplots Showing the Owl Data

The boxplot should most often be your tool of choice, especially when working
with a continuous numerical response (dependent) variable and categorical
explanatory (independent) variables. Its purpose is threefold: detection of out-
liers, and displaying heterogeneity of distribution and effects of explanatory
variables. Proper use of this graphing tool, along with the Cleveland dotplot
(which is described fully in Section 7.4), can provide a head start on analysis of
data.

In Chapter 6 we used a dataset on owl research. Roulin and Bersier (2007)
looked at how nestlings respond to the presence of the father and of the mother.
Using microphones inside and a video outside the nests, they sampled 27 nests,
and studied vocal begging behaviour when the parents brought prey. Sampling
took place between 21.30 hours and 05.30 hours on two nights. Half the nests
were food deprived and the other half food satiated (this was reversed on the
second night). The variable ArrivalTime shows the time when a parent
arrived at the perch with prey. ‘‘Nestling negotiation’’ indicates the average
number of calls per nest.

One of the main questions posed is whether there is a feeding protocol effect
and a sex of parent effect. The analysis requires mixed effects modelling tech-
niques and is fully described in Zuur et al. (2009). Before doing any complicated
statistics, it is helpful to create boxplots. A boxplot for the nestling negotiation
data is easily made using the boxplot function seen in Chapter 1. In Chapter 6,
we showed the output of the names and str functions for the owl data, and do
not repeat it here.

> setwd("C:/RBook/")

> Owls <- read.table(file = "Owls.txt", header = TRUE)

> boxplot(Owls$NegPerChick)

The resulting graph is presented in Fig. 7.4. A short description of the
boxplot construction is given in the figure labelling. There are five potential
outliers, indicating that further investigation is required.

Figure 7.5 illustrates possible effects of sex of the parent (panel A), food
treatment (panel B), and the interaction between sex of the parent and
food treatment (panels C and D). Because the variable names are long,
they are not completely displayed in panel C. We reproduced the boxplots
from panel C in panel D and added labels using the names option.
Results indicate that there is a possible food treatment effect. The inter-
action is not clear, which was confirmed by formal statistical analysis. The
R code to make Fig. 7.4 is given below. Panels C and D were produced
with the SexParent *FoodTreatment construction. The code is self-
explanatory.
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Fig. 7.5 A: Boxplot of owl nestling negotiation conditional on sex of the parent.B: Boxplot of
owl nestling negotiation conditional on food treatment. C: Boxplot of owl nestling negotia-
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Fig. 7.4 Boxplot of owl nestling negotiation. The thick horizontal line is the median; the box is
defined by the 25th and 75th percentiles (lower and upper quartile). The difference between the
two is called the spread. The dotted line has a length of 1.5 times the spread. (The length of the
line pointing up is shorter if the values of the points are smaller than the 75th percentile+ 1.56
spread, and similar for the line pointing downwards. This explains why there is no line at the
bottom of the box.) All points outside this range are potential outliers. See Chapter 4 in Zuur
et al. (2007) for a discussion of determining if such points are indeed outliers. Note that in this
case the 25th percentile is also the smallest value (there are many zero values)
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> par(mfrow = c(2,2), mar = c(3, 3, 2, 1))

> boxplot(NegPerChick ~ SexParent, data = Owls)

> boxplot(NegPerChick ~ FoodTreatment, data = Owls)

> boxplot(NegPerChick ~ SexParent * FoodTreatment,

data = Owls)

> boxplot(NegPerChick ~ SexParent * FoodTreatment,

names = c("F/Dep", "M/Dep", "F/Sat", "M/Sat"),

data = Owls)

Sometimes getting all the labels onto a boxplot calls for more creativity. For

example, Fig. 7.6 shows a boxplot of nestling negotiation conditional on nest.

There are 27 nests, all with long names. If we had entered

> boxplot(NegPerChick ~ Nest, data = Owls)

only a few of the labels would be shown. The solution was to create the boxplot

without a horizontal axis line and to put the labels in a small font, at an angle,

under the appropriate boxplot. This sounds complicated, but requires only

three lines of R code.

> par(mar = c(2, 2, 3, 3))

> boxplot(NegPerChick ~ Nest, data = Owls,

axes = FALSE, ylim = c (-3, 8.5))

> axis(2, at = c(0, 2, 4, 6, 8))

> text(x = 1:27, y = -2, labels = levels(Owls$Nest),

cex = 0.75, srt = 65)

Because we used the option axes =FALSE, the boxplot function drew

the boxplot without axes lines. The ylim specifies the lower and upper limits of
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Fig. 7.6 Boxplot of owl nestling negotiation conditional on the 27 nests. The shape of the boxplot
suggests that there may be a nest effect, suggesting further analysis by mixed effects models
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the vertical axis. Instead of using limits from 0 to 8.5, we used –3 to 8.5. This
allowed us to put the labels in the lower part of the graph (Fig. 7.6).

The axis function draws an axis. Because we entered 2 as the first argument,
the vertical axis on the left is drawn, and the at argument specifies where the
tick marks should be. The text command places all the labels at the appro-
priate coordinates. The cex argument specifies the font size (1 is default) and
srt defines the angle. You will need to experiment with these values and choose
the most appropriate settings.

7.3.2 Boxplots Showing the Benthic Data

Recall that in the marine benthic dataset, species richness was measured at nine
beaches. We now make a boxplot for each beach (Fig. 7.7). Note that there are
only five observations per beach. Because this is a low number for boxplots, we
want to add information on sample size per beach to the graph. One option is to
specify the varwidth = TRUE option in the boxplot function to make the
width of each box proportional to the number of observations on the beach.
However, we instead choose to add the number of samples per beach inside each
box. First, we need to obtain the sample size per beach using the followingR code.

> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header= TRUE)

> Bentic.n <- tapply(Benthic$Richness, Benthic$Beach,

FUN = length)

> Bentic.n
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Fig. 7.7 Conditional boxplot using species richness as the dependent variable and beach as the
conditioning variable. Number of observations per beach is shown inside each box
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The tapply function calculates the number of observations per beach, 5,

and stores them in the variable Benthic.n. The boxplot is created with the
command

> boxplot(Richness ~ Beach, data = Benthic,

col = "grey", xlab = "Beach", ylab = "Richness")

There is no new code here. The problem is placing the numbers of the variable
Benthic.n inside the boxplot, preferably in the centre (which is not necessarily
the median). Recall that the box is specified by the upper and lower quartiles.
Adding half the value of the spread (upper hingeminus lower hinge) to the value of

the lower hinge will put us vertically centred in the boxplot. Fortunately, all these
values are calculated by the boxplot function and can be stored in a list by using

> BP.info <- boxplot(Richness ~ Beach, data = Benthic,

col = "grey", xlab = "Beach",

ylab = "Richness")

The list BP.info contains several variables, among them BP.info

$stats. The boxplot help file will tell you that the second row of $stats
contains the values of the lower hinges (for all beaches), and the fourth row
shows the upper hinges. Hence, the midpoints (along the vertical axes) for all

beaches are given by:

> BP.midp <- BP.info$stats[2, ] +

(BP.info$stats[4, ] - BP.info$stats[2,]) / 2

It is now easy to place the numbers in Bentic.n inside the boxplot:

> text(1:9, BP.midp, Bentic.n, col = "white", font = 2)

We can put any text into the boxplot with this construction. For longer
strings, you may want to rotate the text 90 degrees.

The boxplot function is very flexible and has a large number of attributes that
can be changed.Have a look at the examples in the help files ofboxplot andbxp.

Do Exercises 3 and 4 in Section 7.10. These are exercises in the
boxplot function using the vegetation data and a parasite dataset.

7.4 Cleveland Dotplots

Dotplots, also known as Cleveland dotplots, are excellent tools for outlier
detection. See Cleveland (1993), Jacoby (2006), or Zuur et al. (2007, 2009) for
examples.
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Figure 7.8 contains two dotplots for the deer dataset (Vicente et al., 2006),

which was used in Section 4.4. Recall that the data were from multiple farms,

months, years, and sexes. One of the aims of the study was to assess the relation-

ship between the number ofE. cervi parasites in deer and the length of the animal.

Before doing any analysis, we should inspect each continuous variable in the

dataset for outliers. This can be done with a boxplot or with a Cleveland dotplot.

Figure 7.8A shows a Cleveland dotplot for the length of the animals. The

majority of the animals are around 150 centimetres in length, but there are

three animals that are considerably smaller (around 80 centimetres). As a con-

sequence, applying a generalised additive model using length as a smoother may

result in larger confidence bands at the lower end of the length gradient.
You can extend a Cleveland dotplot by grouping the observations based on a

categorical variable. This was done in Fig. 7.8B; the length values are now

grouped by sex. Note that one sex class is clearly larger. The goal of the study

was tomodel the number of parasites (E. cervi) as a function of length, sex, year,

and farm, in order to determine which of the explanatory (independent) vari-

ables is the crucial factor. However, it is difficult to say which explanatory

variable is important if there are correlations among the variables. Such a

situation is called collinearity. In this case, visualizing length versus sex is useful

and can be done with a boxplot in which length is plotted conditional on sex, or

with the Cleveland dotplot (Fig. 7.8B).
The graphs were created using the R function, dotchart. Function

dotchart2 in the package Hmisc (which is not part of the base installation)

can produce more sophisticated presentations. We limit our discussion to

dotchart. The data are imported with the following two lines of code.
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Fig. 7.8 A: Cleveland dotplot showing deer length. The x-axis shows the length value and the
y-axis is the observation number (imported from the ascii file). The first observation is at the
bottom of the y-axis. B: As panel A, but with observations grouped according to sex. There
may be correlation between length and sex.
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> setwd("C:/RBook/")

> Deer <- read.table("Deer.txt", header = TRUE)

We have seen the output of the names and str commands in Section 4.4,
and this information is not repeated. The Cleveland dotplot in Fig. 7.8A is
produced with the following R code.

> dotchart(Deer$LCT, xlab = "Length (cm)",

ylab = "Observation number")

The dotchart function has various options. The groups option allows
grouping the data by categorical variable:

> dotchart(Deer$LCT, groups = factor(Deer$Sex))

Error in plot.window(xlim, ylim, log, asp, ...) :

need finite ’ylim’ values

The variable Sex has missing values (type Deer $Sex in the R console to
view them), and, as a result, the dotchart function stops and produces an
error message. The missing values can easily be removed with the following
code.

> Isna <- is.na(Deer$Sex)

> dotchart(Deer$LCT[!Isna],

groups = factor(Deer$Sex[!Isna]),

xlab = "Length (cm)",

ylab = "Observation number grouped by sex")

The is.na function produces a vector of the same length as Sex, with the
values TRUE and FALSE. The ! symbol reverses them, and only the values for
which Sex is not a missing value are plotted. Note that we used similar code in
Chapter 3. If you want to have the two Cleveland dotplots in one graph, put the
par (mfrow = c (1, 2)) in front of the first dotchart.

7.4.1 Adding the Mean to a Cleveland Dotplot

Cleveland dotplots are a good alternative to boxplots when working with small
sample sizes. Figure 7.9A shows a Cleveland dotplot of the benthic data used
earlier in this chapter. Recall that there are five observations per beach. The
right graph shows the same information with the mean value for each beach
added. This graph clearly shows at least one ‘‘suspicious’’ observation. The code
is basic; see below. The first three commands import the data, with Beach

defined as a factor. A graph window with two panels is created with the par
function. The first dotchart command follows that of the deer data. To the
second dotchart command, we have added the gdata and gpch options.
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The g stands for group, and the gdata attribute is used to overlay a summary

statistic such as the median, or, as we do here with the tapply function, the

mean. Finally, the legend function is used to add a legend. We discuss the use

of the legend function in more detail later in this chapter.

> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)

> Benthic$fBeach <- factor(Benthic$Beach)

> par(mfrow = c(1, 2))

> dotchart(Benthic$Richness, groups = Benthic$fBeach,

xlab = "Richness", ylab = "Beach")

> Bent.M<-tapply(Benthic$Richness, Benthic$Beach,

FUN = mean)

> dotchart(Benthic$Richness, groups = Benthic$fBeach,

gdata = Bent.M, gpch = 19, xlab = "Richness",

ylab = "Beach")

> legend("bottomright", c("values", "mean"),

pch = c(1, 19), bg = "white")

Do Exercises 5 and 6 in Section 7.10 creating Cleveland dotplots

for the owl data and for the parasite data.
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Fig. 7.9 Cleveland dotplots for the benthic data.A: The vertical axis shows the sampling sites,
grouped by beach, and the horizontal axis the richness values. B: Same as A, with mean values
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7.5 Revisiting the plot Function

7.5.1 The Generic plot Function

The most frequently used plotting command is plot, which was introduced in

Chapter 5. It is an intuitive function, recognising what you intend to plot. R is

an object-oriented language: the plot function looks at the object with which it

is presented, establishes the object’s class, and recruits the appropriate plotting

method for that object. To see the methods available for a function (i.e., plot),

enter

> methods(plot)

[1] plot.acf* plot.data.frame* plot.Date*

[4] plot.decomposed.ts* plot.default plot.dendrogram*

[7] plot.density plot.ecdf plot.factor*

[10] plot.formula* plot.hclust* plot.histogram*

[13] plot.HoltWinters* plot.isoreg* plot.lm

[16] plot.medpolish* plot.mlm plot.POSIXct*

[19] plot.POSIXlt* plot.ppr* plot.prcomp*

[22] plot.princomp* plot.profile.nls* plot.spec

[25] plot.spec.coherency plot.spec.phase plot.stepfun

[28] plot.stl* plot.table* plot.ts

[31] plot.tskernel* plot.TukeyHSD

Non-visible functions are asterisked

These are the existing plotting functions, and are only those available in

the default packages. All these functions can be called with the plot

function. For example, if you do a principal component analysis (PCA)

and want to print the results, it is not necessary to use the plot.prin-

comp, as the plot function will recognise that you conducted a PCA, and

will call the appropriate plotting function. Another example is the follow-

ing code.

> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)

> Benthic$fBeach <- factor(Benthic$Beach)

> plot(Benthic$Richness ~ Benthic$fBeach)

The first three lines import the benthic dataset used earlier in this chapter

and define the variable Beach as a factor. The plot function sees the

formula Benthic$Richness � Benthic$fBeach, and produces a box-

plot rather than a scatterplot (see the help file of plot.factor). If the

argument in the plot function is a data frame, it will produce a pair plot (see

Section 7.6).
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7.5.2 More Options for the plot Function

In Chapter 5, we discussed the use of the plot function to plot two continuous
variables against each other and also showed how to change the characters and
colours. But there are many additional options, some of which we present in the
remaining part of this section. We use the benthic data to demonstrate once
again producing a scatterplot of two continuous variables (Fig. 7.10A). The
graph was obtained with the following code.

> plot(y = Benthic$Richness, x = Benthic$NAP,

xlab = "Mean high tide (m)",

ylab = "Species richness", main = "Benthic data")

> M0 <- lm(Richness ~ NAP, data = Benthic)

> abline(M0)

The new addition is the lm and abline functions. Without going into statis-
tical detail, the lm applies linear regression in which species richness is modelled as
a function of NAP, the results are stored in the list M0, and the abline function
superimposes the fitted line. Note that this only works if there is a single explana-
tory variable (otherwise, plotting the results in a two-dimensional graph becomes
difficult), and if the abline function is executed following the plot function.
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Fig. 7.10 A: Scatterplot of species richness versus NAP (mean high tide levels) with a linear
regression line added. B: Same as panel A, with the x- and y-ranges set using the xlim and
ylim functions. C: Same as panel A, but without axes lines. D: Same as panel A, with
modified tick marks along the y-axis and character strings along the x-axis. Note that the
sites are from an intertidal area, hence the negative values of mean high tide
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The plot function can easily be extended to add more detail to the graph by

giving it extra arguments. Some of the most frequently used arguments are

given in the table below.

Argument What does it do?

main Adds a title to the graph

xlab, ylab Labels the x- and y- axis

xlim, ylim Sets limits to the axes

log Log=‘‘x’’, log=‘‘y’’, log=‘‘xy’’ creates logarithmic axes

type Type = ‘‘p’’, ‘‘l’’, ‘‘b’’, ‘‘o’’, ‘‘h’’, ‘‘s’’, ‘‘n’’ for plotting points,
lines, points connected by lines, points overlaid by lines, vertical
lines from points to the zero axis, steps, or only the axes

We have previously illustrated the xlab and ylab attributes. The xlim and

ylim specify the ranges along the x- and y-axes. Suppose that you wish to set

the range of the horizontal axis from –3 to 3 metres and the range along the

vertical axis from 0 to 20 species. Use

> plot(y = Benthic$Richness, x = Benthic$NAP,

xlab = "Mean high tide (m)",

ylab = "Species richness",

xlim = c(-3, 3), ylim = c(0,20))

The xlim argument has to be of the form c(x1, x2), with numerical values

for x1 and x2. The same holds for the ylim argument. The results are shown in

Fig. 7.10B.
Panels C and D in Fig. 7.10 show other options. Panel C does not contain

axes lines. The R code is as follows.

> plot(y = Benthic$Richness, x = Benthic$NAP,

type = "n", axes = FALSE,

xlab = "Mean high tide",

ylab = "Species richness")

> points(y = Benthic$Richness, x = Benthic$NAP)

Thetype = n produces a graphwithout points, and, becausewe useaxes =

FALSE, no axes lines are plotted. We begin with a blank window with only the

labels. The points function superimposes the points onto the graph (note that

you must execute the plot function prior to the points function or an error

message will result).
In panel C, we basically told R to prepare a graph window, but not to plot

anything. We can then proceed, in steps, to build the graph shown in Panel D.

The axis function is the starting point in this process. It allows specifying the

position, direction, and size of the tick marks as well as the text labelling them.

7.5 Revisiting the plot Function 147



> plot(y = Benthic$Richness, x = Benthic$NAP,

type = "n", axes = FALSE, xlab = "Mean high tide",

ylab = "Species richness",

xlim = c(-1.75,2), ylim = c(0,20))

> points(y = Benthic$Richness, x = Benthic$NAP)

> axis(2, at = c(0, 10, 20), tcl = 1)

> axis(1, at = c(-1.75, 0,2),

labels = c("Sea", "Water line", "Dunes"))

The first two lines of code are identical to those for panel C. The axis (2, ..

.) command draws the vertical axis line and inserts tick marks of length 1 (the
default value is –0.5) at the values 0, 10, and 20. Setting tcl to 0 eliminates tick
marks. Tick marks pointing outwards are obtained by a negative tcl value; a
positive value gives inward pointing tick marks. The axis (1, ...) command
draws the horizontal axis, and, at the values –1.75, 0, and 2, adds the character
strings Sea, Water line, and Dunes. See the axis help file for further graphing
facilities.

DoExercise 7 in Section 7.10. This is an exercise in theplot andaxis
functions using the owl data.

7.5.3 Adding Extra Points, Text, and Lines

This section addresses features that can be used to increase the visual appeal of
graphs. Possible embellishmentsmight be different types of lines and points, grids,
legends, transformed axes, andmuchmore. Look at the par help file, obtained by
typing ?par, to see many of the features that can be added and altered. We could
write an entire book on the par options, some of which have been addressed in
Chapter 5 and in earlier sections of this chapter. More are discussed in Chapter 8.
However, even novice users will feel the need for some information on the par
function at an early point. Because we do not want this volume to become
phonebook-sized, we discuss some of the par and plotting options in a birds-
eye overview mode, and try to guide you to the appropriate help files.

The functions points, text, and lines are valuable companions when
working in R and were used in some earlier chapters.

The function points adds new values to a plot, such as x-values and (option-
ally) y-values. By default, the function plots points, so, just as with plot, type is
set to "p". However, all the other types can be used: "l" for lines, "o" for
overplotted points and lines, "b" for points and lines, "s" and"S" for steps, and
"h" for vertical lines. Finally, "n" produces a graph-setupwith no data points or
lines (see Section 7.5.2). Symbols can be changed using pch (see Chapter 5).

The function text is similar to points in that it uses x and (optionally) y-
coordinates but adds a vector called labels containing the label strings to be
positioned on the graph. It includes extra tools for fine-tuning the placement of
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the string on the graph, for example, the attributes pos and offset. The pos

attribute indicates the positions below, to the left of, above, and to the right of

the specified coordinates (respectively, 1, 2, 3, 4) and offset gives the offset of the

label from the specified coordinate in fractions of a character width. These two

options become relevant with long character strings that are not displayed

properly in R’s default display.
We have seen the lines function in Chapter 5. It is a function that accepts

coordinates and joins the corresponding points with lines.

7.5.4 Using type = "n"

With the plot function, it is possible to include the attribute type = "n" to

draw everything but the data. The graph is set up for data, including axes and

their labels. To exclude these, add axes = FALSE, xlab = "", ylab =

"". It then appears there is nothing left. However, this is not the case, because

the plot retains the data that were entered in the first part of the plot function.

The user is now in full control of constructing the plot. Do you want axes lines?

If so, where do youwant them and how do youwant them to look?Do youwant

to display the data as points or as lines? Everything that is included in the

default plot, and much more, can be altered and added to your plot. Here are

some of the available variations:

Command Description

abline Adds an a,b (intercept, slope) line, mainly regression, but also vertical
and horizontal lines

arrows Adds arrows and modifies the head styles

Axis Generic function to add an axis to a plot

axis Adds axes lines

box Adds different style boxes

contour Creates a contour plot, or adds contour lines to an existing plot

curve Draws a curve corresponding to the given function or expression

grid Adds grid to a plot

legend Adds legend to a plot

lines Adds lines

mtext Inserts text into the margins of the figure or in the
margin of the plot device

points Adds points, but may include type command

polygon Draws polygons with vertices defined by x and y

rect Draws rectangles

rug Adds a one dimensional representation of the data
to the plot on one of the two axes.

Segments Adds line segments

text Adds text inside the plot

title Adds a title
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7.5.5 Legends

The function legend appears difficult at first encounter, but is easily mastered.

In Fig. 7.9, a legend was added to a Cleveland dotplot. The code is

> legend("bottomright", c("values", "mean"),

pch = c(1, 19), bg ="white")

The first attribute may consist of an x- and y-coordinate, or an expression

such as shown here. Other valid expressions are "bottom", "bottom-

left", "left", "topleft", "top", "topright", "right", and

"center". Consult the legend help file for more options.
Zuur et al. (2009) used a bird dataset that was originally analysed in Loyn

(1987), and again in Quinn and Keough (2002). Forest bird densities were

measured in 56 forest patches in southeastern Victoria, Australia. The aim of

the study was to relate bird densities to six habitat variables: (1) size of the forest

patch, (2) distance to the nearest patch, (3) distance to the nearest larger patch,

(4) mean altitude of the patch, (5) year of isolation by clearing, and (6) an index

of stock grazing history (1 = light, 5 = intensive). A detailed analysis of these

data using linear regression is presented in Appendix A of Zuur et al. (2009).

The optimal linear regression model contained LOGAREA and GRAZE

(categorical). To visualise what this model is doing, we plot the fitted values.

There are five grazing levels, and, therefore, the linear regression (see the

summary command below) gives an equation relating bird abundance to

LOGAREA for each grazing level. These are given by

Observations with GRAZE ¼ 1: ABUNDi ¼ 15:7þ 7:2� LOGAREAi

Observations with GRAZE ¼ 2: ABUNDi ¼ 16:1þ 7:2� LOGAREAi

Observations with GRAZE ¼ 3: ABUNDi ¼ 15:5þ 7:2� LOGAREAi

Observations with GRAZE ¼ 4: ABUNDi ¼ 14:1þ 7:2� LOGAREAi

Observations with GRAZE ¼ 5: ABUNDi ¼ 3:8þ 7:2� LOGAREAi

Readers familiar with linear regression will recognise this as a linear regres-

sion model in which the intercept is corrected for the levels of the categorical

variable. Next, we (i) plot the ABUNDANCE data versus LOGAREA, (ii)

calculate fitted values for the five grazing regimes, (iii) add the five lines,

and (iv) add a legend. The resulting graph is presented in Fig. 7.11. The

following shows step by step how it was created.
First, read the data, apply the log transformation, and use the plot function.

We have previously used similar R code:

> setwd("C:/RBook/")

> Birds <- read.table(file = "loyn.txt", header = TRUE)

> Birds$LOGAREA <- log10(Birds$AREA)
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> plot(x = Birds$LOGAREA, y = Birds$ABUND,

xlab = "Log transformed AREA",

ylab = "Bird abundance")1

To see the source of the five slopes and the intercept, use the code:

> M0 <- lm(ABUND~ LOGAREA + fGRAZE, data = Birds)

> summary(M0)

If you are not familiar with linear regression, do not spend time struggling to

comprehend this. The summary output contains the required information. To

predict fitted bird abundances per grazing level, we need the LOGAREA

values. The simplest method is to look at Fig. 7.11 and choose several arbitrary

values within the range of the observed data, say –1, 0, 1, 2, and 3:

> LAR <- seq(from = -1, to = 3, by = 1)

> LAR

[1] -1 0 1 2 3

Now we determine the abundance values per grazing level using simple

calculus and R code:

> ABUND1 <- 15.7 + 7.2 * LAR

> ABUND2 <- 16.1 + 7.2 * LAR

> ABUND3 <- 15.5 + 7.2 * LAR

> ABUND4 <- 14.1 + 7.2 * LAR

> ABUND5 <- 3.8 + 7.2 * LAR
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Fig. 7.11 Five fitted lines for the Loyn bird data. Each line is for a particular grazing regime

7.5 Revisiting the plot Function 151



Adding the fitted values as lines to the graph is also familiar territory (see

Chapter 5). We do not have a spaghetti problem, as the AREA data are sorted

from – 1 to 3.

> lines(LAR, ABUND1, lty = 1, lwd = 1, col =1)

> lines(LAR, ABUND2, lty = 2, lwd = 2, col =2)

> lines(LAR, ABUND3, lty = 3, lwd = 3, col =3)

> lines(LAR, ABUND4, lty = 4, lwd = 4, col =4)

> lines(LAR, ABUND5, lty = 5, lwd = 5, col =5)

Weadded visual interest with different line types, widths, and colours. Finally,

it is time to add the legend; see the R code below. First we define a string

legend.txt with five values containing the text that we want to use in the

legend. Thelegend function then places the legend in the top left position, the line

in the legend for the first grazing level is black (col = 1), solid (lty = 1), and

has normal line width (lwd = 1). The line in the legend for grazing level 5 is light

blue (col = 5), has the form - - - (lty = 5) and is thick (lwd = 5).

> legend.txt <- c("Graze 1", "Graze 2",

"Graze 3", "Graze 4", "Graze 5")

> legend("topleft", legend = legend.txt,

col = c(1, 2, 3, 4, 5),

lty = c(1, 2, 3, 4, 5),

lwd = c(1, 2, 3, 4, 5),

bty = "o", cex = 0.8)

The attribute cex specifies the size of the text in the legend, and the bty adds

a box around the legend.

Do Exercise 8 in Section 7.10. In this exercise, smoothers are used

for the male and female owl data and are superimposed onto the

graph. The legend function is used to identify them.

7.5.6 Identifying Points

The function identify is used to identify (and plot) points on a plot. It can be

done by giving the x, y coordinates of the plot or by simply entering the plot

object (which generally defines or includes coordinates). Here is an example:

> plot(y = Benthic$Richness, x = Benthic$NAP,

xlab = "Mean high tide (m)",

ylab = "Species richness", main = "Benthic data")

> identify(y = Benthic$Richness, x = Benthic$NAP)
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With the attribute labels in the identify function, a character vector giving
labels for the points can be included. To specify the position and offset of the
labels relative to the points; place your mouse near a point and left-click; R will
plot the label number close to the point. Press ‘‘escape’’ to cancel the process. It
is also possible to use the identify function to obtain the sample numbers of
certain points; see its help file. Note that the identify function only works for
graphs created with the plot function, and not with boxplots, dotcharts, bar
charts, pie charts, and others.

7.5.7 Changing Fonts and Font Size*

This section is a bit more specialised and may be skipped upon first
reading. Fonts and font sizes are somewhat peculiar in R. When you
open a graphing device you can apply an attribute pointsize that will
be the default point size of plotted text. Default font mappings are pro-
vided for four device-independent font family names: "sans" for a sans-
serif font, "serif" for a serif font, "mono" for a monospaced font, and
"symbol" for a symbol font. Type windowsFonts() to see the font
types that are currently installed.

Font defines the font face. It is an integer that specifies which font face to
use for text. If possible, device drivers are organized so that 1 corresponds to
plain text, 2 to bold face, 3 to italic, and 4 to bold italic. To modify the default
font, we usually draw plots omitting the component for which we want
to change the default font and code it separately, including options for font
size, font face, and font family. For example, to add a title in a serif font to
Fig. 7.11, use

> title("Bird abundance", cex.main = 2,

family = "serif", font.main = 1)

This would plot ‘‘Bird abundance’’ as a title twice the default size, with a serif
font style in normal font face. For title there are special options for font size
and font face, cex.main and font.main. Sometimes youmay need to specify
the family using par. You can also change font and size for text, mtext,
axis, xlab, and ylab. Consult the help file for par for specific information
on changing fonts.

7.5.8 Adding Special Characters

Often youmaywant to include special characters in legends or labels. This is not
difficult in R, although it may require searching in several help files to find
exactly what you want. The function that is mostly used is expression.You
can get an impression of the possibilities by typing demo (plotmath).
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Here is a brief example: Mendes et al. (2007) measured the nitrogen isotopic

composition in growth layers of teeth from 11 sperm whales stranded in Scot-

land. Figure 7.12 shows a scatterplot of nitrogen isotope ratios versus age, for

one particular whale, nicknamed Moby. The y-label of the graph contains the

expression d
15N. It is tempting to import this graph without the y-label into

Word and add the d15Nbefore submission to a journal, but it can easily be done

in R using this code:

> setwd("C:/RBook/")

> Whales <- read.table(file="TeethNitrogen.txt",

header = TRUE)

> N.Moby <- Whales$X15N[Whales$Tooth == "Moby"]

> Age.Moby <- Whales$Age[Whales$Tooth == "Moby"]

> plot(x = Age.Moby, y = N.Moby, xlab = "Age",

ylab = expression(paste(delta^{15}, "N")))

The paste command joins the d15 and N, and the expression function

inserts the d15N.

7.5.9 Other Useful Functions

There are a number of other functions that may come in handy when

making graphs. Consult the help files for attributes that may, or must, be

provided.
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Fig. 7.12 Scatterplot of
nitrogen isotope ratios
versus age, as measured in
dental growth layers of an
individual whale,
nicknamed Moby. Note the
y-label
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7.6 The Pairplot

In the previous graph, we used the plot function to make a scatterplot of two

continuous variables; the following demonstrates scatterplots for multiple con-

tinuous variables. This could be done by using the plot function to plot

variable 1 versus 2, 1 versus 3, 1 versus 4, and so on, and following with mfrow

and mar to put it all into a single graph. However, the R function pairs can be

used to produce amultipanel scatterplot.We use the benthic data for illustration:

> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)

> pairs(Benthic[, 2:9])

The first two lines import the data, and the pairs function is applied to all the

variables from the data frame Benthic with the exception of the first column,

which contains the labels. The resulting graph is presented in Fig. 7.132.
We have included species richness as the first variable. As a result, the first

row of the plot contains graphs of all variables against richness. The rest of the

plot shows graphs of all variables versus one another. From a statistical point of

view, we want to model richness as a function of all the other variables, hence

Functiona Description

plot.new Opens a new graphics frame, same as frame()

win.graph Opens extra second graph window. You can set width
and height of the screen

windows Similar to win.graph but with more options

savePlot Saves current plot as ("wmf", "emf", "png", "jpeg",
"jpg", "bmp", "ps", "eps", or "pdf")

locator Records the position of the cursor by clicking left
cursor; stops by clicking right cursor

range Returns a vector containing the minimum and
maximum of all the given arguments; useful for
setting x or y limits

matplot Plots columns of one matrix against the columns
of another; especially useful when multiple
Y columns and a single X. See also matlines and
matpoints for adding lines and points, respectively

persp Perspective plots of surfaces over an x–y plane

cut Converts a numeric variable into a factor

split Divides a vector or data frame with numeric values
into groups

aDon’t forget to include the brackets with these functions!

2 Using the command plot (Benthic [, 2:9]) will give the same graph, because
Benthic is a data frame, and the plot function recognises this and calls the function
plot.data.frame.
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clear relationships in the first row (or column) are good, whereas clear patterns
in the other panels (collinearity) are not good at all. The pairplot shows clear
relationships between some of the variables, for example, between species
richness and NAP and between grain size and sorting (this makes biological
sense, as sorting is a measure of energy).

7.6.1 Panel Functions

Half of the information in the pairplot appears superfluous, in as much as every
graph appears twice, once above the diagonal and once below, but with the axes
reversed. It is possible to specify panel functions to be applied to all panels, to
the diagonal panels, or to the panels above or below the diagonal (Fig. 7.14).
The R code for this can be found at the end of the pairs help file obtained by
entering ?pairs into the R console window.

> pairs(Benthic[, 2:9], diag.panel = panel.hist,

upper.panel = panel.smooth,

lower.panel = panel.cor)

Error in pairs.default(Benthic[, 2:9], diag.panel =

panel.hist, upper.panel = panel.smooth,: object

"panel.cor" not found

The problem here is that R does not recognise the panel.cor and the
panel.hist functions. These specific pieces of code from the end of the
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Fig. 7.13 Scatterplot matrix for variables in the benthic data. The diagonal shows the name of
the variable which is on the x-axis below and above it, and on the y-axis left and right of it
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pairs help file must be copied and pasted into the R console. Copy the entire

function and rerun the pairs command above. For specific advice, see the

online R code for this book, which can be found at www.highstat.com. The

panel.cor and panel.hist code is complicated and beyond the scope of

this book, so is not addressed here. Simply copy and paste it.
If you are interested in using Pearson correlation coefficients in a pairplot,

see http://www.statmethods.net/graphs/scatterplot.html. This provides an

example, as well as a link to the package and a function that can be used to

colour entire blocks based on the value of the Pearson correlation.

Do Exercise 9 in Section 7.10. In this exercise, the pairs function

is used for the vegetation data.

7.7 The Coplot

7.7.1 A Coplot with a Single Conditioning Variable

The pairs function shows only two-way relationships. The next plotting tools

we discuss can illustrate three-way, or even four-way, relationships. This type of

plot is called a conditioning plot or coplot and is especially well suited to

visualizing how a response variable depends on a predictor, given other
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Fig. 7.14 The extended pairplot using histograms on the diagonal, scatter plots with smooth-
ers above the diagonal, and Pearson correlation coefficients with size proportionate to the
correlation below the diagonal. The code was taken from the pairs help file
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predictors. Figure 7.15 is a plot of the RIKZ data using the variables Beach,

NAP, and Richness. The nine graphs represent beaches one to nine, which are

listed at the top and displayed in the separate panels, called the dependence

panels. Starting at the bottom row and going from left to right, the first row

depicts beaches one to three, the second row four to six, and the top row beaches

seven to nine. As you can see, the beach numbers are also given, although not

well placed. The R code to make the graph in Fig. 7.15 is as follows.

> setwd("C:/RBook/")

> Benthic <- read.table(file = "RIKZ2.txt",

header = TRUE)

> coplot(Richness ~ NAP | as.factor(Beach), pch=19,

data = Benthic)

The function coplot uses a different notation than the plot function.

Variables to be plotted are given in a formula notation that uses the tilde operator

� as a separator between the dependent and the independent variables. Contrary

to what you have been using in the plot function where the first variable is

assumed to be the x-variable and the second variable the y-variable, the formula

notation always uses y� x. The above code thus directs R to plot species richness

(R) versus NAP. The addition of | as.factor(Beach) creates the panels and

indicates that the plot should be produced conditional on the variable Beach,

which is first coerced into a factor. Thedata attribute gives the command to look

in the Benthic data frame for the variables used in the formula.
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Instead of using a categorical variable for the conditioning variable, we can

use a continuous variable, for example, grainsize. The following code creates

Fig. 7.16. Scatterplots of richness versus NAP are drawn for different grainsize

values.

> coplot(Richness ~ NAP | grainsize, pch=19,

data = Benthic)

The grainsize values were divided into six overlapping groups with approxi-
mately equal numbers of points. If the Richness/NAP relationship changes
along the grainsize gradient, giving a visual indication of the presence of an
interaction between NAP and grainsize, it may be worthwhile to include this
interaction term in, for example, a linear regression model.

The coplot function contains a large number of arguments that can be used
to create exciting plots. See its help file, obtained by ?coplot. The most useful
is panel, which takes a function that is carried out in each panel of the display.
By default coplot uses the points function, but we can easily create our own
function and apply it to each panel. For example, we may wish to add a linear
regression line to each panel in Fig. 7.15 (Fig. 7.17). If all the lines turn out to be
parallel, there is no visual evidence of an interaction between beach and NAP
(i.e., the richness � NAP relationship is the same along the entire stretch of
coastline). In this case, the lines do differ. Here is the code that created Fig. 7.17:

NAP

R
ic

h
n
e
s
s

0
5

1
0

2
0

–1.0 0.0 1.0 2.0

–1.0 0.0 1.0 2.0–1.0 0.0 1.0 2.0

0
5

1
0

2
0

200 250 300 350 400

Given : grainsize

Fig. 7.16 Coplot using a
continuous conditioning
variable. The lower left panel
represents a scatterplot of
Richness versus NAP for
those observations that have
grainsize values between 185
and 220. The upper right
panel shows a scatterplot of
richness versus NAP for
observations with high
(>315) grainsize values. The
important question is
whether the Richness/NAP
relationship changes along
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> panel.lm = function(x, y, ...) {

tmp <- lm(y ~ x, na.action = na.omit)

abline(tmp)

points(x, y, ...)}

> coplot(Richness ~ NAP | as.factor(Beach), pch = 19,

panel = panel.lm, data = Benthic)

The function panel.lm defines how the data should be displayed in each

panel. Three dots at the end indicate that other arguments may be supplied that

will be evaluated in the function. The linear regression function lm is used to

store the data temporarily in the variable tmp, and any NAs are omitted from

the analysis. The function abline plots the line, and the function points

plots the points.
Another predefined panel function is panel.smooth. This uses the

LOESS smoother to add a smooth line.
As you can see above, we defined our own panel function. This facility is

useful for creating customized panel functions for use with coplot. For

example, means and confidence limits can be added to each panel, and con-

fidence limits can be added to regression lines.
Coplot is also a good tool for investigating the amount of data in each

combination of covariates.

Do Exercise 10 in Section 7.10. This exercise creates a coplot of the

vegetation data.
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7.7.2 The Coplot with Two Conditioning Variables

One can include a third predictor variable in a coplot, but the benthic data do

not yield much additional information when one of the other variables is

included. Therefore we present another example: a subset of data analysed in

Cruikshanks et al. (2006). The data are available in the file SDI2003.txt. The

original research sampled 257 rivers in Ireland during 2002 and 2003. One of the

aims was to develop a new tool for identifying acid-sensitive waters, which is

currently done by measuring pH levels. The problem with pH is that it is

extremely variable within a catchment and depends on both flow conditions

and underlying geology. As an alternative measure, the Sodium Dominance

Index (SDI) was proposed. Of the 257 sites, 192 were nonforested and 65 were

forested. Zuur et al. (2009) modelled pH as a function of SDI, forested or

nonforested, and altitude, using regression models with spatial correlation.
The relationship between pH and SDImay have been affected by the altitude

gradient and forestation. Calculating this demands a three-way interaction term

between two continuous (SDI and altitude) and one categorical (forestation)

explanatory variable. Before including such an interaction in a model, we can

visualise the relationships with the coplot. In the previous section, we used

coplots with a single conditioning variable; here we use two conditioning

variables. We use the log-transformed altitude values. The coplot is shown in

Fig. 7.18. The R code is as follows.
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> setwd("C:/RBook/")

> pHEire <- read.table(file = "SDI2003.txt",

header = TRUE)

> pHEire$LOGAlt <- log10(pHEire$Altitude)

> pHEire$fForested <- factor(pHEire$Forested)

> coplot(pH ~ SDI | LOGAlt * fForested,

panel = panel.lm, data = pHEire)

We use the same panel.lm function as in the previous section. (This

requires copying and pasting it into the R console, if R has been shut down.)

Because the variable LOGAlt, the logarithmically transformed altitude, is

numeric, it is divided into a number of conditioning intervals, and, for each

interval, pH is plotted against SDI. In addition, the data are segregated based

on the Forested factor. The number and position of intervals for LOGAlt can be

controlled with the given.values argument; see the coplot help file. With-

out this argument, the numeric variable is divided into six intervals overlapping

by approximately 50. An easier approach may be using the number argument.

Run this command:

> coplot(pH ~ SDI | LOGAlt * fForested,

panel = panel.lm, data = pHEire, number = 2)

Compare the resulting coplot (which is not shown here) with that in

Fig. 7.18; this one has fewer panels. The number argument can also be used if

the coplot crashes due to an excessive number of panels.

7.7.3 Jazzing Up the Coplot*

This section is slightly more complicated (hence the asterisk in the title), and

may be omitted upon first reading.
Figure 7.18 shows the relationship between pH versus SDI, altitude and

forestation (and their interactions). To demonstrate what can be done, we

produce the same coplot as that in Fig. 7.18, but with points of different colours

depending on temperature. Temperatures above average are indicated by a light

grey dot, and those below average are shown by a dark dot (obviously, red and

blue dots would be better). Before this can be done, we need to use the following

code to create a new variable containing the grey colours.

> pHEire$Temp2 <- cut(pHEire$Temperature, breaks = 2)

> pHEire$Temp2.num <- as.numeric(pHEire$Temp2)

The cut function separates the temperature data into two regimes, because

we use breaks = 2. We encounter a problem in that the output, Temp2, is a

factor, as can be seen from entering:
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> cut(pHEire$Temperature, breaks = 2)

[1] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]

[5] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]

[9] (1.89,7.4] (1.89,7.4] (1.89,7.4] (1.89,7.4]

[13] (1.89,7.4] (1.89,7.4] (7.4,12.9] (1.89,7.4]

...

[197] (7.4,12.9] (7.4,12.9] (7.4,12.9] (7.4,12.9]

[201] (7.4,12.9] (7.4,12.9] (7.4,12.9] (7.4,12.9]

[205] (7.4,12.9]

Levels: (1.89,7.4] (7.4,12.9]

Each temperature value is allocated to either the class 1.89 – 7.4 (below
average) or 7.4 – 12.9 (above average) degrees Celsius. A factor cannot be used
for colours or greyscales; therefore we convert Temp2 to a number, using the
as.numeric function. As a result, pHEire$Temp2.num is a vector with values
1 and 2.We could have done this in Excel, but the cut function is more efficient.
We are now ready to create the coplot in Fig. 7.19, using the following R code.

> coplot(pH ~ SDI | LOGAlt * fForested,

panel = panel.lm, data = pHEire,

number = 3, cex = 1.5, pch = 19,

col = gray(pHEire$Temp2.num / 3))

It seems that high pH values were obtained for low SDI values with Forested=2
(2 represents nonforested and 1 is forested) and above average temperature.
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Fig. 7.19 Coplot for the pH
data using four predictor
variables: SDI, Forested,
altitude, and temperature.
The latter is shown by
symbols of two shades of
gray. Light grey dots

correspond to above average
temperature values, and
dark grey are below average
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7.8 Combining Types of Plots*

Here we touch upon R’s more advanced graphing possibilities. There are

several graphing systems that can be used in R. All the graphs we have shown

were made by using the base package graphics. The R package called grid offers

many advanced possibilities. It is possible to combine different plots into a

single graph. We have already used the mfrow command to enable plotting

several graphs on one screen. Here we use layout to create complex plot

arrangements. Figure 7.20 shows a scatterplot of species richness versus NAP

and also includes the boxplots of each variable.

To produce this graph, we first need to define the number of graphs to

incorporate, their placement, and their size. In this case, we want to arrange a

2-by-2 windowwith the scatterplot in the lower left panel, one of the boxplots in

the upper left panel, and one boxplot in the lower right panel. For this we define

a matrix, let’s call it MyLayOut, with the following values.

> MyLayOut <- matrix(c(2, 0, 1, 3), nrow = 2, ncol=2,

byrow = TRUE)

> MyLayOut

[,1] [,2]

[1,] 2 0

[2,] 1 3
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Fig. 7.20 Combination of
scatterplot and boxplots for
the benthic data
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The matrix command was introduced in Chapter 2. It looks intimidating,

but simply creates a matrix with the elements 2 and 0 on the first row, and 1 and

3 on the second row. We use this matrix inside the layout function, followed

by three plot commands. The first graph appears in the lower left corner

(specified by the 1 in the matrix), the second plot in the upper left (specified

by the 2), and the third graph in the lower right. Because there is a 0 in the upper

right position of MyLayout, no graph will be drawn in that quadrant.
The next part of the code consists of

> nf <- layout(mat = MyLayOut, widths = c(3, 1),

heights = c(1, 3), respect = TRUE)

The widths option specifies the relative width of the columns. In this case,

the first column, containing the scatterplot and the boxplot for NAP, is 3, and

the second column, containing the boxplot for richness, has a width of 1. The

heights column specifies the height of the rows. The respect = TRUE

ensures that a 1-unit in the vertical direction is the same as a 1-unit in the

horizontal direction. The effect of these settings in the layout function can be

visualised with the following command.

> layout.show(nf)

All that remains is to make the three graphs. We must ensure that the range

of the boxplot in panel 2 is synchronised with the range of the horizontal axis in

panel 1, and the same holds for panel 3 and the vertical axis in panel 1. We also

1

2

3
Fig. 7.21 Layout of the
graphical window. The
results of the first plot
command will go into panel
1 (lower left), the next into
panel 2, and the third plot
into panel 3
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need to avoid excessive white space around the graphs, which means some trial

and error with the mar values for each graph. We came up with the following

code.

> xrange <- c(min(Benthic$NAP), max(Benthic$NAP))

> yrange <- c(min(Benthic$Richness),

max(Benthic$Richness))

> #First graph

> par(mar = c(4, 4, 2, 2))

> plot(Benthic$NAP, Benthic$Richness, xlim = xrange,

ylim = yrange, xlab = "NAP", ylab = "Richness")

> #Second graph

> par(mar = c(0, 3, 1, 1))

> boxplot(Benthic$NAP, horizontal = TRUE, axes = FALSE,

frame.plot = FALSE, ylim = xrange, space = 0)

> #Third graph

> par(mar = c(3, 0, 1, 1))

> boxplot(Benthic$Richness, axes = FALSE,

ylim = yrange, space = 0, horiz = TRUE)

Most of the options are self-explanatory. Change the values of the mar, and

see what happens. Another function that can be used for similar purposes is the

split.screen; see its help file.

7.9 Which R Functions Did We Learn?

Table 7.1 shows the R functions that were introduced in this chapter.

Table 7.1 R functions introduced in this chapter

Function Purpose Example

pie Makes a pie chart pie(x)

pie3D Makes a 3-D piechart pie3D(x)

par Sets graph parameters par(...)

barplot Makes a bar chart barplot(x)

arrows Draws arrows arrows(x1,y1,x2,y2)

box Draws a box around the graph box()

boxplot Makes a boxplot boxplot(y)

boxplot(y�x)

text Adds text to a graph text(x,y,"hello")

points Adds points to an existing graph points(x,y)

legend Adds a legend legend("topleft", MyText,

lty = c(1,2,3))
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7.10 Exercises

Exercise 1. The use of the pie function using the avian influenza data.

In Section 7.1, we used the total number of bird flu cases per year. Make a pie
chart to illustrate the totals by country. Place the labels such that they are
readable. The file BirdFludeaths.txt contains the data on deaths from the
disease. Make a pie chart showing total deaths per year and one showing deaths
per country.

Exercise 2. The use of the barchart and stripchart functions using a

vegetation dataset.

In Section 4.1, we calculated species richness, as well as its mean values and
standard deviations, in eight transects. Make a bar chart for the eight mean
values and add a vertical line for the standard error.

Make a graph in which the means are plotted as black points, the standard
errors as lines around the mean, and the observed data as open dots.

Exercise 3. The use of the boxplot function using a vegetation dataset.

Using the vegetation data in Exercise 2, make a boxplot showing the richness
values.

Exercise 4. The use of the boxplot function using a parasite dataset.

In Section 6.3.3, a cod parasite dataset was used. Make a boxplot of the
number of parasites (Intensity) conditional on area, sex, stage, or year. Try
combinations to detect interactions.

Exercise 5. The use of the dotchart function using the owl data.

In Section 7.3, we used the owl data.Make twoCleveland dotplots of nestling
negotiation and arrival time. Make a Cleveland dotplot showing arrival time
per night. The nest and food treatment variables show which observations were
made on the same night. See also Exercise 2 in Section 6.6.

Exercise 6. The use of the dotchart function using the parasite data.

Make a Cleveland dotplot for the parasite data that were used in Exercise 4.
Use the number of parasites (Intensity), and group the observations by area,

Table 7.1 (continued)

Function Purpose Example

title Adds a title title(MyText)

expression Allows for special symbols ylab = expression(paste(

delta�{15}, "N"))

pairs Creates multipanel scatterplots Pairs(X)

coplot Creates multipanel scatterplots Coplot(y�x|z)

layout Allows for multiple graphs in
the same window

layout(mat,widths,heights)

plot(x)

plot(y)
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sex, stage, or by year. Make a Cleveland dotplot showing depth, and group the
observations by prevalence.

Exercise 7. The use of the plot and axis functions using the owl data.

Apply a logarithmic transformation (use 10 as the base) on the nestling
negotiation data. Add the value of 1 to avoid problems with the log of 0. Plot
the transformed nestling negotiation data versus arrival time. Note that arrival
time is coded as 23.00, 24.00, 25.00, 26.00, and so on. Instead of using the labels
25, 26, etc. for arrival time, use 01.00, 02.00, and so on.

Make the same graph, but use back-transformed values as labels along the
vertical axis. This means using the log-transformed nestling negotiation data
but with the label 1 if the log-transformed value is 0, 10 if the log-transformed
value is 1, and so on.

Exercise 8. The use of the legend function using the owl data.

Add a smoother (see Chapter 5) to the graph created in Exercise 7 to visualise
the pattern for the male data and for the female data. Extract the data from the
males, fit a smoother, and superimpose this line onto the graph. Do the same for
the female data. Use a legend to identify the different curves. Do the same for
food treatment and night.

Exercise 9. The use of the pairs function using the vegetation data.

Make a pairplot for all the climatic variables in the vegetation data. Add
correlation coefficients in the lower panels. What does the graph tell you?

Exercise 10. The use of the coplot function using the vegetation data.

Plot species richness versus a covariate of your choice conditional on
transect.
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Chapter 8

An Introduction to the Lattice Package

R contains many functions that can be used to draw graphs for specific types of
data.Many of these plotting functions are not available in the packages that are
loaded by default when R is started. Some are as simple to use as the plot

function; others require more effort. The lattice package allows R to reach its
full potential for imaging higher-dimensional data. We used one type of lattice
plot, the multipanel scatterplot, in Section 1.4.1 to plot density of deep-sea
pelagic bioluminescent organisms versus depth.

The lattice package was written byDeepayan Sarkar, who recently published
an excellent book which we highly recommend (Sarkar, 2008). The package
implements the Trellis Graphics framework developed at Bell Labs in the early
1990s.

In Chapter 7 we introduced the coplot function, which is particularly
useful for displaying subsets of data in separate panels, when there is a grouping
structure to the data. The lattice package allows taking this feature much
further, but it comes at the price of more programming effort. However, by
now you should have gained enough proficiency to master the function without
too much difficulty.

8.1 High-Level Lattice Functions

The lattice user interface primarily consists of a number of generic functions
called ‘‘high-level’’ functions, each designed to create a particular type of
statistical display (Table 8.1). Fortunately, it is not necessary to learn each
function individually. They are designed with a similar formula interface for
different types of multipanel conditioning and respond to a large number of
common arguments. Hence, once one function is mastered, learning to use the
other functions is simple.

The plotting is performed by a default panel function embedded in each generic
function that is applied to each panel. Most often the user will not be aware that a
panel function is responding to arguments given in the function call. Names of
default panel functions are generally self-explanatory. For example, the default

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_8, � Springer ScienceþBusiness Media, LLC 2009
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panel function for the high-level function histogram is panel.histogram, for

densityplot it is panel.densityplot, and for xyplot it is panel.xy-

plot, and so on. These predefined functions are available for you to use and to

modify. We discuss panel functions more fully in Section 8.6.
Table 8.1 shows some of the high-level functions available in lattice.

Do Exercise 1 in Section 8.11. This introduces lattice plots and
provides an overview of the possibilities of the package.

8.2 Multipanel Scatterplots: xyplot

In the exercises in Chapter 4 we used temperature data measured at 30 stations
along the Dutch coastline over a period of 15 years. Sampling took place 0 to 4
times per month, depending on the season. In addition to temperature, salinity
was recorded at the same stations, and these measurements are used here. The
data (in the file RIKZENV.txt) are submitted to the xyplot function to
generate a multipanel scatterplot. The following is the code to enter the data
into R, create a new variable, MyTime, representing time (in days), and create a
multipanel scatterplot.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

Table 8.1 High-level functions of the lattice package

Function Default Display

histogram ( ) Histogram

densityplot ( ) Kernel density plot

qqmath ( ) Theoretical quantile plot

qq ( ) Two-sample quantile plot

stripplot ( ) Stripchart (comparative 1-D scatterplots)

bwplot ( ) Comparative box-and-whisker plots

dotplot ( ) Cleveland dotplot

barchart ( ) Barplot

xyplot ( ) Scatterplot

splom ( ) Scatterplot matrix

contourplot ( ) Contour plot of surfaces

levelplot ( ) False colour level plot of surfaces

wireframe ( ) Three-dimensional perspective plot of surfaces

cloud ( ) Three-dimensional scatterplot

parallel ( ) Parallel coordinates plot
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>Env$MyTime <- Env$Year + Env$dDay3 / 365

>library(lattice)

>xyplot(SAL � MyTime | factor(Station), type = "l",

strip = function(bg, ...)

strip.default(bg = ’white’, ...),

col.line = 1, data = Env)

The function xyplot contains characteristics common to all high-level
lattice functions. The most obvious ones are the use of a formula, the vertical
bar (also called the pipe symbol) within the formula, and the data argument.
Lattice uses a formulalike structure that is also used in R for statistical models.
The variable preceding the tilde (the �) is plotted on the y-axis with that
following along the x-axis. The conditioning variable (in this case Station),
which will generate multiple panels, follows the vertical bar.

When there is no conditioning variable, the result of xyplot will be similar
to the normal plot function; the data will be plotted in a single panel. The
conditioning variable is usually a factor (note that we typed: factor (Sta-
tion)), but it may also be a continuous variable. The default behaviour when
using a continuous variable for conditioning is to treat each of its unique values
as a discrete level. Often, however, the variable may contain somany values that
it is advisable to partition it into intervals. This can be achieved by using the
functions shingle and equal.count; see their help pages.

Figure 8.1 displays the data in five rows of 6 panels, showing a graph for each
station. The station name is given in the horizontal bar, called the strip, above
the panel.

The code is not difficult. The graph is drawn by the xyplot function using a
formula to plot salinity versus (�) time, conditional on ( | ) station. We added two
xyplot arguments: strip, used to create a white background in each strip, and
col.line = 1 to designate black lines (recall from Chapter 5 that the colour 1
refers to black). The two other attributes, type and data, should be familiar;
however, the type attribute in xyplot has more options than in the standard
plot function. For example, type = " r" adds a regression line, type=
" smooth " adds a LOESS fit, type = " g" adds a reference grid, type= " l"
draws a line between the points, and type="a" adds a line connecting the means
of groups within a panel.

The strip argument should contain a logical (either TRUE or FALSE),
meaning either do, or do not, draw strips, or a function giving the necessary
input (in this case strip.default). To see what these options do, run the
basic xyplot command.

> xyplot(SAL � MyTime |factor(Station), data = Env)

Compare this with (results are not shown here):

> xyplot(SAL � MyTime | factor(Station), type = "l",

strip = TRUE, col.line = 1, data = Env)
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> xyplot(SAL � MyTime | factor(Station), type = "l",

strip = FALSE, col.line = 1, data = Env)

From the graph in Fig. 8.1 we note that some stations have generally

lower salinity levels. Water in the North Sea has a salinity of around 32,

probably because of proximity to rivers or other sources of fresh water

inflow. Salinity values vary among stations, with stations that have lower

values showing greater fluctuations over time. Another point to note is that

some stations show similar patterns; possibly these stations are located near

one another. It is difficult to see whether there is a seasonal pattern in these

data. To investigate this, we can utilise the lattice function, bwplot, to

draw box-and-whisker plots.

Do Exercise 2 in Section 8.11. This is an exercise in using the

xyplot function with a temperature dataset.
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Fig. 8.1 Multipanel plot showing salinity (SAL) at 30 stations along the Dutch coast over
15 years. Note the differences among stations in spread and average values
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8.3 Multipanel Boxplots: bwplot

A box-and-whisker plot, or boxplot, of the salinity data is shown in Fig. 8.2.

The function boxplot was introduced in Chapter 7. The multipanel counter-

part is called bwplot and uses a formula layout similar to the function xyplot.

This time, however, we plot Salinity against Month (numbered 1–12) and

our conditioning variable is not Station, but Area. There are two reasons for

doing this. First, we have seen that some stations show similar patterns and we

know that these are located in the same area. The second reason is that there are

not sufficient data per station for each month to draw meaningful box-and-

whisker plots, so we combine stations and years. Hence, the panels show the

median and spread of the salinity data for each month in each of ten areas. Here

is the code.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> bwplot(SAL � factor(Month) | Area,

strip = strip.custom(bg = ’white’),

cex = 0.5, layout = c(2, 5),

data = Env, xlab = "Month", ylab = "Salinity",

par.settings = list(

box.rectangle = list(col = 1),

box.umbrella = list(col = 1),

plot.symbol = list(cex = .5, col = 1)))

The code appears extensive but could have been shorter if we had not wanted

to draw all items in the graph in black and white (by default colours are used). If

colours and labels are not a consideration use (results are not presented here):

> bwplot(SAL � factor(Month) | Area, layout = c(2, 5),

data = Env)

However, this graph is not as appealing, and we continue with the more

extensive code. The list following par.settings is used to set the colour

of the box, the whiskers (called umbrella), and the size and colour of the

open circles (representing the median). We again set the strip colour to

white. We use the layout argument to set the panel arrangement to a

rectangular grid by entering a numeric vector specifying the number of

columns and rows.
The variability in the data, as displayed in Fig. 8.2, differs among the

areas. There also appears to be a cyclic component, probably illustrating a

seasonal effect (e.g., river run-off); however, this is not equally clear for all

areas.
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Do Exercise 3 in Section 8.11 in the use of the bwplot function
using the temperature data.

8.4 Multipanel Cleveland Dotplots: dotplot

The Cleveland dotplot, called dotplot in lattice, was introduced in Chapter 7
as dotchart. Because there are so many data points in the salinity dataset, we
restrict our plot to stations in a single area. The following code produces a
multipanel dotplot, and the resulting graph is in Fig. 8.3.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)
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Fig. 8.2. Multipanel plot showing salinity for regions over time. Variability in salinity levels
differs among regions

174 8 An Introduction to the Lattice Package



> dotplot(factor(Month) � SAL | Station,

subset = Area=="OS", jitter.x = TRUE, col = 1,

data = Env, strip = strip.custom(bg = ’white’),

cex = 0.5, ylab = "Month", xlab = "Salinity")

The code is similar to that of the xyplot and bwplot functions. We
reversed the order of salinity and month in the formula to ensure that salinity
is plotted along the horizontal axis and month along the vertical axis (so that it
matches the interpretation of the dotchart function; see Chapter 7).

There are two additional arguments in the code, subset and jitter.x.
The subset optionwas used to create a subselection of the data. The OS stands
for the area, Oosterschelde, and jitter.x = TRUE adds a small amount of
random variation in the horizontal direction to show multiple observations
with the same value in the same month.

Figure 8.3 shows data points that appear to be outside the normal range,
potential outliers. It may be advisable to remove these before doing statistical
analyses. However, this is a subjective choice that should not be made lightly.
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values. Note the two potential outliers in stations ZIJP and LODS
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It is the responsibility of the owner of the data to make sure that data removal

can be justified. It may be that the two low salinity values were the result of

excessive rainfall. If the intent is to relate precipitation with salinity we might

want to keep these data points.

Do Exercise 4 in Section 8.11 in the use of the multipanel dotplot

function using temperature data.

8.5 Multipanel Histograms: histogram

The function histogram in the lattice package can be used to draw multiple

histograms. The code below draws Fig. 8.4.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> histogram( � SAL | Station, data = Env,

subset = (Area == "OS"), layout = c(1, 4),

nint = 30, xlab = "Salinity", strip = FALSE,

strip.left = TRUE, ylab = "Frequencies")
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Fig. 8.4 A lattice histogram of salinity data for stations of the OS area
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Note the slightly different format of the formula (we only need salinity data to
plot the histograms). Again, we only present data for four stations usingsubset.
We have changed the layout so that the panels are arranged vertically and
increased the number of bars, the so-called bins, to 30with thenint argument, as
we found the default number to be too few.We alsomoved the strip to the side of
the panels by setting strip = FALSE and strip.left = TRUE. Within the
OS area there appears to be one station, ZIJP, with generally lower salinity.

To create a density plot, change the function name histogram to densi-

typlot. If the argument for the number of bins is not removed, Rwill ignore it.
Another function for plotting data distributions is qqmath, which draws QQ-
plots. This stands for Quantile–Quantile plots, which are used to compare
distributions of continuous data to a theoretical distribution (most often the
Normal distribution).

8.6 Panel Functions

Panel functions were introduced in Chapter 7 with pairs and coplot.
Remember that they are ordinary functions (see Chapter 6) that are used to
draw the graph in more than one panel.

Panel functions in lattice are executed automatically within each high-level
lattice function. As mentioned in Section 8.1, each default panel function con-
tains the name of its ‘‘parent’’ function, for example, panel.xyplot,

panel.bwplot, panel.histogram, and so on. Thus, when you type
xyplot(y � x | z), R executes: xyplot (y � x | z, panel = panel.

xyplot). The argument panel is used to associate a specific panel function with
the plotting regime. Because a panel function is a function we could have written:

xyplot (y � x | z, panel = function (...) {

panel.xyplot(...)})

The ‘‘...’’ argument is crucial, as it is used to pass on information to the other
functions. Apart from y, x, and z, xyplot calculates a number of parameters
before doing the actual plotting, and those that are not recognized are handed
down to the panel function where they are used if requested. The consequence is
that you can provide arguments to the panel functions at the level of the main
function as well as within the panel function. You can write your own panel
functions, but lattice contains a number of predefined functions that are easier to
use. Panel functions can, and often do, call other panel functions, depending on the
arguments. We discuss three examples of the use of panel functions.

8.6.1 First Panel Function Example

This example again uses the salinity dataset, this time to explore the potential
relationship between rainfall and salinity. There are no precipitation data, so we
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use Month as a continuous variable, assuming that rainfall is linked to time of

year. We restrict the data to a single station (GROO) and condition this subset

on Year. Within xyplot we call three panel functions: panel.xyplot,

panel.grid, and panel.loess. We set limits for Month of 1–12 and

for Salinity of 0–30.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> xyplot(SAL � Month | Year, data = Env,

type = c("p"), subset = (Station =="GROO"),

xlim = c(0, 12), ylim = c(0, 30), pch = 19,

panel = function (...){

panel.xyplot(...)

panel.grid(..., h = -1, v = -1)

panel.loess(...)})

The resulting graph is presented in Fig. 8.5. Note how the points are on the

gridlines. This is because panel.grid comes after panel.xyplot in the

panel function. If you reverse the order of panel.grid and panel.xyplot,

the grid is automatically drawn first. The panel function panel.loess adds

a smoothing line. The amount of smoothing can be controlled by adding

span = 0.9 (or any other value between 0 and 1) as a main attribute to

xyplot (see Hastie and Tibshiranie (1990) for details on LOESS smoothing

and span width).
We included options in the panel.grid function to align the vertical and

horizontal gridlines with the axes labels. A positive number for h and v specifies

the number of horizontal and vertical gridlines. If negative values for h and v

are specified, R will try to align the grid with the axes labels. Experiment with

different values for h and v, and see what happens.
Another important point is that, without including panel.xyplot in the code,

the data points will not be plotted. Because Year is interpreted as a continuous

variable, the strip has a different format than if Year were a factor. The year is

represented by a coloured vertical bar in the strip. This is not very useful, and it

is probably advisable to define year as a factor, so that it will print the values for

year in the strips.
The data show clear signs of seasonality, although there is apparent variation

in the annual salinity patterns. Nearly the same figure can be obtained with:

> xyplot(SAL � Month | Year, data = Env,

subset = (Station == "GROO"), pch = 19,

xlim = c(0, 12), ylim = c(0, 30),

type = c("p", "g", "smooth"))
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Note that the type argument has the values "p" , "g" and"smooth’’.As a
result, the xyplot function executes the panel.xyplot, panel.grid, and
panel.smooth functions.

8.6.2 Second Panel Function Example

The second example presents the multipanel Cleveland dotplot shown in
Fig. 8.3, this time using a different colour and increased size for the dots
representing potential outliers. The graph is shown in Fig. 8.6. Because this
book is in greyscale, the two larger red points are printed in black.

Figure 8.6 can be created by two methods. The first option is to use the same
code as in Section 8.4, and add the code cex = MyCex as the main argument,
where MyCex is a vector of the same length as SAL with predefined values for
cex. The second option is to determine values for cex in the panel function.
The following demonstrates the second approach.
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Fig. 8.5 Scatterplots of Salinity versus Month over the course of 16 years, with the
addition of a grid and a smoothing line. The data show a clear seasonal pattern. Because
Year is not defined as a factor, they are represented by vertical lines in the strips
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A cut-off level for increasing the point size and changing its colour was set at

salinity lower than the median minus three times the difference between the

third and first quartiles. Note that this is a subjective cut-off level. The following

code was used.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> dotplot(factor(Month) � SAL | Station, pch = 16,

subset = (Area=="OS"), data = Env,

ylab = "Month", xlab = "Salinity",

panel = function(x, y, ...) {

Q <- quantile(x, c(0.25, 0.5, 0.75) ,

na.rm = TRUE)

R <- Q[3] - Q[1]

L <- Q[2] - 3 * (Q[3] - Q[1])

MyCex <- rep(0.4, length(y))

MyCol <- rep(1, length(y))
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Fig. 8.6 Multipanel Cleveland dotplot with potential outliers shown by a larger dot size
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MyCex[x < L] <- 1.5

MyCol[x < L] <- 2

panel.dotplot(x, y, cex = MyCex,

col = MyCol, ...)})

The main arguments are the formula, data, xlab, and ylab. The panel

function has as arguments x, y, and ‘‘...’’. This means that inside the panel

function, x contains the salinity data for a specific station, andy the correspond-

ing months. Inside a panel, the x and the y constitute a subset of the data

corresponding to a particular station. The ‘‘...’’ is used to pass on general settings

such as the pch value. The quantile function is used to determine the first and

third quantiles and the median. The cut-off level is specified (L), and all x values

(salinity) smaller than L are plotted with cex = 1.5 and col = 2. All other

values have the values cex = 0.4 and col = 1. The code can be further

modified to identify considerably larger salinity values. In this case, L and x< L

must be changed. We leave this as an exercise to the reader.

8.6.3 Third Panel Function Example*

This section discusses graphing tools that can be used to illustrate the outcome

of a principal component analysis (PCA). It is marked with an asterisk, as the

material is slightly more difficult, not with respect to the R code, but due to the

use of multivariate statistics. It is an exception in being one of the few parts of

this book that requires knowledge of statistics to follow the text. If the graph in

Fig. 8.7 looks interesting, read on.
Figure 8.7 shows four biplots.1 The data used here are morphometric mea-

surements taken on approximately 1000 sparrows (Chris Elphick, University of

Connecticut, USA). Zuur et al. (2007) used these data to explain PCA in detail.
The interpretation of a PCA biplot depends on various choices, and a full

discussion is outside the scope of this text. See Jolliffe (2002) or Zuur et al.

(2007) for details. In this case, the morphometric variables are represented as

lines from the origin to a point, with coordinates given by the loadings of the

first two axes. The specimens are presented as points with coordinates given by

the scores of the first two axes. Depending on the chosen scaling, loading and/or

scores need to be multiplied by corresponding eigenvalues (Jolliffe, 2002).
The biplot allows us to make statements of which variables are correlated,

which specimens are similar, and whether specimens show high (or low) values

1 A biplot is a tool to visualise the results of multivariate techniques such as principal
component analysis, correspondence analysis, redundancy analysis, or canonical correspon-
dence analysis. Using specific rules in the PCA biplot, correlations (or covariances) among the
original variables, relationships among observations, and relationships between observations
and variables can be inferred. There are various ways to scale the biplot, and the interpretation
of the biplot depends on this scaling.
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for particular variables. These statements are based on the directions of the
lines and positions of the points. Lines pointing in a similar direction
correspond to positively correlated variables, lines with an angle of 90
degrees correspond to variables that have a small correlation, and lines
pointing in (approximately) opposite directions correspond to negatively
correlated variables. There are also criteria for comparing points and com-
paring the points to the lines. The interested reader is referred to the
aforementioned literature.

The sampled sparrows can be separated into two sexes and two species
(SESP and SSTS). The following code was used to create Fig. 8.7.

> setwd("C:/RBook")

> Sparrows <- read.table(file = "Sparrows.txt",

header = TRUE)
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Fig. 8.7 Multipanel principal component analysis biplots. Each panel shows a biplot obtained
by applying PCA (using the correlation matrix) to a dataset. SESP and SSTS represent the
species seaside sparrows (Ammodramus maritimus) and saltmarsh sharp-tailed sparrows
(Ammodramus caudacutus). The graphs indicate that the nalospi, culmen, and head measure-
ments are correlated, and this makes sense as these are all nested subsets of each other. Wing
length, mass, and tarsus on the other hand are indicators of the overall structure size of the
bird, so again it makes sense that these are correlated (as suggested by the biplots), but not
necessarily correlated with the first three

182 8 An Introduction to the Lattice Package



> library(lattice)

> xyplot(Wingcrd � Tarsus | Species * Sex,

xlab = "Axis 1", ylab = "Axis 2", data = Sparrows,

xlim = c(-1.1, 1.1), ylim = c(-1.1, 1.1),

panel = function(subscripts, ...){

zi <- Sparrows[subscripts, 3:8]

di <- princomp(zi, cor = TRUE)

Load <- di$loadings[, 1:2]

Scor <- di$scores[, 1:2]

panel.abline(a = 0, b = 0, lty = 2, col = 1)

panel.abline(h = 0, v = 0, lty = 2, col = 1)

for (i in 1:6){

llines(c(0, Load[i, 1]), c(0, Load[i, 2]),

col = 1, lwd = 2)

ltext(Load[i, 1], Load[i, 2],

rownames(Load)[i], cex = 0.7)}

sc.max <- max(abs(Scor))

Scor <- Scor / sc.max

panel.points(Scor[, 1], Scor[, 2], pch = 1,

cex = 0.5, col = 1)

})

The xlab, ylab, and data arguments are familiar. The first part of

the equation, Wingcrd � Tarsus, is used to set up the graph. There was

no specific reason for choosing to use these two variables in the formula.

The portion of the code following the | symbol is new. So far, we have

only used one conditioning variable, but in this case there are two, Spe-

cies and Sex. As a result, the lower two panels in the graph show the

female data, and the upper two panels show the data from males. Change

the order of Species and Sex to see what happens. Note that both

variables are defined as characters in the data file; hence R automatically

treats them as factors.
The xlim and ylim values require some statistical explanation. The out-

come of a PCA can be scaled so that its numerical information (scores) for a

graph fits between �1 and 1. See Legendre and Legendre (1998) for mathema-

tical details.
It is also important when constructing the graph to ensure that the distance

in the vertical direction is the same as in the horizontal direction to avoid

distortion of the angles between lines.
We now address the more difficult aspect, the panel function. The vector

subscripts automatically contains the row number of the selected data in

the panel function. This allows us to manually extract the data that are

being used for a certain panel using Sparrows[subscripts, 3:8]. The

3:8 designates the variables Wingcrd, Tarsus, Head, Culmen, Nalospi,
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and Wt.2 The princomp function applies principal component analysis, and
loadings and scores of the first two axes are extracted. The two panel.ab-

line functions draw the axes through the origin. The loop (see Chapter 6)
is used to draw the lines and to add the labels for all variables. The
functions llines and ltext do the work. Finally, we rescale all the scores
between �1 and 1, and add them as points with the panel.xyplot

function.
The resulting biplots show how the correlations among the morphometric

variables differ according to sex and species.
The code can easily be extended to allow for triplots obtained by redundancy

analysis or canonical correspondence analysis (see the functions rda and cca

in the package vegan).
Full details on PCA and biplots and triplots can be found in Jolliffe (2002),

Legendre and Legendre (1998), and Zuur et al. (2007), amongmany other sources.

Do Exercise 6 in Section 8.11 on the use of panel functions using the
temperature data.

8.7 3-D Scatterplots and Surface and Contour Plots

Plots for displays of three variables, sometimes called trivariate displays, can be
generated by the functions cloud, levelplot, contourplot, and wire

frame. In our opinion, three-dimensional scatterplots are not always useful.
But they look impressive, and we briefly discuss their creation. Below is an
example of the function cloud, applied to the Dutch environmental dataset,
which produces three-dimensional scatterplots showing the relationships
among chlorophyll-a, salinity, and temperature. The code is fairly simple, and
the resulting graph is presented in Fig. 8.8.

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> cloud(CHLFa � T * SAL | Station, data = Env,

screen = list(z = 105, x = -70),

ylab = "Sal.", xlab = "T", zlab = "Chl. a",

ylim = c(26, 33), subset = (Area=="OS"),

scales = list(arrows = FALSE))

2 In Chapter 2 we provided an explanation for Wingcrd, Tarsus, Head, and Wt. Culmen
measures the length of the top of the bill from the tip to where feathering starts, and Nalospi

the distance from the bill top to the nostril.

184 8 An Introduction to the Lattice Package



The function cloud uses several arguments that we have not previously intro-

duced. The optionscreen is used to denote the amount of rotation about the axes

in degrees. With arrows = FALSEwe removed arrows that are normally plotted

along the axes of three-dimensional graphs to indicate the direction inwhich values

increase. Consequently, axis tick marks, which by default are absent, are now

shown. We limited the y-axis values to between 26 and 33.
The functions levelplot, contourplot, and wireframe are used to

plot surfaces. This generally involves predicting values on a regular grid by

statistical functions, which is outside the scope of this book. More information

on these functions can be found in their help pages.

8.8 Frequently Asked Questions

There are a number of things that we have often found ourselves modifying

when making lattice plots. The following are some that we have found useful.
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Fig. 8.8 Three-dimensional scatterplot of chlorophyll-a, salinity, and temperature
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8.8.1 How to Change the Panel Order?

By default panels are drawn starting from the lower-left corner, proceeding to the

right, and then up. This sequence can be changed by setting as.table = TRUE

in a high-level lattice call, resulting in panels being drawn from the upper-left

corner, going right, and then down.
The order of the panels can also be changed by defining the condition

variable as a factor, and changing the level option in the factor function.

Figure 8.9 shows a multipanel scatterplot of abundance of three bird species on

three islands in Hawaii. The data were analysed in Reed et al. (2007). The

problem with the graph is that the time series are arranged randomly with

respect to species and island, which makes comparisons among time series of

bird abundance of an island, or of an individual species, more difficult.

Figure 8.10 on the other hand, shows the time series of each island in rows, and

time series of each species in the columns. This makes the comparison of trends

with respect to individual species or islands much easier. So, how did we do it?
The following code imports the data and uses the as.matrix and as.vec-

tor commands to concatenate the eight abundance time series into a single

long vector. The as.matrix command converts the data frame into a matrix,

which allows as.vector tomake the conversion to a long vector; as.vector

will not work with a data frame. The rep function is used to create a single long

vector containing eight repetitions of the variable Year.
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Fig. 8.9 Time series abundances of three bird species on three islands of Hawaii
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> setwd("C:/RBook")

> Hawaii <- read.table("waterbirdislandseries.txt",

header = TRUE)

> library(lattice)

> Birds <- as.vector(as.matrix(Hawaii[, 2:9]))

> Time <- rep(Hawaii$Year, 8)

> MyNames <- c("Stilt_Oahu", "Stilt_Maui",

"Stilt_Kauai_Niihau","Coot_Oahu",

"Coot_Maui", "Coot_Kauai_Niihau",

"Moorhen_Oahu","Moorhen_Kauai")

> ID <- rep(MyNames, each = 48)

The rep function is also used to define a single long vector ID in which each

name is repeated 48 times, as each time series is of length 48 years (see Chapter 2).

Figure 8.9 was made with the familiar code:

> xyplot(Birds � Time | ID, ylab = "Bird abundance",

layout = c(3, 3), type = "l", col = 1)

The layout option tells R to put the panels in 3 rows and 3 columns with

points connected by a black line.
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Fig. 8.10 Time series of abundance of three bird species on three islands of Hawaii. Note that
time series of an island are arranged vertically, and time series of a species are horizontal
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To change the order of the panels, change the order of the levels of the factorID:

> ID2 <- factor(ID, levels = c("Stilt_Oahu",

"Stilt_Kauai_Niihau", "Stilt_Maui",

"Coot_Oahu", "Coot_Kauai_Niihau", "Coot_Maui",

"Moorhen_Oahu", "Moorhen_Kauai"))

Note the change in the order of the names. Rerunning the same xyplot

command, but with ID replaced by ID2, produces Fig. 8.10. Determining the
order of the levels within the factor ID2 (the names of the bird/island combina-
tions) is a matter of trial and error.

8.8.2 How to Change Axes Limits and Tick Marks?

The most direct way to influence the range of values on the axes is by using
xlim and ylim; however, this will result in the same limits on both the x and y

axes of all panels. The scales option is more versatile. It can be used to define
the number of tick marks, the position and labels of ticks, and also the scale of
individual panels.

In Figure 8.10 the vertical ranges of the time series differ among the panels.
This is obviously because some species are more abundant than others. How-
ever, if we want to compare trends over time, we are less interested in the
absolute values. One option is to standardise each time series. Alternatively,
we can allow each panel to set its own range limits on the y-axis. This is done as
follows (after entering the code from the previous subsection).

> xyplot(Birds � Time|ID2, ylab = "Bird abundance",

layout = c(3, 3), type = "l", col = 1,

scales = list(x = list(relation = "same"),

y = list(relation = "free")))

The option scales can contain a list that determines attributes of both axes.
In this case, it specifies that the x-axes of all panels have the same range, but sets
a vertical range of each panel appropriate to the data. The resulting graph is
presented in Fig. 8.11.

To change the direction of the tick marks inwards use the following code.

> xyplot(Birds � Time|ID2, ylab = "Bird abundance",

layout = c(3, 3), type = "l", col = 1,

scales = list(x = list(relation = "same"),

y = list(relation = "free"),

tck = -1))

The tck = -1 is within the list argument of the scales option. There are
many more arguments for scales; see the xyplot help file.
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8.8.3 Multiple Graph Lines in a Single Panel

The attribute groups in high-level lattice functions can be used when there is a

grouping in the data that is present in each level of the conditioning variable.

Figure 8.12 shows all time series of a species in a single panel. The following

code was used to generate the graph.

> Species <- rep(c("Stilt", "Stilt", "Stilt",

"Coot", "Coot", "Coot",

"Moorhen", "Moorhen"), each = 48)

> xyplot(Birds � Time | Species,

ylab = "Bird abundance",

layout = c(2, 2), type = "l", col = 1,

scales = list(x = list(relation = "same"),

y = list(relation = "free")),

groups = ID, lwd = c(1, 2, 3))

The first command defines a vector Species identifying which observations

are from which species. The xyplot with the groups option then draws the

time series of each species in a single panel. The option lwd was used to draw

lines of different thickness to represent the three islands.
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Fig. 8.11 Time series of abundance of three bird species on three islands of Hawaii. Each
panel has an appropriate abundance value range
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Do Exercise 7 in Section 8.11 on creating multiple lines in an
xyplot function using the temperature data.

8.8.4 Plotting from Within a Loop*

If you did not read Chapter 6, you may want to skip this section. Recall from
Section 8.2, that the salinity dataset consists of time series at stations, and that
the stations are located in areas along the Dutch coast. In Section 8.6.2, we
created a dotplot of the data from the area OS (Figure 8.6). Suppose we want to
make the same graph for each of the 12 areas. One option is to enter the code
from Section 8.6.2 12 times and each time to change the subset option.
However, in Chapter 6, we demonstrated executing similar plotting commands
automatically within a loop. The only difference is that we need to replace the
plot command by a dotplot command:

> setwd("C:/RBook")

> Env <- read.table(file ="RIKZENV.txt", header = TRUE)

> library(lattice)

> AllAreas <- levels(unique(Env$Area))

> for (i in AllAreas ){
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Fig. 8.12 Abundance of three species of Hawaiian birds over time. Data on each species are
plotted in a single panel
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Env.i <- Env[Env$Area == i,]

win.graph( )

dotplot(factor(Month)�SAL | Station, data = Env.i)

}

The first three lines load the data and the lattice package. The variable
AllAreas contains the names of the 12 areas. The loop iteratively extracts
the data of an area and draws a dotplot of all stations in this area. The only
problem is that this code will produce 12 empty graph windows.

When you execute a high-level lattice function, a graph is created on your
screen. This appears similar to using, for example, the traditional plot com-
mand. The lattice command differs, however, because this command returns an
object of class ‘‘trellis,’’ and, in order to see a plot, the print function is invoked.
Sometimes, when issuing a command to draw a lattice plot, nothing happens, not
even an errormessage. Thismost often happens when creating a lattice plot inside
a loop or function, or from a source command. To get the graphs, the print
command must be embedded in the loop:

print(dotplot(factor(Month)�SAL | Station,

data = Env.i))

Adding the print command to the code and rerunning it will produce 12
windows with graphs.

8.8.5 Updating a Plot

Because drawing lattice plots is time consuming, especially when you are new to
lattice, the update function is useful. Many attributes of a lattice object can be
changed with update, thus your graph must be stored in an object first. An
additional advantage is that if you experiment by using the update command,
your original graph is not changed, so

> MyPlot <- xyplot(SAL � MyTime | Station,

type = "l", data = Env)

> print(MyPlot)

> update(MyPlot, layout = c(10, 3))

will print the plot in a new layout. The update command will automatically
generate a plot because it is not assigned to an object. The original object
MyPlot is unchanged.

8.9 Where to Go from Here?

After completing the exercises you will have the flavour of lattice graphs and
will undoubtedly want to use them in research, publications, and presenta-
tions. For further information consult Sarkar (2008) or Murrell (2006). Other
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sources are the website that accompanies Sarkar (2008) (http://lmdvr.r-forge.
r-project.org) or the R-help mailing list.

8.10 Which R Functions Did We Learn?

Table 8.2 contains the R functions introduced in this chapter.

8.11 Exercises

Exercise 1. Using the demo(lattice) function.

Load the lattice package and investigate some of the possibilities by typing in
demo(lattice). Type in ?xyplot and copy and paste some of the examples.

Exercise 2. Using the xyplot with temperature data.

Create a multipanel scatterplot in which temperature is plotted versus time
for each station. What is immediately obvious? Do the same for each area.
What goes wrong and how can you solve this? Add a smoother and a grid to
each panel.

Exercise 3. Using the bwplot with temperature data.

Create a boxplot in which temperature is plotted versus month for each area.
Compare with the boxplot for the salinity data and comment on the differences
in the patterns.

Exercise 4. Using the dotplot function with salinity data.

Use Cleveland dotplots to discover if there are more outliers in the salinity
data, making a lattice plot with all stations as panels. Compare with Fig. 8.3.
What can be noted on the scale of the y-axis? Look up the argument relation
in the help page of xyplot and use it.

Exercise 5. Using the density plot with salinity data.

Change Fig. 8.4 to a density plot. Is it an improvement? Add the following
argument: plot.points = "rug". To compare density distributions you
might prefer to have all the lines in a single graph. This is accomplished with the

Table 8.2 R functions introduced in this chapter

Function Purpose Example

xyplot Draws a scatterplot xyplot (y � x | g, data = data)

histogram Histogram histogram(� x | g, data = data)

bwplot Comparative box-and-whisker
plots

bwplot(y � x | g, data = data)

dotplot Cleveland dotplot dotplot(y � x | g, data = data)

cloud Three-dimensional scatterplot cloud(z � x * y | g, data =

data)
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groups argument. Remove the conditioning argument and add groups =

Station (see also Section 8.8). Add a legend to specify the lines representing
each station. This requires advanced programming (though there are simple
solutions), and we refer you to the code on our website for the solution.

Exercise 6. Using the xyplot function with temperature data.

Look at the help pages of panel.linejoin. Create a plot similar to Fig.
8.2, but with temperature on the y-axis. This is the same as in Exercise 3, but
now use panel.linejoin to connect the medians, not the means. Take care
of the NAs in the data, otherwise nothing will happen.

Exercise 7. Using the xyplot function with salinity data.

Create a lattice scatterplot using salinity as the dependent variable versus
time for each area and include the groups argument to draw separate lines for
each station.

Exercise 8. Using the xyplot function with temperature data.

In Exercise 2 you created a lattice scatterplot for each area using temperature
as the dependent variable versus time. Make a similar graph for the area ‘‘KZ’’,
but plot small dots and add a smoothing line with 1/10 span width. Create strips
on either side of the panels, with the text ‘‘Area 1’’, ‘‘Area 2’’, and so on. Add an
x-label, a y-label, and a title.

Exercise 9. Using the xyplot function with salinity data.

Create a multipanel scatterplot of the salinity data versus time conditional on
area with different lines (no points) for the different stations within each area.
Make sure the panel layout is in two columns. Use the same x-axis on each
panel, but different scales for the y-axes. Limit the number of tick marks and
labels on the y-axes to three or four and on the x-axes to four, with the tick
marks between labels. Remove the tick marks (and labels) from the top and
make sure they are only present on the bottom of the graph. Decrease the size of
the text in the strip and the height of the strip. Add a grid (properly aligned with
the tick marks), and also x- and y-labels. Change the order of the panels to
alphabetic from top left to bottom right.

Exercise 10. Using the xyplot function with the ISIT data.

Create a multipanel scatterplot of the ISIST data (see Chapter 1). Plot the
sources versus depth for each station. Also make a multipanel graph in which
data from all stations sampled in the same season are grouped (see also
Exercise 4 in Section 3.7). Each panel (representing a season) should have
multiple lines.

8.11 Exercises 193



Chapter 9

Common R Mistakes

The following addresses avoiding some errors that we see on a regular basis
during our R courses.

9.1 Problems Importing Data

9.1.1 Errors in the Source File

The code required to import data into R was discussed in Chapter 2. The first
major task is ensuring that the spreadsheet (or ascii file) is adequately prepared.
Do not use spaces in variable names or include blank cells. The error messages
that will result were shown in Chapter 2, and are not repeated here.

If your column names are species names of the form Delphinus delphi, call it
Delphinus.delphi with a point between the two names, Delphinus_delphi (under-
score), or, better yet, something shorter, such as Ddelphi.

9.1.2 Decimal Point or Comma Separation

Another potential pitfall is the decimal separation used: comma or point. We
often teach groups in which some participants have computers with point
separation and the rest use commas. In Chapter 2, we demonstrated use of
the dec option in the read.table function to set the style of separation.
Always use the str function after importing the data to verify that the data
have been imported as intended. If you import the data using the incorrect dec
option, R will accept it without an error message. The difficulties arise later
when you attempt to work with the data, for example, to make a boxplot or take
the mean of a variable which is continuous but has erroneously been imported
as a categorical variable because of the wrong dec option.

The problems may be compounded by the fact that the mistake is not always
readily apparent, because you may occasionally get away with using the wrong
decimal separator. In the following example, the first two commands import the

A.F. Zuur et al., A Beginner’s Guide to R, Use R,
DOI 10.1007/978-0-387-93837-0_9, � Springer ScienceþBusiness Media, LLC 2009
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cod parasite data that were used in Chapter 6. Note that we used the dec=","

option in the read.table command, although the ascii file contains data with

decimal point separation.

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE, dec = ",")

The str function shows the imported data:

> str(Parasite)

’data.frame’ : 1254 obs. of 11 variables:

$Sample : int 1 2 3 4 5 6 7 8 9 10 ...

$Intensity : int 0 0 0 0 0 0 0 0 0 0 ...

$Prevalence : int 0 0 0 0 0 0 0 0 0 0 ...

$Year : int 1999 1999 1999 1999 1999 ...

$Depth : int 220 220 220 220 220 220 220 ...

$Weight : Factor w/ 912 levels "100",..: 159...

$Length : int 26 26 27 26 17 20 19 77 67 ...

$Sex : int 0 0 0 0 0 0 0 0 0 0 ...

$Stage : int 0 0 0 0 0 0 0 0 0 0 ...

$Age : int 0 0 0 0 0 0 0 0 0 0 ...

Length has been correctly imported as an integer, but the variable Weight

is considered a categorical variable. This is because some of the weight

values are written with decimals (e.g., 148.0), whereas all other variables

are coded as integers in the text file. This means that the following

commands will work.

> mean(Parasite$Intensity, na.rm = TRUE)

[1] 6.182957

> boxplot(Parasite$Intensity) #Result not shown here

However, entering the same code for Weight gives error messages:

> mean(Parasite$Weight)

[1] NA
Warning message:
In mean.default(Parasite$Weight): argument is not numeric
or logical: returning NA

> boxplot(Parasite$Weight)

Error in oldClass(stats) <- cl: adding class "factor" to
an invalid object
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If you use Weight as a covariate in linear regression, you may be surprised
at the large number of regression parameters that it consumes; Weight was
automatically fitted as a categorical variable. It is only by chance that the mean
and boxplot functions using Intensity were accurately produced; if it had
contained values including decimals, the same error message would have
appeared.

9.1.3 Directory Names

Problemsmay also arisewhen importing datawith directory names containing non-
English alphabetical characters such as á, , , and many more. This is a language
issue that may be difficult to resolve if you are working with datasets contributed by
colleagues using other alphabet systems. Surprisingly, problems do not occur on all
computers. It is advisable to keep thedirectory structure simple andavoid characters
in the file and directory names that your computer may see as ‘‘strange’’.

9.2 Attach Misery

When conducting a course, we face the dilemma of whether to teach a quick-
and-easy approach to accessing variables in a data frame using the attach

function, to put participants through some extra R coding using the data

argument (when applicable), or to teach the use of the $ notation. This is a
slightly controversial area, as some authorities insist that the attach function
should absolutely never be used, whereas others have written books in which
the function is used extensively (e.g., Wood, 2006). When we work with a single
dataset, we use the attach command, as it is more convenient. However, there
are rules that must be followed, and we see manyR novices breaking these rules.

9.2.1 Entering the Same attach Command Twice

Themost common problem incurred with the attach function arises when one
program’s code containing the attach command runs it in R, detects a
programming mistake, fixes it, and proceeds to rerun the entire piece of code.
Here is an example:

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> attach(Parasite)

> Prrrarassite

Error: object "Prrrarassite" not found

Because we misspelled Parasite, R gives an error message. The obvious
response is to correct the typing error and try again. However, if we correct
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the mistake in the text editor (e.g., Tinn-R) and then resend, or copy, all the

code (which includes the attach command) to R, it will result in the

following.

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> attach(Parasite)

The following object(s) are masked from Parasite (posi-

tion 3):

Age Area Depth Intensity Length Prevalence Sample Sex

Stage Weight Year

At this point it is useful to consult the help file of the attach function. It

says that the function adds the data frame Parasite to its search path, and, as

a result, the variables in the data frame can be accessed without using the $

notation. However, by attaching the data frame twice, we have made available

two copies of each variable. If we make changes to, for example, Length and,

subsequently, use Length in a linear regression analysis, we have no way of

ensuring that the correct value is used.
The alternative is to use the detach function before rerunning attach (the

code below assumes that we have not yet used the attach function):

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> attach(Parasite)

We can now begin programming; to detach the data frame Parasite, use:

> detach(Parasite)

Another procedure to avoid is running a for loop that in each iteration

attaches a data frame, as this will generate an expanding search path which will

eventually slow down your computer. The help file for the with function also

provides an alternative to the attach function.

9.2.2 Attaching Two Data Frames Containing the Same Variable

Names

Suppose we import the cod parasite data and the squid data and employ the

attach function to make variables in both data frames available, using the

following code.
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> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> Squid <- read.table(file = "Squid.txt", header=TRUE)

> names(Parasite)

[1] "Sample" "Intensity" "Prevalence" "Year"
[5] "Depth" "Weight" "Length" "Sex"
[9] "Stage" "Age" "Area"

> names(Squid)

[1] "Sample" "Year" "Month" "Location" "Sex"
[6] "GSI"

> attach(Parasite)
> attach(Squid)

The following object(s) are masked from Parasite:

Sample Sex Year

> boxplot(Intensity � Sex)

Error in model.frame.default(formula=Intensity � Sex):

variable lengths differ (found for ’Sex’)

> lm(Intensity � Sex)

Error in model.frame.default(formula = Intensity � Sex,

drop.unused.levels = TRUE): variable lengths differ

(found for ’Sex’)

The first three commands import the data. The output of the two names

functions show that both data frames contain the variable Sex. We used the
attach function to make the variables in both data frames available. To see the
effect of this, we canmake a boxplot of the Intensity data conditional on Sex.
The error message generated by the boxplot function shows that the length of
the vectors Intensity and Sex differ. This is because R has used Intensity

from the Parasite data frame and Sex from the Squid data frame. Imagine
what would have happened if, fortuitously, these two variables were of the same
dimension: we would have modelled the number of parasites in cod measured in
the Barents Sea as an effect of sex of squid from the North Sea!

9.2.3 Attaching a Data Frame and Demo Data

Many statistics textbooks come with a package that contains datasets used in
the book, for example, the MASS package from Venables and Ripley (2002), the
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nlme package from Pinheiro and Bates (2000), and the mgcv package from
Wood (2006), among many others. The typical use of such a package is that the
reader accesses the help file of certain functions, goes to the examples at the end
of a help file, and copies and runs the code to see what it does. Most often, the
code from a help file loads a dataset from the package using the data function,
or it creates variables using a random number generator.We have also seen help
file examples that contain the attach and detach functions. When using
these it is not uncommon to neglect to copy the entire code; the detach

command may be omitted, leaving the attach function active. Once you
understand the use of the demonstrated function, it is time to try it with your
own data. If you have also applied the attach function to your data, you may
end up in the scenario outlined in the previous section.

Problems may also occur if demonstration data loaded with the data func-
tion contain some of the same variable names used as your own data files.

The general message is to be careful with the attach function, and use clear
and unique variable names.

9.2.4 Making Changes to a Data Frame After Applying

the attach Function

The following example is something that we see on a regular basis. Often, our
course participants own multiple R books, which may recommend different R
styles. For example, one book may use the attach function, whereas another
uses a more sophisticated method of accessing variables from a data frame.
Mixing programming styles can sometimes cause trouble, as can be seen from
the example below.

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> Parasite$fSex <- factor(Parasite$Sex)

> Parasite$fSex

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[21] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1

. . .

> attach(Parasite)

> fSex

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[21] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1

. . .

> Parasite$fArea <- factor(Parasite$Area)

> fArea

Error: object "fArea" not found
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On the first three lines, the data are imported and a new categorical variable
fSex is created inside the data frame Parasite. We then make all variables in
this data frame available with the attach function, and, consequently, we can
access the fSex variable by simply typing it in. The numerical output shows that
this was successful. If we subsequently decide to convert Area into a new catego-
rical variable, fArea inside the data frame Parasite, we encounter a problem.
We cannot access this variable by typing its name into the console (see the error
message). This is because the attach function has been executed, and variables
added to Parasite afterwards are not available. Possible solutions are:

1. Detach the data frame Parasite, add fArea to the data frame Parasite,
and attach it again.

2. Define fArea before using the attach function.
3. Define fArea outside the data frame.

9.3 Non-attach Misery

In addition to the attach function, there are various other options available
for accessing the variables in a data frame. We discussed the use of the data
argument and the $ symbol in Chapter 2. In the latter case, we can use

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> M0 <- lm(Parasite$Intensity �

Parasite$Length * factor(Parasite$Sex))

The first two lines import the cod parasite data. The last two lines apply a
linear regression model in which Intensity is modelled as a function of
length and sex of the host. We do not discuss linear regression nor its output
here. It is sufficient to know that the function has the desired effect; type
summary (M0) to see the output. Note that we used the Parasite $ notation
to access variables in the data frame Parasite (see Chapter 2). The following
two commands load the nlme package and apply linear regression using the
generalised least squares function gls (Pinheiro and Bates, 2002).

> library(nlme)

> M1 <- gls(Parasite$Intensity �

Parasite$Length * factor(Parasite$Sex))

Error in eval(expr, envir, enclos): object "Intensity"

not found

The results obtained by the lm and gls functions should be identical,
yet R (regardless of the version used) gives an error message for the latter.
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The solution is to use the data argument and avoid using the Parasite$

notation in the gls function.

9.4 The Log of Zero

The following code looks correct. It imports the dataset of the cod parasite data

and applies a logarithmic transformation on the number of parasites in the

variable Intensity.

> setwd("c:/RBook/")

> Parasite <- read.table(file = "CodParasite.txt",

header = TRUE)

> Parasite$LIntensity <- log(Parasite$Intensity)

There is no error message, but, if we make a boxplot of the log-transformed

values, problems become apparent; see the left boxplot in Fig. 9.1. The difficulty

arises because some fish have zero parasites, and the log of zero is not defined,

as can be seen from inspecting the values:

> Parasite$LIntensity

[1] -Inf -Inf -Inf -Inf -Inf
[6] -Inf -Inf -Inf -Inf -Inf

[11] -Inf -Inf -Inf -Inf -Inf
. . .

[1246] 4.0073332 4.3174881 4.4308168 4.4886364
[1251] 4.6443909 4.8283137 4.8520303 5.5490761

Carrying out linear regression with the variable LIntensity results in a

rather intimidating error message:

> M0 <- lm(LIntensity � Length * factor(Sex),

data = Parasite)

log(Intensity) log(Intensity+1)

0
1

2
3

4
5

Fig. 9.1 Boxplot of the log-
transformed Intensity

(left) and the log-
transformed Intensity after
adding a constant value of 1
to avoid problems with the
log of zero (right)
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Error in lm.fit(x, y, offset = offset, singular.ok =

singular.ok,...): NA/NaN/Inf in foreign function call

(arg 4)

The solution is to add a small constant value to the Intensity data, for
example, 1. Note that there is an on-going discussion in the statistical commu-
nity concerning adding a small value. Be that as it may, you cannot use the log
of zero when doing calculations in R. The following code adds the constant and
draws the boxplot shown on the right side in Fig. 9.1.

> Parasite$L1Intensity <- log(Parasite$Intensity + 1)

> boxplot(Parasite$LIntensity, Parasite$L1Intensity,

names = c("log(Intensity)", "log(Intensity+1)"))

To reiterate, you should not take the log of zero!

9.5 Miscellaneous Errors

In this section, we present some trivial errors that we see on a regular basis.

9.5.1 The Difference Between 1 and l

Look at the following code. Can you see any differences between the two plot
functions? The first one is valid and produces a simple graph; the second plot
function gives an error message.

> x <- seq(1, 10)

> plot(x, type = "l")

> plot(x, type = "1")

Error in plot.xy(xy, type, ...) : invalid plot type ’1’

The text in the section title may help to answer the question, as its font shows
more clearly the difference between the 1 (one) and the 1 (‘‘ell’’). In the first
function, the l in type = "l" stands for line, whereas, in the second plot
function, the character in type = "1" is the numeral 1 (this is an R syntax
error). If this text is projected on a screen in a classroom setting, it is difficult to
detect any differences between the l and 1.

9.5.2 The Colour of 0

Suppose you want to make a Cleveland dotplot of the variable Depth in
the cod parasite data to see the variation in depths from which fish were
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sampled (Fig. 9.2A). All fish were taken from depths of 50–300 meters. In

addition to the numbers of parasites, we also have a variable, Prevalence,

which indicates the presence (1) or absence (0) of parasites in a fish. It is

interesting to add this information to the Cleveland dotplot, for example, by

using different colours to denote Prevalence. This is shown in panel B. The

code we use is as follows (assuming the data to have been imported as

described in previous sections).

> par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))

> dotchart(Parasite$Depth)

> dotchart(Parasite$Depth, col = Parasite$Prevalence)

We encounter a problem, in that some of the points have disappeared. This is

because we used a variable in the col option that has values equal to 0, which

would represent a lack of colour. It is better to use something along the lines of

col = Parasite$Prevalence + 1, or define a new variable using appro-

priate colours.

9.5.3 Mistakenly Saved the R Workspace

Last, but not least, we deal with problems arising from mistakenly saving the

workspace. Suppose that you loaded the owl data that was used in Chapter 7:

> setwd("C:/RBook/")

> Owls <- read.table(file = "Owls.txt", header= TRUE)

50 100

A

B

150 200 250 300

50 100 150 200 250 300

Fig. 9.2 A: Cleveland
dotplot of depth. The
horizontal axis shows depth,
and the vertical axis
represents the order of the
observations as imported
from the text file. B: Same as
panel A, with points
coloured based on the values
of Prevalence

204 9 Common R Mistakes



To see which variables are available in the workspace, type:

> ls()

[1] "Owls"

The ls command gives a list of all objects (after an extended work session,

you may have a lot of objects).
You now decide to quit R and click on File -> Exit. The window in Fig. 9.3

appears. We always advise choosing ‘‘No,’’ not saving, instead rerunning the

script code from the text editor (e.g., Tinn-R) when you wish to work with it

again. The only reason for saving the workspace is when running the calcula-

tions is excessively time consuming. It is easy to end up with a large number of

saved workspaces, the contents of which are complete mysteries. In contrast,

script code can be documented.

However, suppose that you do click on ‘‘Yes.’’ Dealing with this is easy. The

directory C:/RBook will contain a file with the extension .RData. Open

Windows Explorer, browse to the working directory (in this case: C:/RBook)

and delete the file with the big blue R.
Things are more problematical if, instead of using the setwd command, you

have entered:

> Owls <- read.table(file = "C:/RBook/Owls.txt",

header = TRUE)

If you now quit, saving the workspace, when R is started again the following

text will appear.

R version 2.7.2 (2008-08-25)

Copyright (C) 2008 The R Foundation for Statistical

Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

Fig. 9.3 Window asking the
user whether the workspace
should be saved before
closing R
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You are welcome to redistribute it under certain condi-

tions.

Type ’license()’ or ’licence()’ for distribution

details.

Natural language support but running in an English

locale

R is a collaborative project with many contributors.

Type ’contributors()’ for more information and

’citation()’ on how to cite R or R packages in publica-

tions.

Type ’demo()’ for some demos, ’help()’ for on-line help,

or

’help.start()’ for an HTML browser interface to help.

Type ’q()’ to quit R.

[Previously saved workspace restored]
>

It is the last line that spoils the fun. R has loaded the owl data again. To
convince yourself, type:

> Owls

The owl data will be displayed. It will not only be the owl data that R has
saved, but also all other objects created in the previous session. Restoring a
saved workspace can cause the same difficulties as those encountered with
attach (variables and data frames being used that you were not aware had
been loaded).

To solve this problem, the easiest option is to clear the workspace (see also
Chapter 1) with:

> rm(list = ls(all = TRUE))

Now quit R and save the (empty) workspace. The alternative is to locate the
.RData file and manually delete it from Windows Explorer. In our computer
(using VISTA), it would be located in the directory: C:/Users/UserName. Net-
work computers and computers with XP are likely to have different settings for
saving user information. The best practice is simply to avoid saving the
workspace.
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Index

Note: Entries in bold refer to command/function/argument.

A
abline function, 146, 149, 160
Acquiring R, 2–4

www.r-project.org, 2

arrows function, 149, 166
Art of programming, 7–8

as.factor function, 72
as.matrix function, 186

as.numeric function, 72, 163
as.vector function, 186–187
attach function, 197–198

in accessing variable, 62–63

attach misery, common R mistake, 197–201

attaching a data frame and demo data,

199–200

attaching two data frames, 198–199

entering the same attach function twice,

197–198

making changes to a data frame, 200–201

Axes limits change, in lattice package,

188–189

axis function, 148

B
Bar chart, 131–136

avian influenza data example, 131–133

Cases variable, 132

stacked bar chart, 132

standard bar chart, 132

mean valueswith stackedbar chart, 132–135

tapply function, 133

Barbraud, C, 10

barplot function, 166
Base installation of R, packages included in,

16–19

See also under Packages

Bates, D, 23, 200–201

Bersier, LF, 101, 137

Bioinformatics and Computational Biology

Solutions Using R and

Bioconductor, 23

Biplots, 181–182

Bivand, RS, 24

Books

Bioinformatics and Computational

Biology Solutions Using R and

Bioconductor, 23

Data Analysis and Graphics Using R: An

Example-Based Approach, 23

Data Analysis Using Regression and

Multilevel/Hierarchical Models, 23

Extending the Linear Model with R, 23

First Course in Statistical Programming

with R, A, 23

Generalized Additive Models: An

Introduction with R, 23

Handbook of Statistical Analysis Using R,

A, 23

Introductory Statistics with R, 22

Lattice. Multivariate Data Visualization

with R, 24

Linear Models with R, 23

Mixed Effects Models and Extensions in

Ecology with R, 23

Mixed Effects Models in S and S-Plus, 23

Modern Applied Statistics with S, 4th ed, 22

on R, 22–24

R and S-Plus Companion to Applied

Regression, An, 23

R and S-PLUS Companion to

Multivariate Analysis, An, 23

R book, The, 22–23

R Graphics, 23
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Books (cont.)

Semi-Parametric Regression for the Social

Sciences, 23

Statistical Models in S, 22

Statistics. An Introduction Using R, 23

Time Series Analysis and Its Application.

With R Examples — Second

Edition, 23

Using R for Introductory Statistics, 23

using R, 22–24

Boolean vector, 64

box function, 149, 166

boxplot function, 13–14, 166
Boxplots, 137–141

conditional boxplot, 140

owl data example, 137–140

feeding protocol effect, 137

names function, 137

nestling negotiation, 138–139

sex of parent effect, 137

str function, 137

purpose of, 137

showing benthic data, 140–141

tapply function, 141

Braun, J, 23

bwplots function, 170, 173–174

C
c () Functions, 31–33

brackets in, 31

combining variables with, 34–38

Categorical variables, recoding, 71–74

as.factor function, 72
as.numeric function, 72
str function, 71

cbind function, 36

combining variables with, 34–38

cex option, 93

vector use for, 94–95

Chambers, JM, 22

Claude, J, 24

Cleveland, WS, 141

adding mean to, 143–144

dotchart function, 142–143
dotplot function, 170, 174–176

jitter.x option, 175

subset option, 175

for benthic data, 144

legend function, 144

tapply function, 144

cloud function, 170, 184

Code, designing, in loops, 104–105

col option, vector use for, 93

Colours

colour of 0, common R mistake, 203–204

in graphs, 88–95

changing, 92–93

Combining two datasets with common

identifier, 67–69

Combining types of plots, 164–166

grid package, 164

layout function, 165

matrix function, 165

# Command, 8–9

? Command, 13

Command window, 5

Common identifier, combining two datasets

with, 67–69

Common R mistakes, 195–205

colour of 0, 203–204

difference between 1 and l, 203

log of zero, 202–203

mistakenly saved the R workspace,

204–206

non-attach misery, 201–202

problems importing data, 195–197

decimal point or comma separation,

195–197

directory names, 197

errors in the source file, 195

See also attach misery

Concatenating data with c function, 31–33

Conditional selection, 65

Conditioning variable, coplot using, 159

single conditioning variable, 157–160

two conditioning variables,

161–162

Console window, 5

Continuous conditioning variable, coplot

using, 159

contour function, 149, 184–185
contourplot function, 170
Contributed packages, downloading R, 4

Coplot(s), 157–163

abline function, 160
as.numeric function, 163
using continuous conditioning variable,

159

coplot function, 158–159, 167
jazzing up the, 162–163

panel function, 160
panel.lm function, 160

with a single conditioning variable,

157–160

with two conditioning variables, 161–162

CRAN link in downloading R, 3
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Crawley, MJ, 2, 22–23

Cruikshanks, R, 161

curve function, 149
cut function, 155

D
Dalgaard, P, 2, 22, 73, 136

Data Analysis and Graphics Using R: An

Example-Based Approach, 23

Data Analysis Using Regression and

Multilevel/Hierarchical Models, 23

data argument, 183

in plot function, 60–61, 86–87
Data entry into R, 29–56

variables, accessing, 57–63

See also under Variables

See also Getting data into R

data.frame function, combining data with,

42–43

Default values for variables in function

arguments, 115–116

densityplot function, 170
Description of R, 1–2

initial impression, 4–7

detach function, 198, 200

dev.off functions, 125
Diversity indices, 117–118

Shannon index, 117, 121–122

species richness, 117

total abundance per site, 117, 119–120

Documenting script code, 8–10

dotchart function, 142–143
Dotplots, see Cleveland dotplots

Downloading R, 2–4

base, 3–4

contributed packages, 4

CRAN link, 3

homepage, 2

R startup window, 5

R-2.7.1-win32.exe file, 3, 5

www.r-project.org, 2, 4

E
Editors, 12–13

brackets in, 12

Microsoft word for Windows, 12

RWinEdt use, 13

Tinn-R text editor, 12–13

equal.count function, 171
Errors in R, see Common R mistakes

Everitt, BS, 23

Excel data, importing, 47–51

exporting data to a Tab-Delimited ascii

File, 47–48

preparing data in excel, 47

read.table function, using, 48–51

Excel menu for pie charts, 11

Exporting data, 69–70

write.table function in, 69–70

expression function, 167

Extending the Linear Model with R, 23

F
factor function, 71–73
Faraway, JJ, 23

First Course in Statistical Programming with

R, A, 23

First panel function, 177–179

fitted function, in adding smoothing line, 98

Font size

adjustment, 19

changing, plot function, 153

Fonts, changing, plot function, 153

Foolproof functions, 115–117

default values for variables in function

arguments, 115–116

Fox, J, 23

Functions, 108–117

foolproof functions, 115–117

default values for variables, 115–116

misspelling, 116–117

with multiple arguments, 113–115

is.na function, 110

names function, 109
NAs, 108–113

positional matching, 110

principle of, 108

read.table function, 111
technical information, 110–111

zeros, 108–113

See also individual entries; if statement

G
Gelman, A, 23

General issues in R, 19–21

font size adjustment, 19

quitting R, 21

setting the working directory, 21

in using Tinn-R text editor, 19–20

‘hidden enter’ notation on the last line,

not copying, 19–20

Generalised linear mixed modelling

(GLMM), 16
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Generalized AdditiveModels: An Introduction

with R, 23

Generic plot function, 145

Gentleman, R, 22–24

cbind function, 34–38

c function, concatenating data with,

31–33

data.frame function, combining data

with, 42–43

first steps, 29–46

typing in small datasets, 29–31

list function, combining data using,

43–46

matrix, combining data using, 39–41

rbind functions, 34–38

rep function, 35

vector function, combining

data with, 39

See also Importing data

Gillibrand, EJV, 7

glmmPQL function, 16

Gonadosomatic index (GSI), 47

Graphical user interface (GUI), 6

Graphing facilities in R, 10–11, 85–88,

127–168

background image, 10

colours, 88–95

changing options, 92–93

vector use for cex option, 94–95

importing to Microsoft Word, 86

modifications to, 87

pie chart menu in Excel, 11

pixmap, 10
plot function, 10
plotting characters, changing, 88–92

pch option in, 88–89

vector use for pch, 90–92

saving graphs, in loops, 105–107

scatterplots, 86–88, 94

sizes, 88–95

altering, 93–95

cex option, 93

smoothing line, adding, 95–97

fitted function, 98

lines function, 95–97
loess function in, 96

order function, 97
symbols, 88–95

vector use for col, 93

See also Bar chart; Boxplots; Cleveland

dotplots; Combining types of

plots; Coplot; Pairplot; Pie chart;

plot function; Strip chart

grid function, 149

grid package, 164

gstat package, 17–18

H
Handbook of Statistical Analysis Using R, A,

23

Hastie, TJ, 22, 95, 178

Head function, 32

Help files, 13–15

question mark, 13

Search Engine & Keywords links, 15

See also Newsgroups

Hemmingsen, 111(AQ: not listed in

reference, please provide initial)

High-level lattice functions, 169–170

bwplots function, 170
cloud function, 170

contourplot function, 170
densityplot function, 170
dotplot function, 170
histogram function, 170

levelplot function, 170
panel.densityplot, 170
panel.histogram, 170

parallel function, 170
qqmath function, 170

splom function, 170

stripplot function, 170
wireframe function, 170
xyplot function, 170

Hill, J, 23

histogram function, 170, 176–177

History, 22–24

Homepage, R website, 2

Hornik, K, 22

Hothorn, T, 23

I
Identifying points, plot function, 152–153

identify function, 153

if statement, 117–125

ifelse command, 117

importing and assessing the data (Step 1),

118–119

putting the code into a function (Step 6),

122–125

richness per site (Step 3), 120–121

Shannon index per site (Step 4), 121–122

total abundance per site (Step 2), 119–120

See also Diversity indices
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Importing data, 46–54

accessing a database, 52–54

accessing data from other statistical

packages, 51–52

Excel data, 47–51

See also individual entry

in loops, 102–103

problems with, 195–197

decimal point or comma separation,

195–196

errors in the source file, 195

Installing R, 2–4

graphical user interface (GUI), 6

See also Downloading R

Introductory Statistics with R, 22

is.na function, 143

J
Jacoby, WG, 141

Jazzing up the coplot, 162–163

jitter.x option, 175

Jolliffe, IT, 181, 184

jpeg function, 106

K
Keele, L, 23

Keough, MJ, 150

L
labels, adding, in loops, 103–104

lapply function, 80–81

Lattice package, 169–193

contour plots, 184–185

frequently asked questions, 185–191

axes limits change, 188–189

multiple graph lines in a single panel,

189–190

panel order change, 186–188

plotting from within a loop, 190–191

tick marks change, 188–189

updating a plot, 191

surface plots, 184–185

3-D Scatterplots, 184–185

See also bwplot; High-level lattice

functions; Histogram; Cleveland

dotplots; panel functions; xyplot
Lattice. Multivariate Data Visualization with

R, 24

layout function, 165, 167
legend function, 149, 166

Cleveland dotplots, 144

Legendre, L, 108, 183–184

Legendre, P, 108, 183–184

Legends, 150–152

levelplot function, 170
Library function, 16, 18
Linear Models with R, 23

adding extra lines in plot function, 148

lines function, 148–149
in adding smoothing line, 95–97

list function, combining data using, 43–46

AllData typing, 46

Literature overview, 22–24

Use R! Series, 24

See also Books

Loading the R package, 18

Local server page, 3

locator function, 155
loess function, in adding smoothing line, 96

log function, 27

log of zero, common R mistake, 202–203

log10 function, 27

Loops, 99–108

architectural design, planning, 102

constructing the loop (Step 6), 107–108

designing general code (Step 4), 104–105

importing the data (Step 1), 102–103

making scatterplots and adding labels

(Steps 2 and 3), 103–104

saving the graph (Step 5), 105–107

dev.off functions, , 125
jpeg function, 125

Loyn, RH, 150

M
Magurran, AE, 117

Maindonald, J, 23

Manual download and install, 16, 17

mar option, 155
MASS package, 16

matplot function, 155
matrix function, 42–43, 54

combining data using, 39–41

mean function

adding to Cleveland dotplot, 143–144

tapply function, 79–80

Mendes, S, 154

merge function, 67–68
mfrow function, 155, 164

Mistakes in R, see Common R mistakes

Mixed Effects Models and Extensions in

Ecology with R, 23

Mixed Effects Models in S and S-Plus, 23
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Modern Applied Statistics with S, 4th ed, 22

mtext function, 149
Multipanel scatterplots, 170–172

Murdoch, DJ, 23

Murrell, P, 10, 23, 191

N
names function, 111
NAs, 108

Nason, GP, 24

Newsgroups, 13–15

posting a message to, 15

nlme package, 201
Nominal variables, 71

Non-attach misery, 201–202

number argument, 162

O
Open DataBase Connectivity (ODBC),

52–54

order function, 74, 98
in adding smoothing line, 97

P
Packages, 16–19

in base installation of R, 16

loading, 18

library function, 18

manual download and install, 16, 17

websites for, 17

from within R, 17–18

quality of, 18–19

user-contributed packages, 16–19

MASS package, 16

Pairplot, 155–157

extended pairplot, 157

mar option, 155
mfrow function, 155

pairs function, 155
panel functions, 156–157

pairs function, 155, 167
panel functions, 156–157, 160, 177–184

data argument, 183

first panel function example, 177–179

panel.bwplot, 177
panel.grid, 178
panel.histogram, 177

panel.loess, 178
panel.xyplot, 177–178
princomp function, 184

second panel function example, 179–181

cut-off level, 180

third panel function example, 181–184

xlab argument, 183

xlim, 183

ylab argument, 183

ylim, 183

Panel order change, in lattice package,

186–188

panel.histogram, 170

panel.lm function, 160, 162

par function, 130–131, 166
mar option, 130
in pie chart, 129–131

drawback with, 130

parallel function, 170
paste function, 125
pch option in changing plotting characters,

88–89

vector use in, 90–92

persp function, 155

Pie chart, 127–131

avian influenza data example, 127–130

with clockwise direction of slices, 129

mar option, 130
menu in Excel, 11

par function, 129–131
with rainbow colours, 129

standard pie chart, 129

three-dimensional pie chart, 129

pie function, 166
pie3D function, 166

Pinheiro, J, 23, 200–201

plot function/function, 10, 85–88, 145–155
abline function, 146
benthic dataset, 145–146

data argument in, 86–87

font size, changing, 153

fonts, changing, 153

generic plot function, 145

identifying points, 152–153

legends, 150–152

lines, adding extra lines, 148

lines function, 148
log argument, 147

main argument, 147

options for, 146–148

pch option in, 88–89

points function, 148
points, adding extra points, 148

special characters, adding, 153–154

expression function, 153

text function, 148
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text, adding extra text, 148

type = ‘‘n’’, using, 149

type argument, 147

xlab option, 87

xlim option, 87, 147

ylab option, 87, 147

ylim option, 87, 147

See also Graphs

plot.new function, 155

Plotting characters, changing, 88–92

See also under Graphs

Plotting tools, 85–98

points function, 149, 166
Points, adding extra points in plot function, 148

polygon function, 149

Positional matching, 110

princomp function, 184

Q
qqmath function, 170

Quality of R package, 18–19

Quinn, GP, 150

Quitting R, issue in, 21

R
R and S-Plus Companion to Applied

Regression, An, 23

R and S-PLUS Companion to Multivariate

Analysis, An, 23

R book, The, 22–23

R Graphics, 23

range function, 155
rbind functions, combining variables with,

34–38

read.table function, 47, 48–51, 111, 195
in accessing variable, 57–58

Recoding categorical variables, 71–74

rect function, 149
Reed, JM, 186

rep function, 54, 186

Ripley, BD, 2, 16, 22, 199

Ross Ihaka, 22 (AQ: not listed in reference,

please provide initial)

Roulin, A, 101, 137

rug function, 149

RWinEdt, 13

S
sapply function, 80–81

Sarkar, D, 24, 169, 191–192

savePlot function, 155
scales option, 188

scan function, in accessing variable, 57

Scatterplots, 86–88

in loops, 103–104

Script code, 7–10

art of programming, 7–8

documenting, 8–10

Search Engine & Keywords links, 15

segments function, 149
Semi-Parametric Regression for the Social

Sciences, 23

Shannon index, 117, 121–122

shingle function, 171
Shumway, RH, 23

$ sign, in accessing variable, 61–62

Sikkink, PG, 77

Simple functions, 77–84

lapply function, 80–81

mean per transect, calculating, 78–79

sapply function, 80–81

summary function, 81–82

table function, 82–84
tapply function, 77–80

Sizes, in graphs, 88–95

altering, 93–95

Small datasets, typing in, 29–31

Smoothing line, adding, 95–97

fitted function, 98

lines function, 95–97, 98
loess function, 96, 98
order function, 97, 98

Sodium Dominance Index (SDI), 161

Sorting, data, 66–67

Special characters, adding, plot function, 153–154

expression function, 153

paste function, 154
Species richness, 117

Spector, P, 24

split function, 155
splom function, 170

Squid data frame

in accessing subsets, 63–66

in accessing variable, 57

Stacked bar chart, 132

Standard bar chart, 132

Standard deviations, bar chart showing

mean values with, 133–135

Standard pie chart, 129

Startup window, 5

Statistical Models in S, 22

Statistics. An Introduction Using R, 23

Stoffer, DS, 23

str function, 74, 196
in accessing variable, 59–60
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strip argument, 171

Strip chart, 131–136

for benthic data, 135–136

arrow function, 136

stripchart function, 136
stripplot function, 170
subset option, 175
Subsets of data, accessing, 57–75

combining two datasets with common

identifier, 67–69

merge function, 67–68

exporting data, 69–70

recoding categorical variables, 71–74

sorting the data, 66–67

order function, 66–67

squid data frame, 63–66

unique function, 63

summary function, 81–82

Surface plots, 184–185

Symbols

# symbol, 58

= symbol, 30

in graphs, 88–95

T
Tab-Delimited ascii File, exporting data to, 47–48

table function, 82–84
tapply function, 77–80, 133

Cleveland dotplots, 144

mean per transect, calculating, 78–79

Text

adding extra text in plot function, 148

text function, 148–149, 166

Three dimensional pie chart, 129

Three dimensional scatterplots, 184–185

cloud function, 184

Tibshiranie, R, 95, 178

Tickmarks change, in lattice package, 188–189

Time Series Analysis and Its Application.

With R Examples — Second

Edition, 23

Tinn-R file, in accessing variable, 58

Tinn-R text editor, 12–13, 19–20

title function, 149, 167
Total abundance per site, 117, 119–120

Two conditioning variables, coplot with,

161–162

number argument, 162

panel.lm function, 162

Sodium Dominance Index (SDI), 161

type = "n", 149

U
unique function, 63
update function, 191
Using R for Introductory Statistics, 23

V
Variables of data, accessing, 57–63

attach function, 62–63

data argument in a function, 60–61

detach function, 62

read.table function, 57–58
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