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Preface 

Preface to the Instructor 

This is a text for a one-quarter or one-semester course in probability, aimed at stu­

dents who have done a year of calculus. The book is organized so a student can learn 

the fundamental ideas of probability from the first three chapters without reliance 

on calculus. Later chapters develop these ideas further using calculus tools. 

The book contains more than the usual number of examples worked out in detail. It 

is not possible to go through all these examples in class. Rather, I suggest that you 

deal quickly with the main points of theory, then spend class time on problems from 

the exercises, or your own favorite problems. The most valuable thing for students 

to learn from a course like this is how to pick up a probability problem in a new 

setting and relate it to the standard body of theory. The more they see this happen 

in class, and the more they do it themselves in exercises, the better. 

The style of the text is deliberately informal. My experience is that students learn 

more from intuitive explanations, diagrams, and examples than they do from theo­

rems and proofs. So the emphasis is on problem solving rather than theory. 

Order of Topics. The basic rules of probability all appear in Chapter 1. Intuition 

for probabilities is developed using Venn and tree diagrams. Only finite additivity of 

probability is treated in this chapter. Discussion of countable additivity is postponed 

to Section 3.4. Emphasis in Chapter 1 is on the concept of a probability distribution 

and elementary applications of the addition and multiplication rules. Combinatorics 

appear via study of the binomial and hypergeometric distributions in Chapter 2. The 
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concepts of mean and standard deviation appear in a preliminary form in this chapter, 

motivated by the normal approximation, without the notation of random variables. 

These concepts are then developed for discrete random variables in Chapter 3. The 

main object of the first three chapters is to get to the circle of ideas around the 

normal approximation for sums of independent random variables. This is achieved 

by Section 3.3. Sections 3.4 and 3.5 deal with the standard distributions on the non­

negative integers. Conditional distributions and expectations, covariance and corre­

lation for discrete distributions are postponed to Chapter 6, nearby treatment of the 

same concepts for continuous distributions. The discrete theory could be done right 

after Chapter 3, but it seems best to get as quickly as possible to continuous things. 

Chapters 4 and 5 treat continuous distributions assuming a calculus background. The 

main emphasis here is on how to do probability calculations rather than rigorous 

development of the theory. In particular, differential calculations are used freely from 

Section 4.1 on, with only occasional discussion of the limits involved. 

Optional Sections. These are more demanding mathematically than the main stream 

of ideas. 

Terminology. Notation and terms are standard, except that outcome space is used 

throughout instead of sample space. Elements of an outcome space are called pos­

sible outcomes. 

Pace. The earlier chapters are easier than later ones. It is important to get quickly 

through Chapters 1 and 2 (no more than three weeks). Chapter 3 is more substantial 

and deserves more time. The end of Chapter 3 is the natural time for a midterm 

examination. This can be as early as the sixth week. Chapters 4, 5, and 6 take time, 

much of it spent teaching calculus. 

Preface to the Student 

Prerequisites. This book assumes some background of mathematics, in particular, 

calculus. A summary of what is taken for granted can be found in Appendices I to 

III. Look at these to see if you need to review this material, or perhaps take another 

mathematics course before this one. 

How to read this book. To get most benefit from the text, work one section at 

a time. Start reading each section by skimming lightly over it. Pick out the main 

ideas, usually boxed, and see how some of the examples involve these ideas. Then 

you may already be able to do some of the first exercises at the end of the section, 

which you should try as soon as possible. Expect to go back and forth between the 

exercises and the section several times before mastering the material. 

Exercises. Except perhaps for the first few exercises in a section, do not expect to 

be able to plug into a formula or follow exactly the same steps as an example in the 

text. Rather, expect some variation on the main theme, perhaps a combination with 

ideas of a previous section, a rearrangement of the formula, or a new setting of the 

same principles. Through working problems you gain an active understanding of 
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the concepts. If you find a problem difficult, or can't see how to start, keep in mind 

that it will always be related to material of the section. Try re-reading the section 

with the problem in mind. Look for some similarity or connection to get started. 

Can you express the problem in a different way? Can you identify relevant variables? 

Could you draw a diagram? Could you solve a simpler problem? Could you break 

up the problem into simpler parts? Most of the problems will yield to this sort of 

approach once you have understood the basic ideas of the section. For more on 

problem-solving techniques, see the book How to Solve It by G. Polya (Princeton 

University Press). 

Solutions. Brief solutions to most odd numbered exercises appear at the end of the 

book. 

Chapter Summaries. These are at the end of every chapter. 

Review Exercises. These come after the summaries at the end of every chapter. 

Try these exercises when reviewing for an examination. Many of these exercises 

combine material from previous chapters. 

Distribution Summaries. These set out the properties of the most important distri­

butions. Familiarity with these properties reduces the amount of calculation required 

in many exercises. 

Examinations. Some midterm and final examinations from courses taught from this 

text are provided, with solutions a few pages later. 
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1 
Introduction 

This chapter introduces the basic ,::oncepts of probability theory. These are the no­

tions of: 

an outcome space, or set of all possible outcomes of some kind; 

events represented mathematically as subsets of an outcome space; and 

probability as a function of these events or subsets. 

The word "event" is used here for the kind of thing that has a probability, like 

getting a six when you roll a die, or getting five heads in a row when you toss a 

coin five times. The probability of an event is a measure of the likelihood or chance 

that the event occurs, on a scale from 0 to 1. Section 1.1 introduces these ideas 

in the simplest setting of equally likely outcomes. Section 1.2 treats two important 

interpretations of probability: approximation of long-run frequencies and subjective 

judgment of uncertainty. However prohabilities are understood or interpreted, it is 

generally agreed that they must satisfy certain rules, in palticular the basic addition 

rule. This rule is huilt in to the idea of a probability distribution, introduced in 

Section 1.3. The concepts of conditional probability, and independence appear in 

Section 1.4. These concepts are further developed in Section 1.5 on Bayes' rule and 

Section 1.6 on sequences of events. 
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1.1 Equally Likely Outcomes 
Probability is an extension of the idea of a proportion, or ratio of a part to a whole. 

If there are 300 men and 700 women in a group, the proportion of men in the group 

is 

300 = 0 3 = 3007' 
300 + 700 . 10 

Suppose now that someone is picked at random from this population of men and 

women. For example, the choice could be made by drawing at random from a box 

of 1000 tickets, with different tickets corresponding to different people. It would 

then be said that 

the probability of choosing a woman is 70%; 

the odds in favor of choosing a woman are 7 to 3 (or 7/3 to 1); and 

the odds against choosing a woman are 3 to 7 (or 3/7 to 1). 

So in thinking about someone picked at random from a population, a proportion in 

the population becomes a probability, and something like a sex ratio becomes an 

odds ratio. 

There is an implicit assumption here: "picked at random" means everyone has the 

same chance of being chosen. In practice, for a draw at random from a box, this 

means the tickets are similar, and well mixed up before the draw. Intuitively, we say 

different tickets are equally likely, or that they have the same chance. In other words, 

the draw is honest, fair, or unbiased. In more mathematical language, the probability 

of each ticket is the same, namely, 1/1000 for an assumed total of 1000 tickets. 

For the moment, take for granted this intuitive idea of equally likely outcomes. 

Represent the set of all possible outcomes of some situation or experiment by n 
(capital omega, the last letter in the Greek alphabet). For instance, n would be the 

set of 1000 people (or the 1000 corresponding tickets) in the previous example. Or 

n = {head, tail} for the result of tossing a coin, or n = {I, 2, 3, 4, 5, 6} for rolling an 

ordinary six-sided die. The set n is called the outcome space. Something that might 

or might not happen, depending on the outcome, is called an event. Examples of 

events are "person chosen at random is a woman", "coin lands heads", "die shows an 

even number". An event A is represented mathematically by a subset of the outcome 

space n. For the examples above, A would be the set of women in the population, 

the set comprising the single outcome {head}, and the set of even numbers {2, 4, 6}. 

Let #(A) be the number of outcomes in A. Informally, this is the number of chances 

for A to occur, or the number of different ways A can happen. Assuming equally 

likely outcomes, the probability of A, denoted P(A), is defined to be the corre­

sponding proportion of outcomes. This would be 700/1000, 1/2, and 3/6 in the 

three examples. 
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Event 

Section 1.1. Equally Likely Outcomes 3 

Equally Likely Outcomes 
If all outcomes in a finite set f2 are equally likely, the probability of A is the 

number of outcomes in A divided by the total number of outcomes: 

P(A) = #(A) 
#(f2) 

Probabilities defined by this formula for equally likely outcomes are fractions be­

tween 0 and 1. The number 1 represents certainty: P(f2) = 1. The number 0 rep­

resents impossibility: P(A) = 0 if there is no way that A could happen. Then A 

corresponds to the empty set, or set with no elements, denoted 0. So P(0) = O. 

Intermediate probabilities may be understood as various degrees of certainty. 

Picking a number between 1 and 100. 

Suppose there is a box of 100 tickets marked 1,2,3, ... , 100. A ticket is drawn at 

random from the box. Here are some events, with their descriptions as subsets and 

their probabilities obtained by counting. All possible numbers are assumed equally 

likely. 

Subset of {I, 2, ... , 100} Probability 

the number drawn has one digit {I, 2, ... ,9} 9% 

the number drawn has two digits {10, 11, ... , 99} 90% 

the number drawn is less than or equal to the number k {1,2, ... ,k} k% 

the number drawn is strictly greater than k {k + 1, ... , 100} (100 - k)% 

the sum of the digits in the number drawn is equal to 3 {3,12,21,30} 4% 

Example 2. 

Problem 1. 

Solution. 

Rolling two dice. 

A fair die is rolled and the number on the top face is noted. Then another fair die is 

rolled, and the number on its top face is noted. 

What is the probability that the sum of the two numbers showing is 5? 

Think of each possible outcome as a pair of numbers. The first element of the pair 

is the first number rolled, and the second element is the second number rolled. The 

first number can be any integer between 1 and 6, and so can the second number. 

Here are all the possible ways the dice could roll: 
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Problem 2. 

Solution. 

Problem 3. 

Solution. 

Problem 4. 

Solution. 

Example 3. 

Problem 1. 

(1,1) (1,2) 0,3) (1,4) 0,5) (1,6) 

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(.5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6) 

The collection of these 36 pairs forms the outcome space n. Assume these 36 out­

comes are equally likely. The event "the sum of the two numbers showing is 5" 

is represented by the subset {(1,4), (4, I), (2,3), (3,2)}. Since this subset has 4 ele­

ments, 

4 1 
P(sum of two numbers showing is 5) = 36 = 9 

What is the probability that one of the dice shows 2, and the other shows 4? 

The subset corresponding to this event is {(2, 4), (4, 2)}. So the required probability 

is 2/36 = 1/18. 

What is the probability that the second number rolled is greater than the first number? 

Look at the pairs in the outcome space n above, to see that this event corresponds 

to the subset 

(1,2) (1,3) 0,4) 0,5) (1,6) 

(2,3) (2,4) (2,5) (2,6) 

(3,4) (3,5) (3,6) 

(4,5) (4,6) 

(5,6) 

These are the pairs above the diagonal in n. There are 15 such pairs, so the proba­

bility that the second number rolled is greater than the first is 15/36. 

What is the probability that the second number rolled is less than the first number 

rolled? 

The subset of n corresponding to this event is the set of pairs below the diagonal. 

There are just as many pairs below the diagonal as above. So the probability that 

the second number rolled is less than the first number is <,llso 15/36. 

Rolling two n-sided dice. 

Repeat the above example for two rolls of a die with n faces numbered 1,2, ... , n, 
assuming n 2: 4. 

Find the chance that the sum is 5. 
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Problem 2. 

Solution. 

Problem 3. 

Solution. 

Remark. 

Section 1.1. Equally Likely Outcomes 5 

Now there are n2 possible pairs instead of 62 = 36. But there are still just 4 possible 

pairs with sum 5. Hence 

P(sum is 5) = 4/n2 

Find the chance that one roll is a 2, the other is a 4. 

By the same argument P(a 2 and a 4) = 2/n2. 

Find the chance that the second number is greater than the first. 

Now all pairs above the diagonal must be counted in an n x n matrix of pairs. There 

are no such pairs in the bottom row, 1 in the next, 2 in the next, and so on up to 

(n - 1) pairs in the top row, so the number of pairs above the diagonal is 

1 
#(above) = 1 + 2 + 3 + ... + (n - 1) = 2"n(n - 1) 

pairs altogether (see Appendix 2 on sums.) This gives 

#(above) In(n - 1) 1 ( 1) 
P(second number is greater) = #( I) = 2 2 = - 1 - -

tota n 2 n 

Here is another way to find #(above), which gives the formula for the sum of the 

first n - 1 integers (used above) as a consequence. Since 

#(below) + #(above) + #(diagonal) = #(total) = n2 

and #(below) = #(above) by symmetry, and #(diagonaJ) = n, 

1 
#(above) = (n2 - n)/2 = 2"n(n - 1) 

Problem 4. Find the chance that the first number is bigger. 

Solution. Same as above, by the symmetry used already. 

Note. As n --+ 00, 

# (diagonal) n 1 
P(two numbers are equal) = ( ) = 2' = - --+ 0 

# total n n 

hence 

P(second bigger) = P(first bigger) = ~ (1 - ~) --+ ~ 
2 n 2 
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Odds 
In a setting of equally likely outcomes, odds in favor of A give the ratio of the 

number of ways that A happens to the number of ways that A does not happen. 

The same ratio is obtained using probabilities instead of numbers of ways. Odds 

against A give the inverse ratio. More generally, just about any ratio of chances or 

probabilities can be called an odds ratio. 

Gamblers are concerned with another sort of odds, which must be distinguished 

from odds defined as a ratio of chances. These are the odds offered by a casino 

or bookmaker in a betting contract, called here payoff odds to make the distinction 

clear. If you place a $1 bet on an event A, and the payoff odds against A are 10 to 1, 

you stand to win $10 if A occurs, and lose your $1 if A does not occur. In a casino 

you first pay your $1. If A occurs you get back a total of $11. This is your winnings 

of $10 plus your $1 back. If A does not occur, the casino keeps your $1. The price 

of $1 is your stake, the $10 is the casino's stake, and the $11 is the total stake. 

The connection between payoff odds and chance odds is an ancient principle of 

gambling, understood long before mathematicians decided that probabilities were 

best represented as numbers between 0 and 1. Around 1584, a colorful gambler 

and scholar of the Italian Renaissance, named Cardano, wrote a book on games of 

chance. Considering the roll of a die, Cardano said, 

I am as able to throw a 1, 3 or 5 as 2, 4 or 6. The wagers are therefore 

laid in accordance with this equality if the die is honest, and if not, they 

are made so much the larger or smaller in proportion to the departure 

from true equality. 

First there is the idea of equally likely outcomes, then a heuristic connecting payoff 

odds and chance odds: 

The Fair Odds Rule 
In a fair bet, the payoff odds equal the chance odds. 

That is to say, in a fair bet on an event A, where you win if A occurs and the casino 

wins otherwise, the ratio of your stake to the casino's stake should be the ratio of 

probabilities P(A) to 1 - P(A). Put another way, your stake should be proportion 

P(A) of the total stake. 
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House percentage at roulette. 

A Nevada roulette wheel has equally spaced pockets around its circumference. The 

pockets are numbered 1 through 36, 0 and 00. The wheel is spun, a ball inside the 

wheel is released, and by the time the motion stops the ball has been caught in one 

of the pockets. A play is a bet that the ball will fall in one of a certain set of pockets, 

with the payoff odds as shown below in Figure 1. 

FIGURE 1. Layout of a Nevada roulette table. Key to colors 0 and 00 = Green, unshoded 

numbers = Red, shaded numbers = Block. 

1 7 10 13 16 19 22 25 28 31 34 2 to 1 
~~--L-~ D G 

1st 12 2nd 12 ® 3rd 12 

1 to 18 EVEN RED® BLACK ODD 19 to 36 

Each letter inside a circle, ®, ®, ©, etc., indicates a typical play. 

Play Set of winning numbers Payoff odds 

A. Even money play Group of 18 numbers as marked 1 to 1 

in the box 

B. Dozen play 12 numbers marked in the box 2 to 1 

C. Column play 12 numbers in column 2 to 1 

(shown here as a row) 

D. Line play Six numbers above 5 to 1 

E. House special 0, 00, 1, 2, 3 6 to 1 

F. Quarter play Four numbers in square 8 to 1 

G. Street play Three numbers above 11 to 1 

H. Split play Two adjoining numbers 17 to 1 

I. Straight play Single number 35 to 1 

Over the long run, each number comes up about equally often. The obvious prob­

abilistic assumption is that all 38 possible numbers are equally likely. To find the 
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chance odds against a play, just take the ratio of losing numbers to winning num­

bers for that play. For example, the 38 numbers are divided into 18 numbers which 

are red, 18 numbers which are black, and two numbers are green (0 and 00). So 

the chance odds against red are 20 to 18, as are the chance odds against black. Put 

another way, 

P(red) = P(black) = 18/38 

The house offers bets on red at even odds, that is to say, payoff odds of 1 to 1. 

You can think about this in the following way. Suppose you stake $1 on red. The 

casino then has a stake of $1 on not red. The total stake in the game is $1 + $1 = $2. 

According to the fair odds rule, the fair price to pay would be proportion P(red) of 

the total stake, that is, eighteen thirty-eighths of $2. The $1 you pay exceeds the fair 

price by 

( 18 ) 1 
$1 - 38 x $2 = $19 = 5.26% of $1 = 5.26 cents 

So this is not a fair bet. The figure of 5.26% is called the house percentage for bets on 

red at roulette. Assuming red comes up about 18/38 of the time over the long run 

(something which casinos take great care to ensure), this means that if you repeatedly 

bet a dollar on red, the house would be taking money from you at an average rate 

of 5.26 cents a game. If you bet a dollar 100 times in a row, you can expect to 

lose $5.26. Of course you might lose more or less than this amount, depending on 

your luck. For example, there is a 26.5% chance that you will be ahead after 100 

single-dollar bets on red. This chance is figured by assuming that every possible 

string of 100 numbers is equally likely to appear on your 100 plays, and finding the 

proportion of these strings with more than 50 reds. That is quite a hefty calculation, 

not to be undertaken until Chapter 2. But it gives you an idea of how far the method 

of equally likely outcomes can be pushed. 

The argument just used to calculate the house percentage on red can be generalized 

to calculate the house percentage on any bet whatever. Consider a bet on A at payoff 

odds of r pay to 1 against. If you stake $1 on A, the house stakes $r pay, so the total at 

stake is $(rpay + 1). According to the fair odds rule, the fair price to pay would be 

proportion P(A) of the total stake, that is, 

$P(A) (rpay + 1) 

So out of your $1 bet, the fraction taken by the house is 1- P(A) (rpay + 1). That is 

to say 

House Percentage = [1 - P(A)(rpay + 1)] x 100% 
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For example, in a straight play at roulette, that is, a bet on a single number, the 

chance odds are 37 to 1 against, corresponding to a probability of 1 in 38. But the 

payoff odds are only 35 to 1 against. So for a straight play, the house percentage is 

1 
[1 - 38 (35 + 1)] x 100% = 5.26% 

the same as for bets on red or black. For single numbers there is a neat way of 

checking this house percentage. Imagine there are 38 gamblers, each of whom bets 

on a different number. Then the house collects $38 from each spin of the wheel. 

But one and only one of the gamblers wins each time. After each spin, the house 

pays off exactly $36, the winning gambler'S payoff of $35 plus $1 back. So the house 

collects $38 - $36 = $2 for sure from every spin. If this cost of $2 is thought of as 

shared equally among the 38 gamblers, the result is a cost of $2/38 = 5.26 cents 

per gambler. This is the house percentage. Over the long run, the different numbers 

come up about equally often. So each player would end up paying about that amount 

per game. 

Exercises 1. 1 

1. In a certain population of adults there are twice as many men as women. What is the 

proportion of men in the population: 

a) as a fraction; 

b) as a percent; 

c) as a decimal? 

Repeat for a population in which there are four men to every three women. 

2. Suppose a word is picked at random from this sentence. Find: 

a) the chance that the word has at least 4 letters; 

b) the chanc'e that the word contains at least 2 vowels Ca, e, i, 0, u); 

c) the chance that the word contains at least 4 letters and at least 2 vowels. 

3. Sampling with and without replacement. 

Sampling with replacement: 

A box contains tickets marked 1,2, ... ,n. A ticket is drawn at random from the box. 

Then this ticket is replaced in the box and a second ticket is drawn at random. Find the 

probabilities of the following events: 

a) the first ticket drawn is number 1 and the second ticket is number 2; 

b) the numbers on the two tickets are consecutive integers, meaning the first numher 

drawn is one less than the second number drawn. 

c) the second number drawn is bigger than the first number drawn. 

Sampling without replacement: 

d) Repeat a) through c) assuming instead that the first ticket drawn is not replaced, 

so the second ticket drawn must be different from the first. 
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4. Suppose I bet on red at roulette and you bet on black, both bets on the same spin of 

the wheel. 

a) What is the probability that we both lose? 

b) What is the probability that at least one of us wins? 

c) What is the probability that at least one of us loses? 

5. Suppose a deck of 52 cards is shuffled and the top two cards are dealt. 

a) How many ordered pairs of cards could possibly result as outcomes? 

Assuming each of these pairs has the same chance, calculate: 

b) the chance that the first card is an ace; 

c) the chance that the second card is an ace (explain your answer by a symmetry 

argument as well as by counting); 

d) the chance that both cards are aces; 

e) the chance of at least one ace among the two cards. 

6. Repeat Exercise 5, supposing instead that after the first card is dealt, it is replaced, and 

shuffled into the deck before the second card is dealt. 

7. Suppose two dice are rolled. Find the probabilities of the following events. 

a) the maximum of the two numbers rolled is less than or equal to 2; 

b) the maximum of the two numbers rolled is less than or equal to 3; 

c) the maximum of the two numbers rolled is exactly equal to 3. 

d) Repeat b) and c) for x instead cf 3, for each x from 1 to 6. 

e) Denote by P(x) the probability that the maximum number is exactly x. What 

should P(I) + P(2) + P(3) + P(4) + P(5) + P(6) equal? Check this for your 

answers to d). 

8. Repeat Exercise 7 for two rolls of a fair n-sided die for an arbitrary n instead of 6. 

9. The chance odds against an event occurring are 10 to 1. What is the chance of the 

event? What if the odds were 5 to 1 against? 

10. Calculate the chance of a win and the house percentage for each of the bets at roulette 

described below the layout in Figure 1. 

11. Show that if the fair (chance) odds against an event are rfair to 1, then in a bet at payoff 

odds of rpay to 1 the house percentage is 

rfair - rpay x 100% 

rfair + 1 
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Interpretations 
James Bernoulli (1654 - 1705), one of the founders of probability theory, put it like 

this: 

Probability is the degree of certainty, which is to the certainty as a part 

is to a whole. 

This conveys the right intuitive idea. And it points correctly to the rules of proportion 

as the mathematical basis for a theory of probability. But it leaves open the question 

of just how probabilities should be interpreted in applications. 

This section considers two important interpretations of probability. First, the fre­

quency interpretation in which probabilities are understood as mathematically con­

venient approximations to long-run relative frequencies. Second, the subjective inter­

pretation in which a probability statement expresses the opinion of some individual 

regarding how certain an event is to occur. Which (if either) of these interpretations 

is "right" is something which philosophers, scientists, and statisticians have argued 

bitterly for centuries. And very intelligent people still disagree. So don't expect this 

to be resolved by the pre$ent discussion. 

Frequencies 

A relative frequency is a proportion measuring how often, or how frequently, some­

thing or other occurs in a sequence of observations. Think of some experiment or 

set of circumstances which can be repeated again and again, for example, tossing a 

coin, rolling a die, the birth of a child. Such a repeatable experiment may be called 

a trial. Let A be a possible result of such a trial: for example, the coin lands heads, 

the die shows a six, the child is a girl. If A happens m times in n trials, then min is 
the relative frequency of A in the n trials. 

Coin tossing. 

Suppose a coin is tossed ten times, and the observed sequence of outcomes is 

t, h, h, t, h, h, h, t, t, h, 

where each t indicates a tail and each h a head. The successive relative frequencies 

of heads in one toss, two tosses, and so on up to ten tosses are then 

0122345556 

1'2'3'4'5'6'7'8'9' 10' 

as graphed in Figure 1. Figure 2 shows what usually happens if you plot a similar 

graph of relative frequencies for a much longer series of trials. 

A general rule, illustrated in Figure 2, is that relative frequencies based on larger 

numbers of observations are less liable to fluctuation than those based on smaller 



1 2 Chapter 1. Introduction 

1.0 

relative 

frequency 

of heads 

0.5 

FIGURE 1. Relative frequencies in a series of 10 coin tosses. 
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numbers. It is observed that almost regardless of the precise nature of the experimen­

tal trials in question, or what feature A of the trials is recorded, the relative frequency 

of A based on n trials tends to stabilize as n gets larger and larger, provided that the 

conditions of the trial are kept as constant as possible. This phenomenon is called 

the statistical regularity of relative frequencies, or the empirical law of averages. 

In coin tossing, heads and tails usually come up about equally often over a long 

series of tosses. So the long-run relative frequency of heads is usually close to 1/2. 

This is an empirical fact, closely linked to our intuitive idea that heads and tails are 

equally likely to come up on any particular toss. Logically, there is nothing to prevent 

the relative frequency of heads in a long series of tosses from being closer to, say, 

1/4, or 2/3, than to 1/2. The relative frequency could even be 1 if the coin landed 

heads every time, or 0 if it landed tails every time. But while possible, it hardly ever 

happens that the relative frequency of heads in a long series of tosses differs greatly 

from 1/2. Intuitively, such a large fluctuation is extremely unlikely for a fair coin. 

And this is precisely what is predicted by the theory of repeated trials, taken up in 

Chapter 2. 

In the frequency interpretation, the probability of an event A is the expected or esti­

mated relative frequency of A in a large number of trials. In symbols, the proportion 

of times A occurs in n trials, call it Pn(A), is expected to be roughly equal to the 

theoretical probability P(A) if n is large: 

Pn(A) ~ P(A) for large n 

Under ideal circumstances, the larger the number of trials n, the more likely it is 

that this approximation will achieve any desired degree of accuracy. This idea is 
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FIGURE 2. Relative frequencies of heads in two long series of coin tosses. For a small number 

of trials, the relative frequencies fluctuate quite noticeably as the number oi trials varies. But these 

fluctuations tend to decrease as the number of trials increases. Initially, the two sequences of relative 

frequencies look quite different. But after a while, both relative frequencies settle down around 1/2. 

(The two series were obtained using a computer random number generator to simulate coin tosses.) 
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Example 2. 

Solution 1. 

Solution 2. 

Solution 3. 

Problem. 

Discussion. 

made precise in Chapter 2 by a mathematical result called the law of large numbers. 

The theoretical probability P(A) may even be conceived theoretically as a limit of 

relative frequencies Pn(A) as n ---+ 00. While intuitively appealing, this idea can only 

be made precise in a theoretical framework allowing infinitely many trials, so it is not 

really practical. The practical point is that for large but finite values of n, say n = 1000 

or 10,000, a theoretical probability P(A) may provide a useful approximation to a 

relative frequency Pn(A) based on n trials. 

Here are a few simple examples based on long-run frequencies. The first shows 

how the frequency interpretation dictates the right level of detail for an assumption 

of equally likely outcomes. 

Tossing two coins. 

Suppose a cup containing two similar coins is shaken, then turned upside down on 

a table. What is the chance that the two coins show heads? Consider the following 

solutions to this problem. 

Either they both show heads, or they don't. These are the two possible outcomes. 

Assuming these are equally likely, the chance of both heads is 1/2. 

Regard the number of heads showing on the coins as the outcome. There could be 0 

heads, 1 head, or 2 heads. Now there are three possible outcomes. Assuming these 

are equally likely, the chance of both heads is 1/3. 

Despite the fact that the coins are supposed to be similar, imagine that they are 

labeled in some way to distinguish them. Call one of them the first coin and the 

other the second. Now there are four outcomes which might be considered: 

hh: the first coin shows heads and the second coin shows heads; 

ht: the first coin shows heads and the second coin shows tails; 

th: the first coin shows tails and the second coin shows heads; and 

tt: the first coin shows tails and the second coin shows tails. 

Assume these four possible outcomes are equally likely. Then the event of both 

coins showing heads has a chance of 1/4. 

which of the solutions above is correct? 

So far as the formal theory is concerned, they all are! Each solution starts from 

a clearly stated assumption of equally likely outcomes, then correctly determines 

the probability based on this assumption. The assumptions are different, and the 

conclusions are different. So at most one of the solutions can be consistent with 

long-run frequencies. Which is the right one? 

The assumptions of Solution 1 are easily discredited. By the same reasoning as in that 

solution, the probability of two tails must also be 1/2. That leaves zero probability 
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Example 3. 
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for the event of a head and a tail, which is clearly ridiculous so far as long-run 

frequencies are concerned. Solution 2 looks quite plausible, and is not easy to fault 

by armchair reasoning. Solution 3 looks artificial in comparison. Why should it be 

necessary to distinguish between two similar coins? 

On balance, these arguments seem to point to the 1/3 of Solution 2 as the answer. 

But the reality check is the long-run frequency. As a matter of practical experiment, 

which you can try yourself, the long-run frequency turns out to be around 1/4, no 

matter whether you can distinguish between the coins or not. So Solution 3 is the 

one which matches up with long-run frequencies. 

There is a physical principle involved here, which is a useful guide for getting 

probabilities to match long-run frequencies. All macroscopic physical objects like 

coins, grains of sand, and so on, behave statistically as if they are distinguishable. 

So, if you want to calculate chances for rolling several dice or tossing several coins, 

you should always assume they are distinguishable when setting up the outcome 

space. Interestingly, however, physicists have found that atomic particles such as 

protons and electrons behave statistically as if they are genuinely indistinguishable. 

The moral of the above example is that even if an assumption of equally likely out­

comes is appropriate at some level of description, this level is not something which 

can be judged on mathematical grounds alone. It must be judged using some further 

interpretation of probability, such as the long-run frequency idea. Furthermore, there 

are examples like tossing a biased coin, or recording the sex of a newborn child, 

where long-run frequencies seem to stabilize around some more or less arbitrary 

decimal fraction between 0 and 1. 

Sex of children. 

Table 1 shows that the relative frequency of boys among newborn children in the 

U.S.A. appears to be stable at around 0.513. 

Observation of the sex of a child is comparable to a scheme with equally likely 

outcomes obtained by drawing at random with replacement from a box of 1000 

tickets, containing 487 tickets marked girl and 513 tickets marked boy. This allows 

probabilities for births to be calculated as if they were probabilities for random 

sampling from a box of tickets. But the analof,'Y is not complete. The individual tickets 

have no physical interpretation like the sides of a die or the pockets of a roulette 

wheel. And there seems to be no way to decide what the composition of the box 

should be without counting births. StilL the above data suggest a reasonable model 

for the outcome of a single birth: the outcome space {girl, boy}, with probability 

p = 0.513 for boy and 1 - p = 0.487 for girl. 
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TABLE 1. Proportion of boys among live births to residents of the U.S.A. 

Year Number of binhs* Proponion of boys 

1974 3,159,958 0.5133340 

1975 3,144,198 0.5130513 

1976 3,167,788 0.5127982 

1977 3,326,632 0.5128058 

1978 3,333,279 0.5128266 

1979 3,494,398 0.5126110 

1980 3,612,258 0.5128692 

1981 3,629,238 0.5125792 

'Births to residents of the U.S.A., based on 100% of births in selected states, and a 50% 
sample in all others. Source: Information Please Almanac, Atlas and Yearbook, 1985. 

Opinions 

The notion of probabilities as an approximation to long-run frequencies makes good 

sense in a context of repeated trials. But it does not always make sense to think in 

terms of repeated trials. Consider, for example: 

the probability of a panicular patient sUlViving an operation; 

the probability that a particular motorist is involved in an accident next year; 

the probability that a particular interest rate will be below 5% in a year's time; 

the probability of a major earthquake in Berkeley before the year 2000. 

If you are the patient considering an operation, you want the doctor to tell you what 

he thinks your chances are. The notion of your undergoing repeated operations is 

absurd. Even if it is known that in similar operations in the past there was, say, a 

10% fatality rate, this figure is irrelevant if the doctor knows that your state of health 

is much better, or you are much younger, or are different in some other respect 

from the population of patients on which the 10% figure is based. Rarely would it be 

possible for the doctor to know sUlVival percentages for patients just like you. The 

more factors that are taken into account, the more difficult it is to obtain relevant 

data, the smaller the number of cases on which figures could be based. If enough 

factors were taken into account, your case would be unique. What then are you to 

make of it if the doctor says you have a 95% chance of sUlViving? Essentially, this is 

a matter of opinion. In the doctor's opinion, your chance of sUlVival is 95%. Another 

doctor might have another opinion, say 98%. You might ask several opinions, then 

somehow form your own opinion as to your chances. 
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Similar considerations apply to the other examples above. In none of these examples 

does the relative frequency idea make much sense. Ultimately, probability statements 

of this kind come down to some kind of intuitive judgment of the uncertainties in­

volved. Such judgments lead to the notion of subjective probabilities, which may also 

be called probabilistic opinions, or degrees of belief This conception of probability 

corresponds well to everyday language, such as the following: 

It is unlikely that there will be an earthquake in Berkeley next year. 

If I toss a coin once, the probability that it will land heads is 1/2. 

The chance of rain tomorrow is 30%. 

Such statements have a superficial objective quality, since they make no reference 

to the person who is making them. But viewed as objective statements they are at 

best very hard to interpret, and at worst either meaningless or unverifiable. To give 

such statements meaning, it is simplest just to interpret them as expressions of prob­

abilistic opinion. Intuitive comparison of probabilities can be helpful in formulating 

a probabilistic opinion. Comparisons can be made within a particular context, for 

example, by deciding that two or more events are equally likely, or that an event is 

twice as likely as another. Or comparisons can be made between different contexts. 

Comparison with a standard experiment like drawing tickets from a box can be a 

useful device. Which do you think is more likely? Event A, or getting a marked ticket 

on a draw at random from a box containing 20% marked tickets? If you think A is 

more likely, then you should assign a probability P(A) ~ 20%. If you have trouble 

deciding which is more likely, ask yourself which option you would prefer: To win a 

prize of some kind if A occurs, or to win the same prize if a marked ticket is drawn? 

Like the long-run frequency idea, the idea of subjective probability has its limita­

tions. Subjective probabilities are necessarily rather imprecise. It may be difficult or 

impossible to pool the subjective probability opinions of different individuals about 

the same events. Assessment of subjective probabilities of events, regarded as hav­

ing very small or very large probabilities, is very difficult, particularly if these events 

have important consequences for the person attempting to judge their probabilities. 

Despite such difficulties, the idea of interpreting probabilities as subjective opinions 

about uncertainties is something many people find reasonable. As well as broaden­

ing the range of application of probabilistic ideas, the subjective interpretation gives 

insight into the mathematics of probability theory. For example. the notion of con­

ditional probability, introduced in the next chapter, captures the idea of how your 

probabilistic opinion may change over time as you acquire new information or data. 
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Exercises 1.2 
1. If you get a speeding ticket in the state of Washington, it states on the ticket: "If you 

believe you did not commit the infraction, you may request a hearing. At the hearing, 

the state must prove by a preponderance of the evidence (more likely than not) that 

you committed the infraction." What do you think the phrase "more likely than not" 

means? Does it refer to relative frequencies? to an opinion? if so, whose opinion? 

2. If a bookmaker quotes payoff odds of 99 to 1 against a particular horse winning a race, 

does that suggest the chance that the horse will win is 1/100, less than 1/100, or more 

than 1/100? Explain. 

3. Suppose there are 10 horses in a race and a bookmaker quotes odds of ri to 1 against 

horse i winning. Let Pi = ri~I' i = 1 to 10, so each Pi is between 0 and 1. Let 

I; = PI + ... + PIO· 

a) Do you expect that I; is greater than, smaller than, or equal to l? Why? 

b) Suppose I; were less than 1. Could you take advantage of this? How? [Hint: By 

betting on all 10 horses in the race, a bettor can win a constant amount of money, 

regardless which horse wins.] 

4. A gambler who makes 100 bets of SI, each at payoff odds of 8 to 1, wins 10 of these 

bets and loses 90. 

a) How many dollars has the gambler gained overall? 

b) What is the gambler's average financial gain per bet? 

Suppose now that the gambler makes a sequence of $1 bets at payoff odds of rpay to 1. 

Define an empirical odds ratio r# to be the gambler's number of losses divided by the 

number of wins. So, in the numerical example above, rpay was 8, and r # was 90/10 = 9. 

Show that the gambler's average financial gain per bet is $(rpay - r #) I( r# + 1). Explain 

carefully the connection between this formula and the house percentage formula in 

Exercise 1.1.11. 
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outcome space 
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impo ible event 

not A, oppo ire of A 

either A or B or both 

both A and B 
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Distributions 
From a purely mathematical point of view, probability is defined as a function of 

events. The events are represented as sets, and it is assumed that the probability 

function satisfies the basic rules of proportion. These are the rules for fractions or 

percentages in a population, and for relative areas of regions in a plane. To state the 

rules, we must first consider the representation of events as subsets of an outcome 

space. 

Suppose an outcome space n is given, and that all events of interest are represented 

as subsets of n. Think of n as representing all ways that some situation might turn 

out. It is no longer assumed that n is necessarily a finite set, or that all possible 

outcomes are equally likely. But if A is an event, the subset of n corresponding to A 
is still the set of all ways that A might happen. This subset of n will also be denoted 

A. Thus events are identified with subsets of n. 

TABLE 1. Translations between events and sets. To interpret the Venn diagrams in terms of events, 

imagine that a point is picked at random from the square. Each point in the square then represents 

an outcome, and each region of the diagram represents the event that the point is picked from that 

region. 

et language et notation Venn diagram 

univer al s t n 

ub et of n A, B, C, etc. 

empty set 0 

complement of A AC 

union of A and B AUB 

inter ction of A and B AB, AnB 

A and B are mutually exclusive A and B are disjoint AB=0 

It.JI 
Ibbl 
I cgysl if A then B A is a ub et of B A~B 
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The rules of probability involve logical relations between events. These are translated 

into corresponding relations between sets. For example, if C is the event which 

occurs if either A or B occurs (allowing the possibility that both A and B might 

occur), then the set of ways C can happen is tne union of the set of ways A can 

happen and the set of ways B can happen. In set notation, C = Au B. Table 1 gives 

a summary of such translations. 

Partitions 

Say that an event B is partitioned into n events B 1, ... , Bn if B = B1 U B2 u· .. U Bn, 

and the events B1,"" Bn are mutually exclusive. That is to say, every outcome in B 
belongs to one and only one of the subsets Bi . Think of B as split up into separate 

cases B1, ... , Bn. Figure 1 shows a subset B of the square is partitioned in three 

different ways. However B is partitioned into subsets, or broken up into pieces, the 

area in B is the sum of the areas of the pieces. This is the addition rule for area. 

FIGURE 1. Partitions of a set B. 

B 

The addition rule is satisfied by other measures of sets instead of area, for example, 

length, volume, and the number or proportion of elements for finite sets. 

The addition rule now appears as one of the three basic rules of proportion. No 

matter how probabilities are interpreted, it is generally agreed they must satisfy the 

same three rules: 
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Rules of Proportion and Probability 
• Non-negative: P(B) 2: 0 

• Addition: If B 1, B2 , ... ,Bn is a partition of B, then 

• Total one: p(n) = 1 

A distribution over n is a function of subsets of n satisfying these rules. 

The term "distribution" is natural if you think of mass distributed over an area or 

volume n, and P(A) representing the proportion of the total mass in the subset A of 

n. Now think of probability as some kind of stuff, like mass, distributed over a space 

of outcomes. The rules for probability are very intuitive if you think informally of an 

event B as something that might or might not happen, and of P(B) as a measure 

of how likely it is that B will happen. It is agreed to measure probability on a scale 

of 0 to 1. The addition rule says that if something can happen in different ways, the 

probability that it happens is the sum of the probabilities of all the different ways it 

can happen. 

Technical remark. When the outcome space n is infinite, it is usually assumed that 

there is a similar addition rule for partitions of an event into an infinite sequence 

of events. See Section 3.4. In a rigorous treatment of measures like probability, 

length or area, defined as functions of subsets of an infinite set n, it is necessary to 

describe precisely those subsets of n, called measurable sets, whose measure can 

be unambiguously defined by starting from natural assumptions about the measure 

of simple sets like intervals or rectangles, using the addition rule, and taking limits. 

See Billingsley's book Probability and Measure for details. 

Here are some useful general rules of probability. derived from the basic rules and 

illustrated by Venn diagrams. In the diagrams, think of probability as defined by 

relative areas. 

Complement Rule: The probability of the complement 

of A is 

P(not A) = P(AC) = 1 - P(A) 

Proof. Because n is partitioned into A and AC, and 

p(n) = 1, 

0) 

Remarks. Note that if A = n, then AC = 0, the empty set, and P(A) = 1. So the rule 

of complements implies P(0) = O. The empty set contains nothing. Also, for a set 

A, P(A) = 1 - P(k) and P(AC) 2: 0, so P(A) .;:: 1. Thus probabilities are always 

between 0 and 1. 
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The next rule is a generalization of the rule of complements: 

Difference Rule: If occurrence of A implies occur-

rence of B, then P(A) :::; P(B), and the difference 

between these probabilities is the probability that B 

occurs and A does not: 

P(B and not A) = P(BAC) = P(B) - P(A) 

Proof. In other words, the assumption is that every 

outcome in A is an outcome in B, so A is a subset of B. 
Since B can be partitioned into A and (B but not A), 

P(B) = P(A) + P(BAC) 

by the addition rule. Now subtract P(A) from both 

sides. 

Inclusion-Exclusion: P(A U B) = P(A) + P(B) - P(AB) 

B 

Remarks. Here AuB means A or B or both (union) while AB means both A and B 

(intersection, A n B). This is the modification of the addition rule for events A and 

B that overlap, as in the following diagram. The addition rule for mutually exclusive 

A and B is the special case when AB = 0, so P(AB) = O. The extension to three 

or more sets is given in the exercises. 

Proof. As the diagram shows, the sets ABc, AB, and A C B form a partition of A U B, 

so 

P(A U B) = P(ABC) + P(AB) + P(AC B) 

Similarly 

P(A) = P(ABC) + P(AB) 

P(B) = P(ACB) + P(AB) 
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so 

P(A) + P(B) = P(AB C ) + 2P(AB) + P(AC B) 

This is the same expression as for P(A U B), but P(AB) is included twice. Subtract­

ing P(AB) excludes one of these terms, to give the inclusion-exclusion formula. 

Rich and famous. 

In a certain population, 10% of the people are rich, 5% are famous, and 3% are rich 

and famous. For a person picked at random from this population: 

What is the chance that the person is not rich? 

Here probabilities are defined by proportions in the population. By the rule of 

complements 

P(not rich) = 100% - P(rich) = 100% - 10% = 90% 

What is the chance that the person is rich but not famous? 

By the difference rule 

P(rich but not famous) = P(rich) - P(rich and famous) 

= 10% - 3% = 7% 

What is the chance that the person is either rich or famous? 

By the inclusion-exclusion formula, 

P(rich or famous) = P(rich) + P(famous) - P(rich and famous) 

= 10% + 5% - 3% = 12% 

Numbered tickets. 

Proportion P( i) of the tickets in a box are numbered i, with this distribution: 

number i 1 2 3 4 5 6 

proportion P( i) 1/4 1/8 1/8 1/8 1/8 1/4 

If a ticket is drawn at random from the box, what is the chance that the number on 

the ticket is 3 or greater? 
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Solution. 

Example 3. 

Problem. 

Solution. 

Assuming all tickets in the box are equally likely to be drawn, by the addition rule: 

1 1 1 1 5 
P(3 or 4 or 5 or 6) = P(3) + P(4) + P(5) + P(6) = "8 + "8 + "8 + 4 = "8 

In the above example, outcomes with unequal probabilities (corresponding to var­

ious numbers) were obtained by partitioning a set of equally likely outcomes (the 

individual tickets) into subsets of different sizes. It was then possible to work with 

the probability distribution over the smaller number of outcomes defined by the 

partition, using the addition rule. This is the key to problems such as the following 

where there is no natural analysis in terms of equally likely outcomes. 

Shapes. 

A shape is a 6-sided die with faces cut as shown in the following diagram: 

t -- t • -- -t - - t 

t • • • • t • • • • 
~1' • • 

~ .. 
1 

~ ~--1-----+ ~ +--1 -----+ 

The faces showing 1 and 6 are square faces with side of length one unit, but the 

distance between these faces, or the thickness of the shape, is a length t :S 1. So 

each of the faces 2, 3, 4, and 5 is a rectangle instead of a square. Such a die may 

land either flat (1 or 6), or on its side (2, 3, 4, or 5). As the thickness of the shape 

decreases from 1 to 0, it is intuitively clear that the chance that the shape lands flat 

increases continuously from 1/3 to 1. Suppose that the thickness t is such that the 

chance of the shape landing flat is 1/2. You could understand this to mean that over 

a long sequence of rolls, the shape landed flat about as often as it landed on its side. 

What is the probability that such a shape shows number 3 or greater? 

For i = 1 to 6, let P(i) be the probability that the shape lands showing i. Using the 

addition rule, 

1/2 = P(flat) = P(l) + P(6) 

1/2 = P(side) = P(2) + P(3) + P(4) + P(5) 

The symmetry of the shape suggests the assumptions: 

P(l) = P(6) and P(2) = P(3) = P(4) = P(5) 

These equations imply that the probabilities P( i) are as displayed in the following 

table and in Figure 2. 
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number i 1 2 3 4 5 6 

probability P( i) 1/4 1/8 1/8 1/8 1/8 1/4 

The probability that the shape shows a number greater than or equal to 3 is then 

given by the addition rule: 

1 1 1 1 5 
P(3 or 4 or 5 or 6) = P(3) + P(4) + P(5) + P(6) = "8 + "8 + "8 + 4 = "8 

FIGURE 2. Histogram of the distribution in Example 3. This is a bar graph showing the prob­

abilities for the shape showing face i. The area of the bar over i is proportional to P(i). By the 

addition rule for probabilities and areas, the probability that the shape shows a number greater 

than or equal to 3 is the shaded area relative to the total area, that is, 5/8. 

o o 
1 2 3 4 5 6 

Notice that the distribution of the number on the shape in Example 3 is identical 

to the distribution of a number drawn at random from the box of Example 2. The 

probability of getting a number greater than or equal to 3 is therefore the same in 

both examples. Similarly, for any subset B of {I, ... , 6}, the probability of getting 

an outcome in B is the same in both examples. The two procedures for obtaining a 

numerical outcome between 1 and 6, rolling the shape, and drawing a ticket from the 

box, are called probabilistically equivalent. In other words, the two outcomes have 

the same distribution. This means the set of possible outcomes and the distribution 

of probability over these outcomes is the same in both cases. It would not make 

sense, however, to say that the two procedures generated the same outcome. On the 

contrary, the two procedures would most likely produce two different numbers: 

Picking a number from a box and rolling a shape. 

Suppose one number is obtained by drawing at random from the box of tickets in 

Example 2, and another number is obtained by rolling a shape as in Example 3. 

What is the chance of the event that the number from the box is i and the number 

on the ticket is j? 

Consider the following two procedures for obtaining a pair of numbers (i,j): 

Draw from the box of tickets to obtain i. Roll the shape to obtain j. 

Draw from the box of tickets to obtain i. Replace this ticket in the box, mix up 

the tickets in the box and draw again to obtain j. 
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Problem 2. 

Solution. 

Discussion. 

The second procedure is called random sampling with replacement (Exercise 1.1.3). 

It is intuitively clear that these two procedures must be probabilistic ally equivalent. 

That is to say the probability of any event determined by the first pair must be the 

same as the probability of the corresponding event for the second pair. In particular, 

the probability that the box produces i and the shape rolls j must be the same as 

the probability of getting i on the first draw and j on the second draw in two draws 

at random with replacement from the box. To solve the problem, let us assume this 

probabilistic equivalence. The point is that for two draws at random with replacement 

the probability of getting particular numbers i on the first draw and j on the second 

draw can be found by the method of Section 1.1. Suppose there are N tickets in 

the box, and that all N x N = N 2 possible pairs of tickets are equally likely in two 

draws at random with replacement. Since the number of tickets labeled i is P(i)N 

for P( i) displayed in Example 2, the number of ways to get (i, j) is P( i)N x P(j)N = 
P( i)P(j)N2 . So the required probability is P( i) P(j)N2 / N 2 = P( i)P(j). 

What is the probability that the two numbers are different? 

From the solution to the previous problem, for any particular number i, the proba­

bility of getting the same number i from the ticket and the shape is P(i)2.. Summing 

over i = 1, ... , 6 gives 

6 

P(ticket and shape show the same unspecified number) = L p(i)2 

By the complement rule 

6 

P(ticket and shape show different numbers) = 1 - L p(i)2 
;=1 

;=1 

13 

16 

The above example illustrates an important technique for solving probability prob­

lems. Look for a probabilistic equivalent of the original problem that is easier to 

understand. Then solve the equivalent problem. The solution of Problem 1 shows 

that the basic assumption made on intuitive grounds, that 

the ticket- shape scheme is probabilistically equivalent to a ticket- ticket 

scheme for draws with replacement 

implies a product rule for calculating the probability of an intersection of two events, 

one determined by the ticket and the other by the die: 

P(ticket shows number i and shape shows number j ) 

= P(ticket shows number i) P(shape shows number j ) 
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for all i and j. Events A and B such as these, with P(AB) = P(A)P(B), are 

called independent events. The concept of independence is studied in Section 1.4. 

In language defined more formally in Section 3.1, the assumption of equivalence of 

the ticket-shape and ticket-ticket schemes can be restated as follows: 

the number on the ticket and the number rolled by the shape are inde­

pendent random variables with the same distribution. 

Named Distributions 

The distribution on the set {I, ... , 6} defined by the probabilities P(l), ... , P(6) in 

the previous three examples is of no particular importance. It just illustrated numeri­

cally some general properties of a probability distribution over a finite set. There are 

some special distributions, however, that appear in a wide variety of contexts and 

are given names. Some of these named distributions are mentioned in the follow­

ing paragraphs. Other named distributions appear throughout the book. There is a 

summary of the properties of the most important of these distributions on pages 476 

to 488. Most named distributions have one or more parameters in their definition. 

These are constants appearing in the formula for the distribution which affect its 

shape and properties. Typically, the parameters are subject to some constraints such 

as non-negativity, so that the numbers defined by the formula satisfy the rules of 

probability. 

Bernoulli (p) distribution. For p between 0 and 1, this is the distribution on {O, I} 

defined by the following distribution table: 

possible outcome 0 1 

probability 1-p p 

FIGURE 3. Histograms of some Bernoulli (p) distributions. 

rn 
0 1 0 1 0 1 0 1 0 1 0 1 0 1 

p=O p = 1/5 p = 1/3 p = 1/2 p = 2/3 p =4/5 p=l 

Think of any event A, for which you think it makes sense to consider the probability 

P(A). For example, A might be the event of heads on a coin toss, perhaps for a 
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biased coin. Now define an outcome to be 1 if A occurs, and 0 otherwise. If you like, 

imagine that you win a dollar if A occurs, nothing otherwise. Then the outcome is the 

number of dollars you win. This outcome, associated with the event A, is called the 

indicator of A. The distribution of the indicator of A is the Bernoulli (p) distribution 

for p = P(A). 

The number p is the parameter of the Bernoulli (p) distribution. The effect of in­

creasing p from 0 to 1 is to shift the probability from being all concentrated at 0 to 

being all concentrated at 1, as shown by the histograms in Figure 3. 

Uniform distribution on a {'mite set. This distribution, defined by an assumption 

of equally likely outcomes, appeared in many examples in Section 1.1. To be clear 

about exactly what uniform distribution is meant, it is essential to define clearly 

the range of the uniform distribution, that is, the precise set of outcomes assumed 

equally likely. If the range is a set of n possible outcomes, for instance {1, 2 ... , n} 
or {O, 1, ... ,n - 1}, the probability of each possible outcome is l/n. The proba­

bility P(B) of an outcome in the set B is then P(B) = #(B)/n. Note that the 

uniform distribution on {O, I} is identical to the Bernoulli (1/2) distribution. This is 

the distribution of the indicator of heads on a fair coin toss. 

Uniform Ca, b) distribution. This refers to the distribution of a point picked uni­

formly at random from the interval (a, b) where a and b are two numbers with 

a < b. The basic assumption is that probability is proportional to length. So for 

a < x < y < b the probability that the point falls in the interval (x, y) is assumed 

to be (y - x)/(b - a). By rescaling the interval (a, b) to the unit interval (0,1), 

problems involving the uniform (a, b) distribution are reduced to problems involv­

ing the uniform (0,1) or standard uniform distribution. See Section 4.1 for details. 

Most calculators and computer languages have a command, often called "RND", that 

produces a pseudo-random number with approximately uniform (0, 1) distribution. 

These numbers are called pseudo-random because the results of successive calls of 

RND are in fact generated by application of a simple deterministic formula starting 

from some initial number in (0,1), called the seed. The formula has the property that 

for 0 < x < y < 1 the long-run relative frequency of numbers in (x, y) is almost 

exactly equal to y - x. By the addition rule for long-run frequencies, for any subset 

B of (0,1) which is a finite union of intervals, the long-run frequency with which 

RND generates numbers in B is almost exactly equal to the probability assigned to 

B by the uniform (0,1) distribution (that is the length of B, which is the sum of 

lengths of component intervals of B). 

Uniform distribution over an area in the plane. Now probabilities are defined 

by relative areas instead of relative lengths. Think of a point picked uniformly at 

random from the rectangular area in a Venn diagram. Long-run frequencies for pairs 

(RND1 , RND2) generated by two calls of a pseudo-random number generator are 

well approximated by probabilities derived from the uniform distribution on the 

unit square (0,1) x (0,1). Section 5.1 gives examples, and extensions of the idea to 

higher dimensions. 
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Empirical Distributions 

Let (XI,X2, ... ,xn ) be a list of n numbers. Think of Xi as the ith measurement of 

some physical quantity like the length or weight of something, in a series of repeated 

measurements. The empirical distribution of the list of n numbers is the distribution 

on the line (-00,00) defined by 

Pn(a, b) = #{i : 1 ::::; i ::::; n, a < Xi < b}/n 

That is, Pn (a, b) is the proportion of the n numbers in the list that lie in the interval 

(a, b). To give this distribution a probabilistic interpretation, imagine n tickets in a 

box with number Xi written on the ith ticket. Then for a ticket picked uniformly 

at random from the box, Pn (a, b) is the probability that the number on the ticket 

drawn is in (a, b). So the empirical distribution of a list is the distribution of a number 

picked at random from the list. 

The empirical distribution of a data list is displayed by a histogram. that is, a bar 

graph in which proportions in the list are represented by the areas of various bars. 

FIGURE 4. A data histogram. Actual values of the data points are shown by marks on the horizontal 

axis. The area of the bar over each bin shows the proportion of data points in the bin . 

.---
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I 
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A histogram can be drawn as follows. First the interval of values is cut at some 

sequence of cut points bI < b2 < ... < bm , such that all the Xi are contained in 

(b l , bm ), and none of the cut points equals any of the Xi. The cut points define m - 1 

subintervals (b j , bj +1), 1 ::::; j ::::; m-l, called bins. The histogram is drawn by placing 

a rectangle over the jth bin with base the bin width bj+1 - bj and height 

Pn(bj , bj +1) _ #{i : 1 ::::; i ::::; n, bj < Xi < bj+d 

(b j +1 - bj ) - n(bj+1 - bj ) 

This height is the proportion of observations per unit length in the jth bin. The 

area of the bar over the jth bin is the base times height, which is the proportion of 
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observations in the jth bin: 

The total area of the histogram is the sum of the areas of these bars, which is 

m-l 

L Pn(b j , bj+d = Pn(b1 , bm) = 1 

j=l 

by the addition rule for proportions, and the choice of b1 and bm so that all the 

observations lie in (b1 , bm ). 

A histogram smoothes out the data to display the general shape of an empirical 

distribution. Such a histogram often follows quite a smooth curve. This leads to 

the idea, developed in Section 4.1, of approximating empirical proportions by areas 

under a curve. The same idea is used in Section 2.2 to approximate probability 

histograms. 

Exercises 1.3 
1. Suppose a cake is divided into three portions, one for you, one for your friend, and 

one for your neighbor. If you get twice as much as your friend, and your friend gets 

twice as much as your neighbor, what proportion of the cake do you get? 

2. Write down the expression in set notation corresponding to each of the following events. 

a) the event which occurs if exactly one of the events A and B occurs; 

b) the event which occurs if none of the events A, B, or C occurs; 

c) the events obtained by replacing "none" in b) by "exactly one," "exactly two," 

and "three." 

3. Five hundred tickets, marked 1 through 500, are sold at a high-school cake raffle. I have 

tickets 17, 93, and 202. My friend has tickets 4, 101, 102, and 398. One of the tickets 

will be chosen at random, and the owner of the winning ticket gets a cake. Make an 

outcome space for this situation, and indicate how each of the following events can be 

represented as a subset of your outcome space. 

a) one of my tickets is the winner; b) neither my friend nor I win the raffle; 

c) the number on the winning ticket is just 1 away from the number on one of my 

tickets. 

4. Let n = {O, 1, 2} be the outcome space in a model for tossing a coin twice and observing 

the total number of heads. Say if the following events can be represented as subsets of 

n. If you say "yes," provide the subset; if you say "no," explain why: 

a) the coin does not land heads both times; 

b) on one of the tosses the coin lands heads, and on the other toss it lands tails; 



Section 1 .3. Distributions 3 1 

c) on the first toss the coin lands heads, and on the second toss it lands tails; 

d) the coin lands heads at least once. 

5. Think of the set fl = {H H H, H HT, HT H, HTT, T H H, T HT, TT H, TTT} as the 

outcome space for three tosses of a coin. For example, the subset {H H H, TTT} cor­

responds to the event that all three tosses land the same way. Give similar verbal 

descriptions for the events described by each of the following subsets of fl. 

a) {HHH,HHT,HTH,HTT} b) {HTH,HTT,TTT,TTH} 

c) {HTT,HTH,HHT,HHH} d) {HHH,HHT,HTH,THH} 

e) {THT,HTT,TTH} f) {HHT,HHH,TTH,TTT} 

6. Suppose a word is picked at random from this sentence. 

a) What is the distribution of the length of the word picked' 

b) What is the distribution of the number of vowels in the word' 

7. Shapes. Following Example 3, suppose the probability that the shape lands flat (1 or 

6) is p for some 0 :S p :S 1. 

a) For each k = 1,2, ... ,6 find a formula for P(k) in terms of p. 

b) Find a formula in terms of p for the probability that the number shown by the 

shape is 3 or more. 

8. Let A and B be events such that P(A) = 0.6, P(B) = 0.4, and P(AB) = 0.2. Find the 

probabilities of: a) Au B b~ A C c) W d) AC B e) Au B C f) A C Be 

9. Events F, G, and H are such that 

P(F) = 0.7, P(G) = 0.6, P(H) = 0.5, 

P(FG) = 0.4, P(FH) = 0.3, P(GH) = 0.2, P(FGH) = 0.1. 

Find: (a) P(F U G); (b) P(F U G U H); (c) P(FcGc H). 

10. Events A, B, and C are defined in an outcome space. Find expressions for the following 

probabilities in terms of P(A), P(B), P(C), P(AB), P(AC), P(BC), and P(ABC). 

a) The probability that exactly two of A, B, C occur. 

b) The probability that exactly one of these events occurs. 

c) The probability that none of these events occur. 

11. Inclusion-exclusion formula for 3 events. Write AUBuC = (AUB)UC and use 

the inclusion-exclusion formula three times to derive the inclusion-exclusion formula 

for 3 events: 

P(AUBUC) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC) 

12. Inclusion-exclusion formula for n events. Derive the inclusion-exclusion formula 

for n events 

i:::::: 1 i<j i<J<k 
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by mathematical induction after showing that 

13. Boole's inequality. The inclusion-exclusion formula gives the probability of a union 

of events in terms of probabilities of intersections of the various subcollections of these 

events. Because this expression is rather complicated, and probabilities of intersections 

may be unknown or hard to compute, it is useful to know that there are simple bounds. 

Use induction on n to derive Boole's inequality: P(U~=l A,) S; 2:~=1 P(Ai). 

14. Show that P(A n B) ~ P(A) + P(B) - 1. 

15. Use Boole's inequality and the fact that (U~=l A;)C = n~=l Ai to show that 

n 

P(B1 B2 .•. Bn) ~ L P(Bi ) - (n - 1) 

i=l 

16. Bonferroni's inequalities. According to Boole's inequality, the first sum in the inclu­

sion -exclusion formula gives an upper bound on the probability of a union. This is the 

first of the series of Bonfer-rani inequalities. The next shows that the first sum minus 

the second is a lower bound. Show by using induction on n, and Boole's inequality, 

that: 

a) P(Ui'=lA;) ~ 2:~=1 P(Ad - 2:;<j P(AiAj). 

b) Continuing like this, show that adding the third sum 2:i<j<k P(A;AjAk) gives 

an upper bound, subtracting the fourth sum gives a lower bound, and so on. 

[Hint. In each case, use induction on n, and the previous inequality. For example, 

for the inequality that involves adding the third sum, use induction on n and the 

result of a).l 

Note: The successive bounds do not always get better as more sums are introduced, 

despite the fact that the final formula, involving all n sums, is exact. 
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Conditional Probability and Independence 

The first few examples of this section illustrate the idea of conditional probability in 

a setting of equally likely outcomes. 

Three coin tosses. 

If you bet that 2 or more heads will appear in 3 tosses of a fair coin, you are more 

likely to win the bet given the first toss lands heads than given the first toss lands 

tails. To be precise, assume the 8 possible patterns of heads and tails in the three 

tosses, {hhh, hht, hth, htt, thh, tht, tth, ttt}, are equally likely. Then the overall or 

unconditional probability of the event 

A = (2 or more heads in 3 tosses) = {hhh, hht, hth, thh} 

is P(A) = 4/8 = 1/2. But given that the first toss lands heads (say H), event A 

occurs if there is at least one head in the next two tosses, with a chance of 3/4. 

So it is said that the conditional probability of A given H is 3/4. The mathematical 

notation for the conditional probability of A given H is P(AIH), read "P of A given 

H". In the present example 

P(AIH) = 3/4 

because H = {hhh, hht, hth, htt} can occur in 4 ways, and just 3 of these outcomes 

make A occur. These 3 outcomes define the event {hhh, hht, hth} which is the 

intersection of the events A and H, denoted A and H, An H, or simply AH. 
Similarly, if the event He = "first toss lands tails" occurs, event A happens only if 

the next two tosses land heads, with probability 1/4. So 

Conditional probabilities can be defined as follows in any setting with equally likely 

outcomes. 

Counting Formula for P(A 18) 
For a finite set n of equally likely outcomes, and events A and B represented 

by subsets n, the conditional probability of A given B is 

P(AIB) = #(AB) 
#(B) 

the proportion of outcomes in B that are also in A. Here AB = A n B = A 

and B is the intersection of A and B. 
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Example 2. 

Problem. 

Solution. 

Example 3. 

Problem. 

Solution. 

Tickets. 

A box contains 10 capsules, similar except that four are black 

and six are white. Inside each capsule is a ticket marked 

either win or lose. The capsules are opaque, so the result on 

the ticket inside cannot be read without breaking open the 

capsule. Suppose a capsule is drawn at random from the box, 

then broken open to read the result. If it says win, you win a 

prize. Otherwise, you win nothing. The numbers of winning 

and losing tickets of each color are given in the diagram, 

which shows the tickets inside the capsules. Suppose that 

the capsule has just been drawn, but not yet broken to read 

the result. The capsule is black. Now what is the probability 

that you win a prize? 

(~) 

@ 
Q~v 

Q~v 

@ 
@ 
C§V 

@ 

@ 
@ 

This conditional probability is the proportion of winners among black capsules: 

P( . Ibl k) = #(win and black) = ~ = 0 5 
Win ac #(black) 4' 

Compare with the unconditional probability P(win) = 4/10 = 0.4 

Two-sided cards. 

A hat contains three cards. 

One card is black on both sides. 

One card is white on both sides. 

One card is black on one side and white on the other. 

The cards are mixed up in the hat. Then a single card 

is drawn and placed on a table. If the visible side of 

the card is black, what is the chance that the other side 

is white? 

Label the faces of the cards: 

bl and b2 for the black-black card; 

WI and W2 for the white-white card; 

b3 and W3 for the black-white card. 

bib 

b/w 

w/w 

Assume that each of these six faces is equally likely to be the face showing up­

permost. Experience shows that this assumption does correspond to long-run fre­

quencies, provided the cards are similar in size and shape, and well mixed up in 
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the hat. The outcome space is then the set of six possible faces which might show 

uppermost: 

The event {black on top} is identified as 

Similarly, 

Given that the event {black on top} has occurred, the face showing is equally likely 

to be b1, b2 , or b3 . Only in the last case is the card white on the bottom. So the 

chance of white on bottom given black on top is 

P(white on bottomlblack on top) 

#(white on bottom and black on top) 1 

#(black on top) 3 

You might reason as follows: The card must be either the black-black card or the 

black-white card. These are equally likely possibilities, so the chance that the other 

side is white is 1/2. Many people find this argument convincing, but it is basically 

wrong. The assumption of equally likely outcomes, given the top side is black, is 

not consistent with long-run frequencies. If you repeat the experiment of drawing 
from the hat over and over, replacing the cards and mixing them up each time, you 

will find that over the long run, among draws when the top side is black, the bottom 

side will be white only about 1/3 of the time, rather than 1/2 of the time. 

Frequency interpretation of conditional probability. This is illustrated by the 

previous example. If P(A) approximates to the relative frequency of A in a long 

series of trials, then P(AIB) approximates the relative frequency of trials producing 

A among those trials which happen to result in B. A general formula for P(AIB), 

consistent with this interpretation, is found as follows. Start with the counting formula 

for P(AIB) in a setting of equally likely outcomes, then divide both numerator and 

denominator by #(f!) to express P(AIB) in terms of the unconditional probabilities 

P(AB) = #(AB)/#(fl) and P(B) = #(B)/#(f!): 

P(AIB) = #(AB) 
#(B) 

#(AB)/#(f!) 

#(B)/#(f!) 

P(AB) 

P(B) 
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Example 4. 

Problem. 

Solution. 

Remark. 

General Formula for P(A 18) 

P(AIB) = P(AB) 
P(B) 

If probabilities P(A) are specified for subsets A of an outcome space n, then con­

ditional probabilities given B can be calculated using this formula. This restricts the 

outcome space to Band renormalizes the distribution on B. In case the original 

distribution is defined by relative numbers, or relative areas, the same will be true of 

the conditional distribution given B, but with the restriction from n to B. To make 

a clear distinction, P(A) or P(AB) is called an overall or unconditional probability, 

and P(AIB) a conditional probability. 

Relative areas. 

Suppose a point is picked uniformly at random from the 

big rectangle in the diagram. Imagine that information 

about the position of this point is revealed to you in two 

stages, by the answers to the following questions: 

Question 1. Is the point inside the circle B? 
Question 2. Is the point inside the rectangle A? 

If the answer to Question 1 is yes, what is the probability that the answer to Question 

2 will be yes? 

The problem is to find the probability that the point is in the rectangle A given that 

it is in the circle B. By inspection of the diagram, approximately half the area inside 

B is inside A. So the required probability is 

P(AIB) = P(AB) = Area(AB) ~ 1/2 
P(B) Area(B) 

The formula for conditional probability in this case corresponds to the idea that given 

the point is in B, equal areas within B still have equal probabilities. 

Tree Diagrams and the Multiplication Rule 

In the above example a conditional probability was calculated from overall prob­

abilities. But in applications there are usually many events A and B such that the 

conditional probability P(AIB) and the overall probability P(B) are more obvious 

than the overall probability P(AB). Then P(AB) is calculated using the following 

rearrangement of the general formula for conditional probability: 
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Multiplication Rule 
P(AB) = P(AIB)P(B) 

This rule is very intuitive in terms of the frequency interpretation. If, for example, 

B happens over the long run about 1/2 the time (P(B) = 1/2), and about 1/3 of 

the times that B happens A happens too (P(AIB) = 1/3), then A and B happens 

about 1/3 of 1/2 = 1/3 x 1/2 = 1/6 of the time (P(AB) = P(AIB)P(B) = 1/6). 

The multiplication rule is often used to set up a probability model with intuitively 

prescribed conditional probabilities. Typically, A will be an event determined by 

some overall outcome which can be thought of as occurring by stages, and B will 

be some event depending just on the first stage. If you think of B happening before 

A it is more natural to rewrite the multiplication rule, with BA instead of AB and 

the two factors switched: 

P(BA) = P(B)P(AIB) 

In words, the chance of B followed by A is the chance of B times the chance of A 
given B. 

Picking a box, then a ball. 

Suppose that there are two boxes, labeled odd and even. The odd box contains 

three balls numbered 1, 3, 5. The even box contains two balls labeled 2, 4. One of 

the boxes is picked at random by tossing a fair coin. Then a ball is picked at random 

from this box. What is the probability that the ball drawn is ball 3? 

A scheme like this can be represented in a tree diagram. Each branch represents a 

possible way things might turn out. Probabilities and conditional probabilities are 

indicated along the branch. 

Outcome 

1/ 
~

i CD 
ICD®®I 13 ® 

ODD 1/3 ® 

1/2 <=/2 --_@ 
I@@I 

EVEN 1/2 @ 
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Remark 1. 

Remark 2. 

Because the box is chosen by a fair coin toss, 

P(odd) = P(even) = 1/2 

The only way to get 3 is to first pick the odd box, then pick 3. By assumption 

P(3Iodd) = 1/3 

Now by the multiplication rule, 

1 1 1 
P(3) = P( odd and 3) = P( odd)P(31 odd) = '2 x 3 = '6 

This is the product of the probabilities along the path representing the outcome 3. 

The corresponding products along the other possible branches give the distribution 

displayed in the tree diagram. 

This is a different representation of the same 

problem, using a Venn diagram. 

ODD 1 

EVEN 

3 5 

2 4 

A naive approach to the above problem would be to assume that all outcomes were 

equally likely. But this would imply 

P(first box) = P(odd) = 3/5 

P(second box) = P(even) = 2/5 

which is inconsistent with the box being chosen by a fair coin toss. 

The problem could also be solved without conditional probabilities by a symmetry 

argument, assuming that 

P(l) = P(3) = P(5) and P(2) = P(4) 

P(l) + P(3) + P(5) = P(2) + P(4) = 1/2 

These equations yield the same answer as above. 
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To summarize the method of the previous example: 

Multiplication Rule in a Tree Diagram 
After setting up a tree diagram whose paths represent joint outcomes, the mul­

tiplication rule is used to define a distribution of probability over paths. The 

probability of each joint outcome represented by a path is obtained by multi­

plying the probability and conditional probability along the path. 

Electrical components. 

Suppose there are two electrical components. The chance that the first component 

fails is 10%. If the first component fails, the chance that the second component fails 

is 20%. But if the first component works, the chance that the second component fails 

is 5%. 

Calculate the probabilities of the following events: 

1. at least one of the components works; 

2. exactly one of the components works; 

3. the second component works. 

Here is the tree diagram showing all possible performances of the first and sec­

ond components. Probabilities are filled in using the above data and the rule of 

complements. 

First Component Second Component 

Works 

Works 
90% 

5% 
Fails 

Works 

10% 
Fails 

20% 
Fails 
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By inspection of the diagram, 

P(at least one works) = 1 - P(both fail) 

= 1 - 0.1 x 0.2 = 0.98 

P(exactly one works) = P(first works and second fails) 

+ P(first fails and second works) 

= 0.9 x 0.05 + 0.1 x 0.8 = 0.125 

P(second works) = P(first works and second works) 

+ P(first fails and second works) 

= 0.9 x 0.95 + 0.1 x 0.8 = 0.935 

Averaging Conditional Probabilities 

The last two parts of the previous example illustrate a rule of average conditional 

probabilities: for any events A and B, the overall probability P(A) is the average 

of the two conditional probabilities P(AIB) and P(AIBC) with weights P(B) and 

P(BC ): 

In the example, Band B C were (first works) and (first fails), while A was (exactly 

one works) in one instance, and (second works) in the other. The formula gives 

the probability of A as the sum of products of probabilities along paths leading 

to A in the tree diagram. The event B defines a partition of the whole outcome 

space n into two events Band BC, corresponding to two initial branches in the 

tree. There is a similar formula for any partition B1 , ... , Bn of the whole outcome 

space n, corresponding to n initial branches of a tree. For any event A the events 

AB1 , ... , ABn form a partition of A, so 

P(A) = P(ABd + ... + P(ABn) 

by the addition rule. Applying the multiplication rule to each term gives 

This important result is summarized in the following box. 
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Rule of Average Conditional Probabilities 
For a partition B1 , ... ,Bn of fl, 

In words: the overall probability P(A) is the weighted average of the condi­

tional probabilities P(AIBi) with weights P(Bi). 

Sampling without replacement. 

Suppose two cards are dealt from a well-shuffled deck of 52 cards. What is the 

probability that the second card is black? 

A common response to this question is that you can't say. It depends on whether the 

first card is black or not. If the first card is black, the chance that the second is black 

is 25/51, since no matter which black card the first one is, the second is equally likely 

to be any of the 51 remaining cards, and there are 25 black cards remaining. If the 

first card is red, the chance that the second is black is 26/51, by similar reasoning. 

These are the conditional probabilities of black on the second card given black and 

red, respectively, on the first card. But the question does not refer to the first card 

at all. The overall probability of black on the second card is the average of these 

conditional probabilities: 

P(second black) = P(second blacklfirst black)P(first black) 

+ P(second blacklfirst red)P(first red) 

= 25 . ~ 26. ~ = (25 + 26) x ~ = ~ 
51 2 + 51 2 51 2 2 

This can also be argued by symmetry. Since there are equal numbers of black and 

red cards in the deck, the assumptions made at the start are symmetric with respect 

to black and red. This makes 

P(second black) = P(second red) 

Since 

P(second black) + P(second red) = 1 

this gives the answer of 1/2. This argument shows just as well that if n cards are 

dealt, then P(nth card black) = 1/2, P(nth card an ace) = 1/13, and so on. 
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Independence 

We have just seen that for any events A and B, P( A) is the average of the conditional 

probabilities P(AIB) and P(AIBC), weighted by P(B) and P(BC). Suppose now that 

the chance of A does not depend on whether or not B occurs, and in either case 

equals p, say. In symbols: 

P(AIB) = P(AIBC) = p (1) 

Then also the unconditional probability of A is p: 

P(A) = P(AIB)P(B) + P(AIBC)P(BC) = pP(B) + pP(BC) = p 

For example, A might be the event that a card dealt from a well-shuffled deck 

was an ace, B the event that a die showed a six. Such events A and B are called 

independent. Intuitively, independent events have no influence on each other. It 

would be reasonable to suppose that any event determined by a card dealt from a 

shuffled deck would be independent of any event determined by rolling a die. To 

be brief, the deal and the die roll would be called independent. 

One more example: two draws at random from a population would be independent 

if done with replacement between draws, but dependent (i.e., not independent) if 

done without replacement. 

Independence of events A and B can be presented mathematically in a variety of 

equivalent ways. For example, it was just shown that the definition (1) above (which 

assumes both P(B) > 0 and P(BC) > 0), implies 

P(AIB) = P(A) (2) 

A similar calculation shows that (2) implies (1). The formula P(AIB) = P(AB)/ P(B) 
shows (2) is equivalent to the following: 

Multiplication Rule for Independent Events 

P(AB) = P(A)P(B) 

The multiplication rule is usually taken as the formal mathematical definition of 

independence, to include the case of events with probability 0 or 1. (Such an event 

is then, by definition, independent of every other event.) 

The multiplication rule brings out the symmetry of independence. Assuming P(A) > 
0, and using the fact that AB = BA and P(A)P(B) = P(B)P(A), the multiplication 

rule allows (2) to be turned around to 

P(BIA) = P(B) (3) 
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and (1) can be turned around similarly. 

Assuming A and B are independent, all of these formulae hold also with either AC 
substituted for A, B C for B, or with both substitutions. This is obvious for (1), hence 

also true for the others. To spell out an example, since A splits into ABc and AB, 

P(ABC ) = P(A) - P(AB) 

= P(A)-P(A)P(B) assuming the multiplication rule for A and B 

= P(A)(l - P(B)) 

= P(A)P(BC ) by the rule of complements. 

So the multiplication rule works just as well with BC instead of B. The same goes 

for AC instead of A. 
Here the various probabilities determined by inde- I 

pendent events A and B are illustrated graphically A C 

as proportions in a Venn diagram. Event A is repre-
sented by a rectangle lying horizontally, event B by ;:.f-------+----1 

a rectangle standing vertically. 
A 

Reliability of two components in series. 

A system consists of two components C1 and C2 , each of which must remain oper­

ative for the overall system to function. The components C1 and C2 are then said to 

be connected in series, and represented diagrammatically as follows: 

Let Wi be the event that component Ci works without failure for a given period 

of time, say one day. The event that the whole system operates without failure for 

one day is the event that both C1 and C2 operate without failure, that is, the event 

WI W2 . The probabilities P(Wd and P(W2 ) are called the reliabilities of components 

C1 and C2 . The probability P(WI W2 ) is the reliahility of the whole system. Suppose 

that the component reliabilities P(Wd and P(W2 ) are known from empirical data of 

past performances of similar components, say P(Wd = 0.9 and P(W2 ) = 0.8. If the 

particular components C1 and C2 have never heen used together before, P(WI W2 ) 

cannot be known empirically. But it may still be reasonable to assume that the events 

WI and W2 are independent. Then the reliability of the whole system would be given 

hy the formula 

P(system works) = P(WI W2 ) = P(WdP(W2 ) = 0.9 x 0.8 = 0.72 
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Example 9. 

Hopefully this number, 0.72, would give an indication of the long-run relative fre­

quency of satisfactory performance of the system. But bear in mind that such a num­

ber is based on a theoretical assumption of independence which mayor may not 

prove well founded in practice. The sort of thing which might prevent independence 

is the possibility of failures of both components due to a common cause, for exam­

ple, voltage fluctuations in a power supply, the whole system being flooded, the 

system catching fire, etc. For the series system considered here such factors would 

tend to make the reliability P(WI W2 ) greater than if WI and W2 were independent, 

suggesting that the number, 0.72, would be too Iowan estimate of the reliability. 

Reliability of two components in parallel. 

A method of increasing the reliability of a system is to put components in parallel, 

so the system will work if either of the components works. Two components C1 and 

C2 in parallel may be represented diagrammatically as follows: 

Suppose, as in the last example, that the individual components C1 and C2 have 

reliabilities P(Wd and P(W2)' where WI is the event that C1 works. The event that 

the whole system functions is now the event WI U W2 that either C1 or C2 works. 

The complementary event of system failure is the event FIF2 that both C1 and C2 

fail, where Fi is the complement of Wi. Thus the reliability of the whole system is 

If WI and W2 are assumed independent, so are Fl and F2 . In that case 

P(system works) = 1 - P(F1)P(F2) 

For example, if the component reliabilities are P(Wd = 0.9 and P(W2 ) = 0.8 as 

before, then P(F1 ) = 0.1 and P(F2) = 0.2, and the system reliability is 

P(system works) = 1 - (0.1)(0.2) = 0.98 

This is a considerable improvement over the reliability of the individual components. 

The assumption of independent failures must be viewed with particular suspicion in 

parallel systems, as it tends to lead to exaggerated estimates of system reliabilities. 

Suppose, for example, that all failures of component C1 and half the failures of 

component C2 occur due to severe voltage fluctuation in a power supply common 

to C1 and C2 . Then Fl is the event of a voltage fluctuation, and it should be assumed 
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that P(F1 1F2) = 0.5 instead of the independence assumption P(FIIF2) = 0.1. With 

the new assumptions, 

P(system works) = 1 - P(F1F2) = 0.9 

As a general rule, failures of both components due to a common cause will tend to 

decrease the reliability of a parallel system below the value predicted by an inde­

pendence assumption. 

Exercises 1.4 
1. In a particular population of men and women, 92% of women are right handed, and 

88% of men are right handed, Indicate whether each of the following statements is 

(i) true. (ij) false, or (iii) can't be decided on the basis of the information given. 

a) The overall proportion of right handers in the population is exactly 90%. 

b) The overall proportion of right handers in the population is between 88% and 

92%. 

c) If the sex ratio in the population is 1-to-1 then a) is true. 

d) If a) is true then the sex ratio in the population is 1-to-1. 

e) If there are at least three times as many women as men in the population, then 

the overall population of right handers is at least 91%. 

2. A light bulb company has factories in two cities. The factory in city A produces two­

thirds of the company's light bulbs. The remainder are produced in city B, and of these, 

1% are defective. Among all bulbs manufactured by the company, what proportion are 

not defective and made in city B? 

3. Suppose: 

P(rain today)=40%; P(rain tomorrow) =50%; P(rain today and tomorrow)=30%. 

Given that it rains today, what is the chance that it will rain tomorrow? 

4. Two independent events have probabilities 0.1 and 0.3. What is the probability that 

a) neither of the events occurs? 

b) at least one of the events occurs? 

c) exactly one of the events occurs? 

5. There are two urns. The first urn contains 2 black balls and 3 white balls. The second 

urn contains 4 black balls and 3 white balls. An urn is chosen at random, and a ball is 

chosen at random from that urn. 

a) Draw a suitable tree diagram. 

b) Assign probabilities and conditional probabilities to the branches of the tree. 

c) Calculate the probability that the ball drawn is black 
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6. Suppose two cards are dealt from a deck of 52. What is the probability that the second 

card is a spade given that the first card is black? 

7. Suppose A and B are two events with P(A) = 0.5, P(A U B) = O.S. 

a) For what value of P(B) would A and B be mutually exclusive? 

b) For what value of P(B) would A and B be independent? 

8. A hat contains a number of cards, with 

30% white on both sides; 

50% black on one side and white on the other; 

20% black on both sides. 

The cards are mixed up, then a single card is drawn at random and placed on the table. 

If the top side is black, what is the chance that the other side is white? 

9. Three high schools have senior classes of size 100, 400, and 500, respectively. Here are 

two schemes for selecting a student from among the three senior classes: 

A: Make a list of all 1000 seniors, and choose a student at random from this list. 

B: Pick one school at random, then pick a student at random from the senior class 

in that school. 

Show that these two schemes are not probabilistic ally equivalent. Here is a third scheme: 

C: Pick school i with probability Pi (PI +P2 +P3 = 1), then pick a student at random 
from the senior class in that school. 

Find the probabilities PI, P2, and P3 which make scheme C equivalent to scheme A. 

10. Suppose electric power is supplied from two independent sources which work with 

probabilities 0.4, 0.5, respectively. If both sources are providing power enough power 

will be available with probability 1. If exactly one of them works there will be enough 

power with probability 0.6. Of course, if none of them works the probability that there 

will be sufficient supply is O. 

a) What are the probabilities that exactly k sources work for k = 0, 1, 2? 

b) Compute the probability that enough power will be available. 

11. Assume identical twins are always of the same sex, equally likely boys or girls. Assume 

that for fraternal twins the firstborn is equally likely to be a boy or a girl, and so is the 

secondborn, independently of the first. Assume that proportion P of twins are identical, 

proportion q = 1-P fraternal. Find formulae in terms of P for the following probabilities 

for twins: 

a) PCboth boys) 

b) PCfirstborn boy and secondborn girl) 

c) PCsecondborn girl I firstborn boy) 

d) PCsecondborn girl I firstborn girl). 

12. Give a formula for P(FIG C ) in terms of P(F), P(G), and P(FG) only. 
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Bayes' Rule 
The rules of conditional probability, described in the last section, combine to give a 

general formula for updating probabilities called Bayes' rule. Before stating the rule 

in general, here is an example to illustrate the basic setup. 

Which box? 

Suppose there are three similar boxes. Box i contains i white balls and one black 

ball, i = 1,2,3, as shown in the following diagram. 

loelloil 
Box 1 Box 2 

1001 
~ 
Box 3 

Suppose I mix up the boxes and then pick one at random. Then I pick a ball at 

random from the box and show you the ball. I offer you a prize if you can guess 

correctly what box it came from. 

Which box would you guess if the ball drawn is white and what is your chance of 

guessing right? 

An intuitively reasonable guess is Box 3, because the most likely explanation of how 

a white ball was drawn is that it came from a box with a large proportion of whites. 

To confirm this, here is a calculation of 

P( '1 h') P(Box i and white) 
Box t w He = ( ) 

P white 
(i = 1,2,3) 

These are the chances that you would be right if you guessed Box i, given that the 

ball drawn is white. The following diagram shows the probabilistic assumptions: 

Pick Box Pick Ball 

bJ 1 2 

1/3 1/2 

1 3 loil 
2/3 

1/3 

1/3 

~ 
3/4 

o. 1/4 ~--~---------. 
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From the diagram, the numerator in (*) is 

1 i 
P(Box i and white) = P(Box i)P(whiteIBox i) = 3" x i + 1 (i = 1,2,3) 

By the addition rule, the denominator in (*) is the sum of these terms over i = 1, 2, 3: 

1 1 1 2 1 3 23 
P(white) = 3" x 2" + 3" x 3" + 3" x 4 = 36 and 

1 i 12 ,; 3 x HI • 
P(Box ilwhite) = 23 = - X --

36 23 i + 1 
(i=1,2,3) 

Substituting for i/(i + 1) for i = 1,2,3 gives the following numerical results: 

i 1 2 3 

P(Box ilwhite) 6/23 8/23 9/23 

This confirms the intuitive idea that Box 3 is the most likely explanation of a white 

ball. Given a white ball, the chance that you would be right if you guessed this box 

would be 9/23 ~ 39.13%. 

Suppose, more generally, that events B l , ... , Bn represent n mutually exclusive 

possible results of the first stage of some procedure. Which one of these results has 

occurred is assumed unknown. Rather, the result A of some second stage has been 

observed, whose chances depend on which of the Bi'S has occurred. In the previous 

example A was the event that a white ball was drawn and Bi the event that it came 

from a box with i white balls. The general problem is to calculate the probabilities 

of the events Bi given occurrence of A (called posterior probabilities), in terms of 

co the unconditional probabilities P(Bi ) (called prior probabilities); 

(ii) the conditional probabilities P(AIBi) (called likelihoods). 

Here is the general calculation: 

(multiplication rule) 

where, by the rule of average conditional probabilities, the denominator is 

P(A) = P(AIBdP(Bd + ... + P(AIBn)P(Bn) 

which is the sum over i = 1 to n of the expression P(AIBi)P(Bi ) in the numerator. 

The result of this calculation is called Bayes' rule. 
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Bayes' Rule 
For a partition B1 , ... ,Bn of all possible outcomes, 

It is better not to try to memorize this formula, as it is easily derived from the basic 

rules of conditional probability which are easier to remember. Rather, understand 

the sequence of steps by which it is derived. These are the same steps used to solve 

the balls and boxes problem. 

Which box? (continued). 

Consider again the same three boxes as in the previous example. Suppose I pick a 

box. Then I pick a ball at random from the box and show you the ball. I offer you 

a prize if you can guess correctly what box it came from. 

Which box would you guess if the drawn ball is white, and what is your chance of 

guessing right? 

The wording of this problem is identical to the wording of Example 1 above, except 

that the sentence "Suppose I mix up the boxes and then pick one at random" has 

been replaced by "Suppose I pick a box". A naive approach to the new problem is 

to suppose it is the same as the old one, with the answer: 

guess Box 3, with probability of being right = 9/23 

But this makes an implicit assumption that I am equally likely to pick anyone of 

the three boxes. And the problem cannot be solved without assuming some values 

1ri for the probabilities that I pick box i, i = 1,2,3. These probabilities 1ri are called 

prior probabilities because they refer to your opinion about which box I picked, 

prior to learning the color of the ball drawn. Once you have assigned these prior 

probabilities 1ri, i = 1,2,3, the previous calculations can be repeated. From the prior 

probabilities 1ri and the probabilities i / (i + 1) of getting the observed result, given 

box i (the likelihoods), you can obtain the posterior probabilities by Bayes' rule: 

1ri (~l) 
P(Box ilwhite) = 1 '2 3 

1rl X "2 + 1r2 X 3" + 1r3 X 4" 

Thus, given that a white ball was drawn, to maximize your chance of guessing 

correctly you should guess box i for whichever i maximizes 1ri (i~l)' Which i this 

is depends on the 1ri. The probabilities in question are now clearly a matter of your 

opinion about how I picked the box. There remains the problem of how to assign 

the prior probabilities 1ri. This is a tricky business, as it depends on psychological 
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Example 3. 

Problem. 

Solution. 

Discussion. 

factors, such as whether or not you think I am deliberately trying to make it hard for 

you to guess, and if so what strategy you think I'm using. For further analysis, see 

Exercises 1.5.7 and 1.5.8. 

In principle, every application of Bayes' rule is such as the above examples of guess­

ing the box that produced a particular color of ball. There is always the problem of 

deciding what the prior probabilities should be. Most often the prior probabilities will 

only make sense in a subjective interpretation of probability. But in problems like the 

next example (false positives) the prior probabilities may be known as population 

proportions. This example is like a scheme with two boxes D and DC: 

Box D containing 95% balls labeled + and 5% labeled -

Box DC containing 2% balls labeled + and 98% labeled -

If box D has prior probability 1%, and a draw from the box yields a +, what is the 

chance that the + came from box D? As the solution shows, such extremely skewed 

priors and likelihoods may lead to surprising conclusions. 

False positives. 

Suppose that a laboratory test on a blood sample yields one of two results, positive or 

negative. It is found that 95% of people with a particular disease produce a positive 

result. But 2% of people without the disease will also produce a positive result (a 

false positive). Suppose that 1% of the population actually has the disease. What is 

the probability that a person chosen at random from the population will have the 

disease, given that the person's blood yields a positive result? 

Let P(F) denote the proportion of people in the population with characteristic F. 
Then P(FIG) is the proportion of those in the population with characteristic G who 

also have characteristic F. The desired probability is P(DI+) where D indicates the 

disease, and + indicates a positive test result. The data in the problem indicate that 

P( +ID) = 0.95, P( +IDC) = 0.02, P(D) = 0.01, P(DC) = 0.99. 

Applying Bayes' rule with A = +, Bl = D, B2 = DC, gives 

P(DI+) = P( +ID):;1~1~~~bc)P(DC) 
(.95) (.01) 

(.95)(.01) + (.02)(.99) 

95 
= - :::::::32% 

293 

Thus only 32% of those persons who produce a positive test result actually have 

the disease. At first this result seems surprisingly low. The point is that because the 
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disease is so rare, the number of true positives coming from the few people with 

the disease is comparable to the number of false positives coming from the many 

without the disease. 

Interpretation of conditional probabilities. In applications of Bayes' rule it is 

important to keep in mind the interpretation of the various probabilities involved. 

Typically, the likelihoods P(AIB;) will admit a long-run frequency interpretation. If 

the prior probabilities P(B;) also have a long-run frequency interpretation, then so 

too will the conditional probability P(B;IA) given by Bayes' formula. In Example 3 

there were two hypotheses Bl = D that a person was diseased and B2 = DC that a 

person was not. The observed event was the event A = + of a positive laboratory 

test. There the conditional probability P(DI+) admitted an empirical interpretation, 

as that proportion of individuals in the population in question showing a positive 

test who actually had the disease. This conditional probability also admits a long-run 

frequency interpretation in terms of repeated sampling of that population, or some 

other population with the same characteristics assumed in the calculations. Among 

persons who produce a positive laboratory test, the long-run proportion with the 

disease will most likely be close to P(DI+) ~ 32%. 

There are many situations, however, where it is impossible to give a long-run fre­

quency interpretation to the prior probabilities P(B;). The same must then be said 

of the posterior probabilities P(B; IA) which are calculated in terms of them, even 

if the likelihoods P(AIB;) have long-run frequency interpretations. 

Calculations by Bayes' rule can often be simplified by noting that it is only the ratios 

P(B;) to P(Bj ) (the prior odds ratios) and the ratios P(AIB;) to P(AIBj ) (the 

likelihood ratios) which matter. As you can check as an exercise, if the prior odds 

ratios are written as, say, R; to R j , and the likelihood ratios as, say, L; to L j , meaning 

that 

for some constant c 

and 

for some constant d 

then the posterior odds ratios P(B;IA) to P(BjIA) are simply R;L; to RjLj , and 

This is summarized by the following: 

Bayes' Rule for Odds 
posterior odds = prior odds x likelihoods. 
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Bayes' rule for odds shows clearly how the prior odds are just as important a factor 

as the likelihood ratio in computing the posterior odds. If the prior odds don't make 

sense in terms of long-run frequencies, neither will the posterior odds. 

But even if the probabilities don't admit a long-run frequency interpretation, you 

might find it useful to regard the probabilities in Bayes' rule as subjective probabil­

ities. Bayes' rule then dictates how opinions should be revised in the light of new 

information, to be consistent with the rules of probability. Here is a typical example. 

Diagnosis of a particular patient. 

Suppose a doctor is examining a patient from the population in Example 3. This 

patient was not chosen at random. He walked into the doctor's office because he 

was feeling sick. After examining the patient, but not seeing the result of the blood 

test, the doctor's opinion is that there is a 30% chance that the patient has the disease. 

How should the doctor revise her opinion after seeing a positive blood test? 

To be consistent with the rules of probability, the doctor should use Bayes' rule. 

Now the prior probabilities are 

P(D) = 30%, P(D C
) = 70% 

while it might be reasonable to suppose that the likelihoods 

P(+ID) = 95%, P(+ID C
) = 2% 

are the same as before. The posterior probability can be calculated as before, using 

Bayes' rule, but with the new prior probabilities. In terms of odds, the prior odds in 

favor of the disease are 3 to 7, the likelihood ratio in favor of the disease is 95 to 2, 

so the posterior odds in favor are 3 x 95 to 7 x 2, or 285 to 14. So given the positive 

blood test result, the doctor should revise her opinion and say that the patient has 

the disease with probability 

285 285 
285 + 14 = 299 = 0.95317 

Notice how working with prior odds of 30 to 70 instead of 1 to 99 has a drastic effect 

on the conclusion. Provided the prior odds are not heavily against the disease, the 

evidence of the blood test carries a lot of weight. The likelihood ratio of 95 to 2 

overwhelms the doctor's prior odds of 3 to 7, so there should be little doubt left in 

the doctor's mind after seeing the positive blood test. The puzzling question in this 

kind of application is how does the doctor come up with the odds of 3 to 7 after the 

medical examination? To come up with such odds, the doctor must make an intuitive 

judgment based on the whole complex of evidence gained from an examination of 

the patient. It seems impossible to adequately formalize this process mathematically. 

The theory does not help the doctor come up with a prior opinion, or explain how 
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the doctor should revise an OplnlOn in the light of complex information such as 

is gained from a medical examination. All the theory can do in this context is to 

suggest how an opinion should be revised in the light of a single additional piece 

of information, such as the result of a blood test. 

Notice how the terms prior and posterior are relative terms, like today and tomorrow. 

The posterior distribution after today's test will be the prior distribution for tomor­

row's test. So an opinion can be revised repeatedly using Bayes' rule. At each stage 

in this process, all probabilities should be computed conditionally on everything that 

has gone before. 

Exercises 1.5 

1. There are two boxes, the odd box containing 1 black marble and 3 white marbles, and 

the even box containing 2 black marbles and 4 white marbles. A box is selected at 

random, and a marble is drawn at random from the selected box. 

a) What is the probability that the marble is black? 

b) Given the marble is white, what is the probability that it came from the even box? 

2. Polya's urn scheme. An urn contains 4 white balls and 6 black balls. A ball is chosen 

at random, and its color noted. The ball is then replaced, along with 3 more balls of 

the same color (so that there are now 13 balls in the urn). Then another ball is drawn 

at random from the urn. 

a) Find the chance that the second ball drawn is white. (Draw an appropriate tree 

diagram.) 

b) Given that the second ball drawn is white, what is the probability that the first 

ball drawn is black? 

c) Suppose the original contents of the urn are w white and b black balls, and that 

after a ball is drawn from the urn, it is replaced along with d more balls of the 

same color. In part a), w was 4, b was 6, and d was 3. Show that the chance that 

the second ball drawn is white is w~b' [Note that the probability above does not 

depend on the value of d.l 

3. A manufacturing process produces integrated circuit chips. Over the long run the frac­

tion of bad chips produced by the process is around 20%. Thoroughly testing a chip 

to determine whether it is good or bad is rather expensive, so a cheap test is tried. All 

good chips will pass the cheap test, but so will 10%, of the bad chips. 

a) Given a chip passes the cheap lest, what is the probability that it is a good chip? 

b) If a company using this manufacturing process sells all chips which pass the 

cheap test, over the long run what percentage of chips sold will be bad? 

4. A digital communications system consists of a transmitter and a receiver. During each 

short transmission interval the transmitter sends a signal which is to be interpreted as 

a zero, or it sends a different signal which is to be interpreted as a one. At the end of 

each interval, the receiver makes its best guess at what was transmitted. Consider the 

events: 
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To = {Transmitter sends O}, Ro = {Receiver concludes that a 0 was sent}, 

Tl = {Transmitter sends I}, Rl = {Receiver concludes that a 1 was sent}. 

Assume that P(RoITo) = 0.99, P(R1ITI) = 0.98, and P(T1) = 0.5. Find: 

a) the probability of a transmission error given R I ; 

b) the overall probability of a transmission error. 

c) Repeat a) and b) assuming P(TI ) = 0.8 instead of 0.5. 

5. False diagnosis. The fraction of persons in a population who have a certain disease 

is 0.01. A diagnostic test is available to test for the disease. But for a healthy person 

the chance of being falsely diagnosed as having the disease is 0.05, while for someone 

with the disease the chance of being falsely diagnosed as healthy is 0.2. Suppose the 

test is performed on a person selected at random from the population. 

a) What is the probability that the test shows a positive result (meaning the person 

is diagnosed as diseased, perhaps correctly, perhaps not)? 

b) What is the probability that the person selected at random is one who has the 

disease but is diagnosed healthy? 

c) What is the probability that the person is correctly diagnosed and is healthy? 

d) Suppose the test shows a positive result. What is the probability that the person 

tested actually has the disease? 

e) Do the above probabilities admit a long-run frequency interpretation? Explain. 

6. An experimenter observes the occurrence of an event A as the result of a particular 

experiment. There are three different hypotheses, HI, H2, and H3 , which the exper­

imenter regards as the only possible explanations of the occurrence of A. Under hy­

pothesis HI, the experiment should produce the result A about 10% of the time over 

the long run, under H2 about 1% of the time, and under H3 about 39% of the time. 

Having observed A, the experimenter decides that H3 is the most likely explanation, 

and that the probability that H3 is true is 

39% = 78%. 
10% + 1% + 39% 

a) What assumption is the experimenter implicitly making? 

b) Does the probability 78% admit a long-run frequency interpretation? 

c) Suppose the experiment is a laboratory test on a blood sample from an individual 

chosen at random from a particular population. The hypothesis Hi is that the 

individual's blood is of some particular type i. Over the whole population it 

is known that the proportion of individuals with blood of type 1 is 50%, the 

proportion with type 2 blood is 45%, and the remaining proportion is type 3. 

Revise the experimenter's calculation of the probability of H3 given A, so that it 

admits a long-run frequency interpretation. Is H3 still the most likely hypothesis 

given A? 

7. Guessing what box. Consider a game as in Examples 1 and 2, where I pick one 

of the three boxes, then you guess which box I picked after seeing the color of a ball 

drawn at random from the box. Then you learn whether your guess was right or wrong. 

Suppose we play the game over and over, replacing the ball drawn and mixing up the 

balls between plays. Your objective is to guess the box correctly as often as possible. 
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a) Suppose you know that I pick a box each time at random (probability 1/3 for 

each box). And suppose you adopt the strategy of guessing the box with highest 

posterior probability given the observed color, as described in Example 1, in case 

the observed color is white. About what proportion of the time do you expect to 

be right over the long run? 

b) Could you do any better by another guessing strategy? Explain. 

c) Suppose you use guessing strategy found in a), but I was in fact randomizing 

the choice of the box each time, with probabilities (1/2,1/4,1/4) instead of 

(1/3,1/3,1/3). Now how would your strategy perform over the long run? 

d) Suppose you knew I was either randomizing with probabilities (1/3,1/3,1/3)' 

or with probabilities (1/2,1/4,1/4). How could you learn which I was doing? 

How should you respond, and how would your response perform over the long 

run? 

8. Optimal strategies for guessing what box. (Continuation of Exercise 7, due to David 

Blackwell.) The question now arises: What randomizing strategy should I use to make 

it as hard as possible for you to guess correctly? Consider what happens if I use the 

(f:J, f:J, ~) strategy, and answer the following questions: 

a) What box should you guess if you see a black ball? 

b) What box should you guess if you see a white balJ? 

c) What is your overall chance of winning? 

You should conclude that with this strategy, your chance of winning is at most f:J, no 

matter what you do. Moreover, you have a strategy which guarantees you this chance 

of winning, no matter what randomization I use. It is the following: 

If black, guess 1 with probability ~, 2 with probability ~, and 3 with probability O. 

If white, guess 1 with probability 0, 2 with probability H, and 3 with probability K 
d) Check that using this strategy, you win with probability f:J, no matter what box 

I piCk. 

According to the above analysis, I can limit your chance of winning to f:J by a good 

choice of strategy, and you can guarantee that chance of winning by a good choice of 

strategy. The fraction f:J is called the value of the above game, where it is understood 

that the payoff to you is 1 for guessing correctly, 0 otherwise. Optimal strategies of the 

type discussed above and a resulting value can be defined for a large class of games 

between two players called zero-sum games. For further discussion consult books on 

game theory. 

9. A box contains three "shapes", as described in Example 1.3.3. One of the shapes is a fair 

die, and lands flat with probability 1/3. The other two shapes land flat with probabilities 

1/2 and 2/3, respectively. 

a) One of the three shapes will be chosen at random, and rolled. What is the chance 

that the number rolled is 6? 

b) Given that the number rolled is 6, what is the chance that the fair die was chosen? 
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1.6 Sequences of Events 
This section is concerned with how to calculate probabilities of events determined 

by a sequence of outcomes. All that is involved is repeated application of the basic 

addition and multiplication rules of probability. 

The first step is a calculation of the probability of an intersection of three events 

A, B, and C. This event, which occurs if all three of the events occur may be 

written as ABC = (AB)C. The chance of this event can be computed by using the 

multiplication rule twice: 

P(ABC) = P(AB)P(CIAB) = P(A)P(BIA)P(ClAB). 

FIGURE 1. Tree diagram for the multiplication rule for three events. 

Repeating this argument shows that for n events, AI"'" An, the probability that 

every one of these events occurs is a product of n factors. 

Multiplication Rule for n Events 

In words, if PI = P(AI) is the probability of the first event, P2 = P(A2IAI) 
is the probability of the second event given that the first event has occurred, 

P3 = P(A3I AIA2) is the probability of the third event given that the first two 

events have occurred, and so on, then the probability that n events AI, ... , An 

all occur is the product PI x P2 X ... X Pn. 

This multiplication rule is used to specify the probabilities of paths in a tree diagram. 

Probabilities of various events of interest can then be found by adding the proba­

bilities over appropriate sets of paths. This technique is illustrated by the following 

examples. 
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Problem. 

Solution. 
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Completion by stages. 

A contractor is planning a construction project to be completed in three stages. The 

contractor figures that 

CD the chance that the first stage will be completed on time is 0.7. 

(ii) given that the first stage is completed on time, the chance that the second stage 

will be completed on time is 0.8. 

(iii) given that both the first and second stages are completed on time, the chance 

that the third stage will be completed on time is 0.9. 

To be consistent, what should the contractor calculate is the chance that all three 

stages will be completed on time? 

Let C i be the event that the ith stage is completed on time, and let Li be the event 

that stage i is late (the complement of Ci ). The data of the problem are represented 

in the following tree diagram: 

The event that all three stages are completed on time is the event C1C2C3 . By the 

multiplication rule, 

Note. The data determine the probability of some other events, such as the event that the 

first and second stages are completed on time but the third is not, which is 

But the data do not determine the probability of the event that the second stage is 

late, which is not represented in the diagram. To calculate this probability, it would 

be necessary to know P(L2ILd, the chance that the second stage is late given that 

the first stage is late. Then P(L2 ) could be obtained by the rule of average conditional 

probabilities. 
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Example 2. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

The geometric distribution. 

A symmetric die has proportion p of its faces painted white and proportion q of its 

faces painted black, where q = 1 - p. The die is rolled until the first time a white 

face shows up. 

What is the chance that this takes three or less rolls? 

Assume that, no matter how the die may have landed in previous rolls, the die shows 

white on each roll with probability p and black with probability q. The problem can 

then be represented as follows by a tree diagram. 

The dots indicate that the diagram could be continued in the same way for rolls 

4, 5, 6, and so on, but the outcomes of these rolls are not relevant to the problem. 

The event {white in 3 or less rolls} is represented by three branches of the tree, the 

first ending at WI on rollI, the second ending at W2 on roll 2, and the third ending 

at W3 on roll 3. These three branches represent three mutually exclusive ways that 

the event {white in 3 or less rolls} could happen. The probability of each branch is 

the product of probabilities along the branches. Thus 

P(white in 3 or less rolls) = P(Wd + P(B I W2 ) + P(B I B2 W3 ) 

= p+ qp+ q2p 

= (1 + q + q2)p 

What is the chance that it takes four or more rolls to get a white face? 

This looks as if you have to think about the part of the diagram labeled· . " repre­

senting what might happen if you rolled the die 4 times, 5 times, 6 times, and so on. 

But there is no need to face this infinite sequence of possible outcomes. The event 

that it takes 4 or more rolls to get a white face is the complement of the event that 

it takes three or less rolls to get a white face. Therefore 

P(4 or more rolls to get white) = 1 - P(white in 3 or less rolls) 

by the solution to the previous problem. 
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If you substitute p = 1 - q in this formula and simplify, it reduces to simply q3. To 

understand why, notice that the event that it takes four or more rolls to get white 

is simply the event that the first three rolls are black. And the probability of this 

event is q3, from the tree diagram. This gives the simplest solution to both problems 

above. As a numerical example, for an ordinary six-sided die, with face 6 white, and 

the rest black, so p = 1/6, q = 5/6, 

P(4 or more rolls to get a six) = q3 = (5/6)3 = 125/216:::::: 0.58 

P(3 or less rolls to get a six) = 1 - q3 = 1 - (5/6)3 = 91/216 :::::: 0.42 

The tree diagram shows that the distribution of the number of rolls required to get 

a white face is as follows: 

number of rolls 1 2 3 ... k . .. 

probability p qp q2p .. . qk-lp ... 

This is the geometric distribution with parameter p, studied further in Section 3.4. 

Figure 2 shows the histogram of this distribution for p = 1/6, q = 5/6. 

FIGURE 2. Geometric distribution of the number of fair die rolls to get a 6. Each bar of the 

histogram is 5/6 the height of the bar to its left 

l 

6 12 18 24 30 
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Example 3. 

Problem. 

Solution. 

The gambler's rule. 

Suppose you playa game over and over again, each time with chance 1/ N of 

winning the game, no matter what the results of previous games. How many times n 
must you play to have a better than 50% chance of at least one win in the n games? 

It seems intuitive that n must be comparable in magnitude to N, but just what fraction 

of N is not clear without calculation. According to a very old gambler's rule, n is 

about (2/3)N. To check this, notice that 

P(at least one win in n games) = 1 - P(no win in n games) 

We are looking for the least n such that 

1- 1-- >-( 
1 )n 1 

N 2' 
i.e., 

For small N you can find n by repeated multiplication by (1- 1/ N) until the product 

is less than 1/2, and check that the gambler's rule holds. For larger N this becomes 

tedious. It is more efficient to take logarithms, and to look for the least n such that 

Keep in mind that both sides are now negative. To find this integer n, first find n*, 

perhaps not an integer, such that 

n* log (1- ~) = log (~), that is, n* = log (~) flog (1- ~) 
So the desired n is the least integer greater than n*. You can check that n* is so 

close to 2N /3 for small values of N that n is also the least integer greater than 2N /3 

for N = 1,2, ... , 27. This rule breaks down for N = 28, but the fraction n/ N stays 

quite close to 2/3 as N -7 00. To understand why, take logarithms to the base e. 

(See the appendix on exponents and logarithms.) Then there is the approximation 

log (1 + z) '" z as z -7 0 

Apply this to z = -1/ N as N -7 00 to get 

n '" n* '" log (~) / (- ~) = Nlog(2) 

where the symbol", indicates asymptotic equivalence as N -7 00, meaning the ratio 

of the two sides tends to 1 as N -7 00. So the asymptotic ratio of n to N is 

log (2) >=::;j 0.69 >=::;j 2/3 



Example 4. 

Problem. 

Solution. 

Remark. 

Section 1 .6. Sequences of Events 61 

Probability of a flush. 

Suppose that a five-card hand is dealt from a well-shuffled deck of 52 cards. What 

is the probability that the hand is a flush Call cards of the same suit)? 

A flush could be a flush of spades (S), a flush of hearts (H), a flush of diamonds 

CD), or a flush of clubs (C). These are four mutually exclusive and equally likely 

cases. The way to get a spade flush is suggested by the following diagram, with Si 
representing the event that the ith card dealt is a spade: 

The conditional probabilities in the diagram were obtained from the usual assump­

tions of a well-shuffled deck: 

(D the first card is equally likely to be any of the 52 cards in the deck; 

(ii) given the first card, the second is equally likely to be any of the 51 left; 

(iii) given the first two cards, the third is equally likely to be any of the 50 left; 

and so on. To illustrate, (iii) implies P(S3IS1S2) = 11/50, because given that the first 

and second cards are spades, no matter what spades they are, there are 11 spades 

left among the 50 remaining cards in the deck. Using the multiplication rule, 

13 12 11 10 9 
P(Spade flush) = - x - x - x - x -

52 51 50 49 48 

Therefore 

12 11 10 9 
P(flush) = 4P(Spade flush) = - x - x - x - = 0.00198 

51 50 49 48 

The probability of any particular sequence of 5 cards can be calculated using the 

multiplication rule. You could think of this in terms of a huge tree diagram, with 52 

branches for the first card, each of these branching into 51 possibilities for the second 

card, each of these branching into 50 possibilities for the third card, and so on. Each 

path in the tree would then represent a possible sequence of 5 cards. The probability 

of any particular sequence being dealt, for example (J\), K., 2\), 30, 50), meaning 
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Example 5. 

Problem. 

Solution. 

the first card is the Jack of Hearts, the next is the King of Spades, and so on, would 

be 

1 1 111 
-x-x-x-x-
52 51 50 49 48 

the same for all possible sequences (called permutations) of 5 of the 52 cards. This 

serves as the basic assumption for calculating probabilities of other types of card 

hands, by a counting method explained in Chapter 2. 

The birthday problem. 

Suppose there are n students in a class. What is the probability that at least two 

students in the class have the same birthday? 

The first step is to think how you would determine whether or not this event has 

occurred for a particular class of students. Here is a natural method. First order 

the students in some arbitrary way, say alphabetically, then go through the list of 

students' birthdays in that order, and check whether or not each birthday is one that 

has appeared previously. If you find a repeat birthday in this process, stop. There 

are at least two students in the class with the same birthday. But if you get right 

through the list of n students, with no repeats, then no two students in the class 

have the same birthday. 

Let R j be the event that the checking process stops with a repeat birthday at the jth 

student on the list, and let D j be the event that the first j birthdays are different. 

The event Bn that there are at least two students in the class with the same birthday 

is the event R2 U R3 U ... U Rn that the checking process stops with a repeat at some 

stage j :S n as you go through the list. The events R2 , ... , Rn are represented in the 

following diagram. They are mutually exclusive, so 

But it is simpler to calculate the probability of Bn from its complement, which is 

Dn, the event that all n birthdays are different: 

R2 R3 

1 2 3 n-l 
365 365 365 365 

364 363 362 365-(n-l) 
365 D2 

365 
D3 

365 Dn- 1 L-_----"3""65"--_+- Dn 

The conditional probabilities in the diagram are based on the following assumption: 
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No matter what the birthdays of the first j - 1 students, the birthday of 

the jth student is equally likely to be anyone of the 365 days of the year. 

This ignores leap years, and seasonal variation in birth rates. But it can be shown 

that neither of these considerations affects the answer very much. Granted the as­

sumption. we have 

P(D2 ) = - = 1 - -364 ( 1) 
365 365 

because no matter what the birthday of the first student, there are 364 out of 365 

possible birthdays for the second student which would make the first and second 

students have different birthdays. If the first j birthdays are different, then so are the 

first i for every i < j, so D j C Di . Thus D2D3··· Dj = Dj , and 

because given D j, the first j students have j different birthdays, and no matter what 

these birthdays are, the next student must have one of the remaining 365 - j birthdays 

for Dj+l to occur. Multiplying these conditional probabilities along the branch of 

the diagram through D2, D3, ... , Dn gives 

P(D ) = P(D2D3 ... D ) = (1 - _1 ) (1 - ~) ... (1 - ~) 
n n 365 365 365 

where the last factor comes from taking j = n - 1 in the formula for 

P(Dj+lIDj ). 

Figure 3 displays the graph of P(Bn) = 1 - P(Dn) against n, obtained by this 

formula. The most amazing thing is how rapidly P(Bn) increases as n increases. 

The least n such that P(Bn) > 1/2 is n = 23: 

and P(Bn ) is up to about 94% by n = 45, and 99.8% by n = 65. Above n = 70, 

P(Bn ) is so close to 1 that there is no point in plotting the graph. The value of 

P(Bn) is shown in the graph by the height of the dot above n on the horizontal 

scale. These dots are closely approximated by the smooth curve drawn just below 

the dots. This curve is obtained by calculating the product using logarithms and the 

tangent approximation log (1 + z) '" z for small z, as in Example 3. Thus 
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log P(Dn ) = log (1 - 1/365) + log (1 - 2/365) + ... + log (1 - (n - 1)/365) 

1 2 n-1 
~ - 365 - 365 - ... - 365 

1 
= - 365 (1 + 2 + ... + (n - 1)) 

1 1 
= - 365 x 2n(n - 1) so 

and 

As the graph shows, this approximation is excellent over all values of n. The reason 

is that by the time n is large enough that (n - 1) /365 is much greater than zero, so 

the tangent approximation is poor, both P(Dn ) and its exponential approximation 

are so close to zero that their difference is negligible anyway. 

The histogram in the lower half of Figure 3 shows the distribution of how long it 

takes for the checking process to stop in a class of 70 or so students. The chance 

that this process stops after j steps is P( Rj ), the height of the bar over j. This 

is calculated as P(Rj ) = P(Bj ) - P(Bj-d using the difference rule, because R j 
occurs if and only if B j occurs but B j - 1 does not. Because these probabilities are 

differences in the birthday probabilities P(Bj ), and the step size in j is 1, the curve 

followed by this histogram is close to the derivative of the curve followed by the 

graphs of P(Bn). 

Generalization. The above example generalizes easily as follows. Consider a se­

quence of trials of some kind where each trial is equally likely to result in anyone 

of N possible outcomes, no matter what the results of previous trials. For example, 

picking tickets at random with replacement from a box of N tickets, or repeatedly 

spinning a roulette wheel with N pockets. Let Bn be the event that the first repeat 

outcome appears by trial number n. Then by the same argument as in the birthday 

problem, where N = 365, 

( 1) ( 2) ( (n-1)) P(Bn) = 1 - 1 - N 1 - N ... 1 - N 

n(n-l) 

~ 1 - e - --;;;;r:r-

~ 1- e-n2 / 2N 

if N is large. How large does n have to be to have at least a 50% chance of a repeat 

by n? Set 
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FIGURE 3. Probabilities in the birthday problem. See the discussion after Example 5. 
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To illustrate, suppose you keep looking at six-figure numbers, drawn from a table 

of random digits or from a computer random number generator, such as 

349221, 512039, 489583, 

Then you only have to look at about 1177 such numbers before there is a 50% chance 

that you will have seen two numbers that were the same. And after you have looked 

at 5000 such numbers the chance has risen to 

Thus coincidences between random numbers should be expected to occur much 

more often than might naively be supposed. 

These calculations should be compared with the gambler'S rule, according to which 

it takes about (2/3)N trials to have a 50% chance of repeating any particular number, 

say the first one. It takes far fewer trials to have a 50% chance of having a duplication 

of some unspecified number, because as the trials proceed, there are more and more 

ways to get a repeat. 

The general method used in each of the above examples can be summarized as 

follows. 

Method of Tree Diagrams 
To calculate the probability of an event defined by a sequence of stages: 

1. represent possible outcomes at various stages in a tree diagram; 

2. indicate conditional probabilities along the branches of the tree. 

Each path through the tree represents a sequence of possible outcomes for 

the various stages. To find the probability of a path, multiply the conditional 

probabilities along the branches. To find the probability of an event, identify 

the corresponding set of paths, and sum the probabilities of these paths. 

The main art in using this method effectively is to make your tree represent the right 

amount of detail in the problem. There must be enough detail so that the event you 

want to calculate is represented by a set of paths in the tree, but not so much detail 

that you are overwhelmed by the size of the tree or the difficulty of figuring out 

exactly which paths correspond to your event. Typically, the best tree to work with 

is a reduction of some much larger tree of possibilities. The conditional probabilities 

along the branches of the reduced tree will then be obtained by reference to the 

larger tree, as in calculating the probability of a flush and the birthday problem. But 

once these conditional probabilities have been figured out, all calculations can be 

done with the reduced tree. 
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Problem. 

Solution. 
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Independence 

The idea of independence for several events is a natural extension of the idea for 

two events. For example, events A, B, and C are called independent if, first, the 

chance of B does not depend on whether or not A occurs: 

P(BIA) = P(BIAC
) = P(B) (1) 

and, second, the chance of C does not depend on which of the events A and B 
occur and which do not: 

As in the case of independence of two events, described by (1) alone, these condi­

tions combine to give a simple multiplication rule for probabilities of intersections: 

Multiplication Rule for 

Three Independent Events 

P(ABC) = P(A)P(B)P(C) 

and the same for any number of the events replaced by their complements. 

This multiplication rule, which is really a list of 23 = 8 rules, one for each path in 

the tree describing the results of all 3 events, gives the simplest formal definition 

of independence of 3 events. Independence of n events is defined similarly by a 

list of 2n multiplication rules. It is a special feature of the case n = 2 that just one 

product formula P(AB) = P(A)P(B) implies the 3 others. For a larger number of 

events, independence is a very strong condition. This is because the probabilities of 

2n possible intersections are exactly determined by the probabilities of just n events. 

So while intuitive in theory, independence may be hard to check in practice. 

Chance of two or more. 

Suppose that a gambler places a bet on the result of each of four different horse 

races. He judges that the outcomes of the races are independent, and that he has 

probability Pi of winning on the ith race. What is the probability that he wins two 

or more of his bets? 

It is easier to calculate the probability of the complement 

P(wins at least two) = 1 - P(wins 0 or 1) 

= 1 - P(wins 0) - P(wins 1) 
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Example 7. 

Problem. 

Solution. 

where, in terms of the events Bi = {wins ith bet}, 

where qi = 1 - Pi, and 

P(win 1) = P(B1B2B~B4 or B'lB2B~B4 or B'lB2B3B4 or B'lB2B~B4) 

= P1q2q3q4 + Q1P2Q3q4 + Q1Q2P3Q4 + Q1Q2Q3P4· 

Flow in a circuit. 

Suppose that each of the switches Si in the following circuits is closed with proba­

bility Pi, and open with probability Qi = 1 - Pi, i = 1, ... ,5. 

Calculate the probability that a current will flow through the circuit, assuming that 

the switches act independently. 

P(current flows) = P(flows along top or flows along bottom) 

= P(flows along top) + P(flows along bottom) 

- P(flows along top and bottom), where 

P(flows along top) = P(Sl closed and S2 closed) = P1P2 

by the independence of Sl and S2. And 

P(flows along bottom) = P(S3 closed and S4 closed and S5 closed) 

=P3P4P5 

by the independence of S3, S4 and S5. Also 

P(flows along top and bottom) = P(all switches closed) = P1P2P3P4P5 

by the independence of all five switches. So, 

P (current flows) = P1P2 + P3P4P5 - P1P2P3P4P5 



Discussion. 

Section 1.6. Sequences of Events 69 

This example shows how it is a good idea to break up a complicated looking problem 

into smaller and easier ones, leading to a quick solution. A more painful approach 

to the same problem would be to list all the ways the switches could be, which 

would allow current to flow, together with their probabilities. There are altogether 

8 + 4 - 1 = 11 possible ways. You can see this by counting the ways for {flows 

along top}, adding these to the ways for {flows along bottom}, and subtracting the 

ways for {flows along top and bottom}, which have been counted twice. This is 

the inclusion-exclusion rule for counting. If you now write down a product of five 

factors chosen from Pi and qi, one product for each of the 11 ways, add the 11 

products, substitute qi = 1- Pi, simplify the algebra, you should get the same result! 

Here is a useful rule to use when breaking down problems into smaller pieces, as 

in the previous example. 

If AI,"" An are mutually independent then every event determined by 

a subcollection of these events is independent of every event determined 

by a subcollection of the remaining events. 

To illustrate, if B I, ... , BlO are independent, then the event BI U B2 U Bg is inde­

pendent of the event B3BgBs. 

Pairwise independence. You might think that if B I , ... 1 Bn were events such that 

Bi is independent of B j for every i =I=- j 

then Bll"" Bn would be independent. But this turns out not to be the case. Condi­
tion (*), called pairwise independence, is weaker than the condition of independence 

for n ~ 3. The reason is that pairwise independence of three events B I, B2, and B3 
amounts to the three equations 

But independence of BIl B2, and B3 requires also the equation 

This turns out not to be implied by pairwise independence, as tbe next example 
shows. But this list of four equations does suffice for independence, as you can 

show as an exercise. 
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Example 8. Pairwise independent but not independent. 

Consider the possible results of tossing a fair coin twice, with probabilities propor­

tional to areas in the following diagram. Let S be the event, determined by the two 

tosses, that both coins land the same way. 

1/ 2 1------\-------1 The event 
is shad d. 

1/ 2 

Then the events HI, H 2, and S are not independent, because the event S is com­

pletely determined by HI and H2: 

But the events HI, H 2, and S are pairwise independent. The events HI and H2 are 

independent by assumption. Also, 

so HI and S are independent. And H2 and S are independent for the same reason. 

Exercises 1.6 

1. There are twelve signs of the zodiac. How many people must be present for there to 

be at least a 50% chance that two or more of them were born under the same sign? 

2. Suppose a batter's average (number of hits per at bat) is .300 over the season to date. 

What is the probability that the batter gets at least one hit in the next: 

a) two at bats; b) three at bats; c) n at bats. 

What assumptions are you making? 

3. A biased coin lands heads with probability 2/3. The coin is tossed three times. 

a) Given that there was at least one head in the three tosses, what is the probability 

that there were at least two heads? 

b) Use your answer in a) to find the probability that there was exactly one head, 

given that there was at least one head in the three tosses. 



a) 

1 

2 
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4. A typical slot machine in a Nevada casino has three wheels, each marked with twenty 

symbols at equal spacings around the wheel. The machine is engineered so that on 

each play the three wheels spin independently, and each wheel is equally likely to 

show anyone of its twenty symbols when it stops spinning. On the central wheel, nine 

out of the twenty symbols are bells, while there is only one bell on the left wheel and 

one bell on the right wheel. The machine pays out the jackpot only if the wheels come 

to rest with each wheel showing a bell. 

a) Calculate the probability of hitting the jackpot. 

b) Calculate the probability of getting two bells but not the jackpot. 

c) Suppose that instead there were three bells on the left, one in the middle, and 

three on the right. How would this affect the probabilities in a) and b)? Explain 

why the casino might find the 1 ~ 9 ~ 1 machine more profitable than a 3 ~ 1 ~ 3 

machine. 

5. Suppose you are one of n students in a class. 

a) What is the chance that at least one other student has the same birthday as yours? 

b) How large does the class have to be to make this probability at least 1/2? 

c) Explain the difference between this problem and the birthday problem. 

6. Suppose you roll a fair six-sided die repeatedly until the first time you roll a number 

that you have rolled before. 

a) For each r = 1,2, ... calculate the probability pc that you roll exactly r times. 

b) Without calculation, write down the value of PI + P2 + ... + PlO. Explain. 

c) Check that your calculated values of pc have this value for their sum. 

7. The ith switch in each of the following circuits is closed with probability Pi and open 

with probability qi for each i. Assuming the switches function independently, find a 

formula in each case for the probability that a current can flow from left to right through 

the circuit. 

b) 

:1 ~ V ___ . 
2 

8. Suppose that the birthday of each of three people is equally likely to be anyone of the 

365 days of the year, independently of others. Let Bij denote the event that person i 

has the same birthday as person j, where the labels i and j may be 1, 2, or 3. 

a) Are the events B12 and B23 independent' 

b) Are the events B 12 , B 23 , and B 13 independent' 

c) Are the events B 12 , B 23 , and B 13 pairwise independent? 
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Introduction: Summary 

Outcome space: A set of all possible outcomes of a situation or experiment, such that one and only 

one outcome must occur. 

Events: Represented as subsets of an outcome space. 

A and B, AB, A n B, intersection: event that both A and B occur. 

A or B, Au B, union: event that either A or B (or both) occur. 

AB = 0, disjoint; mutually exclusive: no overlap, no intersection. 

not A, AC, complement: opposite of A: event that occurs if A does not. 

A c B, inclusion: A is a part of B, A implies B, if A occurs then so does B. 

n, whole set, outcome space: certain event, all possibilities, sure to happen. 

0, empty set, impossible event: no way to happen. 

partition of A: disjoint sets AI, ... , An with union A. 

Rules of Probability and Proportion 

• Non-negative: P(A) 2: 0 

• Addition: P(A) = I:~=l P(Ai) if AI"'" An is a partition of A 

• Total of 1: p(n) = 1. 

• Between 0 and 1: 0:::; P(A) :::; 1 

• Empty set: P(0) = 0 

• Complements: P(AC) = 1 - P(A) 

• Difference: P(BN) = P(B) - P(A) if A c B 

• Inclusion-Exclusion: P(A or B) = P(A) + P(B) - P(AB). 

Relative frequency: Proportion of times something happens: #of times it happens 
#of trials 

Interpretations of Probability 

• long-run relative frequency (statistical average): Pn(A):::::: P(A) for large n. 

• degree of belief (probabilistic opinion) 

Probability distribution over n: Assignment of probabilities to events represented as subsets of n, 
satisfying rules of probability. A distribution over a finite set n can be specified with a distribution 
table: 

outcome w a b c ... 

probability P(w) P(a) P(b) P(c) ... 

The probabilities must sum to lover all outcomes. 



Odds 
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Chance odds: ratio of probabilities, e.g., the following are equivalent: P(A) = 3/10; the odds of 

A are 3 in 10; the odds in favor of A are 3 to 7; the odds against A are 7 to 3. 

. what you get . 
Payoff odds: ratIo of stakes: h t b t (what you get does not mclude what you bet). 

w a you e 

Fair odds rule: in a fair bet, payoff odds equal chance odds. 

Conditional Probability 

P(AIB) = probability of A given B: probability of A with outcome space reduced to B. Compare 

with P(A) = overall or unconditional probability of A. 

Interpretations of conditional probability: 

• Intuitive/subjective: chance of A if B is known to have occurred: 

• Long-run frequency: long-run relative frequency of A's among trials that produce B. 

As a function of A, for fixed B, conditional probabilities satisfy the rules of probability, e.g., 

P(ACIB) = 1 - P(AIB) 

Rules of Conditional Probability 

• . . P(AB) 
DiV1Sion: P(AIB) = P(B) (note: AB = BA) 

For probabilities defined by counting, P(AIB) = #(AB)/#(B). Similarly for length, area, 

or volume instead of #. 

Product: P(AB) = P(A)P(BIA) = P(B)P(AIB) 

The following rules refer to a partition B l , ... , Bn of n, so P(BI) + ... + P(Bn) = 1; for example, 

Bl = B, B2 = B C for any B. 

Average rule: P(A) = P(AIB1)P(Bd + ... + P(AIBn)P(Bn) 

P(AIBi)P(Bi) 
Bayes'rule: P(BiIA) = P(A) where P(A) is given by the weighted average formula. 

Independence 

Two trials are independent if learning the result of one does not affect chances for the other, e.g., 

two draws at random with replacement from a box of known composition. 

The trials are dep,?ndent if learning the result of one does affect chances for the other, e.g., two 

draws at random without replacement from a box of known composition, or two draws at random 

with replacement from a box of random composition. 

Independent events: A and B are such that 
P(AB) = P(A)P(B) {=} P(AIB) = P(A) 

{=} P(BIA) = P(B) 

Independence of n events AI, ... , An: 

(learning B occurs does not affect chances of A) 
(learning A occurs does not affect chances of B) 

and the same with any number of complements Ai substituted for Ai (2n identities). 
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Review Exercises 

1. A factory produces items in boxes of 2. Over the long run: 

92% of boxes contain 0 defective items; 

5% of boxes contain 1 defective item; and 

3% of boxes contain 2 defective items. 

A box is picked at random from production, then an item is picked at random from the 

box. Given that the item is defective, what is the chance that the second item in the 

box is defective? 

2. A box contains 1 black ball and 1 white ball. A ball is drawn at random, then replaced 

in the box with an additional ball of the same color. Then a second ball is drawn at 

random from the three balls in the box. What is the probability that the first ball drawn 

was white, given that at least one of the two balls drawn was white? 

3. Suppose I toss three coins. Two of them at least must land the same way. No matter 

whether they land heads or tails, the third coin is equally likely to land either the same 

way or oppositely. So the chance that all three coins land the same way is 1/2. True or 

False? Explain! 

4. There are two boxes. 

Box 1 contains 2 red balls and 3 black balls. 

Box 2 contains 8 red balls and 12 black balls. 

One of the two boxes is picked at random, and then a ball is picked at random from 

the box. 

a) Is the color of the ball independent of which box is chosen? 

b) What if there were 10 black balls rather than 12 in Box 2, but the other numbers 

were the same? 

5. To pass a test you have to perform successfully two consecutive tasks, one easy and 

one hard. The easy task you think you can perform with probability z, and the hard 

task you think you can perform with probability h, where h < z. You are allowed 

three attempts, either in the order (easy, hard, easy) or in the order (hard, easy, hard). 

Whichever order, you must be successful twice in a row to pass. Assuming that your 

attempts are independent, in what order should you choose to take the tasks in order 

to maximize your probability of passing the test' 

6. Show that if A and B are independent, then so are Ae and B, A and Be, and A C 

and Be. 

7. A population of 50 registered voters contains 30 in favor of Proposition 134 and 20 

opposed. An opinion survey selects a random sample of 4 voters from this population, 

as follows. One person is picked at random from the 50 voters, then another at random 

from the remaining 49, and so on, till 4 people have been picked. 

a) What is the probability that there will be no one in favor of 134 in the sample? 

b) What is the probability that there will be at least one person in favor? 

c) What is the probability that exactly one pro 134 person will appear in the sample? 
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d) What is the probability that the majority of the sample will be pro 134? (Majority 

means strictly more than half.) 

8. Cards are dealt from a well-shuffled standard deck until the first heart appears. 

a) What is the probability that exactly 5 deals are required? 

b) What is the probability that 5 or fewer deals are required? 

c) What is the probability that exactly 3 deals were required, given that 5 or fewer 

were required? 

9. Suppose events A, B, and C are independent with probabilities 1/5, 1/4, and 1/3, 

respectively. Write down numerical expressions for the following probabilities: 

a) P(A and B and C) 

b) P(A or B or C) 

c) P( exactly one of the three events occurs) 

10. The four major blood types are present in approximately the following proportions in 

the population of the U.S.A. 

Type A B AB a 
proportion 42% 10% 4% 44% 

Note that each person's blood is exactly one of these four types. Type AB is a separate 

type, not the intersection of type A and type B. 

a) If two people are picked at random from this population, what is the chance that 

their blood is of the same type? Of different types? 

b) If four people are picked at random, let P( k) be the chance that there are exactly 

k different blood types among them. Find P( k) for k = 1,2,3,4. 

11. A hat contains n coins, f of which are fair, and b of which are biased to land heads with 

probability 2/3. A coin is drawn from the hat and tossed twice. The first time it lands 

heads, and the second time it lands tails. Given this information, what is the probability 

that it is a fair coin? 

12. Suppose n ordinary dice are rolled. 

a) What is the chance that the dice show n different faces? 

b) What is the chance that at least one number appears more than once? 

13. Formula for P(A I B) by conditioning on cases of B. Show if B1 , . .. ,Bn is a 

partition of B, then 

14. There are 100 boxes, and for each i = 1,2, ... , 100, box i contains proportion i/100 of 

gold coins (the rest are silver). One box is chosen at random, then a coin is drawn at 

random from this box. 

a) If the coin drawn is gold, which box would you guess was chosen? Why' 
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b) Suppose the boxes were not picked at random, but according to the following 

scheme. All the even-numbered boxes are equally likely, all the odd-numbered 

boxes are equally likely, but the chance of drawing an odd-numbered box is 

twice the chance of drawing an even-numbered box. If the coin drawn is gold, 

which box would you guess was chosen? [Hint: Write down the prior odds.J 

15. There are three boxes, each with two drawers. Box 1 has a gold coin in each drawer, 

and box 2 has a silver coin in each drawer. Box 3 has a silver coin in one drawer and 

a gold coin in the other. One box is chosen at random, then a drawer is chosen at 

random from the box. Find the probability that box 1 is chosen, given that the chosen 

drawer yields a gold coin. 

16. A dormitory has n students, all of whom like to gossip. One of the students hears a 

rumor, and tells it to one of the other n - 1 students picked at random. Subsequently, 

each student who hears the rumor tells it to a student picked at random from the 

dormitory (excluding, of course, himself/herself and the person from whom he/she 

heard the rumor). Let pr be the probability that the rumor is told r times without coming 

back to a student who has already heard it from a dormitory-mate. So PI = P2 = 1, and 

Pn = O. 

a) Find a formula for pr for r between 3 and n - 1. 

b) Estimate this probability for n = 300 and r = 30. 

17. Some time ago I received the following letter: 

"You may have previously received a letter notifying you that you had been a selectee 

in a recent sweepstake that we were conducting. According to our records, you have 

not claimed your gift. 

We are always pleased when our bigger gifts are awarded because it's good publicity for 

our company. However, last year there were thousands of dollars worth of unclaimed 

gifts simply because the selectees failed to respond. 

This letter is to inform you that one of the following people has won a New Datsun 

Sentra: 
Collin Andrus Oklahoma City, OK 

James W. Pitman Berkeley, CA 

Larry Abbott Burbank, CA 

In compliance with the rules of the sweepstake, you are hereby notified that you are a 

selectee in Category I, which means you will receive one of the following: 

1. R.C.A. Color TV; 

2. 5 FT. Grandfather Clock; 

3. Datsun Nissan Sentra. 

To claim your gift, all you have to do is call toll free 1-800-643-3249 for an available 

time and date for you and your spouse to visit Heavenly Valley Townhouses and attend 

a sales representation tour on the many advantages that interval ownership has to offer." 

According to small print on the back of the letter: 

"The retail values and odds of receiving each gift are No. 1~1/1O, 000 ($329.95), 

No. 2~9998/10, 000 ($249.95), No. 3~1/1O, 000($5, 995.00)." 
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Let us assume that this is an honestly conducted sweepstake, and that each of the 

three individuals named above had originally a 1 in 10, 000 chance of winning the new 

Datsun. Now I know that the winner is one of these individuals, the rules of conditional 

probability imply that I have a one in three chance of winning the Datsun. True or false? 

Explain! 

18. Suppose there are m equally likely possibilities for one stage, and n equally likely 

possibilities for another. Show that the two stages are independent if and only if all mn 

possible joint outcomes are equally likely. 

19. A box contains 5 tickets numbered 1,2,3,4, and 5. Two tickets are drawn at random 

from the box. Find the chance that the numbers on the two tickets differ by two or 

more if the draws are made: 

a) with replacement; 

b) without replacement. 

Repeat the problem with n tickets numbered 1,2, ... ,n. 



2 
Repeated Trials and 

Sampling 

This chapter studies a mathematical model for repeated trials, each of which may 

result in some event either happening or not happening. Occurrence of the event is 

called success, and non-occurrence called failure. For instance: 

Nature of trial Meaning of success Meaning of failure Probabilities p and q 

Tossing a fair coin head tail 1/2 and 1/2 

Rolling a die six not six 1/6 and 5/6 

Rolling a pair of dice double six not double six 1/36 and :35/36 

Birth of a child girl hoy 0.487 and 0.513 

Suppose that on each trial there is success with probability p, failure with probability 

q = 1-p, and assume the trials are independent. Such trials are called Bernoulli trials 

or Bernoulli (p) trials to indicate the success probability p. The number of successes 

in n trials then cannot be predicted exactly. But if n is large we expect the number 

of successes to be about np, so the relative frequency of successes will, most likely, 

be close to p. The important questions treated in this chapter are: how Iikely( and 

how close? The answers to these questions, first discovered by the mathematicians 

James Bernoulli and Abraham De Moivre, around 1700, are the mathematical basis 

of the long-run frequency interpretation of probabilities. 

The first step in Section 2.1 is to find a formula for the probability of getting k 
successes in n trials. This formula defines the binomial probability distribution over 

the possible numbers of successes from 0 to n. For large values of n, the histogram 

of the distribution turns out to follow a smooth curve quite closely. 
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2.1 The Binomial Distribution 
The problem is to find a formula for the probability of getting k successes in n inde­

pendent trials. This is solved by analysis of a tnce diagram representing all possible 

results of the n trials, shown in Figure 1 for n = 4. 

FIGURE 1. Tree diagram for derivation of the binomial distribution. 

number 

of trials 

n 

o 1 2 3 

number of successes k 

4 

Each path down n steps through the tree diagram represents a possible outcome of 

the first n trials. The kth node in the nth row represents the event of k successes in n 
trials. The expression inside each node is its probability in terms of p and 1 - p = q 

(the probabilities of success and failure on each trial). This expression is the sum 

of the probabilities of all paths leading to this node. For example, in row 3 the 

probabilities of k = 0,1,2,3 successes in n = 3 trials are the terms in the expansion 

For k = 0 or 3 there is only one path leading to k successes, hence the probability 

of q3 or p3 by the multiplication rule. For k = 1 the factor of 3 arises because there 

are three ways to get just one success in three trials, FFS, FSF, SFF, represented 

by the three paths through the diagram leading to the first node in row 3. The 
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probabilities of these events are the terms qqp, qpq, and pqq in the expansion of 

(q + p)3. These terms add to give the probability 3pq2 of k = 1 success in 3 trials. 

Similarly, the probability of k = 2 successes in 3 trials is 3p2q. 

The tree diagram can be imagined drawn down to any number of trials n. To achieve 

k successes in n trials, the path must move down to the right k times, corresponding 

to the k successes, and straight down n - k times, corresponding to the n - k failures. 

The probability of every such path is the product of k factors of p, and n - k factors of 

q, which is pkqn-k, regardless of the order of the factors. Therefore, the probability 

of k successes in the n trials is the sum of as many equal contributions of pkqn-k as 

there are paths down through the diagram leading to the kth node of row n. or this 

number of paths times pkqn-k. This number of paths is denoted G) and called n 

choose k. So the probability of k successes in n trials is G)pkqn-k This conclusion 

and a formula for (~) are summarized in the next box. 

Binomial Distribution 
For n independent trials, with probability p of success and probability q = 1-P 

of failure on each trial, the probability of k successes is given by the binomial 

probability formula: 

P(k successes in n trials) = (~)pkqn-k 

where (~), called n choose k, is the number of different possible patterns of k 

successes and n - k failures in n trials, given by the formula 

( n) = n(n-1)···(n-k+1) = n! 

k k(k-1)···1 k!(n-k)! 

Here the k! is k factorial, the product of the first k integers for k ;:::: 1, and 

O! = 1. For fixed nand p, as k varies, these binomial probabilities define a 

probability distribution over the set of n + 1 integers {O, 1, ... , n}, called the 

binomial (n, p) distribution. This is the distribution of the number of successes 

in n independent trials, with probability p of success in each trial. The binomial 

(n, p) probabilities are the terms in the binomial expansion: 

Appendix 1 gives the background on counting and a derivation of the formula for 

(~) in the box. The first expression for G) in the box is the simplest to use for 
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numerical evaluations if k < !n. For example, 

( 8) = 8 x 7 x 6 = 8 x 7 = 56 
3 3x2xl 

In this expression for (~) there are always k factors in both the numerator and 

denominator. If k > !n, needless cancellation is avoided by first using symmetry: 

(~) = (n: k) 

as you can easily check. For instance, (~) = (~) = ~ : ~ = 9 x 4 = 36. 

To illustrate the binomial probability formula, the chance of getting 2 sixes and 7 

non-sixes in 9 rolls of a die is therefore 

36 X 57 = 0.279 
69 

The convention O! = 1 makes the factorial formula for (~) work even if k or n is O. 

This formula is sometimes useful for algebraic manipulations. Because n! increases 

so rapidly as a function of n, the factorial formula is awkward for numerical calcu­

lations of (~). But for large values of nand k there are simple approximations to be 

described in the following sections. 

The binomial expansion. Often called the binomial theorem, this is the expansion 

of (p + q)n as a sum of coefficients times powers of p and q. The coefficient (~) of 

pkqn-k is often called a binomial coefficient. For p+q = 1 the binomial expansion of 

(p + q) n amounts to the fact that the probabilities in the binomial (n, p) distribution 

sum up to lover k = 0 to n: 

t P(k successes in n trials) = t (~)pkqn-k = 1 

k=O k=O 

This illustrates the addition rule for probabilities: as k varies from 0 to n, the n + 1 

events of getting, respectively, 

o successes, 1 success, 2 successes, ... , n successes, 

in n trials, form a partition of all possible outcomes. For example, you can't get both 

2 successes and 3 successes in 10 trials. And in n trials, you must get some number 

of successes between 0 and n. 

The case of fair coin tossing. Then p = q = 1/2, so 
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Problem 1. 

Solution. 

Problem 2. 

Solution. 
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P( k heads in n fair coin tosses) = (~) /2 n (0 ::; k ::; n) 

All possible patterns of heads and tails of length n are equally likely in this case. 

So the above probability of k heads in n tosses is just the number of such patterns 

with k heads, namely (~), relative to the total number of such patterns, namely 2n. 

A consequence is that 

This is the binomial expansion of (x + y)n for x = y = 1. 

Coin tossing and sex of children. 

Find the probability of getting four or more heads in six tosses of a fair coin. 

P(4 or more heads in 6 tosses) = P(4) + P(5) + P(6), where 

P(k) = P(k heads in 6 tosses) = G) /26 so 

P(4 or more heads in 6 tosses) = (15 + 6 + 1)/26 = 11/32 

What is the probability that among five families, each with six children, at least three 

of the families have four or more girls? 

Assume that each child in each family is equally likely to be a boy or a girl, inde­

pendently of all other children. Then the chance that any particular family has four 

or more girls is p = 11/32, by the solution of the previous problem. Call this event 

a success in the present problem. Then the probability that at least 3 of the families 

have 4 or more girls is the probability of at least 3 successes in n = 5 trials, with 

probability p = 11/32 of success on each trial. So the required probability is 

P(3 successes) + P(4 successes) + P(5 successes) 

= (5) (~)3(21)2 (5) (~)4(21) (5) (~)5 = . 3 32 32 + 4 32 32 + 5 32 0 226 



84 Chapter 2. Repeated Trials and Sampling 

Consecutive Odds Ratios 

The binomial (n, p) distribution is most easily analyzed in terms of the chance of k 
successes relative to k - 1 successes. These odc.:s ratios are much simpler than the 

probabilities P(k) = P(k successes). But the ratios determine the probabilities, so 

the whole distribution can be understood in terms of the consecutive odds ratios. 

Consider first the case when p = 1/2. The nth row of Pascal's triangle displays the 

binomial (n, 1/2) distribution as multiples of 2-n . The numbers in this nth row first 

increase rapidly, then less rapidly. Then they level off, and start decreasing just as 

they have increased. This gives rise to the characteristic bell shape of the histogram 

of a symmetric binomial distribution. 

FIGURE 2. The binomial (8, 1/2) distribution. This is the distribution of the number of heads in 

eight fair coin tosses. 

o 1 234 5 6 7 8 

The aim now is to understand the shape of such a binomial distribution in terms of 

the ratio of the heights of consecutive bars. The numbers from the eighth row of 

Pascal's triangle are: 

1 8 28 56 70 56 28 8 1 

So the consecutive odds ratios are 

8 28 56 70 56 28 8 1 
- -
1 8 28 56 70 56 28 8 

which simplify to 

8 7 6 5 4 3 2 1 
- - - - - - - -
1 2 3 4 5 6 7 8 



Example 2. 

Problem 1. 

Solution. 

Value of k 0 

How P(k) found (ntj 

Value of P(k) .100 

Section 2.1. The Binomial Distribution 85 

So the ratios start big, and steadily decrease, crossing 1 in the middle. In the nth row 

of Pascal's triangle, 

the consecutive ratios decrease steadily as follows: 

n n-1 n-2 

1 2 3 

3 

n-2 

2 

n-l 

1 

n 

This simple pattern displays the special case p = q = 1/2 of the result stated in the 

following box: . 

Consecutive Odds 

for the Binomial Distribution 
For independent trials with success probability p, the odds of k successes rel­

ative to k - 1 successes are R( k) to 1, where 

R(k) = P(k successes in ntrials) 

P(k - 1 successes in n trials) 

This follows from the binomial probability formula and the formula for C) by can­

celling common factors. This simple formula for ratios makes it easy to calculate all 

the probabilities in a binomial distribution recursively. 

computing all probabilities in a binomial distribution. 

A pair of fair coins is tossed 8 times. Find the probability of getting both heads on k 

of these double tosses, for k = 0 to 8. 

The chance of getting both heads on each double toss is ~ x ~ = ~. So the required 

probabilities form the binomial (8,1/4) distribution. The following table shows how 

simply these probabilities can be found, starting with P(O) and then using the con­

secutive odds formula with p/q = (~)/(~) = ~. 

1 2 3 4 5 6 7 8 

Bp(O) Hp(l) Hp(2) Hp(3) Hp(4) Hp(5) Hp(6) Hp(7) 

.267 .311 .208 .087 .023 .004 .0004 .00001 
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Notice how the ratios from Pascal's triangle first dominate the odds against a success 

ratio of 3 in the denominator, as the probabilities P(k) increase for k :S 2. Then 

for k 2 3 the ratios from Pascal's triangle are smaller than the odds against success, 

and the probabilities P(k) steadily decrease. Something similar happens, no matter 

what the values of nand p. See Figure 3 where this binomial (8,1/4) distribution is 

displayed along with other binomial (n, p) distributions for n = 1 to 8 and selected 

values of p. 

What is the most likely number of successes in n independent trials with probability 

of success p on each trial? Intuitively, we expect about proportion p of the trials to be 

successes. In n trials, we therefore expect around np successes. So it is reasonable to 

guess that the most likely number of successes m, called the mode of the distribution, 

is an integer close to np. According to the following formula, the mode differs by at 

most 1 from np: 

Most Likely Number of Successes 

(Mode of Binomial Distribution) 
For 0 < p < 1, the most likely number of successes in n independent trials 

with probability p of success on each trial is m, the greatest integer less than 

or equal to np + p: 

m = int (np + p) where int denotes the integer part function. 
If np + p is an integer, as in the case p = 1/2, n odd, then there are two most 

likely numbers, m and m - 1. Othetwise, there is a unique most likely number. 

In either case, the probabilities in the binomial (n, p) distribution are strictly 

increasing before they reach the maximum, and strictly decreasing after the 

maximum. 

These features of the binomial distribution can be seen in Figure 3. Note the double 

maxima for n = 3, p a multiple of 1/4, and n = 7, p a multiple of 1/8. Check the 

formula in a few of these cases to see how it works. 

Proof of the formula for the mode. Fix nand p, and consider the folloWing 

statements about an integer k between 1 and n. Each statement may be true for 

some k and false for others. By manipulating inequalities and using the formula for 

consecutive odds, these statements (1) to (5) are logically equivalent: 

P(k - 1) :S P(k) (1) 

1 :S P(k)/ P(k - 1) (2) 

(n-k+1) p 
(3) 1< --

- k 1- P 

k(l-p):S (n-k+1)p (4) 

k:S np + p (5) 
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FIGURE 3. Histograms of some binomial distributions. The histogram in row n, column p shows 

the binomial (n, p) distribution for the number of successes in n independent trials, each with 

success probability p. In row n, the range of values shown is 0 to n. The horizontal scale changes 

from one row to the next, but equal probabilities are represented by equal areas, even in different 

histograms. 
Probability of success ]I 

1/8 1/4 1/2 7/8 

2 

3 

4 

5 

6 

7 



88 Chapter 2. Repeated Trials and Sampling 

FIGURE 4. Distribution of the number of heads in n coin tosses. Histograms of the binomial (n, 

1/2) distribution are shown for n = 10 to 100 by steps of 10. Each histogram is a bar graph of the 

probability of k successes P(k) as a function of k, plotted with the same horizontal and vertical 

scale. Notice the following features: as n increases the distribution shifts steadily to the right, so 

as always to be centered on the expected number n/2; each distribution is symmetric about n/2; 
as n increases the distribution gradually spreads out, covering a wider range of values; still, the 

range of values on which the probability is concentrated becomes a smaller and smaller fraction 

of the whole range of possible values from 0 to n; and apart from these variations in height and 

Width, the histograms all appear to follow the same bell-shaped curve. 

n = 10 

n = 20 

n = 30 

n = 40 

n = 50 

n = 60 

n = 70 

n = 80 

n = 90 

0.21 
P(k) 0.1 _ ~ = 100 

O.O~----~----~----~----~LUlll~~~~ __ --~ 
o 10 20 30 40 50 60 70 

Number of heads k 
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FIGURE 5. Distribution of the number of successes in 100 trials. Histograms of the binomial 

(lOO,p) distribution are shown for p = 10% to 90% by steps of 10%. Each histogram is a bar 

graph of the probobility of k successes P(k) as a function of k, plotted with the same horizontal 

and vertical scale. Notice the following features: as p increases the distribution shifts steadily to 

the right, so as always to be centered around the expected number lOOp; the distribution is most 

spread out for p = 50; for all values of p the distribution concentrates on a range of numbers that 

is small in comparison to n = 100; and apart from these variations in height and Width, and slight 

skewness toward the edges, the histograms all follow a symmetric bell-shaped curve quite closely. 

P(k) 

p = 10% 

p = 30% 

I ~ 
p = 40% 

p = 50% 

p = 60% 

p = 70% 

I ~ 
p = 80% 

o 1 1 
0.0 

o 10 20 30 

~ 1~~90o/c 
40 50 60 70 80 90 100 

Number of successes 
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Let m be the largest k attaining the maximum value of P(k) over all 0 ::; k ::; n. By 

definition of m, P(m - 1) ::; P(m) > P(m + 1). That is, 

m ::; np + p < m + 1 

by the equivalence of (1) and (5) for k = m and k = m + 1. Thus m is the greatest 

integer less than or equal to np + p. (Strictly speaking, the cases m = 0 and m = n 

should be considered separately, but the conclusion is the same.) 0 

The mean. The number np, which is always close to the mode of the binomial 

distribution, is called the expected number of successes, or the mean of the binomial 

(n,p) distribution, usually denoted J.l (Greek letter mu). In case the mean J.l is an 

integer, it turns out that J.l is the most likely number of successes. But if J.l is not an 

integer, J.l is not even a possible number of successes. 

Expected Number of Successes 

(Mean of Binomial Distribution) 

J.l= np 

Remark. For the time being this formula is taken as the definition of the mean of a 

binomial distribution. Chapter 3 gives a more general, consistent definition. 

Behavior ofthe binomial distribution for large n. This is displayed in the last two 

figures. As a general rule, for large values of n, the binomial distribution concentrates 

on a range of values around the expected value np which, while becoming larger 

on an absolute numerical scale, becomes smaller on a relative scale in comparison 

with n. Put another way, as n increases, it becomes harder to predict the number of 

successes exactly, but easier to predict the proportion of successes, which will most 

likely be close to p. This is made more precise by the square root law and the law 

of large numbers, discussed in the following sections. Apart from slight variations in 

height and width, and some slight skewness toward the edges, all the histograms 

follow a bell-shaped curve of roughly the same form. This is the famous normal 

curve, first discovered by De Moivre, around 1730, as an approximation to binomial 

distribution for large values of n. 

Exercises 2.1 

1. a) How many sequences of zeros and ones of length 7 contain exactly 4 ones and 

3 zeros? 

b) If you roll 7 dice, what is the chance of getting exactly 4 sixes? 
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2. Suppose that in 4-child families, each child is equally likely to be a boyar a girl, 

independently of the others. Which would then be more common, 4-child families with 

2 boys and 2 girls, or 4-child families with different numbers of boys and girls? What 

would be the relative frequencies? 

3. Suppose 5 dice are rolled. Assume they are fair and the rolls are independent. Calculate 

the probability of the following events: 

A = (exactly two sixes); B = (at least two sixes); C = (at most two sixes); 

D = (exactly three dice show 4 or greater); E = (at least 3 dice show 4 or greater). 

4. A die is rolled 8 times. Given that there were 3 sixes in the 8 rolls, what is the probability 

that there were 2 sixes in the first five rolls? 

5. Given that there were 12 heads in 20 independent coin tosses, calculate 

a) the chance that the first toss landed heads; 

b) the chance that the first two tosses landed heads; 

c) the chance that at least two of the first five tosses landed heads. 

6. A man fires 8 shots at a target. Assume that the shots are independent, and each shot 

hits the bull's eye with probability 0.7. 

a) What is the chance that he hits the bull's eye exactly 4 times? 

b) Given that he hit the bull's eye at least twice, what is the chance that he hit the 

bull's eye exactly 4 times? 

c) Given that the first two shots hit the bull's eye, what is the chance that he hits 

the bull's eye exactly 4 times in the 8 shots? 

7. You roll a die, and I roll a die. You win if the number showing on your die is strictly 

greater than the one on mine. If we play this game five times, what is the chance that 

you win at least four times? 

8. For each positive integer n, what is the largest value of p such that zero is the most 

likely number of successes in n independent trials with success probability p? 

9. The chance of winning a bet on 00 at roulette is 1/38 = 0.026315. In 325 bets on 00 

at roulette, the chance of six wins is 0.104840. Use this fact, and consideration of odds 

ratios, to answer the following questions without long calculations. 

a) What is the most likely number of wins in 325 bets on 00, and what is its proba­

bility? 

b) Find the chance of ten wins in 325 bets on 00 

c) Find the chance of ten wins in 326 bets on 00. 

10. Suppose a fair coin is tossed n times. Find simple formulae in terms of nand k for 

a) P(k - 1 headslk -1 or k heads); 

b) P(k heads I k - 1 or k heads). 

11. 70% of the people in a certain population are adults. A random sample of size 15 will 

be drawn, with replacement, from this population. 
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a) What is the most likely number of adults in the sample? 

b) What is the chance of getting exactly this many adults? 

12. A gambler decides to keep betting on red at roulette, and stop as soon as she has won 

a total of five bets. 

a) What is the probability that she has to make exactly 8 bets before stopping? 

b) What is the probability that she has to make at least 9 bets? 

13. Genetics. Hereditary characteristics are determined by pairs of genes. A gene pair for 

a particular characteristic is transmitted from parents to offspring by choosing one gene 

at random from the mother's pair, and, independently, one at random from the father's. 

Each gene may have several forms, or alleles. For example, human beings have an 

allele (B) for brown eyes, and an allele (b) for blue eyes. A person with allele pair BB 

has brown eyes, and a person with allele pair bb has blue eyes. A person with allele 

pair Bb or bB will have brown eyes-the allele B is called dominant and b recessive. So 

to have blue eyes, one must have the allele pair bb. The alleles don't "mix" or "blend". 

a) A brown-eyed (BB) woman and a blue-eyed man plan to have a child. Can the 

child have blue eyes? 

b) A brown-eyed eBb) woman and a blue-eyed man plan to have a child. Find the 

chance that the child has brown eyes. 

c) A brown-eyed (Bb) woman and a brown-eyed (Bb) man plan to have a child. 

Find the chance that the child has brown eyes. 

d) A brown-eyed woman has brown-eyed parents, both Bb. She and a blue-eyed 

man have a child. Given that the child has brown eyes, what is the chance that 

the woman carries the allele b? 

14. Genetics. In certain pea plants, the allele for tallness CT) dominates over the allele for 

shortness (s), and the allele for purple flowers (P) dominates over the allele for white 

flowers (w) (see Exercise 13). According to the principle of independent assortment, 

alleles for the two characteristics (flower color and height) are chosen independently 

of each other. 

a) A (TT, PP) plant is crossed with a (ss, ww) plant. What will the offspring look 

like? 

b) The offspring in part a) is self-fertilized, that is, crossed with itself. Write down the 

possible genetic combination (of flower color and height) that the offspring of 

this fertilization can have, and find the chance with which each such combination 

occurs. 

c) Ten (Ts, Pw) plants are self-fertilized, each producing a new plant. Find the 

chance that at least 2 of the new plants are tall with purple flowers. 

15. Considerthe mode m ofthe binomial (n,p) distribution. Use the formula m = int (np+ 
p) to show the following: 

a) If np happens to be an integer, then m = np. 

b) If np is not an integer, then the most likely number of successes m is one of the 

two integers to either side of np. 

c) Show by examples that m is not necessarily the closest integer to np. Neither is 

m always the integer above np, nor the integer below it. 
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Normal Approximation: Method 
The figures of the previous section illustrate the general fact that no matter what the 

value of p, provided n is large enough, binomial (n, p) histograms have roughly the 

same bell shape. As nand p vary, the binomial (n,p) distributions differ in where 

they are centered, and in how spread out they are. But when the histograms are 

suitably scaled they all follow the same curve provided n is large enough. This section 

concerns the practical technique of using areas under the curve to approximate 

binomial probabilities. This can be understood without following the derivation of 

the curve in the next section. 

The normal curve has ~quation 

(-oo<x<oo) 

The equation involves the two fundamental constants 7r = 3.14159265358 ... , and 

e = 2.7182818285 ... , the base of natural logarithms. The curve has two parameters, 

the mean IL, and the standard deviation (J. Here IL can be any real number positive 

or negative, while (J can be any strictly positive number. The mean IL indicates where 

the curve is located, while the standard deviation (J marks a horizontal scale. You 

can check by calculus that the curve is symmetric about the point marked IL, concave 

on either side of IL, out to the points of inflection IL- (J and IL + (J, where it switches 

to become convex (Exercise 15). 

FIGURE 1. The normal curve. 

1 

L-----_+~~--_+------~-------+------_+------~----~~--~x 

Think of the normal curve as a continuous histogram, defining a probability distri­

bution over the line by relative areas under the curve. Then IL indicates the general 

location of the distribution, while (J measures how spread out the distribution is. The 

constant 1/ v'2ii(J is put in the definition of the curve by convention, so that the total 

area under the curve is 1. This is shown by calculus in Section 5.3. See also Chapter 4 

for a general treatment of continuous probability distributions like the normal. 
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The Normal Distribution 
The normal distribution with mean ft and standard deviation (J is the distri­

bution over the x-axis defined by areas under the normal curve with these 

parameters. 

The equation of the normal curve with parameters ft and (J, can be written as 

where z = (x - ft) / (J measures the number of standard deviations from the mean 

ft to the number x, as shown in Figure 2. We say that z is x in standard units. The 

standard normal distribution is the normal distribution with mean 0 and standard 

deviation 1. This is the distribution defined by areas under the standard normal 

curve y = ¢( z) where 

is called the standard normal density function. The standard normal distribution is 

the distribution on the standard unit or z-scale derived from a normal distribution 

with arbitrary parameters ft and (J on the x-scale. As shown in Figure 2, the proba­

bility to the left of x in the normal distribution with mean ft and standard deviation 

(J is the probability to the left of z = (x - ft) / (J in the standard normal distribution. 

This probability is denoted cI>(z). This function of z is called the standard normal 

cumulative distribution function, or standard normal c.d.f. for short. 

Standard Normal Cumulative 

Distribution Function 
The standard normal c.d.f <I>(z) gives the area to the left of z under the standard 

normal curve: 

For the normal distribution with mean ft and standard deviation (J, the probability 

between a and b is 

Because the function e-~z2 does not have a simple indefinite integral, there is no 

simple exact formula for <I>(z). But <I>(z) has been calculated numerically. Values of 

<I> ( z) are tabulated in Appendix 5 for z 2: o. 
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FIGURE 2. A normal distribution and the standard normal c.dJ The top graph shows the cu rve 

that defines the normal distr ibution w ith mean /-l and standard deviation 17 . The lower graph shows 

the standard normal c.dJ <I> (z), the probabil ity in the normal distribution to the left of z on the 

standard unit sca le. The area shaded under the norma l curve is <I>( z) for a particular va lue z 

between - 1 and O. This area appears as a height in the graph of the normal c.d J <1>( z) 

, , , , 

f.L-a x 
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_ 1 -!(x- II)2Jq2 1 -! z2 y- -- e 2 .- = -- e 2 
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1 .. _ ........ ~ --- --- ---- -: ............. ---:-- .. .. ----L-- .. -- ---1 --- .. -- .. ~-~-' _---_ _ _ , 
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, , 
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z- scale -2 Z 0 1 

Remark. Instead of using the normal table, you may prefer to program an approx­

imate formula for cI>( z) on a calculator. A formula, good enough for most purposes, 

is 

where Cl = 0.196854 C2 = 0.115194 

C3 = 0.000344 C4 = 0.019527 

(z 2: 0) 

For every value of z 2: 0, the absolute error of this approximation is less than 

2.5 x 10- 4 [Abramowitz and Stegun, Handbook of Mathematical Functions]. 
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FIGURE 3. Symmetry of the normal curve. 

- z o tandard units z 

By the symmetry of the normal curve (see Figure 3), 

<p(-z) = 1 - <p(z) (-00 < z < 00) 

In particular, this implies <p(O) = 1/2. The probability of the interval (a, b) for the 

standard normal distribution, denoted <1> (a, b), is 

<P(a, b) = <p(b) - <P(a) 

by the difference rule for probabilities. From Figure 3 and the rule of complements, 

it is clear that 

<1>( -z, z) = <1>(z) - <1>( -z) 

= <1>(z) - (1 - <1>(z)) 

= 2<1>(z) - 1 

These formulae are used constantly when working with the normal distribution. But, 

to avoid mistakes, it is best not to memorize them. Rather sketch the standard normal 

curve each time. Remember the symmetry of the curve, and the definition of <p(z), 
as the proportion of area under the curve to the left of z. Then the formulae are 

obvious from the diagram. There are three standard normal probabilities which are 

worth remembering: 

-1 0 1 

<1>( -1, 1) ~ 68%, the probability within one standard deviation of the mean, 
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~ I I 
-2 0 2 

<I> ( -2, 2) ~ 95%, the probability within two standard deviations of the mean, 

~ I I 
-3 0 3 

<I> ( -3, 3) ~ 99.7%, the probability within three standard deviations of the mean. 

From these probabilities you can ~asily find <I> ( a, b) for several other intervals. For 

example, 

<I>(O, 1) = !<I>(-1, 1) ~ !68% = 34% 

<1>(2,00) = ~ (1 - <1>( -2,2)) ~ ~ (100% - 95%) = 2.5% 

The probability <I> ( -z, z)C beyond z standard deviations from the mean in a normal 

distribution is 

<I>(-z,z)C = 1- <I>(-z,z) = 2(1- <1>(z)) < 2¢(z)/z 

as shown in Table 1 for z = 1 to 6. The factor exp ( -! z2) in the definition of ¢( z) 

makes ¢(z) extremely small for large z. The above inequality, left as an exercise, 

shows that <I> ( - z, z) C is even smaller for z 2': 2. 

Not too much significance should be placed on the extremely small probabilities 

<I> ( -z, z)C for z larger than about 3. The point is that the normal distribution is 

mostly applied as an approximation to some other distribution. Typically the errors 

involved in such an approximation, though small, are orders of magnitude larger 

than <I> ( -z, z)C for z > 3. 
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TABLE 1. Standard normal probability outside (-z, z). The probability <1>( -z, z)C is tabulated 

along with 2¢(z)/z, which is larger than <1>( -z, z)C for all z, and a very good approximation to 

it for large z. 

z 1 2 3 4 

iP(-z,z)C 0.317 0.046 2.7 x 10-3 6.3 X 10-5 

2¢(z)/z 0.484 0.054 2.9 x 10-3 6.7 X 10-5 

The Normal Approximation 

to the Binomial Distribution 

5 6 

5.7 X 10-7 1.97 X 10-9 

5.9 X 10-7 2.03 X 10-9 

In fitting a normal curve to the binomial (n, p) distribution the main question is how 

the mean J.L and standard deviation (j are determined by nand p. As noted in Sec­

tion 2.1, the number J.L = np, called the mean of the binomial (n,p) distribution, is 

always within ±1 of the most likely value, m = int (np + p). So J.L = np is a conve­

nient place to locate the center. How to find the right value of (j is less obvious. As 

explained in the next section, provided Jnpq is sufficiently large, good approxima­

tions to binomial probabilities are obtained by areas under the normal curve with 

mean J.L = np and (j = Jnpq. Later, in Section 3.3, it will be explained how this 

formula for (j is consistent with the right general definition of the standard deviation 

of a probability distribution. 

FIGURE 4. A binomial histogram, with the normal curve superimposed. Both the.7: scale (number 

of successes) and the z scale (standard units) are shown 

-----= :::l....-l-..l..,....I....~ "'-'-__'_: I --'-....I.-""':_ ....... ~ ':__'__,l__-----'--'-.....L.--'---'----'== ~--- X - cale 
p.-(j 

~---+---~;---~---+- -+- ~ --- I ~-- -+--~I z-sca le 
2 

z = (x - J.L)/u 
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Problem. 

Solution. 
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Let P(a to b) be the probability of getting between a and b successes (inclusive) in 

n independent trials with success probability p. Then, from Figure 4, we see that: 

P( a to b) = proportion of area under the binomial (n, p) histogram 

between a - ~ and b + ~ 

~ proportion of area under the normal curve 

between x = a - ~ and b + ~ 

= proportion of area under the normal curve 

between z = (a - ~ - J-l)/a and z = (b + ~ - J-l)/a. 

In terms of the standard normal c.dJ. 1>, this gives the following: 

Normal Approximation 

to the Binomial Distribution 
For n independent trials with success probability p 

( b+1-J-l) (a-l-J-l) P( a to b successes) ~ 1> ~ - 1> ~ 

where J-l = np is the mean, and a = -Jnpq is the standard deviation. 

Use of a - ~ and b + ~ in the normal approximation rather than a and b is called the 

continuity correction. This correction is essential to obtain good approximations for 

small values of -Jnpq. For large -Jnpq it makes little difference unless a and bare 

very close. 

100 fair coin tosses. 

Find, approximately, the chance of getting 50 heads in 100 tosses of a fair coin. 

Here n = 100, P = 1/2, so J-l = 50, a = 5. The normal approximation above with 

a = b = 50 gives 

P(50) ~ 1> ((50 + ~ - 50)/5) - 1> ((50 - ~ - 50)/5) 

= 1>(0.1) - 1>( -0.1) 

= 21>(0.1) - 1 = 2 x 0.5398 - 1 = 0.0796 (exact value 0.0795892) 
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Continuation. Other probabilities can be computed in the same way-for example 

P(45 to 55) ~ cI> ((55~ - 50)/5) - cI> ((44~ -- 50)/5) 

= cI>(1.1) - cI>( -1.1) 

= 2cI>(1.1) - 1 = 2 x 0.8643 - 1 

= 0.7286 (exact value 0.728747) 

P(40 to 60) ~ 2cI>(2.1) - 1 = 2 x 0.9821 - 1 

= 0.9642 (exact value 0.9648) 

P(35 to 65) ~ 2cI>(3.1) - 1 = 2 x 0.9990 - 1 

= 0.9980 (exact value 0.99821) 

Fluctuations in the number of successes. For any fixed p, the normal approxi­

mation to the binomial (n, p) distribution gets better and better as n gets larger. So, 

in a large number of independent trials with success probability p, the typical size 

of the random fluctuations in the number of successes is of the order of (7 = ,jnpq. 

For example, 

P(f-l - (7 to f-l + (7 successes in n trials) ~ 68% 

P(f-l- 2(7 to f-l + 2(7 successes in n trials) ~ 95% 

P(f-l- 3(7 to f-l + 3(7 successes in n trials) ~ 99.7% 

It can be shown that for fixed p, as n ---7 00, each probability on the left approaches 

the exact value of the corresponding proportion of area under the normal curve. 

Fluctuations in the proportion of successes. While the typical size of random 

fluctuations of the number of successes in n trials away from the expected number 

np is a moderate multiple of ,jnpq, the typical size of random fluctuations in the 

relative frequency of successes about the expected proportion p is correspondingly 

of order ,jnpq/n = Jpq/n. Since ..;pq ::::; ~ for all 0 < p < 1, and 1/ yin ---7 0 as 

n ---7 00, this makes precise the rate at which we can expect relative frequencies to 

stabilize under ideal conditions. 

Square Root Law 

For large n, in n independent trials with probability p of success on each trial: 

• the number of successes will, with high probability, lie in a relatively small 

interval of numbers, centered on np, with width a moderate multiple of yin 
on the numerical scale; 

• the proportion of successes will, with high probability, lie in a small interval 

centered on p, with width a moderate multiple of 1/ yin. 
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Numerical computations show that the square root law also holds for small values 

of n, but its most important implications are for large n. In particular, it implies the 

following mathematical confirmation of our intuitive idea of probability as a limit of 

long-run frequencies: 

Law of Large Numbers 

If n is large, the proportion of successes in n independent trials will, with 

overwhelming probability, be very close to p, the probability of success on 

each trial. More formally: 

• for independent trials, with probability p of success on each trial, for each 

f > 0, no matter how small, as n -+ 00, 

P(proportion of successes in n trials differs from p by less than f) -+ 1 

Confidence Intervals 

The normal approximation is the basis of the statistical method of confidence inter­

vals. Suppose you think that you are observing the results of a sequence of inde­

pendent trials with success probability p, but you don't know the value of p. For 

example, you might be observing whether or not a biased die rolled a six (success) 

or not six (failure). Suppose in n trials you observe that the relative frequency of 

successes is p. If n is large, it is natural to expect that the unknown probability p is 

most likely fairly close to p. For example, since 

cI>( -4, 4) ~ 99.99% 

the above results state that if n is large enough, no matter what p is, it is 99.99% 

certain that the observed number of successes, np, differs from np by less than 

4.jnpq, so the relative frequency p will differ from p by less than 4 Jpq/n, which 

is at. most 2/ fo. Having observed the value of p, it is natural to suppose that this 

overwhelmingly likely event has occurred, which implies that p is within 2/ fo of p. 
The interval p ± 2/ fo, within which p can reasonably be expected to lie, is called 

a 99.99% confidence interval for p. 

Estimating the bias on a die. 

In a million rolls of a biased die, the number 6 shows 180,000 times. Find a 99.99% 

confidence interval for the probability that the die rolls six. 
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Solution. 

Remark. 

Example 3. 

Problem. 

Solution. 

Example 4. 

Problem. 

Solution. 

The observed relative frequency of sixes is fJ = 0.18. So a 99.99% confidence interval 

for the probability that the die rolls six is 

0.18 ± 2/ yil, 000, 000 or (0.178,0.182) 

This procedure of going ±2/ Vii from the observed fJ to make the confidence inter­

val is somewhat conservative, meaning the coverage probability will be even higher 

than 99.99% for large n. This is due to neglecting the factor y'PQ S 0.5 and so overes­

timating the standard deviation a = vnpq in case p is not 0.5, as the above fJ would 

strongly suggest. The usual statistical procedure is to estimate y'PQ by JfJ(1 - fJ), 
which is VO.18 x 0.82 = 0.384 in the above example. This reduces the length of the 

interval by a factor of 0.384/0.5 = 77% in this case. 

The most important thing to note in this kind of calculation is how the length of 

the confidence interval depends on n through the square root law. Suppose the 

confidence interval is fJ ± c/ Vii, for some constant c. No matter what c is, to reduce 

the length of the confidence interval by a factor of f requires an increase of n by a 

factor of p. So to halve the length of a confidence interval, you must quadruple the 

number of trials. 

Random sampling. 

Two survey organizations make 99% confidence intervals for the proportion of 

women in a certain population. Both organizations take random samples with re­

placement from the population; the first uses a sample of size 350 while the second 

uses a sample of size 1000. Which confidence interval will be shorter, and by how 

much? 

The interval based on the larger sample size will be shorter. The size of the second 

sample is 1000/350 = 2.86 times the size of the first, so the length of the second 

interval is 1/ V2.86 times the length of the first, that is, 0.59 times the length of the 

first. 

How many trials? 

Suppose you estimate the probability p that a biased coin lands heads by tossing it 

n times and estimating p by the proportion fJ of the times the coin lands heads in 

the n tosses. 

How many times n must you toss the coin to be at least 99% sure that fJ will be: a) 

within 0.1 of p? b) within .01 of p? 

First find z such that <I> ( -z, z) = 99%, 

i.e., 2<I>(z) - 1 = 0.99 i.e., <I>(z) = 0.995 

Inspection of the table gives z >:::; 2.575. For large n, fJ will with probability at least 

99% lie in the interval p ± 2. 575 y'PQ/ Vii. Since y'PQ S 0.5, the difference between 
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p and p will then be less than 

2.575 x 0.5/ Vn 

For a), set this equal to 0.1 and solve for n: 

2.575 x 0.5/ Vn = 0.1 

n = (2.575 x 0.5)2 = 165.77 
0.1 

So 166 trials suffice for at least 99% probability of accuracy to within O.I. 

103 

b) By the square root law, to increase precision by a factor of 10, requires an increase 

in the number of trials by 102 = 100. So about 16,577 trials would be required for 

99% probability of accuracy to within .OI. 

How good is the normal approximation? As a general rule, the larger the standard 

deviation a = ..jnpq, and the closer p is to 1/2, the better the normal approximation 

to the binomial (n,p) distribution. The approximation works best for p = 1/2 due to 

the symmetry of the binomial distribution in this case. For Pi=- 1/2 the approximation 

is not quite as good, but as the graphs at the end of Section 2.1 show, as n increases 

the binomial distribution becomes more and more symmetric about its mean. It is 

shown in the next section that the shape of the binomial distribution approaches the 

shape of the normal curve as n -t 00 for every fixed p with a < p < I. 

How good the normal approximation is for particular nand p can be measured as 

follows. Let N(a to b) denote the normal approximation with continuity correction 

to a binomial probability P(a to b). Define W(n,p), the worst error in the normal 

approximation to the binomial( n, p) distribution, to be the biggest absolute difference 

between P(a to b) and N(a to b), over all integers a and b with a :s:: a :s:: b:s:: n: 

W(n,p) = max IP(a to b) - N(a to b)1 
0::; a::; b::; n 

Numerical calculations show that W(n,1/2) is less than 0.01 for all n 2': 10, and 

less than 0.005 for all n 2': 20. Such a small error of approximation is negligible 

for most practical purposes. For p i=- 1/2 there is a systematic error in the normal 

approximation because an asymmetric distribution is approximated by a symmetric 

one. A refinement of the normal approximation described in the next paragraph 

shows that 

W( ) ~ 1 11 - 2pI 
n p ~ - -'-----'-

, 10 ..jnpq 
(1) 

where the error of the approximation is negligible for all practical purposes provided 

a = ..jnpq is at least about 3. This formula shows clearly how the larger a, and the 
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closer p is to 1/2, the smaller W(n,p) tends to be. Because 11 - 2pI ~ 1 for all 

o ~ p ~ 1, even if p is close to 0 or 1, the worst error is small provided a is large 

enough. For a ~ 3 the worst error is about l/lOa for p close to 0 or 1 and large n. 
Numerical calculations confirm the following consequences of (1): the worst error 

W(n,p) is 

• less than 0.01 for n ~ 20 and p between 0.4 and 0.6 

• less than 0.02 for n ~ 20 and p between 0.3 and 0.7 

• less than 0.03 for n ~ 25 and p between 0.2 and 0.8 

• less than 0.05 for n ~ 30 and p between 0.1 and 0.9 

The systematic error in the normal approximation of magnitude about 1/10a can 

be reduced to an error that is negligible in comparison by the skewness correction 

explained in the next paragraph. This method gives satisfactory approximations to 

binomial probabilities for arbitrary nand p with a ~ 3. For p close to 0 or 1, and 

a ~ 3, a better approximation to the binomial distribution is provided by using the 

Poisson distribution described in the next section. 

The skew-normal approximation. Figures 5 and 7 show how the histogram of the 

binomial (100,1/10) distribution is slightly skewed relative to its approximating nor­

mal curve. The histogram is better approximated by adding to the standard normal 
curve ¢(z) a small multiple of the curve y = ¢'''(Z), where 

¢III(Z) = (3z - z3)¢(z) 

is the third derivative of ¢(z) (Exercise 16), as graphed in Figure 6. By careful analysis 

of the histogram of a binomial (n, p) distribution plotted on a standard units scale, it 

can be shown that for p # 1/2 adding the right small multiple of the anti-symmetric 

function ¢'" (z) to the symmetric function ¢( z) gives a curve which respects the slight 

asymmetry of the binomial histogram, and so follows it much more closely than the 

plain normal curve ¢( z). The resulting skew-normal curve has equation 

y = ¢(z) - ~Skewness (n,p) ¢'''(Z) where (2) 

Skewness (n,p) = (1 - 2p)/ Jnpq = (1 - 2p)/a 

is a number called the skewness of the binomial (n, p) distribution, which measures its 

degree of asymmetry. The skewness is 0 if P = 1/2, when the distribution is perfectly 

symmetric about n/2. The skewness positive for p < 1/2 when the distribution 

is called skewed to the right, and negative for p > 1/2 when the distribution is 

skewed to the left. The meaning of these terms is made precise by the way the 

binomial histogram follows the skew-normal curve (2) more closely than it does the 
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FIGURE 5: Normal curve approximating the binomial (100,1/10) histogram. Notice how the 

bars are slightly above the normal curve just to the left of the mean, and slightly below the curve 

just to the right of the mean. Further away from the mean, the bars lie below the curve in the left 

toil, and above the curve in the right toil. 

k 

o 5 10 15 20 

FIGURE 6. Graph of 1/I/(z) = (3z - Z3)¢(Z). Note how the function is positive in the intervals 

(-00, -}3) and (0, }3), and negative in the intervals (-}3,0) and (}3,00) The zeros are at 

° and ±}3. The z-scale is the standard unit scale derived from the histogram in Figures 5 and 7. 

V 
-4 3 -2 -1 0 1 2 3 4 

FIGURE 7. Skew-normal curve approximating the binomial (100, 1/10) histogram. Refer to 

Example 5. Both the normal curvey = ¢(z) and the skew-normal curve y = ¢(z)-(2/45)¢"I(Z) 

are shown. The skew-normal curve follows the binomial histogram much more closely. The dif­

fererce between the normal and skew-normal curves is 2/45 times the curve ¢"I(Z) graphed in 

Figure 6. 

k 

o 5 10 15 20 
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plain normal curve. Figure 7 illustrates how in the case p < 1/2 when the binomial 

histogram is skewed to the right, there are numbers z- < Zo < z+ on the standard 

units scale, with Zo ~ 0 and z± ~ ±y3, (the three zeros of ¢'II(Z) such that 

• the histogram is lower than the normal curve on the intervals (-00, z-) and 

(zo,z+) 

• the histogram is higher than the normal curve on the intervals (z-, zo) and 

(z+,oo) 

For 1/2 < P < 1, the same thing happens, except that the words "higher" and 

"lower" must be switched in the above description. The distribution is then skewed 

to the left. Integrating the skew-normal curve (2) from -00 to the point z on the 

standard unit scale (Exercise 16) gives the following: 

Skew-Normal Approximation 

to the Binomial Distribution 
For n independent trials with success probability p, 

1 
P(O to b successes) ~ <p(z) - i3Skewness (n,p)(z2 - l)¢(z) 

where z = (b + ~ - J-L)/a- for J-L = np and a- = Jnpq, <p(z) is the standard 

normal c.d.f., ¢(z) = (1/J27f)exp(-~z2) is the standard normal curve, and 

Skewness ( n, p) = (1 - 2p) / Jnpq 

The term involving the skewness in the skew-normal approximation is called the 

skewness correction. The skew-normal approximation to an interval probability 

P(a to b) = P(O to b) - P(O to a-I) 

is found by using the above approximation twice and taking the difference. The 

resulting normal approximation with skewness correction to P(a to b) differs from 

the plain normal approximation N(a to b) by 1/6 of the skewness times the area 

under the curve ¢"I(Z) between points corresponding to a and b on the standard 

units scale. You can show (Exercise 16) that this area is always between ±O.577, and 

that these extremes are attained over the intervals from z = -y3 to z = 0, and from 

z = 0 to z = y3. It follows that for pi-I /2. the worst error W (n, p) in the normal 

approximation without skewness correction occurs for a ~ J-L - y3a- and b ~ J-L, or 

for a ~ J.l and b ~ J.l + y30'. The errors of the normal approximation for these two 

intervals will be of opposite signs with approximately equal magnitudes of 

1 
W(n,p) ~ - x 11- 2pl/a- x 0.577 ~ 11 - 2pl/l0a-

6 
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Thus the skew-normal approximation implies this simple estimate for the worst error 

in the plain normal approximation, and shows the intervals on which such an error is 

to be expected. This formula shows the plain normal approximation is rather rough 

for a in the range from 3 to 10 and p close to 0 or 1. Numerical calculations show that 

provided a 2 3 (no matter what p) the skew-normal approximation gives interval 

probabilities correct to two decimal places (error at most 0.005) which is adequate 

for most practical purposes. For fixed p, as n -+ 00, the skewness of the binomial 

distribution converges to 0, so in the limit of large n the skewness correction can be 

ignored, just like the continuity correction, which is of the same order of magnitude 

l/a. 

Distribution of the number of O's in 100 random digits. 

Consider the distribution of the random number of times a particular digit, say 0, 

appears among 100 random digits picked independently and uniformly at random 

from the set of 10 digits {O, 1, ... , 9}. This is the binomial (100, 1/10) distribution 

which is displayed in Figure 7, along with the approximating normal and skew­

normal curves. The mean is J.l = 100 x 1/10 = 10, the standard deviation is a = 

.jnpq = )100 x (1/10) x (9/10) = 3, and the skewness is (1 - 2p)/ .jnpq = (1 -

(2/10))/3 = 4/15. From (2), the skew-normal curve approximating the shape of the 

binomial histogram has equation y = ¢(z) - ;5 (3z - z3)¢(z), as graphed in Figure 

7. The probability of 4 or fewer O's is 

P(O to 4) = t C~O) (110 ) k (190) lOO-k = 0.024 

k=O 

by exact calculation, correct to three decimal places. The normal approximation to 

this probability is <1>(z) for z = (4~ -10)/3 = -11/6, i.e., <1>(-11/6) = 0.033, which 
is not a very good approximation. The skew-normal approximation, which is not 

much harder to compute, is 

1 
<1>(z) - 6"Skewness(100, 1/10)(z2 - l)¢(z) 

~ 0.033 - L~ (( -~1)' -1) ~cxp (_~ (-~1)') 
= 0.026 

which differs from the exact value by only 0.002. Similar calculations yield the num­

bers displayed in Table 2. The numbers are correct to three decimal places. The 

ranges selected, 0 to 4, 5 to 9, 10 to 15, and 16 to 100, are the ranges over which the 

normal approximation is first too high, then too low, too high, and too low again. 

The normal approximation is very rough in this example, but the skew-normal ap­
proximation is excellent. 
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TABLE 2. Approximations to the binomial (100,1/10) distribution. The probability P(a to b) of 

from a and b successes (inclusive) in 100 independent trials, with probability 1/10 of success on 

each trial, is shown along with approximations using the normal and skew-normal curves. 

value range exact probability skew-normal approximation normal approximation 

0-4 0.024 0.026 0.033 

5-9 0.428 0.425 0.400 

10 - 15 0.509 0.508 0.533 

16 - 100 0.040 0.041 0.033 

Exercises 2.2 
1. Let H be the number of heads in 400 tosses of a fair coin. Find normal approximations 

to: a) P(190 S H S 210); b) P(21O S H S 220); c) P(H = 200); d) P(H = 210). 

2. Recalculate the approximations above for a biased coin with P(heads) = 0.51. 

3. A fair coin is tossed repeatedly. Consider the following two possible outcomes: 

55 or more heads in the first 100 tosses 

220 or more heads in the first 400 tosses 

a) Without calculation, say which of these outcomes is more likely. Why? 

b) Confirm your answer to a) by a calculation. 

4. Suppose that each of 300 patients has a probability of 1/3 of being helped by a treatment 

independent of its effect on the other patients. Find approximately the probability that 

more than 120 patients are helped by the treatment. 

5. Suppose you bet a dollar on red, 25 times in a row, at roulette. Each time you win 

a dollar with probability 18/38, lose with probability 20/38. Find, approximately, the 

chance that after 25 bets you have at least as much money as you started with. 

6. To estimate the percent of district voters who oppose a certain ballot measure, a survey 

organization takes a random sample of 200 voters from a district. If 45% of the voters 

in the district oppose the measure, estimate the chance that: 

a) exactly 90 voters in the sample oppose the measure; 

b) more than half the voters in the sample oppose the measure. 

[Assume that all voters in the district are equally likely to be in the sample, independent 

of each other.] 

7. City A has a population of 4 million, and city B has 6 million. Both cities have the same 

proportion of women. A random sample (with replacement) will be taken from each 

city, to estimate this proportion. In each of the following cases, say whether the two 

samples give equally good estimates; and if you think one estimate is better than the 

other, say how much better it is. 
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a) A 0.01% sample from each city. 

b) A sample of size 400 from each city. 

c) A 0.1% sample from city A, and a 0.075% sample from city B. 

8. Find, approximately, the chance of getting 100 sixes in 600 rolls of a die. 

9. Airline overbooking. An airline knows that over the long run, 90% of passengers who 

reserve seats show up for their flight. On a particular flight with 300 seats, the airline 

accepts 324 reservations. 

a) Assuming that passengers show up independently of each other, what is the 

chance that the flight will be overbooked? 

b) Suppose that people tend to travel in groups. Would that increase or decrease 

the probability of overbooking? Explain your answer. 

c) Redo the calculation a) assuming that passengers always travel in pairs. Check 

that your answers to a), b), and c) are consistent. 

10. A probability class has 30 students. As part of an assignment, each student tosses a coin 

200 times and records the number of heads. Approximately what is the chance that no 

student gets exactly 100 heads? 

11. Batting averages. Suppose that a baseball player's long-run batting average (number of 

hits per time at bat) is .300. Assuming that each time at bat yields a hit with a consistent 

probability, independently of other times, what is the chance that the player's average 

over the next 100 times at bat will be 

a) .310 or better? b) .330 or better? c) .270 or worse? 

d) Suppose the player tends to have periods of good form and periods of bad form. 

Would different times at bat then be independent? Would that tend to increase or 

decrease the above chances? 

e) Suppose the player actually hits .:330 over the 100 times at bat. Would you be 

convinced that his form had improved significantly? or could the improvement 

just as well be due to chance? 

12. A fair coin is tossed 10, 000 times. Find a number m such that the chance of the number 

of heads being between 5000 - m and 5000 + 'In is approximately 2/3. 

13. A pollster wishes to know the percentage p of people in a population who intend to 

vote for a particular candidate. How large must a random sample with replacement be 

in order to be at least 95% sure that the sample percentage is within one percentage 

point of P' 

14. Wonderful Widgets Inc. has developed electronic devices which work properly with 

probability 0.95, independently of each other. The new devices are shipped out in 

boxes containing 400 each. 

a) What percentage of boxes contains 390 or more working devices? 

b) The company wants to guarantee, say. that k or more devices per box work. 

What is the largest k such that at least 95% of the boxes meet the warranty? 
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15. First two derivatives of the normal curve. Let ¢/ (z), ¢/' (z) be the first and second 

derivatives of the standard normal curve ¢( z) = (1/ v'21r) exp ( - ~ Z2). Show that: 

a) ¢/(Z) = -z¢(z) 

b) ¢"(z) = (Z2 - 1)¢(z) 

c) Sketch the graphs of ¢(z), ¢/(Z), ¢"(z) on the same scale for z between -4 and 

4. What are the graphs like outside of this range? 

d) Use b) and the chain rule of calculus to find the second derivative at x of the 

normal curve with parameters f..L and (J"2. 

e) Use the result of d) to verify the assertions in the sentence above Figure 1 on 

page 93. 

16. Third derivative ofthe normal curve. 

a) Show that ¢(z) has third derivative ¢"/(Z) = (_Z3 + 3z)¢(z) 

b) Show that J~oo ¢"/(z)dz = ¢"(x), and hence 

j -V3 Joo 
¢"/(z)dz = - ¢"/(z)dz = 2¢(V3) ~ 0.178 

-00 V3 

and 

- jO ¢"/(z)dz = I V3 
¢"/(z)dz = ¢(O) + 2¢(V3) ~ 0.577 

-V3 0 

c) Show that J: ¢"/(z)dz lies between ±[¢(O) + 2¢( J3)] for every a < b. [Hint: No 

more calculation required. Consider the graph of ¢/" (z) and the interpretation of 

the integral in terms of areas.] 

17. Standard normal tail bound. Show that 1 - <1>( z) < ¢( z) / z for positive z by the 

following steps. 

a) Show that 

1 - <I>(z) = Ioo ¢(x)dx. 

(This integral cannot be evaluated by calculus.) 

b) Show that multiplying the integrand by x/z gives a new integral whose value is 

strictly larger. 

c) Evaluate the new integral. 
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Normal Approximation: Derivation 
(Optional) 
This section is more mathematical than the previous and following ones and can be 

skipped at first reading. Its main aim is to derive the formula for the normal curve 

by study of binomial probabilities for large n. The basic idea is that for any p with 

0< p < 1, as n increases the binomial (n,p) distribution becomes better and better 

approximated by a normal distribution with parameters /-l = np and a = y'npq. Why 

this happens is the subject of this section. 

Recall first the calculus definition of e, the base of natural logarithms, as the unique 

number such that the function y = log eX has derivative 

d 1 
-logex =­
dx X 

Here y = log eX means X = eY . In the following, all logarithms are to the base 

e: log means loge. See Appendix 4 for further background on exponentials and 

logarithms. Since log (1) = 0 and the derivative of log x at X = 1 is 1/1 = 1, 

log (1 + 8) ~ 8 for small 8 

with an error of approximation which becomes negligible in comparison to 8 as 8 ~ 

O. This simple approximation makes e the preferred or natural base of logarithms, 

and makes e turn up in almost any limit of a product of an increasing number of 

factors. The emergence of the normal curve from the binomial probability formula 

is a case in point. 

Let H(k) = P(k)/ P(m) be the height at k of a binomial histogram scaled to have 

maximum height 1 at k = m, where m = int(np+p) is the mode. Note that H(m) = 1. 

The normal approximation will now be derived by a sequence of steps, starting with 

an approximation for H(k). Consider for illustration the distribution of the number 

of heads in 100 fair coin tosses: 

FIGURE 1. Binomial (100,0.5) histogram. Bar graph of H(k) = P(k)/P(m). 

50 70 

The histogram heights H (k) can be found by multiplying the consecutive odds ratios 

R(k) = H(k)/H(k -1) = P(k)/P(k -1) = n - k + I!!. 
k q 
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FIGURE 2 .. Binomial (100,0.5) consecutive odds, histogram, and their logarithms. These graphs 

are drawn to scale. You can see how log R(k) is nearly linear with a gentle slope of about -1/25. 

Because log H(k) is a sum of increments of this nearly linear function (see equal shaded areas 

for k = .59), its graph is nearly parabolic. By approximJtion of the area in the top graph with a 

right-angled triangle with sides (k - 50) and slope x (k - 50), the area is 10gH(k) ~ ~ slope x 

(k - 5W ~ -~(k - Ill/a2 for J1 = 50,a = 5 = v25, This is formula (I), 

Con ecutive Ratios: R(k) 

Log Con ecutive Rati : log R (k) 

Histogram: H (k) 

!7°l 

Log Histogram: log H (k) 
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For k > m, H(k) is the product of (m - k) consecutive ratios 

P(m + 1) P(m + 2) P(k) 
H(k) = H(m) P(m) P(m + 1) ... P(k _ 1) = R(m + l)R(m + 2)··· R(k) 

and there is a similar expression for k < m. The key to the normal approximation is 

that as the ratios R( k) decrease for values of k near m, crossing near m from more 

than 1 to less than 1, they do so very slowly, and due to the formula for R(k), almost 

linearly. 

This is shown in a particular case in Figure 2, and is true no matter what the value 

of p, provided n is large enough. As n gets larger, the consecutive odds ratios R(k) 

decrease more and more slowly near k = m. Consequently, as n increases, R(k) 

stays close to lover a wider and wider range of numbers k. This means that for 

large n, for a wide range of k near m ~ np, H (k) is the product of factors that are 

all very close to l. The way to handle this product is to take logs to the base e: 

10gH(k) = 10gR(m + 1) + ... + 10gR(k) as graphed in Figure 2. 

Now write k = m + x ~ np + x, k + 1 ~ k, assume x is small in comparison to npq, 

and use log (1 + 8) ~ 8 for small 8 to justify the following approximation: 

I R(k) I ( n-k+1 p) I ((n-np-x)p) og = og . - ~ og 
k q (np+x)q 

= log (1 - px) _ log (1 + qx) 
npq npq 

px qx -x (k-m) 
~ -- - - = - = --'--------'-

npq npq npq npq 

This shows that if x = k - m is kept small in comparison to n, then log R( k) is an 

approximately linear function of k, as in Figure 2, with slope approximately -l/npq. 

Adding up these approximations, using 1 + 2 + ... + x = ~x(x + 1) ~ ~x2, gives 

10gH(k)~-_1 __ ~- ... - (k-m) ~_~(k-m)2 ~_~(k-np)2 
npq npq npq 2 npq 2 npq 

This is illustrated by the roughly triangular area shaded in Figure 2. A similar argu­

ment works for k < m. So for the heights H (k) = P( k) / P( m) of the binomial (n, p) 
histogram there is a preliminary form of the normal approximation: 

(1) 

where p = np is the mean and (7 = Jnpq is the standard deviation. 
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The argument shows this approximation will be good provided Ik - ml is small in 

comparison with npq. A more careful argument shows that this range of k is really 

all that matters. Now approximate P(k) instead of H(k): 

P(k)=H(k)P(m)=H(k)/H(O to n) where H(O to n)=H(O) + ... + H(n) (2) 

Here H(O to n), the total area under the binomial (n,p) histogram with maximum 

height 1, can be approximated by the total area under the approximating normal 

curve 0), which is an integral: 

H(O to n) r-.J 1: e-~(X-!L)2/0'2 dx 

by the calculus change of variable 

(x - jj)/O' = z, dx = O'dz 

=O'~ as shown by calculus in Section 5.3 

It can be shown that the relative error of approximation can be made arbitrarily 

small, no matter what the values of nand p, provided that 0' = .jnpq is sufficiently 

large. Now combine this with (1) and (2): 

where jj = np, 0' = .jnpq (3) 

The precise meaning of the ~ involved here is somewhat technical. As 0' -+ 00, 

both sides tend to zero. But the relative error of approximation tends to 0 provided 

(k-jj)/O' remains bounded. See Feller's book An Introduction to Probability Theory 
and its Applications, Vol. I, for more details. 

The equation of the normal curve appears in formula (3) as a function of k. The 

probability of an interval of numbers is now approximated by replacing relative 

areas under the histogram by relative areas under the approximating curve. 

What makes the normal curve a better and better approximation as n -+ 00, is that 

for large n, as k moves away from m, the histogram heights H(k) approach zero 

before the consecutive ratios R( k) differ significantly from 1. In the expression 

10gH(k) = 10gR(m + 1) + ... + 10gR(k) 

a large number of terms on the right, each nearly zero, add up to a total log H (k) 
which is significantly different from O. 
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Probability of the Most Likely Number 

of Successes 
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A consequence of the normal approximation (3) for k = m, closely related to the 

square root law discussed in the previous section, is that the most likely value m = 
int( np + p) in the binomial (n, p) distribution has probability 

1 1 
P( m) rv -.;'Fff-27r-a = -y=27r=n=p=q as n --+ 00 (5) 

For fixed p, as n --+ 00, the relative error in this approximation tends to O. In particular, 

no matter what the success probability p, the probability of the most likely number of 

successes in n independent trials tends to zero as n --+ 00, like a constant divided by 

"fii. For fixed n, the approximation is always best for p near ~, and worst for p close 

to 0 or 1 when the binomial distribution is skewed and the normal approximation 

not so accurate. In particular, if p = ~, so m = ~ if n is even, ~ ± ~ if n is odd, 

P(m heads in n fair coin tosses) = (:)T n 
rv a as n --+ 00 (6) 

As you can check on a pocket calculator, the asymptotic formula gives excellent 

results even for quite small values of n, and the relative error of the approximation 

decreases as n increases. According to the asymptotic formula, this relative error 

tends to 0 as n --+ 00. As n --+ 00,1/"fii --+ 0, so the chance of getting exactly as 

many heads as tails tends to zero as the number of tosses tends to 00. 

To understand why this is so, recall the basis of the normal approximation. For large 

n the binomial (n, p) probabilities are distributed almost uniformly if you look close 

to the center of the distribution. The consecutive odds ratios are very close to one 

over an interval containing nearly all the probability. Still, these ratios conspire over 

larger distances to produce the gradual decreasing trend of the histogram away from 

its maximum, following the normal curve. By a distance of 4a = 2"fii or so from the 

center the histogram has almost vanished. And nearly all the probability must lie in 

this interval. Because a total probability of nearly 1 is distributed smoothly over an 

interval of length about 4"fii, the probabilities of even the most likely numbers in the 

middle cannot be much greater than 1/"fii. Thus even the most likely value m has 

a probability P( m) which tends to zero as n --+ ex: like a constant over "fii. See the 

exercises for another derivation of this, and a different evaluation of the constant, 

which leads to a remarkable infinite product formula for 7r. 

Exercises 2.3 

1. Suppose you knew the consecutive odds ratios R(k) = P(k)/ P(k - 1) of a distri­

bution P(O), ... , P(n). Find a formula for P(k) in terms of R(l), ... , R(n). Thus the 

consecutive odds ratios determine a distribution. 
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2. A fair coin is tossed 10,000 times. The probability of getting exactly 5000 heads is 

closest to: 

0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.99, 0.999. 

Pick the correct number and justify your choice. 

3. Equalizations in coin tossing. Let P(k in n) be the probability of exactly k heads 

in n independent fair coin tosses. Let n = 2m be even, and consider P(m in 2m), the 

chance of getting m heads and m tails in 2m tosses. Derive the following formulae: 

a) P(m - 1 in 2m) = P(m + 1 in 2m) = P(m in 2m) (1 __ 1_) 
m+1 

b) P(m + 1 in 2m + 2) = iP(m - 1 in 2m) + ~P(m in 2m) + iP(m + 1 in 2m) 

c) By a) and b) 

P(m + 1 in 2m + 2) = 1 _ 1 

P(m in 2m) 2(m + 1) 

Check this also by cancelling factorials in the binomial formula. 

d) By repeated application of c), 

P(m in 2m) = (1- _1 ) (1- _1 ) ... (1- _1_) 
2x1 2x2 2xm 

e) 0 < P(m in 2m) < e-~(t+~+·+~) < _1_ 
Vm 

f) P( m in 2m) --+ 0 as m --+ 00. The bound of 1/ Vm is of the right order of magni­

tude, as shown by both the following calculations and the normal approximation. 

Let a Tn = P(m in 2m). Then verify the following: 

(m + 1/2)a;" = 1 __ 1_ 

(m - 1 + 1/2)a;"_1 4m2 

g) 

2(m + 1/2)a2 = (1 - ~) (1 _ ~) ... (1 __ 1_) 
Tn 22 42 (2m)2 

1 3 3 5 5 7 (2m - 1) (2m+ 1) 

2 2 4 4 6 6 2m 2m 

h) am '" K / Vm as m --+ 00, where 

2K2 = 2 lim (m + ~) a 2 = ~ . ~ . ~ . ~ . ~ . ~ ... 
m~= 2 Tn 2 2 4 4 6 6 

Deduce by comparison with the normal approximation that the value of the in­

finite product is 2/7r. 
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Example 1. 

Example 2. 

Example 3. 
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Poisson Approximation 
Even if n is very large, if p is close enough to 0 or 1 the standard deviation a = ylnpq 

is small. The binomial (n, p) distribution then does not follow the normal curve at 

all closely. By switching consideration from successes to failures, if necessary, we 

need only consider the case when p is nearly 0 and q is nearly 1. Then the standard 

deviation a = ylnpq is 

a = JJiii ~ v1i where f..l = np is the mean. 

I.f, for example, f..l = 1, so we are considering n trials with probability p = lin of 

success on each trial, then a ~ 1. The normal approximation will be very bad no 

matter how large n is. This is because the normal curve is symmetric, while the 

binomial distribution is not even approximately symmetric, due to the impossibility 

of negative values. 

The binomial (10, 1/10) distribution. 

This is the distribution of the number of black balls obtained in 10 random draws 

with replacement from a box containing 1 black ball and 9 white ones. 

P(k) '''rn~ 
(J:l 

0.2 

0.1 

000 
o 2 

The binomial (100, 1/100) distribution. 

n = 10 p = 0.1 

10 

This is the distribution of the number of black balls obtained in 100 random draws 

with replacement from a box containing 1 black ball and 99 white ones. 

P(k) n = 100 p = om 

(j <) 10 

The binomial (1000, 1/1000) distribution. 

Now take 1000 random draws with replacement from a box with 1 black ball and 

999 white ones. This is the distribution of the number of black balls drawn: 

:~':[I b~ P(k) ~ ~ 1 

n = 1000 p = 0.001 

() (; !l ]0 

As these examples show, binomial distributions with parameters n and lin are al­

ways concentrated on a small number of values near the mean value f..l = 1, with a 
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shape which approaches a limit as n ~ 00 and p = l/n ~ O. This limit corresponds 

to sampling more and more times with replacement from a box containing a smaller 

and smaller proportion of black balls. If p" the expected number of black balls in 

the sample, is kept constant, the binomial (n, p) distribution with mean p, = np ap­

proaches a limit as n ~ 00 and p ~ O. This limit distribution, called the Poisson 
distribution with parameter p" provides useful approximations to binomial proba­

bilities in case n is large and p is so small that the normal approximation is bad. 

The limit involved here is essentially the same as for the gambler's rule of Section 1.6. 

As in that example, the chance of getting zero successes in n trials with probability 

p of success on each trial is 

by the exponential approximation 

if P ~ 0 

It can be shown that no matter what the value of n, the error in this approximation 

to P(O) is of the same order of magnitude as p. Consequently, this error tends to 0 

as p ~ 0, regardless of the value of n, and 

as n ~ 00 and p ~ 0 with np ~ p, 

To see what happens to the probability of k successes under the same conditions, 

look at the consecutive odds ratio: 

R(k) = P(k) 
P(k - 1) 

n - k + 1 P _ np (1 - (k - l)/n) "'" p, 

k 1-p-T 1-p "'"k 

if n is large and p is small. In particular, if p, = 1 as in the examples above, the first 

two odds ratios are 

R(l) ~ 1/1 R(2) ~ 1/2 

as apparent in the histograms. In the limit as n ~ 00 the binomial (n, l/n) distribu­

tion approaches a distribution with 

P(O) = e- 1 

and odds ratios R(l) = 1, R(2) = 1/2. This is the Poisson (p,) distribution defined 

below in case p, = 1. More generally, for any fixed value of p, = np, as n ~ 00 and 

p ~ 0, the consecutive odds ratio R(k) tends to p,/k, and 

k 

P(k) = P(0)R(1)R(2)··· R(k) ~ e-I-'!!:. . !!:. ... !!:. = e-I-'~ 
12k k! 

To summarize, we have the following: 
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Problem 1. 

Solution. 
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Poisson Approximation 

to the Binomial Distribution 
If n is large and p is small, the distribution of the number of successes in n 
independent trials is largely determined by the value of the mean J-L = np, 
according to the Poisson approximation 

Remark. It can be shown that the accuracy of the approximation depends largely 

on the value of p, and hardly at all on the value of n. Roughly speaking, absolute 

errors in using this approximation will be of the same order of magnitude as p. 

Defectives in a sample. 

Suppose that over the long run a manufacturing process produces 1% defective items. 

What is the chance of getting two or more defective items in a sample of 200 items 

produced by the process? 

Assume each item is defective with probability p, independently of other items. 

The long-run percentage of defectives would then be 100p%, so we can estimate 

p = 1/100. The number of defectives in a sample size of 200 then has binomial 

(200,1/100) distribution, with mean J-L = 200 x 1/100 = 2. Using the Poisson ap­

proximation 

P(2 or more defectives) = 1 - P(O) - P(I) 

_22° _2 21 
;:::::1-e --e -

O! I! 

= 1 - 3e-2 = 0.594 

A check on the Poisson approximation. As a check on the approximation 

P(k successes in n trials);::::: e-JiJ-Lk /k! where J-L = np, 

sum both sides from k = 0 to n to obtain 
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FIGURE T. Poisson distributions. Notice how when J1, is small the distribution is piled up on 

values near zero. As J1, increases, the distribution shihs to the right and spreads out, gradually 

approaching the normal distribution in shape as J1, ----> 00. This can be shown by a variation of the 

argument in Section 2.3. 

j.t II 
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n 
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For fixed fJ" as n -7 00 and P = fJ,/n -7 0, this approximation becomes better and 

better. The limit of the sum is a well-known formula for eJl : 

and 

See Appendix 4 for further details. 

This calculation does show that the limiting probabilities PJl(k) = e-JlfJ,k/k! form a 

probability distribution on {O, 1,2, ... }, meaning that 

00 

PJl(k) 2 ° and 2: PJl(k) = l. 
k=O 

This kind of distribution over an infinite set of possible values is discussed more 

generally in Section 3.4. More about the Poisson distribution can be found in Sec­

tion 3.5. 

The Poisson (J-L) Distribution 
The Poisson distribution with parameter fJ, or Poisson (fJ,) distribution is the 

distribution of probabilities PJl(k) over {O, 1,2, ... } defined by 

(k=0,1,2, ... ) 

Exercises 2.4 

1. Sketch the histograms of binomial distributions with the following parameters (n, p): 

a) (106 ,10- 6 ); b) (106 ,2 x 10-6 ); c) (3284,10- 4 ); d) (1000,0.998). 

2. Find Poisson approximations to the probabilities of the following events in 500 inde­

pendent trials with probability 0.02 of success on each trial: 

a) 1 success; b) 2 or fewer successes; c) more than 3 successes. 

3. The chance of getting 25 or more sixes in 100 rolls of a die is 0.022. If you rolled 100 

dice once every day for a year, find the chance that you would see 25 or more sixes: 

a) at least once; b) at least twice. 

4. Repeat the previous problem for the event of getting 30 or more sixes in 100 die rolls, 

which has probability 0.00068. 
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5. Suppose that each week you buy a ticket in a lottery which gives you a chance of 1/100 

of a win. You do this each week for a year. What is the chance that you get k wins 

during the year, approximately? Calculate as a decimal for k = 0,1,2. 

6. A box contains 1000 balls, of which 2 are black and the rest are white. 

a) Which of the following is most likely to occur in 1000 draws with replacement 

from the box? 

fewer than 2 black balls. exactly 2 black balls, more than 2 black balls 

b) If two series of 1000 draws are made at random from this box, what, approxi­

mately, is the chance that they produce the same number of black balls? 

7. Let X be the number of successes in 25 independent trials with probability 1/10 of 

success on each trial. Let m be the most likely value of S. 

a) Find m. 

b) Find P(S = m) correct to 3 decimal places. 

c) What is the value of the normal approximation to P(S = m)? 

d) What is the value of the Poisson approximation to P(S = m)? 

e) Repeat a) for n = 2500 trials instead of 25. Which would now give the better 

approximation to P(S = m), the normal or the Poisson approximation? Find 

P(S = m) approximately using the best approximation. 

o Repeat e) for 2500 trials and p = 1/1000 instead of p = 1/10. 

8. Mode of the Poisson distribution. Use consecutive odds ratios to find the largest k 

that maximizes the Poisson (jJ) probability P/L (k). For what values of jJ is there a double 

maximum? What are the two values of k in that case? Is there ever a triple maximum? 

9. A cereal company advertises a prize in every box of its cereal. In fact, only about 95% of 

their boxes have prizes in them. If a family buys one box of this cereal every week for a 

year, estimate the chance that they will collect more than 45 prizes. What assumptions 

are you making? 

10. Let N be a fixed large integer. Consider n independent trials, each of which is a success 

with probability 1/ N. Recall that the gambler'S rule (see Example l.6.3) says that if 

n ~ ~N, the chance of at least one success in n trials is about 1/2. Show that if 

n ~ ~ N, then the chance of at least two successes is about 1/2. 
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Random Sampling 
Random sampling is a statistical technique for gaining information about the com­

position of a large population from the composition of a random sample from the 

population. Suppose that each element of the population can be classified into one of 

two categories, say "good" and "bad". Of course, the designation of which elements 

are good is quite arbitrary, and will depend on the problem at hand. In practical 

problems the fraction of good elements in the population will be unknown. The 

problem is to estimate this fraction based on the composition of the sample, and to 

know how accurate this estimate is likely to be. The natural estimate of the fraction 

of good elements in the population is the fraction of good elements in the sample. 

That is to say, population percentages are estimated by sample percentages. The 

accuracy of this estimate depends on exactly what procedure was used to obtain 

the sample. The ideal is to obtain a sample that is as representative as possible of 

the whole population. This ideal is approached by picking the sample at random. 

Provided the sample size is large enough, the proportion in the sample will most 

likely be close to the proportion in the population. 

Sampling with Replacement 
Suppose n individuals are drawn one by one at random from a population of size 

N, with replacement between draws. On each draw it is assumed that each of the 

N individuals has the same chance of being chosen, and the successive draws are 

assumed independent. So all Nn possible sequences of choices are equally likely. 

This might be done, for example, by drawing tickets from a box, with replacement 

of the tickets and mixing between draws. There is no restriction on the sample size 
n. In principle, the procedure can be repeated indefinitely. 

Consider now the distribution of the number of good elements in a sample of size 

n with replacement from a population of G good and B bad elements, with G + 
B = N. This is the distribution of the number of successes in n independent trials, 

with probability p = G / N of success in each trial, that is to say the binomial (n, p) 
distribution for p = G / N. Provided the sample size n is large enough, this binomial 

distribution with parameters nand p = G / N is well approximated by the normal 

curve with parameters J.l = np and (J' = vnpq. According to the law of large numbers, 

if n is sufficiently large, the proportion of good elements in the sample is likely to be 

close to the proportion p = G / N of good elements in the population. By the normal 

approximation, if n is sufficiently large, the number of good elements in the sample 

will lie in the range np ± 2vnpq with probability about 95%. So if n is sufficiently 

large, the proportion of good elements in the sample will lie in the range p±2Jpq/n 
with probability about 95%. Since .jiXj :::; 1/2, this means that 

P(p - 1/ vIn :::; sample proportion:::; p + 1/ vIn) ~ 95% 

If the proportion of good elements in a population is not known, the result above 

can be used to estimate the unknown proportion by the method of confidence 
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intervals. If the sample size is large, then with probability greater than 95% the sample 

proportion of good elements will lie within 1/ Vii of the population proportion. So 

if the observed proportion of good elements in a large sample is p, guess that the 

population proportion lies in the range p ± 1/ Vii. The interval p ± 1/ Vii is an 

approximate 95% confidence interval for the unknown population proportion. 

Sampling Without Replacement 

In this procedure, elements in a population of size N are drawn one by one at 

random as before, but without replacement between draws. The sample size n is 

now restricted to n :S N. At each stage it is assumed that no matter what elements 

have been drawn so far, all remaining elements are equally likely on the next draw. 

Equivalently, all possible orderings of n of the N elements are assumed equally 

likely. 

The number of different possible orderings of n out of N elements is denoted by 

(N)n, a symbol which can be read "N order n". As explained in Appendix 1, the 

product rule for counting gives the formula 

(N)n = N(N - 1) ... (N - n + 1) 

where there are n factors in the product. Compare with N to the power n: 

N n =N·N···N en factors) 

which is the larger number of possible samples with replacement, and N choose n: 

(~) = (N)n/n! 

which is the smaller number of different unordered samples or subsets of size n. 
This is just the formula for (~) of Section 2.1 with N instead of nand n instead of 

k. When rewritten in the form 

this formula can be understood as follows: Each of the (~) possible unordered 

samples of size n can be ordered in n! different ways to obtain n! different ordered 

samples of size n. Thus (N)n, the number of ordered samples of size n, is (~) times 

n! by the product rule of counting. 

Consider now the distribution of the number of good elements in a sample of size 

n without replacement from a population of G good and B bad elements with 

G + B = N. The problem is to find the chance of getting 9 good and b bad elements 

in the sample, for 0 :S 9 :S nand 9 + b = n. Thinking in terms of an ordered random 
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sample, one way to get 9 good and b bad in the sample is if the first 9 elements in 

the sample are good and the last b are bad. Either by the product rule for conditional 

probabilities, or by the product rule for counting, the chance of this event is 

G G-1 G-g+1 

N N-1 N-g+1 

B B-1 
.-_._---
N-g N-g-1 

B - b+ 1 

N-g-b+1 

This is the chance of just one of (;) different possible patterns of 9 good and b bad 

elements in an ordered sample of size n. But the chance of any other pattern of 

9 good and b bad, for example, the first b elements bad and the next 9 elements 

good, is just the same, because the same factors then appear in a different order. 

Thus, multiplying the above expression by (;) gives the chance of 9 good and b 
bad elements appearing in an unspecified pattern, as in the second formula of the 

following box: 

Sampling With and Without Replacement 
Suppose a population of size N contains G good and B bad elements, with 

N = G + B. For a sample of size n = 9 + b, where 0 ::; 9 ::; n, the probability 

of getting 9 good elements and b bad elements is 

• for sampling with replacement 

(n) GgBb 
P(g good and b bad) = --

9 Nn 

• for sampling without replacement 

P( d db b d) = (n) (G)g(B)b = (;) (~) 
9 goo an a 9 (N)n (~) 

The formula for sampling with replacement is just the usual binomial formula writ­

ten in a way that parallels with the first formula for sampling without replacement. 

The second formula for sampling without replacement follows from the first by can­

cellation after using the formula (~) = (M)m/m! three times. This expression can 

also be derived another way, by working in the outcome space of all (~) possi­

ble unordered samples. Since there are n! ordered samples corresponding to each 

unordered sample, each possible unordered sample has the same chance 

And (;) (~) is the number of possible unordered samples with 9 good and b bad 

elements, by yet another application of the product rule of counting. The good 
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G=2 
B=8 

G=4 
B=6 

G=6 
B=4 

G=8 
B=2 

n=2 

FIGURE 1. Some hypergeometric distributions. The histograms display the distribution of the 

number of good elements in a sample of size n without replacement from a population of N = 10 

elements, containing G good elements and B = 10 - G bad ones, for n = 2,4,6,8 (different 

columns) and G = 2,4,6,8 (different rows). Each horizontal scale is marked by ticks at 0,1, ... , 10 

n=4 n=6 n=8 
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elements can be chosen in (~) ways, and no matter how these are chosen, the bad 

ones may be chosen in (~) ways. This method of counting unordered samples is 

what is used to calculate the probabilities of various poker hands. See Exercise 12. 

The hypergeometric distribution. This is the name of the distribution of the num­

ber of good elements in a sample of size n without replacement from a population 

of C good and N - C bad elements. The distribution has three parameters, n, Nand 

C. The probability that this distribution assigns to 9 E {O, 1, ... , n} is the probability 

P(g good and b bad) for sampling without replacement, as in the box, for b = n - 9 
and B = N - C. Note that this probability may be zero for some 9 between 0 and 

n. (See Exercise ll). The fact that these probabilities add up to 1, and so define a 

distribution on {O, 1, ... ,n}, is not obvious from the formula, but it follows at once 

from the rules of probability: as 9 varies from 0 to n the events of getting 9 good 

elements and b bad elements in sampling without replacement form a partition of 

the whole outcome space. 

Binomial approximation to the hypergeometric distribution. If N, C, and B 

are large in comparison to n, g, and b, the formulae for sampling with and without 

replacement give nearly identical probabilities. More precisely, for fixed n, b, and g, 

and N ---> 00, C ---> 00, and B ---> 00, the ratio of the two probabilities tends to l. 

This follows from the fact that for any fixed n, 

In practice, this makes the binomial distribution a useful approximation to the more 

complicated hypergeometric distribution. The approximation is quite intuitive, be­

cause if the sample size is small in comparison to the population size there is very 

little chance of a duplicate in sampling with replacement. The chance of getting a 

duplicate in sampling with replacement is just 1 - (N)n/ Nn ~ 0 if n « V'N (see 

the birthday problem of Section l.6). And given that there are no duplicates, the 

sample with replacement is just like a sample without replacement, in the sense that 

all orderings are equally likely. 

Normal approximation to the hypergeometric distribution. This is discussed 

in Section 3.6. 

Exercises 2.5 
1. Suppose you take a random sample of 10 tickets without replacement from a box 

containing 20 red tickets and 30 blue tickets. 

a) What is the chance of getting exactly 4 red tickets? 

b) Repeat a) for sampling with replacement. 

2. Three cards are dealt from a standard deck of 52 cards, containing 26 red cards and 26 

black cards, Write down the probability that: 

a) the first card is red and the second two black; 
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b) exactly one of the cards dealt is red; 

c) at least one of the cards dealt is red. 

3. A deck of cards is shuffled and dealt to four players, with each receiving 13 cards. Find: 

a) the probability that the first player holds all the aces; 

b) the probability that the first player holds all the aces given that she holds the ace 

of hearts; 

c) the probability that the first player holds all the aces given that she holds at least 

one; 

d) the probability that the second player holds all the aces given that he holds all 

the hearts. 

4. A population of 100,000 people consists of 40% men and 60% women. A random 

sample of size 100 is drawn from this population without replacement. Write down an 

expression for the probability that there are at least 45 men in the sample. Approximately 

what is the value of this probability? 

5. Suppose 55% of a large population of voters actually favor candidate A. How large a 

random sample must be taken for there to be a 99% chance that the majority of voters 

in the sample will favor candidate A? 

6. In a hand of 13 cards drawn randomly from a pack of 52, find the chance of: 

a) no court cards (J, Q, K, A); 

b) at least one ace but no other court cards; 

c) at most one kind of court card. 

7. A box contains 50 black balls and 30 red balls. Fou: balls are drawn at random from 

the box, one after the other, without replacement. Find the chance that: 

a) all four balls are black; 

b) exactly three balls are black; 

c) the first red ball appears on the last draw. 

8. In a raffle with 100 tickets, 10 people buy 10 tickets each. If there are 3 winning tickets 

drawn at random find the probability that: 

a) one person gets all 3 winning tickets; 

b) there are 3 different winners; 

c) some person gets two winners and someone else gets just one. 

9. A lot of 50 items is inspected by the following two-stage plan. 

0) A first sample of 5 items is drawn without replacement. If all are good the lot is 

passed; if two or more are bad the lot is rejected. 

Oi) If the first sample contains just one bad item, a second sample of 10 more items is 

drawn without replacement (from the remaining 45 items) and the lot is rejected 

if two or more of these are bad. Otherwise it is accepted. 

Suppose there are 10 bad items in the lot. 
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a) What is the probability that the second sample is drawn and contains more than 

one bad item? 

b) Write down an expression for the probability that the lot is accepted. 

10. Suppose a population of N elements consists of G good, B bad, and I indifferent 

elements, with B + G + I = N. If a random sample of size n is drawn with replace­

ment from this population, explain why the chance that the sample contains kl good 

elements, k2 bad elements, and k3 indifferent elements, where kl + k2 + k3 = n, is 

I 
n. (Gj N)kl (B j N)k2 (I jN)k3 

kdk2!k3! 

11. Range of the hypergeometric distribution. For 1 ::; n ::; Nand 0 ::; G ::; N, 

describe the set of g with 0 ::; g ::; n such that there is strictly positive probability 

of getting g good elements in a random sample of size n without replacement from 

a population of G good and N - G bad elements. Explain why the formula for the 

probability in question gives the correct value, (possibly 0) for all 0 ::; g ::; n. 

12. Poker hands. Assume all (552) hands equally likely. Find the prohability of being 

dealt: 

a) a straight flush (5 consecutive cards of the same suit); 

b) four of a kind (ranks a, a, a, a, b); 

c) a full house (ranks a, a, a, b, b); 

d) a flush (5 of the same suit, not a straight flush); 

e) a straight (5 consecutive ranks, not a flush); 

f) three of a kind (ranks a, a, a, b, c); 

g) two pairs (ranks a, a, b, b, c); 

h) a pair (ranks a, a, b, c, d); 

j) none of the ahove. 

13. A factory which produces chips in lots of ten thousand uses the following scheme to 

check the quality of its product. From each lot of chips produced, a random sample of 

size 500 is taken. If the sample contains 10 or less defectives, the lot is passed. If the 

sample contains more than 10 defectives, another random sample of size 500 is chosen 

from the lot. If this sample contains 10 or less defectives, the lot is passed. Otherwise, 

the lot is rejected. If a lot actually contains 5% defectives, find the chance that it will 

pass. [Approximate by sampling with replacement. and use the normal curve.J 
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Repeated Trials and Sampling: Summary 

Binomial Probability Formula 

P(k successes in n trials) = (~)pkqn-k for independent trials with 

p = probability of success on each trial, 

q = 1 - p = probability of failure on each trial. 

For fixed n, as k varies from 0 to n, these probabilities define the binomial (n, p) distribution 
on {O, 1, ... , n}. That the probabilities add to 1 amounts to the 

Binomial Theorem: (p + qt = t (~)pkqn-k 
k=O 

Here, ( n) = n! = n(n-l) .. ·(n-k+l) 
k k!(n-k)! k(k-l) .. ·l 

= binomial coefficient called n choose k 

= number of ways to pick k places out of n 

= number of subsets of k of a set of n 

= number in row n, column k of Pascal's triangle 

Note: (~) = (~) = 1 

Recursion Formula for Pascal's Triangle 

(for 0 < k < n, n = 1,2, ... ) 

Symmetry of Pascal's Triangle 

Consecutive Ratios in Pascal's Triangle 



Consecutive Ratios in the Binomial (n, p) Distribution 

R(k) = P(k) 
P(k - 1) 

(n-k+1)p 

k q 

Mode of Binomial (n, p) Distribution: m = most likely value = int(np + p) 

Normal Approximation to the Binomial Distribution 

P(k)~~¢(k:l1) 

where 11 = np is the mean, 

e> = .jnpq is the standard deviation, 

z = (k - 11) / e> is k in standard units, 

Summary 131 

1 1 2 

¢(z) = __ e- 2z is the standard normal density function. 
v'2ii 

where il>(z) = [Zoo ¢(x)dx is the standard normal c.d.J. 

This approximation should be used only if e> ~ 3. The larger e>, the better. 

il>(-z) = 1- il>(z) 

il>(a, b) = il>(b) - il>(a) 

il>(-b,b) = 2il>(b)-1 

P(11 - e> to 11 + e> success in n trials) ~ il>( -1, 1) ~ 68% 

P(I1- 2e> to 11 + 2e> success in n trials) ~ il>( -2, 2) ~ 95% 

P(11 - 3e> to 11 + 3e> success in n trials) ~ il>( -3, 3) ~ 99.7% 

Square Root Law for Independent Trials: The deviation from the expected number of successes 

np will most likely be a small multiple of e> = .jnpq :s: ~.,;n. 

P(p - In :s: sample proportion :s: p + In) ~ 95% 

Poisson Approximation to the Binomial Distribution 

If p is close to zero 

Random Sampling: See box on page 125. 

where 11 = np 

for large n. 
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Review Exercises 

1. Ten dice are rolled. Write down numerical expressions for 

a) the probability that exactly 4 dice are sixes. 

b) the probabiiity that exactly 4 dice are sixes given that none of the dice is a five. 

c) the probability of 4 sixes, 3 fives, 2 fours, and a three. 

d) the probability that none of the first three dice is a six given 4 sixes among the 

ten dice. 

2. A fair die is rolled 36 times. Approximate the probability that 12 or more sixes appear. 

3. Suppose I roll a fair die, then toss as many coins as there are spots on the die. 

a) What is the probability that exactly three heads appear among the coins? 

b) Given three heads appear, what is the probability that the die showed 4? 

4. A fair coin is tossed 10 times. Given that at least 9 of the tosses resulted in tails, what 

is the probability that exactly 9 of the tosses resulted in tails? 

5. A thumb tack was tossed 100 times, and landed point up on 40 tosses and point down 

on 60 tosses. Given this information, what is the probability that the first three tosses 

landed point down? 

6. Four numbers are drawn at random from a box of ten numbers 0,1, ... ,9. Find the 

probability that the largest number drawn is a six: 

a) if the draws are made with replacement; 

b) if the draws are made without replacement. 

7. 106 fair coins are tossed. Find a number k such that the chance that the number of 

heads is between 500,000 - k and 500,000 + k is approximately 0.96. 

8. Suppose you and I each roll ten dice. What is the probability that we each roll the same 

number of sixes? 

9. In a certain town, 10% of the families have no children, 10% have one child, 40% have 

two children, 30% have three children, and 10% have four children. Assume that births 

are independent of each other, and equally likely to produce male or female. 

a) One family is picked at random from all of the families in this town. What is the 

probability that there are at least two children in the family? 

b) One family is picked at random from all of the families in this town. Guess the 

size of the family, given that it has at least two girls. Give reasons for your guess. 

c) A family is picked at random from among the families with four children. Then 

a child is picked at random from the selected family. What is the chance that the 

child picked is a girl with at least one brother? 

10. Lie detectors. According to a newspaper report, in 2 million lie detector tests, 300,000 

were estimated to have produced erroneous results. Assuming these figures to be cor­

rect, answer the following: 
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a) If ten tests were picked at random from these 2 million tests, what would be 

the chance that at least one of them produced an erroneous result? Sketch the 

histogram of the distribution of the number of erroneous results among these ten 

tests. 

b) Suppose these 2 million tests were done on a variety of machines. If a machine 

were picked at random, then ten tests picked at random from these tests per­

formed on that machine, would it be reasonable to suppose that the chance that 

at least one of them produced an erroneous result would be the same as in a)? 

Explain. 

11. Consider two machines, A and B, each producing the same items. Each machine pro­

duces a large number of these items every day. However, production per day from 

machine B, being newer, is twice that of A. Further the rate of defectives is 1% for B 

and 2% for A. The daily output of the machines is combined and then a random sample 

of size 12 taken. Find the probability that the sample contains 2 defective items. What 

assumptions are you making? 

12. In poker, a hand containing face values of the form (x, x, y, z, w) is called one pair. 

a) If I deal a poker hand, what is the probability that I get one pair? 

b) I keep dealing independent poker hands. Write an expression for the probability 

that I get my 150th 'one pair' on or after the 400th deal. 

c) Approximately what is the value of the probability in b)? 

13. A seed manufacturer sells seeds in packets of 50. Assume that each seed germinates with 

a chance of 99%, independently of all others. The manufacturer promises to replace, 

at no cost to the buyer, any packet that has 3 or more seeds that do not germinate. 

What is the chance that the manufacturer has to replace more than 40 of the next 4000 

packets sold? 

14. a) If Ted and Jim are among 10 people arranged randomly in a line, what is the 

chance that they stand next to each other? 

b) What if the ten people are arranged at random in a circle? 

c) Generalize to find the chance of k particular people ending up all together if n 

people are arranged at random in a line or a circle. 

15. Draws are made at random with replacement from a box of colored balls with the fol­

lowing composition: 

color red blue green yellow 

proportion 0.1 0.2 0.3 0.4 

Write down and justify unsimplified expressions for the probabilities of the following 

events: 

a) exactly 5 yellow balls appear in 20 draws: 

b) exactly 2 red, 4 blue, 6 green and 8 yellow balls appear in 20 draws; 

c) the number of draws required to produce 3 red balls is 25. 
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16. Eight cards are drawn from a well-shuffled deck of 52 cards. What is the probability 

that the 8 cards contain: a) 4 aces; b) 4 aces and 4 kings; 

c) 4 of a kind (any kind, including the possibility of 4 of two kinds). 

17. If four dice are rolled, what is the probability of: 

a) four of a kind; b) three of a kind; c) two pairs' 

18. Seven dice are rolled. Write down unsimplified expressions for the probabilities of each 

of the following events: 

a) exactly three sixes; 

b) three of one kind and four of another; 

c) two fours, two fives, and three sixes; d) each number appears; 

e) the sum of the dice is 9 or more. 

19. In a World Series, teams A and B play until one team wins four games. Suppose all 

games are independent, and that on each game, the probability that team A beats team 

13 is 2/3. 

a) What is the probability that team A wins the series in four games? 

b) What is the probability that team A wins the series, given team B won games 1 

and 2' 

20. A computer communication channel transmits words of n bits using an error-correcting 

code which is capable of correcting errors in up to k bits. Here each bit is either a 0 

or a l. Assume each bit is transmitted correctly with probability p and incorrectly with 

probability q independently of all other bits. 

a) Find a formula for the probability that a word is correctly transmitted. 

b) Calculate the probability of correct transmission for n = 8, k = 2, and q = 0.01. 

21. Suppose a single bit is transmitted by repeating it n times and the message is interpreted 

by majority decoding. For example, for n = 5, if the message received is 10010, it 

is concluded that a 0 was sent. Assuming n is odd and each bit in the message is 

transmitted correctly with probability p, independently of the other bits, find a formula 

for the probability that the message is correctly received. 

22. Suppose that, on average, 3% of the purchasers of airline tickets do not appear for the 

departure of their flight. Determine how many tickets should be sold for a flight on an 

airplane which has 400 seats, such that with probability 0.95 everybody who appears 

for the departure of the flight will have a seat. What assumptions are you making; 

23. Ten percent of the families in a town have no children, twenty percent have one child, 

forty percent have two children, twenty percent have three, and ten percent have four. 

Assume each child in a family is equally likely to be a boy or a girl, independently of 

all the others. A family is picked at random from this town. Given that there is at least 

one boy in the family. what is the chance that there is also at least one girl? 
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24. In a large population, the distribution of the number of children per family is as follows: 

Number of children n 0 1 2 3 4 5 

Proportion families with n children 0.15 0.2 0.3 0.2 0.1 0.05 

Assume that each child in a family is a boy or a girl with probability 1/2, indepen­

dently. 

a) If a family is picked at random, what is the chance that it contains exactly two 

girls? 

b) If a child is picked at random from the children of this population, what is the 

chance that the child comes from a family with exactly two girls? 

25. At Wimbledon, men's singles matches are played on a "best of five sets" basis, that is, 

players A and E play until one of them has won 3 sets. Suppose each set is won by A 

with probability p, independently of all previous sets. 

a) For each i = 3,4,5, find a formula in terms of p and q = 1 - p that player A wins 

in exactly i sets. 

b) In terms of p and q, what is the probability that player A wins the match? 

c) Given that player A won the match, what is the probability (in terms of p and q) 

that the match lasted only three sets? 

d) Compute the probability in c) for the case p = 2/3. 

e) Do you think the assumption of independence made above is reasonable? 

26. Suppose 3 points are picked at random from 10 points equally spaced around the 

circumference of a circle. 

a) What is the probability that two particular adjacent points, say A and E, are both 

among the 3 points picked at random? 

b) What is the probability that among the 3 points picked at random there is least 

one pair of adjacent points? 

27. A university schedules its final examinations in 18 "examination groups", so that courses 

held at different times are in different examination groups. The examination times are 

spread over 6 days, with 3 examinations each day. Suppose all students take 4 exami­

nations. About what proportion of students will have their 4 examinations on different 

days? [You need to make some assumptions~state what the assumptions are.] 

28 The matching problem. There are n letters addressed to n people at n different 

addresses. The n addresses are typed on n envelopes. A disgruntled secretary shuffles 

the letters and puts them in the envelopes in random order, one letter per envelope. 

a) Find the probability that at least one letter is put in a correctly addressed envelope. 

[Hint: Use the inclusion-exclusion formula of Exercise 1.3.12] 

b) What is this probability approximately, for large n? 

29. Cosmic wimpout. In this game five dice are rolled. Four of the dice have the same 

set of symbols and numbers on their faces. The numbers are 5 and 10, and let us call 

the symbols A, B, C, and D. The fifth die is the same, except symbol D is replaced by 

a different symbol W, indicating a wild roll. In one version of the game, the following 

kinds of rolls count for a score: 
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• any roll that shows one or more numbers; 

• any roll that shows a triple of symbols, where the wild symbol W can count as 

any symbol you like, e.g., WAABC scores a triple, the W counting as A; 

• a roll that shows W together with one of each of the other symbols A, B, C, and 

D. 

Any other combination fails to score, and is called a wimpout. Calculate the probability 

of a wimpout. 

30. Stirling's formula. Use logarithms and calculus to derive an approximation of the 

form 

n! 'V C (~) \;n 
for some constant C. Now compare with the normal approximation to the probability 

of m heads and m tails in 2m fair coin tosses to deduce that C = ..f21i. 

31. The normal approximation works reasonably well whenever the area under the normal 

curve over the range of the binomial distribution is close to one. Show that if vnpq :2: 3, 

then at least 99% of the area under the normal curve is between 0 and n by showing: 

a) np - 3.;nPii :2: 0; b) nq - 3.;nPii :2: 0; c) 0 :::; np ± 3.;nPii :::; n. 

32. Call a card hand of h cards a straight if the denominations can be arranged as d, d + 
1, ... , d + h, for some 1 :::; d :::; 13 - h, where d = 1 represents ace, d = 11 for jack, 12 

for queen, and 13 for king (so aces only count low). Call the hand a flush if all h cards 

are of the same suit. Assume for simplicity that a straight flush counts both as a straight 

and as a flush. For which h is a straight more likely than a flush? 

33. a) How could you simulate a biased coin landing heads with probability p = 1/3 if 

you only had available a fair coin? 

b) How could you simulate fair coin tossing if you only had available a coin with 

unknown bias p strictly between 0 and I? 

34. a) Explain why if you and I each toss m fair coins, the chance that we both get the 

same (unspecified) number of heads equals the chance that we get exactly m 

heads and m tails between us. 

b) If I toss m fair coins, and you toss m + 1 fair coins, what is the chance that you 

get strictly more heads than I do? 

35. At roulette, the chance of winning a bet on a single number is 1/38. 

a) Write down a numerical expression for the chance of winning between 20 and 

35 bets (inclusive) out of 1000 bets on a single number. Do not evaluate this 

expression. 

b) Should the normal curve be used to approximate the chance in a)? (Give a rea­

son.) If yes, find the normal approximation. If no, use some better method of 

approximation. 

36. An efficient way of computing probabilities in the binomial (n,p) distribution to any 

desired degree of accuracy is to use the following method. Let m = int(np + p), and 

fix some small number E > O. Starting from H(m) = 1, find the histogram heights 
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H(k) = P(k)/P(m) for k = m + I,m + 2, ... by repeatedly multiplying consecutive 

odds ratios, until k = b say, the least k > m such that H(k) < E. Find H(k) for 

a:S: k < m similarly, where a is the greatest k < m such that H(k) < E. 

a) Show that the binomial (71, p) probability P( a to b) is at least 1 - E. 

[Hint: Use the fact that the consecutive odds ratios are decreasing to show P(b + j) :s: 
EP(m + j) for j = 1,2, ... , hence P(b + 1 to 71) :s: EP(m + 1 to 71). Bound the left tail 

similarly. This argument was discovered by N. Bernoulli around 1700.] 

b) For a :s: k :s: b let P(k I a to b) = H(k)/L; where L; is the sum of the H(j) over 

a < j < b. Deduce from a) that for a :s: k :s: b 

(1- E)P(kla to b):S: P(k):S: P(kla to b) 

So P( k I a to b) computed as above is an approximation to P( k) with a relative error 

of at most E. The computer run time to compute P(k I a to b) for every a :s: k :s: b is 
approximately K(b - a) for some constant K depending on the speed of the computer. 

c) Use the normal approximation to find an approximate formula for the run time 

in terms of 71, p, K, and E which will be asymptotically correct as 71 -+::xJ. 

d) If it takes my computer 2 seconds to compute this approximation to the distri­

bution of the number of reds in 100 spins of a roulette wheel with f = 0.001, 

approximately how long should it take my computer to approximate the distri­

bution for 1000 spins with the same f? 

37. Integrals related to equalizations in coin tossing. Let In = J~~~2 cos n(x)dx. 

a) Show that for 71 = 2,3, ... 

71-1 
In = --In- 2 

71 
{!f;7r fj;7r and -- < In < -.' 

71 + 1 n 

b) Referring to Exercise 2.3.3, show that these formulae yield much sharper hounds 

on ex7Tt = P(m in 2m), the probability of exactly m heads in 2m fair coin tosses, 

as well as the value of K = limm~oo vrnam. 
c) Use cos (x) ~ 1 - ~X2 for x ~ 0 and an exponential approximation to deduce 

that I n ~ C / Vn for large 71 where 

c = 1: ¢(z)dz 

Compare with the estimates of In in a) to conclude that C = J2; . 
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3 
Random Variables 

This chapter extends the ideas of mean, standard deviation, and normal approxima­

tion to distributions more general than the binomial. This involves sums and averages 

of randomly produced numbers. Random variables, introduced in Section 3.1, pro­

vide a good notation for this purpose. The concept of the expectation or mean of 

a random variable is the subject of Section 3.2. Then standard deviation and the 

normal approximation appear in Section 3.3. In these first three sections, attention 

is restricted to random variables with a finite number of possible values. The ideas 

are extended to random variables with an infinite sequence of possible values in 

Section 3.4, then to random variables with a continuous distribution in the following 

chapters. 

Introduction 
The number of heads in four tosses of a coin could be anyone of the possible 

values 0,1,2,3,4. The term random variable is now introduced for something like the 

number of heads, which might be one of several possible values, with a distribution 

of probabilities over this set of values. Typically, capital letters X, Y, Z, etc., are used 

to denote random variables. For example, X might stand for "the number obtained 

by rolling a die", Y for "the number of heads in four coin tosses", and Z for "the 

suit of a card dealt from a well-shuffled deck". This is not really a new idea, rather 

a compact notation for the familiar idea of something or other picked at random 

according to a probability distribution. 
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The range of a random variable X is the set of all possible values that X might 

produce. This section only considers random variables with a finite range. But infinite 

ranges will appear in later sections. Usually, and unless otherwise specified in the 

following development, the range of a random variable is assumed to be a set of 

numbers. In case not, the nature of the range can be indicated by a change in 

terminology. For example, random pair, random sequence, or random permutation. 

In the following table, Z might be called a random suit. 

TABLE 1. Some random variables and their ranges. 

Random variable Description Range 

X Number on a die {1,2,3,4,5,6} 

y Number of heads in 4 coin tosses {O,1,2,3,4} 

Z Suit of a card {., Q,", O} 

Distribution of X 

A statement about a random variable, such as "X ::; 3", defines an event. The event 

occurs if the statement is true, and does not occur if the statement is false. 

TABLE 2. Some events determined by X, the number on a die. 

Verbal description of event Notation Subset of range Probability 

1. Number on the die is less than or equal to 3 X::; 3 {1,2,3} 1/2 

2. Number on the die is 6 X=6 {6} 1/6 

3. Number on the die is less than or equal to x X ::;x {1,2, ... ,x} x/6 

4. Number on the die is x X=x {x} 1/6 

5. Number on the die is in the subset B XEB B #(B)/6 

In lines 3 and 4 of the table, x denotes an arbitrary element of the range of X. 

In line 5, B is a generic subset of the range of X. Events defined by statements 

about a random variable X are called events determined by X. Every such event 

can be written as "X E B" where B is the set of possible values of X for which 
the statement is true. The probability of this event is written P(X E B), or simply 

P(B). The notation P(B) is familiar as the probability of getting a value in B. The 

notation P(X E B) shows this probability refers to the random variable X. As B 

varies over subsets of the range of X, these probabilities must form a distribution, 

called the distribution of X. Assuming that X has only a finite number of possible 
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values, the distribution of X is determined by the probabilities of individual values, 

P(X = x) x E range of X 

via the addition rule 

P(X E B) = L P(X = x) 
xEB 

Here it is assumed that the random variable X has a uniquely specified value, no 

matter what happens. So the events (X = x) as x varies over the range of X are 

mutually exclusive and exhaustive, and their probabilities must add up to 1. By 

similar reasoning, P(X E B) is obtained by summing just over those values x in B. 
The probabilities P(X = x) can be displayed in a distribution table or histogram, or 

given by a formula. 

Dummy variables. There is nothing sacred about the use of the symbol x as a 

generic possible value of X. You could just as well use k or i or any other lowercase 

letter. For example, if X is the number of heads in four coin tosses, it makes perfect 

sense to write both 

P(X = k) = (!)T 4 

P(X ::; 2) = t, G) T4 

(k = 0, ... ,4) 

Here k and i are called dummy variables. It is a useful convention to reserve capital 

letters for random variables, small letters for dummy variables. Often a matching 

lowercase letter is used to denote a generic possible value for an uppercase random 

variable. But this is not always convenient. So be prepared for statements like 

P(X = v) = P(Y = v) 

which means that X and Y have the same chance of heing equal to v. 

Functions 

Often a random variable of interest, X say, is expressed as a function of another 

random variable W: 

X = g(W) 

Here 9 is a function detlned on the range of W with values in the range of X. Such 

a function is a deterministic rule. The rule is that if W has value w, then X has value 

g(w), uniquely determined by w, for every possihle value w of W. Put another way, 
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X gives a less detailed description of what is happening than W. The distribution of 

X can be derived from that of W, because any event defined by X can be written 

in terms of g(W) and hence in terms of W. As the next example shows, this is just 

a new way to say something familiar. 

Number of heads. 

Let X be the number of heads in two tosses of a fair coin. The distribution of X 

is the binomial distribution with parameters n = 2 and p = 1/2, as discussed in 

Section 2.1: 

x 0 1 2 

P(X = x) 1/4 1/2 1/4 

The probabilities of 1/4,1/2, and 1/4 were obtained from the natural outcome space 

for two coin tosses: {hh, ht, th, ttl, by assuming the two tosses were independent. 

Let W represent which of these outcomes appeared. Once the random outcome W 
of both tosses becomes known, the number of heads X is completely determined 

by X = g(W) where 9 is the function defined by the following table: 

Outcome of tosses w tt th ht hh 

Number of heads g( w) 0 1 1 2 

The same relationship is displayed in the following diagram: 

tt 

• 
o 

possible values of W 

th ht 

• 1 

possible values of X = g(W) 

• 
2 

hh 

As the blobs and arrows suggest, the probability of each possible value x of X is 

the sum of the probabilities of those w for which g(w) = x. For x = 2 and 0 there 

is a unique w giving g(w) = x, so P(X = x) = 1/4 for these x. But there are two 

outcomes w giving g(w) = 1, so P(X = 1) = 1/4 + 1/4 = 1/2. 
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The distribution of X = g(W). As in the last example with two trials, the number 

of successes in n trials can be regarded as a function of the detailed sequential 

outcome of all trials. To get the probability of a particular number k of successes, 

add the probabilities of all sequences giving rise to k successes. The same method 

gives a general formula for the distribution of X = g(W) in terms of the distribution 

of W. Keep in mind that while a function 9 must assign to each w a unique value 

of x, many values of w may be assigned the same x. The event (X = x) is the 

event that W has a value w such that g(w) = x. By the addition rule for probability, 

P( X = x) is the sum of the probabilities P(W = w) over all w such that g( w) = x: 

P(X = x) = P(g(W) = x) = L P(W = w) 

w:g(w)=x 

Given a random variable X, new random variables are created by common numerical 

functions, for example, 

2X 3X -5 IX -21 

To illustrate, if the value of X turns out to be -3, the values of these four variables 

are 

-6 -14 9 5 

Assuming the distribution of X is known, the probability of an event determined 

by a function of X is often found most simply by manipulating the statement of the 

event. The result of the manipulation is that the event in question occurs precisely 

when X falls in some set of values. To illustrate, suppose X has uniform distribution 

on the 19 integers {-9, -8, ... ,8, 9}. Then 

P(2X ::; 5) = P(X ::; 5/2) = 12/19 

P(3X - 5 ::; 5) = P(X ::; 10/3) = 13/19 

P(X2 ::; 5) = P( -V5 ::; X ::; V5) = 5/19 

P(IX - 21 ::; 5) = P( -5 ::; X - 2 ::; 5) 

= P( -3 ::; X ::; 7) = 11/19 

Events like the last one turn up in prediction problems. If you try predicting the 

value of X by guessing that X is 2, then IX - 21 is how far off your prediction is. 

And P(IX - 21 ::; 5), found above, is the chance that your prediction is off by 5 or 

less. 

Technical remark. In a more mathematical development of these ideas, it is nec­

essary to say precisely what kind of mathematical object is a random variable. In 

the usual treatment, a random variable X is, by definition, a numerical function 

X (w) defined on some basic space of possible outcomes w, where a probability 
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distribution is given. For example, X representing a number of heads as in Example 

1 would be the function X(w), denoted g(w) in that example, giving the num­

ber of heads as a function of a more complete description of the outcome. Then 

P(X E B) = P({w : X(w) E B}) defines the distribution of X in terms of prob­

ability on the basic outcome space. With this formalism, a function h defined on 

the range of X defines another random variable h(X), the composition of h and X, 
which is the function whose value for outcome w is h(X(w)). 

Joint Distributions 

Given two random variables X and Y defined in the same setting, we can consider 

their combined or joint outcome (X, Y) as a random pair of values. By definition, 

(X, Y) has value (x, y) if X has value x and Y has value y. Thus the event that 

((X, Y) = (x,y)) is the intersection of the events (X = x) and (Y = y), and is 

usually denoted (X = x, Y = y). So commas mean intersections in statements about 

random variables. 

The range of the joint outcome (X, Y) is the set of all ordered pairs (x, y) with x 
in the range of X, y in the range of Y, and P(X = x, Y = y) > O. If the range of 

X is represented by points on a horizontal line, and the range of Y by points on a 

vertical line, then the range of (X, Y) is represented by a set of points in the plane. 

Alternatively, the range of (X, Y) may be represented by a set of paths through a 

tree diagram, as in Chapter 1. 

The distribution of (X, Y) is called the joint distribution of X and Y. This distribution 

is determined by the probabilities 

P(x,y) = P(X = x, Y = y) 

which must satisfy 

P(x, y) 2: 0 and L P(x,y) = 1 

all (x,y) 

Two draws at random without replacement. 

Let X and Y be the first and second draws made at random without replacement 

from a box containing three tickets numbered 1, 2, and 3. Assuming all six possible 

pairs of draws are equally likely, the joint distribution of X and Y is displayed as 

follows. The entry at position (x, y) is P(x, y) = P(X = x, Y = y), the chance that 

the first draw is x and the second is y. Contrary to convention for matrices, here the 

first index x is for columns, increasing from left to right, and the second index y is 

for rows, increasing from bottom to top. This is to make the table consistent with 

conventional (x, y) co-ordinates in the plane, as in Figure 1 on page 148. 
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TABLE 3. Joint distribution table for (X, Y) 

possible values for X distn. of Y 

1 2 3 (row sums) 

possible 3 1/6 1/6 0 1/3 

values 2 1/6 0 1/6 1/3 

for Y 1 0 1/6 1/6 1/3 

distn. of X 1/3 1/3 1/3 1 

(column sums) Ctotal sum) 

As in this example, the distribution of X can be obtained using the following: 

Marginal Probabilities 

P(X = x) = LP(x,y) 
all y 

where the sum is over all possible y in the range of Y. 

This is just the basic addition rule for probabilities, since the events (X = x, Y = y) 
form a partition of (X = x) as y varies over the range of Y. The sum is over all 

entries in column x of the distribution table. These sums can be displayed as above 

to show the distribution table for X in a row along the bottom margin of the table. 

Similarly, the distribution of Y defined by 

P(Y=Y)=LP(x,y) 
all x 

can be displayed in a column on the right margin of the table. For this reason, when a 

joint distribution of X and Y is considered, the distribution of X and the distribution 

of Yare often called marginal distributions. 

Same random variable or same distribution? In the last example, while the two 

random variables X and Y have identical distributions, it would be wrong to say 

they were equal. Indeed, for the two draws without replacement, 

P(X = Y) = 0 

so X is certainly not equal to Y. A second example: if X is the number of heads 

in ten tosses of a fair coin, and Y is the number of tails in those ten tosses, then X 
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and Y have identical distributions. Still, X and Yare not equal, since, for instance, 

X = 6 makes Y = 4. However X equals 10 - Y, because no matter what the pattern 

of heads and tails, the number of heads is 10 minus the number of tails. That is to 

say X is certain to equal 10 - Y, or P(X = 10 - Y) = 1. The next box summarizes 

this distinction. 

Random Variables with the Same Distribution 
Random variables X and Y have the same or identical distribution if X and 

Y have the same range, and for every value v in this range, 

P(X = v) = P(Y = v). 

Change of Variable Principle 

If X has the same distribution as Y, then any statement about X has the same 

probability as the corresponding statement about Y, and g(X) has the same 

distribution as g(Y), for any function g. For example, 

P(a:::; X :::; b) = P(a :::; Y :::; b) for all a and b, 

and X 2 has the same distribution as y2. 

Equality of Random Variables 

Random variables X and Yare equal, written X = Y, if P(X = Y) = 1. In 

particular, if no matter what the outcome, the value of X equals the value of 

Y, then X = Y. 

If two random variables are equal, then they have the same dis~ribution. But 

random variables with the same distribution need not be equal. 

The change of variable principle is an immediate consequence of the definition of 

equality in distribution. A later subsection on symmetry shows how the change of 

variable principle can be used to avoid unnecessary calculations. 

Technical remark. The definition of equality of X and Y allows X and Y to differ 

on some exceptional set of outcomes that is assigned probability zero. This flexibility 

in the definition is of little significance for random variables with a finite range, but 

is convenient for random variables with infinite range, considered in later sections. 

Computing probabilities from a joint distribution. Once the joint distribution 

of X and Y has been calculated, the probability of any event defined in terms of X 

and Y can be found. Simply sum the probabilities P(x, y) over the relevant set of 

pairs (x, y): 
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Probabilities of Events Determined by X and Y 
The probability that X and Y satisfy some condition is the sum of P(x, y) over 

all pairs (x, y) satisfying that condition. For instance 

P(X < Y) = l: P(x, y) = l: l: P(x, y) 
(x,y):x<y all x y:y>x 

P(X = Y) = l: P(x,y) = l:P(x,x) 
(x,y):x=y all x 

Distribution of a function of X and Y. The distribution of any function of (X, Y), 
for example 

X+Y X-Y XY min (X, Y) max(X, Y) 

can be obtained from the joint distribution of X and Y. For example, 

P(X + Y = z) = P(x, y) = l: P(x, z - x). 
(x,y):x+y=z all x 

There is a similar formula for any function g(X, Y): the probability P[g(X, Y) = z] 
is the sum of P(x, y) over all pairs (x, y) with g(x, y) = z. 

Sum of the draws. 

Calculate the distribution of X + Y for two random draws X and Y from a box 

containing {1, 2, 3}: (a) without replacement, (b) with replacement. 

(a) From the joint distribution table given earlier for draws without replacement, 

the possible values of the sum S = X + Yare 3, 4, and 5. By inspection of the table, 

each possible value s for S corresponds to exactly two possible pairs (x, y), each 

with probability i. Hence the distribution of S is given by the following table: 

s 3 4 5 

P(S = s) 1/3 1/3 1/3 

(b) If the draws are made with replacement, then the joint probabilities are 

P(x, y) = 1/9 (1 ~ x ~ 3, 1 ~ Y ~ 3) 

Now, there is one possible pair adding to 2, two possible pairs adding to 3, three 

adding to 4, two to 5, and one to 6. Thus for draws with replacement the distribution 

of S is given by the table: 
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FIGURE 1. Distributions for sampling with and without replacement from {I, 2, 3}. Refer to 

Example 3. In each case the ioint distribution of (X, Y) is represented by a pattern of blobs, with 

the area of the blob over (x,y) proportional to P(x,y). The distributions of X, Y, and X + Y 

are displayed similarly around the edges of the ioint patt.;rn. Probabilities in these distributions are 

obtained by adding probabilities from the ioint distribution as indicated by the arrows. 
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s 2 3 4 5 6 

P(S = s) 1/9 2/9 3/9 2/9 1/9 

These calculations are illustrated in Figure 1. 

The example shows that to find the distribution of a function of two random variables 

X and Y, such as their sum, you must think in terms of the joint distribution of X and 

Y. Knowing that both X and Yare uniform on {I, 2, 3} is not enough to determine 

the distribution of X + Y. 

Minimum and maximum. 

Let X be the minimum and Y the maximum of three digits picked at random without 

replacement from {O, 1, ... , 9}. 

Find the joint distribution of X and Y. 

Because the sampling is done without replacement the three digits drawn must be 

distinct, so the only possible pairs of values for the minimum and maximum are 

integers x and y with 

0'l0 0 0 0 0 0 0 0 

:xl0 0 0 0 0 0 0 

['--0 0 0 0 0 0 

~(OOOOOO 

E: 
II L":l 0 0 0 0 

>-<"7l'000 
~ 
z :v:l 0 0 
:.; 
:l 

~ C'l0 

o 

012345678 9 
Values of X = min 

o :S x :S 7, x + 2 :S y, y:S 9, 

as marked in the diagram on the 

left. To find the chance of such a 

pair, forget the order in which the 

digits come, and think about what 

subset of three digits is chosen from 

{O, 1, ... , 9}. Every subset has the 

same chance of being chosen, 1 in 

C30) , or 1/120. To illustrate, for a 

minimum of 4 and a maximum of 

7 there are just 2 possible subsets, 

{4,5,7} and {4,6, 7}. In this case, 

there are 7 - 4 - 1 = 2 ways to pick 

the intermediate number. So 

P(X = 4, Y = 7) = (7 - 4 - 1)/120 

In general, for a minimum of x and a maximum of y, there are y - x-I possible 

subsets, one for each possible value ofthe third number between x and y. Therefore, 

for possible pairs x and y as above 

P(X = x, Y = y) = (y - x - 1)/120 

Find the distribution of Z = Y - X, the maximum minus the minimum. 
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Solution. The possible values of Z are clearly 2,3, ... ,9. Anyone of these possible values, z 
say, must come from a (min, max) pair (x, y) with a difference of y - x = z. Every 

such pair (x, y) has the same probability 

(y - x - 1)/120 = (z - 1)/120 

For z = 9 there is one pair (0,9), for z = 8 there are 2 pairs (0,8) and (1,9), and so 

on. In general, there are 10 - z possible pairs (x, y) with y - x = z. Therefore, 

P(Z = z) = (10 - z)(z - 1)/120 (z=2,3, ... ,9) 

To check, the sum of these probabilities from z = 2 to 9 is 

((8x1) + (7x2) + (6x3) + (5x4) + (4x5) + (3x6) + (2x7) + (lx8)) /120 = 1 

Conditional Distributions 

The basic rules of probability imply that for any given event A, and any random 

variable Y, the collection of conditional probabilities 

P(Y BIA) = P[(Y E B) and A] 
E P(A) 

defines a probability distribution as B varies over subsets of the range Y. This dis­

tribution is called the conditional distribution of Y given A. Intuitively, this is the 

appropriate revision of the distribution of Y given the information that event A has 

occurred. For Y with a finite range the conditional distribution of Y given A is 

specified by the conditional probabilities 

P(Y = y I A) for y E range of Y. 

The rules of a probability distribution imply P(Y E B I A) = LYEB P(Y = y I A). 

Most often the conditional distribution of Y given A is considered for each A of the 

form (X = x) for some random variable X. 

Conditional Distribution of Y Given X = x 
For each possible value x of x, as y varies over the range of Y the probabilities 

P(Y = y I X = x) define a probability distribution over the range of Y. This 

probability distribution, which may depend on the given value x of X, is called 

the conditional distribution of Y given X = x. 
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The given value x of X can be thought of as a parameter in the distribution of Y 

given X = x. If the joint distribution of X and Y is tabulated, then for given x the 

conditional probabilities P(Y = y i X = x), are found from the joint distribution 

table by lifting out column x of the table and renormalizing the probabilities in this 

column by their sum, which is P( X = x). Similarly, for given y, the probabilities 

P(X = xi Y = y) for x in the range of X are found by lifting out row y from the 

table of joint probabilities and renormalizing this row of probabilities by their sum, 

which is P(Y = y). 

If the marginal (unconditional) distribution of X is known, together with the con­

ditional distribution of Y given X = x for all possible values x of X, the joint 

distribution of X and Y is found using the 

Multiplication Rule 

P(X = x, Y = y) = P(X = x)P(Y = yiX = x) 

In this section conditional distributions serve only to motivate the following definition 

of independent random variables. See Section 6.1 (which can be read immediately) 

for a detailed discussion of conditional distributions for dependent random variables. 

Independence 

Intuitively, random variables X and Yare independent when the probabilities for 

various values of Yare unaffected by conditioning on the value of X. This is just a 

restatement in terms of random variables of the relation of independence between 

draws, trials, etc., as discussed in Chapter 1. For calculations with independent ran­

dom variables, the simplest definition of independence is the following one using 

the product rule: 

Independent Random Variables 
Random variables X and Yare independent if 

P(X = x, Y = y) = P(X = x)P(Y = y) for all x and y 

If X and Yare independent random variables, then every event determined 

by X is independent of every event determined by Y: 

P(X E A, Y E B) = P(X E A)P(Y E B) 
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Discussion. 

Conceptually, independence means that conditioning on a given value of X does 

not affect the distribution of Y, and vice-versa. Thus the above definition of inde­

pendence can be re-expressed as follows in terms of conditional distributions: 

Conditional Distributions and Independence 
The following three conditions are equivalent: 

• X and Yare independent; 

• the conditional distribution of Y given X = x does not depend on x; 

• the conditional distribution of X given Y = y does not depend on y. 

Independent or not? 

A box of 10 tickets contains some number r of red tickets. The rest are green. A 

sample of 100 tickets is drawn at random with replacement. Then a second sample 

of 100 tickets is drawn at random with replacement. Let X I be the number of red 

tickets in the first sample, and X 2 the number in the second sample. Are Xl and X 2 

independent? 

If you regard r as known, then no matter how many red tickets you see in the first 

100 draws, the second 100 draws is still a random sample with replacement from r 

red and 10 - r green tickets. Thus Xl and X 2 are independent random variables, 

each with binomial distribution with parameters n = 100 and p = r /10. 

On the other hand, if you don't know r, it seems intuitively obvious that X I and X 2 

are dependent. For if you saw 53 reds in the first 100 draws, you would be inclined 

to guess there were around 5 red tickets in the box, and expect to see around 50% 

red on the next 100 draws. Whereas if you saw 17 reds in the first 100 draws, you 

would guess that 2 of the 10 tickets were red, and expect to see only 20% or so red 

on the next 100 draws. Thus, knowing the value of Xl affects the chances of events 

determined by X 2 , so Xl and X 2 are dependent. 

Which solution is correct? It depends on whether r is regarded as a known constant, 

as in Solution 1, or the value of a random variable, R say, as in Solution 2. Solution 2 

can be made more precise by assuming that conditionally on the event (R = r) the 

random variables Xl and X 2 are independent, with binomial (100, r /10) distribution, 

just as if r were known as in Solution 1. But unconditionally these variables will be 

dependent, for the reasons given in Solution 2., Does it make sense to think of r as 

the value of a random variable R? With a frequency interpretation of probability, it 

makes sense only if the way the composition of the box was determined is regarded 

as somehow repeatable. The probabilities P(R = r) for 0 ::::; r ::::; 10 would then be 

long-run frequencies of different compositions. With a subjective interpretation of 
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probability, P(R = r) might be assigned according to your own opinion about the 

unknown number of reds in the box, even if there is no notion of repetitions. 

Several Random Variables 

The joint distribution of several random variables Xl, X 2, ... , X n is defined just as 

for two random variables by the joint probabilities 

for all possible values Xi of each Xi. Note that the commas signify an intersection of 

events. So P(Xl' ... ,Xn) is the probability that Xi has value Xi for every 1 ::; i ::; n. 
This concept will now be illustrated by a number of examples. 

Random permutations. A permutation of {I, 2, ... , n} is a sequential ordering of 

the n numbers with no repeats. A random permutation of {I, 2, ... ,n} is a permuta­

tion picked uniformly at random from all n! possible permutations of {I, 2, ... , n}. 

There are many ways to generate a random permutation. For example, 

• Suppose tickets numbered 1,2, ... , n are placed in a box and drawn one by one 

at random without replacement. Let Xi be the number of the ith ticket drawn, 

1 ::; i ::; n. Then (Xl, X 2, ... , Xn) is a random permutation of {I, 2, ... ,n} . 

• Suppose cards numbered 1,2, ... , n are thoroughly shuffled. Let Yi be the 

number of the ith card from the top of the deck. Then (Yl , Y2 , ... , Yn ) is a 

random permutation of {I, 2, ... , n}. 

Joint distribution of a random permutation. 

Describe the joint distribution of a random permutation of {I, 2, ... ,n}, that is the 

common joint distribution of (Xl, X 2, ... , X n) and (Yl , Y2 , ... , Yn). 

Informally the answer is just "the uniform distribution over all n! possible permuta­

tions of {I, ... ,n}". To illustrate for n = 3, (Xl ,X2 ,X3) is equally likely to be any 

one of the 3! = 6 permutations 

(1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1) 

and so is (Yl , Y2 , Y3)' To state this in a formula for a general n, the joint probabilities 

are given by 

{ lin! 
P(Xl,""Xn)= 0 

if (Xl"'" Xn) is a permutation of {I, 2, ... , n} 
otherwise 
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Problem 2. 

Solution. 

Note that P(XI, ... , xn) is a symmetric function of (Xl"", Xn), as defined in Section 

3.6, because for any rearrangement of the order of terms in a sequence, the original 

sequence is a permutation if and only if the rearranged sequence is a permutation. 

This symmetry property, studied further in Section 3.6, explains the simple solutions 

of both the next problem and the problem of Example 1.4.7. 

For each 1 ~ j ~ n, find the distribution of Xj for (Xl, X 2 , ... , Xn) a random 

permutation of {1, 2, ... , n}. 

For each 1 ~ X ~ n, the probability P(Xj = x) is the number of permutations with 

x in the jth place, divided by nL But if value x is fixed in the jth place, the values 

in the remaining n - 1 places can be any permutation of the set {1, 2, ... , n} with 

x deleted. Since there are (n - 1)! such permutations, whatever x E {1, 2, ... , n}, 
P(Xj = x) = (n - l)!/n! = lin. Conclusion: for every 1 ~ j ~ n, the distribution 

of Xj is uniform on {1, 2, ... , n}. 

Independence of several variables. Random variables Xl, ... , X n are independent 

if their joint probabilities are products of their marginal probabilities: 

for all possible values Xi of each Xi. Summing these probabilities over all (Xl, ... , xn) 

such that Xi E Ai shows that events of the form (Xi E Ai) determined by indepen­

dent random variables Xi are independent: 

P(XIEAI , X 2 EA2 ,··., XnEAn) = P(XI EAI )P(X2 EA2 )··· P(XnEAn) 

Here for each i the set Ai can be any subset of the range of possible values of Xi. 

The results of the next three paragraphs are consequences of this formula. 

Functions of independent random variables are independent. If X j , 1 ~ j ~ 

n, are independent random variables, then so are the random variables Yj defined 

by Yj = h(Xj) for arbitrary functions fj defined on the range of Xj. 

Disjoint blocks of independent random variables are independent. For ex­

ample, if XI,X2, ... ,X6 are independent, then (XI,X2)' (X3 ,X4 ), and (XS,X6) 

are three independent random pairs. These properties can be combined: 

Functions of disjoint blocks of independent random variables are indepen­

dent. For example, if X I, ... , X s are independent positive random variables, then 

so are YI , Y2 , and Y3 defined by YI = 5X3 +,.;x;" Y2 = X 4 X 2 , Y3 = Xl. 

Repeated trials. Independent random variables with the same distribution, for ex­

ample, repeated draws at random with replacement from some population, or re­

peated rolls of a die (perhaps biased) are called repeated trials. Independent trials 

that result in one of two possible outcomes, say success or failure, with constant 

probability p of success on each trial, as studied in Chapter 2, are called Bernoulli(p) 

trials. The number of successes Sn in n Bernoulli trials can be represented as 
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where Xi is the indicator of success on trial i, that is to say the random variable that 

is 1 if trial i is a success and 0 if trial i is a failure. The sum simply counts the number 

of 1's, that is the number of successes in the n trials. The sequence Xl, X 2 , ... , Xn 
is a sequence of n independent random variables, each with the Bernoulli(p) distri­

bution on {O, 1} defined at the end of Section 1.3. The Bernoulli(p) distribution of 

each Xi is the special case n = 1 of the binomial (n, p) distribution of the number 

of successes Sn in n trials, analyzed in Chapter 2. The next two sections show how 

the representation of Sn as the sum of n independent indicator variables leads to 

extensions of the law of large numbers and the normal approximation described in 

Chapter 2 to sums of independent random variables Xi with any common distribu­

tion over a finite set of possible values. 

Here is the generalization of the binomial distribution that describes the joint distri­

bution of counts in any finite number m of categories in independent trials. 

Multinomial Distribution 
Let Ni denote the number of results in category i in a sequence of independent 

trials with probability Pi for a result in the ith category on each trial, 1 ::; i ::; m, 

where PI + ... + Pm = 1. Then for every m-tuple of non-negative integers 

(nl' n2,"" n m ) with sum n 

The product of powers of the Pi represents the probability of any particular sequence 

of results with ni results in category i for each 1 :::; i :::; m, while the ratio of factorials 

called a multinomial coefficient is the number of different possible arrangements 

of symbols in a row of symbols made from nl symbols 1, n2 symbols 2, ... , and 

nm symbols m. A symbol i at place j in the row represents a result in category 

i on trial j. The derivation of this formula parallels the derivation of the binomial 

formula in Section 2.1, which is the special case m = 2. The multinomial distribution 

provides a natural example of a joint distribution of m variables N I , ... , N m that are 

not independent, due to the constraint that NI + ... + Nm = n. 

Fours, fives, and sixes. 

Suppose a fair die is rolled 10 times, and the numbers of rolls of four, five, and six 

are recorded. 
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Solution. 

Example 8. 

Problem. 

Solution. 

From the multinomial distribution for n = 10 trials, m = 4 categories ("four", "five", 

"six", and "other") with probabilities 1/6,1/6,1/6 and 3/6, the required probability 

is 

1O! (_61)1 (_61)2 (_61)3 (~6)4 P(Nfaur = 1, Nfive = 2, Nsix = 3, Nather = 4) = 1!2!3!4! 

Symmetry 

Symmetry arguments often simplify probability calculations. The basic idea is to 

recognize when probabilities of different events must be equal by symmetry. 

Symmetry about o. The distribution of X is symmetric about 0 if 

P(X = -x) = P(X = x) for all x 

A histogram displaying the distribution of X is then symmetric about 0 in the usual 

sense of reflection through the vertical axis. Equivalently, since P(X = -x) = 
P( -X = x) for all x, P( -X = x) = P(X = x) for all x. That is to say 

- X has the same distribution as X 

Then for all a 

P(X 2: a) = P(-X:::; -a) = P(X:::; -a) 

Here the first equality holds because the two events (X 2: a) and (-X:::; -a) 
are identical (multiplication by -1: note the reversal of the inequality). Also the 

probability P( -X :::; -a) equals P(X :::; -a) because any statement about -X has 

the same probability as the corresponding statement about X, by the equality in 

distribution of - X and X (change of variable principle). 

Symmetry about 0 for sums of independent random variables. 

Let Sn = Xl + ... + Xn where Xl"'" Xn are independent, and each Xi has a 

distribution that is symmetric about O. 

Show for every a 

P(Sn :::; -a) = P(Sn 2: a) 

In other words, the problem is to show that the distribution of Sn is symmetric 

about O. Since, by assumption, -Xi has the same distribution as Xi, and the Xi 
are independent, it follows that (-Xl, ... , -Xn) has the same joint distribution as 

(Xl"'" Xn). This uses the fact that functions of independent random variables 



Discussion. 

Example 9. 

Problem. 

Solution. 

Section 3.1. Introduction 1 57 

are independent (applied to !(Xi) = -Xi). Adding the coordinates of the two 

sequences (-X1, ... ,-Xn) and (X1, ... ,Xn) shows that -Sn = (-Xl) + ... + 
(-Xn) has the same distribution as Sn. That is to say, the distribution of Sn is 

symmetric about O. 

Note the use of the following form of the change of variable principle for sequences 

of random variables: if (X1"",Xn) and (Y1, ... ,Yn) have the same joint distri­

bution, then g(X1, ... , Xn) and g(Y1, ... , Yn) have the same distribution for any 

function 9 of n variables. For instance, Xl + ... + Xn and Y1 + ... + Yn have the 

same distribution. This fact was used in the example for Y; = -Xi. Note also how 

the reasoning did not involve any explicit summation of probabilities in the joint 

distribution of (Xl, ... , X n), which would be necessary to find a formula for the 

distribution of Sn. This is the point of a symmetry argument: to show two probabil­

ities are equal without calculating either of them. 

Symmetry about b. The distribution of a random variable Y with a finite number 

of numerical values is symmetric about b if 

P(Y = b + x) = P(Y = b - x) for all x 

Equivalently, the distribution of Y - b is symmetric about O. Then for every c 

P(Y ::; b - c) = P(Y 2 b + c) 

Symmetry for a sum of independent random variables. If Y; has distribution 

symmetric about bi , and the Y; are independent, then Y1 + ... + Yn has distribution 

symmetric about b1 + ... + bn . This follows from the result of the previous example 

applied to Xi = Yi - bi . 

Sum of 101 random digits. 

Let S101 denote the sum of 101 independent random digits, each picked uniformly 

at random from {O, 1, ... , 9}. 

Find P(SlOl ::; 454). 

Here S101 = Y1 + ... + Y101 for Y; that are independent, and the distribution of each 

Y; is symmetric about 4~. So the distribution of S101 is symmetric about 101 x (4~) = 
454.5. Therefore 

P(SlOl ::; 454) = P(SI01 ::; 454.5-.5) = P(SlOl 2454.5 + .5) = P(SI01 2455) 

But since S101 has integer values, P(SI01 ::; 454) + P(SI01 2 455) = 1, which forces 

P(SlOl ::; 454) = ~. 
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Discussion. For Sn the sum of n digits the argument shows that the distribution of Sn is symmetric 

about (4~)n for every n. For odd n, say n = 2m + 1, this symmetry can be used just 

as above to identify a probability in the distribution of S2m+1 that is exactly 1/2: 

P(S2m+l 'S 9m + 4) = P(S2m+l ~ 9m + 5) = ~ 

For odd n the histogram of Sn has bars of equal height at the integers (4~)n ± 1/2, 

(4~)n ± 3/2, ... , so the distribution splits perfectly into two equal halves. For even 

n the histogram of Sn has a bar exactly on the point of symmetry (4~ )n, and equal 

bars at (4~)n ± 1, (4~ )n± 2, .... Then the distribution of Sn does not split into equal 

halves to the right and left of (4~ )n, because there is a lump of probability right on 

the point of symmetry which cannot be split in two. It can be shown that for even n 
the central probability P[Sn = (4~ )nJ is actually the largest individual probabilty in 

the distribution of Sn. It will be seen in Section 3.3 that for large n the distribution 

of Sn follows a normal curve very closely. This is similar to what happens for large 

n to the binomial (n, 1/2) distribution of Xl + ... + Xn for Xi picked at random 

from {a, I}. It follows that as in the binomial case, for large even n the distribution 

of the sum of n digits has central term P[Sn = (4~)nJ that converges to zero very 

slowly, like a constant over fo. For very large n = 2m this term can be ignored, so 

P(S2m 'S 9m) = P(S2m ~ 9m) ~ ~ 

The approximate probability ~ is less than the true probability by 

P(S2m = 9m)/2 rv c/rm 

where the constant c can be shown using the normal approximation to be equal to 

1/J337r, and "rv" means that the ratio of the two sides tends to 1 as m -. 00. (See 

Exercise 3.3.31). 

Exercises 3. 1 

1. Let X be the number of heads in three tosses of a fair coin. 

a) Display the distribution of X in a table. b) Find the distribution of IX - 11. 

2. Let X and Y be the numbers obtained in two draws at random from a box containing 

four tickets 1, 2, 3, and 4. Display the joint distribution table for X and Y: 

a) for sampling with replacement; b) for sampling without replacement. 

Calculate P(X ::; Y) from the table in each case. 

3. Suppose a fair die is rolled twice. Let S be the sum of the numbers on the two rolls. 

a) What is the range of S? b) Find the distribution of S. 

4. Let Xl and X 2 be the numbers obtained on two rolls of a fair die. Let YI = max(XI , X 2 ), 

Y2 = min(XI,X2). Display joint distribution tables for a) (XI ,X2); b) (YI , Y2 ). 
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5. Find the distribution of X l X 2 for Xl and X 2 as in Exercise 4. 

6. A fair coin is tossed three times. Let X be the number of heads on the first two tosses, 

Y the number of heads on the last two tosses. 

a) Make a table showing the joint distribution of X and Y. 

b) Are X and Y independent? c) Find the distribution of X + Y. 

7. Let A, B, and C be events that are independent, with probabilities a, b, and c. Let N 

be the random number of events that occur. 

a) Express the event (N = 2) in terms of A, B, and C. b) Find P(N = 2). 

8. A hand of five cards contains two aces and three kings. The five cards are shuffled and 

dealt one by one, until an ace appears. 

a) Display in a table the distribution of the number of cards dealt. 

b) Suppose that dealing is continued until the second ace appears. Again display 

the distribution of the number of cards dealt. 

c) Explain why the probabilities in the second table are just those in the first in a 

different order. (Hint: Think about dealing off the bottom of the deck!) 

9. A box contains 8 tickets. Two are marked 1, two marked 2, two marked 3, and two 

marked 4. Tickets are drawn at random from the box without replacement until a 

number appears that has appeared before. Let X be the number of draws that are 

made. Make a table to display the probability distribution of X. 

10. Blocks of Bernoulli trials. In n + m independent Bernoulli (p) trials, let Sn be the 

number of successes in the first n trials, T m the number of successes in the last m trials. 

a) What is the distribution of Sn? Why? 

b) What is the distribution of T m? Why? 

c) What is the distribution of Sn + Trn? Why? 

d) Are Sn and Tm independent? Why? 

11. Binomial sums. Let Un have binomial( n, p) distribution and let V rn have binomial( m, p) 
distribution. Suppose Un and V m are independent. 

a) Find the distribution of Un + V m without calculation by a simple argument that 

refers to the solution of Exercise 10. 

b) Compare the result of part a) to a calculation of P( Un + V m = k) for 0 S; k S; n+m 

from the joint distribution of Un and Vm, and hence prove the identity 

c) Derive the identity in part b) by a counting argument. [Hint: Classify the subsets 

of size k of {I, ... , n + m} by how many elements of {I, ... , n} they contain.] 

d) Derive the identity in part b) in another way by finding the coefficient ofpk qn+m-k 

in (p + qr+m = (p + q)n(p + q)m in two different ways. 
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e) Simplify the sum 2:7=0 G( 

12. Grouping multinomial categories. Suppose that counts (N1 , ... , Nm ) are the num­

bers of results in m categories in n repeated trials. So (N1 , . .. , N m) has multinomial 

distribution with parameters nand Pl, ... ,pm, as in the box above Example 7. Let 

1 ::; i < j ::; m. Answer the following questions with an explanation, but no calcula­

tion. 

a) What is the distribution of Ni? b) What is the distribution of Ni + N j ? 

c) What is the joint distribution of N i, N j , and n - Ni - N j ? 

13. A box contains 2n balls of n different colors, with 2 of each color. Balls are picked at 

random from the box with replacement until two balls of the same color have appeared. 

Let X be the number of draws made. 

a) Find a formula for P(X > k), k = 2,3, ... 

b) Assuming n is large, use an exponential approximation to find a formula for kin 

terms of n such that P(X > k) is approximately 1/2. Evaluate k for n equal to 

one million. 

14. In a World Series, teams A and B play until one team has won four games. Assume that 

each game played is won by team A with probability p, independently of all previous 

games. 

a) For 9 = 4 through 7, find a formula in terms of P and q = 1- P for the probability 

that team A wins in 9 games. 

b) What is the probability that team A wins the World Series, in terms of p and q? 

c) Use your formula to evaluate this probability for p = 2/3. 

d) Let X be a binomial (7,p) random variable. Explain why P(A wins) = P(X :::: 4) 

using an intuitive argument. Verify algebraically that this is true. 

e) Let G represent the number of games played. What is the distribution of G? For 

what value of p is G independent of the winner of the series? 

15. Let X and Y be independent, each uniformly distributed on {I, 2, ... ,n}. Find: 

a) P(X = Y); b) P(X < Y); c) P(X > Y); 

d) P(max(X, Y) = k) for 1::; k ::; n; 

e) P(min(X, Y) = k) for 1 ::; k ::; n; 0 P(X + Y = k) for 2::; k ::; 2n. 

16. Discrete convolution formula. Let X and Y be independent random variables with 

non-negative integer values. Show that: 

a) P(X + Y = n) = 2::=0 P(X = k)P(Y = n - k). 

b) Find the probability that the sum of numbers on four dice is 8, by taking X to be 

the sum on two of the dice, Y the sum on the other two. 

17. Let X be the number of heads in 20 fair coin tosses, Y a number picked uniformly at 

random from {O, 1, ... ,20}, independently of X. Let Z = max(X, Y). 

a) Find a formula for P(Z = k), k = 0, ... ) 20. 
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b) Without calculating out P( Z = k) exactly, sketch the histogram of Z, and explain 

its unusual shape. 

18. Three dice are rolled. 

a) What is the probability that the total number of spots showing is 11 or more' 

[Hint: No long calculations!) 

b) Find a number m such that if five dice are rolled, the probability that the total 

number of spots showing is m or more is the same as this probability of 11 or 

more spots from three dice. 

19. Sum of biased dice. Let S be the sum of numbers obtained by rolling two biased dice 

with possibly different biases described by probabilities PI, ... ,P6, and TI, ... , T6, all 

assumed to be nonzero. 

a) Find formulae for P(S = k) for k = 2, 7, and 12. 

b) Show that P(S = 7) > P(S = 2) T6 + P(S = 12):':..!.. 
TI T6 

c) Deduce that no matter how the two dice are biased, the numbers 2, 7, and 12 

cannot be equally likely values for the slim. In particular, the sum cannot be 

uniformly distributed on the numbers from 2 to 12. 

d) Do there exist positive integers a and b and independent non-constant random 

variables X and Y such that X + Y has uniform distribution on the set of integers 

{a,a+1,,,.,a+b}? 

20. Pairwise independence. Let Xl, ... ,Xn be a sequence of random variables. Suppose 

that Xi and Xj are independent for every pair (i,j) with 1 ~ i < j ~ n. Does this 

imply Xl, ... , Xn are independent? Sketch a proof or counterexample. 

21. Sequential independence. Let Xl, ... ,Xn be a sequence of random variables. Sup­

pose that for every 1 :<:: m :<:: n - 1 the random sequence (Xl, ... , X rn) is independent 

of the next random variable X mH. Does this imply Xl, ... , X n are independent' Sketch 

a proof or give a counterexample. 

22. Suppose that random variables X and Y, each with a finite number of possible values, 

have joint probabilities of the form 

P(X = x, Y = y) = f(.T)g(y) 

for some functions f and g, for all (x, y). 

a) Find formulae for P(X = x) and P(Y = y) in terms of f and g. 

b) Use your formulae to show that X and Yare independent. 

23. Suppose X and Yare two random variables such that X ~ Y. 

a) For a fixed number T, which would be greater, P(X ~ T) or P(Y ~ T)? 

b) What if T is a random variable? 

24. Suppose a box contains tickets, each labeled by an integer. Let X, Y, and Z be the 

results of draws at random with replacement from the box: Show that, no matter what 

the distribution of numbers in the box, 

a) P(X + Y is even) ~ 1/2; b) P(X + Y + Z is a multiple of 3) ~ 1/4. 
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3.2 Expectation 
The mean or expected value of a random variable X is a number derived from the 

distribution of X the same way that the mean or average x of a list of numbers 

(Xl, ... ,xn ) is derived from the empirical distribution of the list: 

x = (Xl + ... + xn)/n = L xPn(x) (1) 

all x 

where Pn(x) is the proportion of the n values Xk that are equal to x. These propor­

tions Pn(x), which sum to lover all x, define the empirical distribution of the list 

(see the end of Section 1.3). To illustrate, the average of the list (1,0,8,6,6,1,6) of 

n = 7 numbers is 

123 1 
(1 + 0 + 8 + 6 + 6 + 1 + 6)/7 = 0 x "7 + 1 x "7 + 6 x "7 + 8 x "7 = 4 

The second formula for x in (1) is a weighted average of values X with weights 

Pn(x). This formula is obtained in general, just as in the example, by grouping 

terms with a common x-value. The weighted average formula for x suggests the 

following definition: 

Mean of a Distribution 
The mean JL of a probability distribution P(x) over a finite set of numerical 

values x is the average of the values x weighted by their probabilities: 

JL=LxP(x) 
all x 

The center of gravity. If you think of a distribution of mass instead of probability, 

the mean is the center of gravity. Think of a histogram of the distribution as a shape 

cut from a rigid material of constant thickness and density. The mean value is then a 

balance point for the histogram. The shape balances when supported at the mean, 

tips over to the right when supported at a point to the left of the mean, and tips 

to the left when supported to the right of the mean. This is due to the principle of 

moments in mechanics. 

Mean of the binomial distribution. It is shown later in this section that the general 

definition of the mean JL of a distribution is consistent with the formula JL = np 
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for the binomial (n, p) distribution, used in Chapter 2. In n independent trials with 

probability p of success on each trial, you expect to get around J.L = np successes. 

So it is natural to say that the expected number of successes in n trials is np. This 

suggests the following definition of the expected value E(X) of a random variable 

X. For X the number of successes in n trials, this definition makes E(X) = np. See 

Example 7. 

Definition of Expectation 
The expectation (also called expected value, or mean) of a random variable X, 
is the mean of the distribution of X, denoted E(X). That is 

E(X) = LXP(X = x) 
all x 

the average of all possible values of X, weighted by their probabilities. 

Random sampling. 

Suppose n tickets numbered Xl,"" Xn are put in a box and a ticket is drawn at 

random. Let X be the x-value on the ticket drawn. Then E(X) = x, the ordinary 

average of the list of numbers in the box. This follows from the above definition, 

and the weighted average formula (1) for x, because the distribution of X is the 

empirical distribution of x-values in the list: 

P(X = x) = Pn(x) = #{i: 1 :::; i:::; n and Xi = x}/n 

Two possible values. 

If X takes two possible values, say a and b, with probabilities P(a) and P(b), then 

E(X) = aP(a) + bP(b) 

where P(a) + P(b) = 1. This weighted average of a and b is a number between a 
and b, proportion P(b) of the way from a to b. The larger P(a), the closer E(X) is 

to a; and the larger P(b), the closer E(X) is to b. 

a a b b 
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Example 3. 

Example 4. 

Indicators. 

This is the special case of the previous example for a = 0 and b = 1. Suppose 

X = fA is the indicator of event A. Since fA has value 1 if A occurs, 0 otherwise, 

the events (fA = 1) and A are identical by definition. So 

E(IA) = OP(IA = 0) + 1P(IA = 1) = P(A) 

Indicators may seem trivial at first. But they combine to produce more interesting 

random variables by sums and products. Examples follow later in this section. 

Rolling a die. 

Suppose X is the number produced by rolling a fair die. The definition of E(X) 
makes 

E(X) = 1P(X = 1) + 2P(X = 2) + ... + 6P(X = 6) 

111 111 
= 1 x 6" + 2 x 6" + 3 x 6" + 4 x 6" + 5 x 6" + 6 x 6" = 3.5 

Of course, you should not expect a Single die roll to be 3.5. But if you roll the die a 

large number of times you should expect the average of the rolls to be close to 3.5. 

To see why, calculate the sum of the rolls by grouping terms of the same value: 

sum of the rolls =1 x (number of l's) + ... + 6 x (number of 6's) 

Dividing by the total number of rolls now gives 

average of the rolls =1 x (proportion of l's) + ... + 6 x (proportion of 6's) 

Assuming a large number of independent rolls, each of these proportions is likely 

to be very close to 1/6, by the law of large numbers. The average of the rolls will 

then be close to E(X) = 3.5. If the die were biased, with probability Pi of rolling 

number i, the same reasoning shows the long-run average is likely to be very close 

to 

The long-run interpretation of expectation. In general, the long-run argument in 

the last example leads to the conclusion in the next box. A more precise formulation 

of this idea, a law of averages for independent trials, is given in Section 3.3. 

Expectation as a Long-Run Average 
If probabilities for values of X are approximate long-run frequencies, then 

E(X) is approximately the long-run average value of X. 
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Because expectation approximates a long-run average (and because Example 1 

equates an expectation and an average), the properties of expectation described 

in this section parallel properties of the ordinary average of a list of numbers. A 

summary of these properties of averages and expectations is displayed on pages 

180 - 18l. 

Comparison of the mean with other measures of location. The mean is one 

way to locate a central point in the distribution of X. But there are other ways, 

for example, the mode and the median. A mode is the most likely possible value 

of X (there may be more than one). And a median is a number m such that both 

P(X ::; m) and P(X ~ m) are at least 1/2. There may be more than one median. 

For example, if X is the number on a fair die, every integer between 1 and 6 is a 

mode of X, and every number between 3 and 4 is a median of X. The mean, the 

mode, and the median may be quite different. But if the distribution is symmetric 

about some point m, and has a single mode, the three quantities all equal m. Of all 

measures of location, the mean is most important in theory. This is due to the close 

connection between means and long-run averages, and the fact shown later in this 

section that the mean of the sum of two random variables is the sum of the means. 

There is no such simple rule for modes or medians. 

FIGURE 1. Mean, mode, and median. 

mode 

mean mean = median = mode 

Gambling Interpretation of Expectation: 

The Fair Price 

Suppose you bet on an outcome of some kind. You pay a fixed amount $b to place 

the bet, and the return from the bet is the random amount $X. For example, you 

might pay $4 to buy a return of $X where X is the number produced by a fair die 

roll. Suppose you made a long series of such bets, with independent repetitions of 

whatever random mechanism generates X, for example successive rolls of the die, 

or successive spins of a roulette wheel. After n repetitions, you have paid out $nb to 

place the bets. The return from your bets is the sum Sn = Xl + ... + X n, where Xi is 

the return from the ith bet. The basic assumption is that the Xi are independent with 

the same distribution as X. By the law of large numbers, the long-run proportion of 
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trials that yield x is approximately P(X = x). So over the n trials you should expect 

to see the return x about nP( X = x) times. The total or gross return from a large 

number n of bets (not subtracting the price of the bets) should therefore be around 

$LxnP(X = x) = $nE(X). 
x 

To summarize: 

Over the long run, for a series of independent bets with returns like $X, 
the average gross return per bet will probably be close to $E(X). 

If you pay the same price $b to bet each time, your long-run net return per bet from 

a large number of bets will probably be about $(E(X) - b). To illustrate, if you 

pay $4 for the return of $X for X the number on a fair die roll, over the long run 

you should expect to lose about 50 cents a game. Such considerations lead to the 

following interpretation of E(X) as a fair price: 

$E( X) is the fair price to pay for a return of $X. This price makes wins 

and losses tend to cancel out over the long run. 

Precise information about the degree of cancellation of wins and losses to be ex­

pected over the long run is provided by the normal approximation in the next sec­

tion. 

Indicator variables and fair odds. The idea of a fair price is a generalization of 

the fair odds rule presented in Section 1.1. Suppose you pay the price $b to get a 

return of $1 if an event A occurs, and no return otherwise. The return from your bet 

is then $fA where fA is the indicator of A. The fair price for this return is $b where 

b = E(IA) = P(A). 

This restates the fair odds rule (see Example 1.1.4). 

The Addition Rule 

Let $X and $Y be the returns from two bets on an outcome of some kind, for 

instance the returns from two stakes placed on different groups of numbers for a 

single spin of a roulette wheel. The combined return from the two bets is $(X + Y). 
It is quite intuitive that the fair price for this combination of two bets is 

$E(X + Y) = $E(X) + $E(Y), 

the sum of the fair prices of the individual bets. This is the fundamental addition 

rule of expectation stated in the following box, and derived from the definition of 

expectation on page 177: 
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Addition Rule for Expectation 
For any two random variables X and Y defined in the same setting, 

E(X + Y) = E(X) + E(Y) 

no matter whether X and Yare independent or not. Consequently, for a se­

quence of random variables X I, ... , X n, however dependent, 

In calculations the definition of expectation 

E(X) = LXP(X = x) 
all x 

is useful only if the formula for P(X = x) allows an easy evaluation of the sum 

over all x of xP(X = x). This happens only in the simplest examples. But even if 

the distribution of X is hard to compute, it is often possible to write X as a sum of 

simpler variables whose expectations are easily found Then the expectation of X 
is found by the addition rule. 

Sum of dice. 

Let Tn be the sum of numbers from n dice. Find E(Tn). 

Let Xl, ... , X n be the numbers obtained from the n die rolls. Then 

Tn = Xl + ... + X n, SO 

= 3.5 + ... + 3.5 

= (3.5)n 

by the addition rule 

(n terms) 

Despite the fact that the distribution of Tn becomes more and more difficult to 

calculate exactly as n increases, the formula for E(Tn) is simple. As a check, E(T2 ) 

can he found from its distribution: 

1 234 5 6 
E(T2 ) = 2 x - + 3 x - + 4 x - + 5 x - + 6 x - + 7 x -

36 36 36 36 36 36 
5 4 3 2 1 

+ 8 x - + 9 x - + 10 x - + 11 x - + 12 x -
36 36 36 36 36 

= 7. 
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Example 6. 

Problem. 

Solution. 

Values of 

11' 12, 13 

The Method of Indicators 

The idea of the method of indicators is that the random variable X that counts the 

number of events of some kind that occur can be represented as the sum of the 

indicators of these events. Then, by the addition rule for expectation, E(X) is just 

the sum of the probabilities of the events. This is illustrated by the following two 

examples. First, it is worth restating the result of Example 3: 

Expectation of an Indicator 
The expectation of the indicator of an event is the probability of the event: 

Working components. 

Suppose a system has n components, and that at a particular time the jth component 

is working with probability Pj, j = 1, ... , n. Let X be the number of components 

working at that time. 

Find a formula for E(X). 

No matter which components work and which do not, the total number X that 

work can be found by adding 1 for each component that works and 0 for each 

component that does not. This is an expression for X in terms of indicators. Let 

I j be the indicator random variable, which is 1 if the jth component is working, 0 

otherwise. Then, as illustrated in Figure 2 for the case n = 3, 

X = h +h+···+ln 

FIGURE 2. Venn diagram for the number of working components. Here n = 3. The event that 

a particular component works is represented by the area inside a circle. These can overlap in any 

way. 

o 

Values of 

X = 11 + I2 + I3 
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Example 7. 

Problem. 

Solution. 

Discussion. 
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Now take expectations of both sides. By the addition rule, and the fact that the 

expectation of Ij is Pj, 

You might think this problem could not be solved without further assumptions. True, 

the distribution of X cannot be found without assumptions about the dependence 

between the components. But due to the addition rule, E(X) is the same, no matter 

what the dependence. 

Mean of the binomial distribution. 

Suppose X is the number of successes in n independent trials with probability P of 

success in each trial, so X has binomial (n,p) distribution, as in Chapter 2. 

Derive the formula J-L = np for the mean of the binomial (n, p) distribution from the 

general definition of mean in this section. 

As in the previous example, the total number of successes in the n trials can be 

written as a sum of indicators X = h + ... + In where I j is the indicator of success 

on trial j, so E (1j) = p for each j, and the expected number of successes is 

E(X) = p + P + ... + p (n terms) 

=np 

This is not so obvious from the definition of E(X): 

E(X) = 2:xP(X = x) = t x (:)px(1- p)n-x 
all x x=o 

The calculation by the method of indicators implies that this expression must simplify 

to np. You can check this by algebra using the binomial theorem. 

The general method. Examples 6 and 7 both illustrate the method of indicators. 

The general idea is that a random variable X with possible values {O, 1, ... ,n} can 

alw;~ys be represented as counting the number of events that occur in some list of 

n events, say AI"'" An. Then X is called a counting variable. A suitable definition 

of the events Aj is usually clear from a verbal description of X. For instance, 

• if X is the number of components that work among n components, let Aj be 

the event that the jth component works (Example 6). 

• if X is the number of successes in n trials, let Aj be the event of success on 

trial j, for 1 ~ j ~ n (Example 7). 

• if X is the number of aces in a 5-card poker hand, let Aj be the event that the 

jth card dealt is an ace, 1 ~ j ~ 5 (Example 8). 
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Example 8. 

The statement 

X is the number of events Aj that occur 

is expressed mathematically by the identity of random variables 

x = h + 12 + ... + In (2) 

where I j is the indicator of A j . To illustrate, for X the number of aces in 5 cards, if 

the first and third cards are aces and the rest are not, this equation reads 

2=1+0+1+0+0 

while if the first three cards are aces and the last two are not, the equation reads 

3=1+1+1+0+0 

The point is that the number of aces can be found this way by adding zeros and 

ones, no matter what the arrangement of the cards. An equality like this, that holds 

by definition of the variables involved no matter what the outcome, is an identity 

of random variables. Take the expectation of both sides of (2), use the addition rule 

for expectation, and the fact that E(Ij) = P(A j ) by definition of Ij as the indicator 

of A j , to obtain the following generalization of the result of Examples 6 and 7: 

Expected Number of Events that Occur 
If X is the number of events that occur among some collection of events 

AI"'" An, then 

E(X) = P(Ad + P(A2 ) + ... + P(An) (3) 

Usually it is easy to find P(A j ), and add the results to find E(X), as in Examples 6 

and Example 7. 

The number of aces. 

Let X be the number of aces in a 5-card poker hand. The probability that any 

particular card is an ace is 4/52 (Examples 1.4.7 and 3.1.6), so the expected number 

of aces among 5 cards dealt from a well-shuffled deck is 

E(X) = 5 x 4/52 = 5/13 
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Compare with the method of computing E(X) directly from the definition of E(X) 
in terms of the distribution of X which was found in Section 2.5: 

You can check the second method gives the same answer. But the first method is 

quicker. 

When to use the method of indicators. The examples show how the method 

of indicators can be used to find E(X) for a counting variable X in either of the 

following circumstances: 

• The probabilities P(X = x) are known, but given by a formula that makes the 

expression E(X) = l:x xP(X = x) hard to simplify. 

• The nature of the dependence between the events Aj is either unknown, or 

known but so complicated that it is difficult to obtain a formula for P(X = x). 

The exact distribution of X depends in a fairly complicated way on the probabilities 

of various intersections of events being counted (Review Exercise 35). But, no matter 

what the dependence, the mean of the distribution is always given by the simple 

formula (3) for E(X). There is usually more than one way to write a counting 

variable X as the sum of indicators of some collection of events. To find E(X), all 

you need is one such collection of events whose probabilities you can calculate. 

The tail sum formula for expectation of a counting variable. Every random 

variable with possible values {O, 1, ... ,n}, however defined, is a counting variable 

representing number of events that occur in some list of n events AI,' .. ,An. To 

see this, let Aj be the event (X 2:: j). If X = x for ° ~ x ~ n, then Aj occurs 

for 1 ~ j ~ x, and Aj does not occur for x < j ~ n. So if X = x the number of 

events Aj that occur is precisely x. The resulting formula for E(X) obtained by the 

method of indicators is displayed in the following box. Example 9 below gives an 

application. 

Tail Sum Formula for Expectation 
For X with possible values {O, 1, ... , n}, 

n 

E(X) = L P(X 2:: j) 
j=1 
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Example 9. 

Problem 1. 

Solution. 

Discussion. 

Problem 2. 

Alternative proof of the tail sum formula. Define Pj = P(X = j). Then the 

expectation E(X) = 1PI + 2P2 + 3P3 + ... + nPn is the following sum: 

PI 

+P2+P2 

+P3 + P3 + P3 

+ Pn + Pn + Pn + ... + Pn 

By the addition rule of probabilities, and the assumption that the only possible values 

of X are {O, 1, ... , n}, the sum of the first column of p's is P(X 2: 1), the sum of the 

second column is P(X 2: 2), and so on. The sum of the jth column is P(X 2: j), 
1 :=:; j :=:; n. The whole sum is the sum of the column sums. 0 

Expectation of a minimum. 

Suppose that four dice are rolled. 

Let M be the minimum of four numbers rolled. Find E(M). 

For any 1 :=:; j :=:; 6, the event (M 2: j) means that each Xi is at least j, where Xi is 

the number on the ith die. Thus 

(
6 . 1)4 

P(M 2: j) = P(XI 2: j,X2 2: j,X3 2: j,X4 2: j) = - ~ + 

by independence of the X's, and fact that there are 6 - j + 1 possible values for 

each X between j and 6. The tail sum formula gives 

E(M) = P(M 2: 1) + P(M 2: 2) + ... + P(M 2: 6) 

= (~) 4 + (~) 4 + (~) 4 + (~) 4 + (~) 4 + (~) 4 ~ 1. 755 

The point of using the tail sum formula in this example is that the tail probabilities 

P(M 2: j) are simpler than the individual probabilities 

P(M = m) = P(M 2: m) - P(M 2: m + 1) 

If you substitute this in the definition E(M) = L:m mP(M = m), and simplify, you 

will find the coefficient of P(M ::::: j) is 1 for each j from 1 to n. That is the substance 

of the tail sum formula. 

Let S be the sum of the largest three numbers among four dice. Find E(S). 



Solution. 

Remark. 
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Notice that S = T - M, where T is the sum of all four numbers, and M is the 

minimum number. From Example 5, E(T) = 4 x (3.5) = 14, and the value of E(M) 

was just found. Since by the addition rule for expectation, 

E(T) = E(T - M) + E(M) = E(S) + E(M) 

E(S) = E(T) - E(M) = 14 - 1.755 = 12.245 

It is much harder to find E(S) via the distribution of S. 

When is the sum of indicators an indicator? A sum of O's and l's is 0 or 1 if and 

only if there is at most a single 1 among all the terms. For events Aj with indicators 

I j , this means that L: j I j is an indicator variable if and only if at most one of the 

events Aj can occur, that is, if and only if the events Aj are mutually exclusive. Then 

L: j I j is the indicator of the event U j Aj that at least one of the events Aj occurs. 

So in this case the result of the method of indicators is just the addition rule for 

probabilities: 

P(Uj Aj) = L: j P(Aj ) if the Aj are mutually exclusive. 

Boole's inequality. In general, for possibly overlapping events Aj , the above equal­

ity is replaced by Boole's inequality of Exercise 1.3.13: 

If X is the number of events Aj that occur, the left side is P(X ::::: 1), and the right 

side is E(X). SO Boole's inequality can be restated as follows: for any counting 

random variable X, 

P(X 2: 1) ::::; E(X) 

This follows from the addition rule of probabilities and the definition of E(X): 

P(X2:1)=PI+ P2+ P3+"'+ Pn 

::::; PI + 2P2 + 3P3 + ... + nPn = E(X) 

To illustrate, Example 8 showed the expected number of aces among 5 cards is 5/13. 

So the probability of at least one ace among 5 cards is at most 5/13 :;:;j 0.385. The 

exact probability of at least one ace among 5 cards is 1 - (~8) / (552) :;:;j 0.341. In this 

case the upper bound of Boole's inequality is quite close to the exact probability 

of the union of events, because the probability of two or more aces in 5 cards is 

rather small (about 0.042). In other words, the events AI, ... , A5 do not overlap very 

much. 

A generalization of Boole's inequality, called Markov's inequality, is illustrated by 

the following example: 
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Example 10. 

Problem. 

Solution. 

Discussion. 

Bounding a tail probability. 

For a non-negative random variable X with mean E(X) = 3, what is the largest that 

P(X 2: 100) could possibly be? 

The constraint that X is non-negative, i.e., X 2: 0, means that P(X 2: 0) = 1. In 

other words, all the probability in the distribution of X is in the interval [0, 00). Think 

of balancing a distribution of mass at 3, with all the mass in [0,00). How can you get 

as much mass as possible in the interval [100,00)? Intuitively, the best you can do is 

to put some of the mass at 100 and the rest at 0 (as far to the left as allowed by the 

non-negativity constraint). This distribution balances at 3 if the proportion at 100 is 

3/100. This shows P(X 2: 100) can be as large as 3/100, and suggests it cannot be 

larger. Here is a proof. In the sum 

2: xP(X=x)=3 
all x 

the terms with x 2: 100 contribute 

2: xP(X = x) 2: 2: 100P(X = x) = lOOP (X 2: 100) 

x2:100 x2:100 

while all the terms are non-negative by the assumption that X 2: O. This then gives 

3 2: 100P(X 2: 100), or P(X 2: 100) ::::: 3/100. 

With arbitrary E(X) and a instead of 3 and 100, this proves the following inequality. 

The point is that if X 2: 0, meaning all the possible values of X are non-negative, or 

P(X 2: 0) = 1, then knowing E(X) puts a bound on how large the tail probability 

P(X 2: a) can be. 

Markov's Inequality 

If X 2: 0, then P(X 2: a) ::::: E(X) for every a > O. 
a 

Expectation of a Function of a Random 

Variable 
Recall from Section 3.1 that if X is a random variable with a finite set of possible 

values, and g(x) is a function defined on this set of possible values, then g(X) is 

also a random variable. Examples of typical functions of a random variable X, whose 

expectations may be of interest, are X, X 2 , Xk for some other power k, log (X) 
(assuming X > 0), eX, or zX for some other number z. The notation g(X) is used 

for a generic function of X. 
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Expectation of a Function of X 
Typically, E[g(X)] of- g[E(X)]. Rather 

E[g(X)] = Lg(x)P(X = x) 
all x 

(4) 

This formula is valid for any numerical function 9 defined on the set of possible 

values of X. In particular, for g(x) = xk with k = 1,2, ... the number 

E(Xk) = Lxkp(X = x) 

all x 

derived from the distribution of X is called the kth moment of X. 

The point of formula (4) is that it expresses E[g(X)] directly in terms of the dis­

tribution of X, without consideration of the set of possible values of g(X) or the 

distribution of g(X) over these values. This is an important shortcut in many calcu­

lations. 

Proof ofthe formula for E[g(x)]. Look at the sum Lall x g(x)P(X = x), which 

is claimed to equal E[g(X)]. Group the terms according to the value y of g(x). The 

terms from x with g(x) = y have sum 

L g(x)P(X = x) = L yP(X = x) = yP(g(X) = y) 
x:g(x)c=y x:g(x)c=y 

Now summing over all y gives E[g(X)]. 0 

Constant factors. If X is a random variable, then so is cX for any constant c. This 

is g(X) for g(x) = cx. Apply the formula for E[g(X)] and factor the c out of the 

sum to see that E(cX) = cE(X). So constants can be pulled outside the expectation 

operator. 

Constant random variables. It is sometimes useful to think of a constant c as a 

random variable with just one possible value c. Of course, the expected value of a 

constant random variable is its constant value. 

Linear functions. The expectation of a linear function of X is determined by the 

mean or first moment of X: 

E(aX + b) = E(aX) + E(b) = aE(X) + b 

This is immediate from the addition rule and the last two paragraphs. Linear functions 

g(x) = ax + b are exceptional in that E[g(X)1 = g(E(X)), a rule that is false for a 

general function g. 
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Example 11. 

Moments. The first moment of X is just the mean or expectation of X. The second 
moment of X is E(X2), sometimes called the mean square of X. The term moment 
is borrowed from mechanics where similar averages with respect to a distribution 

of mass rather than probability have physical interpretations (principle of moments, 

moment of inertia). The moments of X are features of the distribution of X. Two 

random variables with the same distribution have the same moments. The first two 

moments of a distribution are by far the most important. The first moment gives a 

central value in the distribution. It will be seen in the next section that a quantity 

called variance derived from the first two moments gives an indication of how spread 

out the distribution is. Third moments are used to describe the degree of asymmetry 

of a distribution. Higher moments of X are hard to interpret intuitively. But they 

play an important part in theoretical calculations beyond the scope of this book. 

It will be seen in the next section that 

except in the trivial case when X is a constant random variable. 

Uniform distribution on three values. 

If X is uniformly distributed on { -1, 0, I}, then X has mean 

111 
E(X) = -1 x 3" + 0 x 3" + 1 x 3" = 0 

so [E(X)j2 = O. But, by the formula for E[g(X)] with g(X) 
moment of X is 

X2, the second 

Quadratic functions. The first two moments of X determine the expectation of 

any quadratic function of X. For instance, the quantity E[(X - b)2] for a constant 

b, which arises in a prediction problem considered below, is found by expanding 

(X - b)2 = X2 - 2bX + b2 and using the rules of expectation to obtain 

Functions of two or more random variables. The proof of the formula for E [g( X)] 
shows that this formula is valid for any numerical function 9 of a random variable 

X with a finite number of possible values, even if these values are not numerical. 

In particular, substituting a random pair (X, Y) instead of X gives a formula for the 

expectation of g(X, Y) for a generic numerical function 9 of two variables: 

E[g(X, Y)] = L g(x, y)P(X = x, Y = y) 
all (x,y) 
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Proof of the addition rule. Think of X, Y, and X + Y as three different functions 

of X and Y, two random variables with a joint distribution specified by probabilities 

P(x, y) = P(X = x, Y = y). By three applications of the formula for E[g(X, Y)], 

E(X) = L xP(x, y) 

all (x,y) 

E(Y) = L yP(x, y) 

all (x,y) 

E(X + Y) = L (x + y)P(x, y) 

all (x,y) 

Add the expressions for E(X) and E(Y) and simplify to get the expression for 

E(X + Y). Conclusion: The addition rule E(X) + E(Y) = E(X + Y). 

Expectation of a product. As in the proof of the addition rule, view XY, the 

product of X and Y, as a function of (X, Y) to obtain 

E(XY) = LLxyP(X = x, Y = y) 
x y 

where the double sum is a sum over all pairs (x, y) of possible values for (X, Y). 
This formula holds regardless of whether or not X and Yare independent. If X and 

Yare independent, the formula can be simplified as follows: 

E(XY) = LLxyP(X = x)P(Y = y) 
x y 

This yields the following: 

Multiplication Rule for Expectation 

If X and Yare independent then 

E(XY) = [E(X)][E(Y)] 

This multiplication rule will be used in the next section. Note well the assumption 

of independence. In contrast to the addition rule. the multiplication rule does not 

hold in general for dependent random variables. For example, if X = Y, the left 

side becomes E (X2) and the right side becomes [E (X) J2. These two quantities are 

typically not equal (Example 11). 
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Example 12. 

Problem. 

Solution. 

Example 13. 

Problem. 

Solution. 

Expectation and Prediction 

Suppose you want to predict the value of a random variable X. What is the best 

predictor of X? To define "best" you must de-.:ide on a criterion and a class of 

predictors. The simplest prediction problem is to predict the value of X by a constant, 

say b. Think in terms of losing some amount L(x, b) if you predict b and the value 

of X is actually x. The function L(x, b) is called a loss function in decision theory. 

It seems reasonable to try to pick b so as to minimize the expected loss, or risk 

r(b) = E[L(X, b)] 

Right or wrong. 

Suppose that L(x, b) = 0 if x = b, and 1 otherwise. So you are penalized nothing if 

you get the value of X right, and penalized by one unit if you get the value of X 

wrong. 

What is the best predictor? 

E[L(X, b)] = OP(X = b) + 1P(X -I b) = 1- P(X = b). 
So choosing b to minimize expected loss for this loss function is the same as choosing 

b to maximize P(X = b). That is to say, b should be a mode of the distribution of 

X. Many probability distributions have a unique mode. But every possible value of 

a uniformly distributed random variable is a mode. 

Absolute error. 

Suppose L(x, b) = Ix - bl. So the penalty is the absolute value of the difference 

between the actual value and the predicted value. Now there is a bigger penalty for 

bigger mistakes. The expected loss is 

r(b) = E(IX - bl) = L Ix - bIP(X = x) 
x 

by the formula for E[g(X)] applied to g(x) = Ix - bl for fixed b. 

Find b that minimizes r(b). 

This time the solution is the median. To see why, look for a fixed x at the derivative 

~IX-bl={ -1 if b<x 
db 1 if b > x 

The sum defining r(b) is over all possible values of X, say Xl < X2 < ... < xn . So 

provided that b -I Xk for any k, the function r(b) has the derivative 



Example 14. 

Problem. 

Solution. 
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d~~) = L 1P(X = x) + L( -l)P(X = x) 
x<b x>b 

= P(X < b) - P(X > b) 

if Xk < b < Xk+1 

So the function r(b) is piecewise linear for b between Xk and Xk+l, decreasing if 

P(X :::; Xk) < 1/2, increasing if P(X :::; Xk) > 1/2, and flat if P(X :::; Xk) = 1/2. 

So a b is minimizing if and only if P(X :::; b) 2: 1/2 and P(X 2: b) 2: 1/2. Such a 

value b is a median of the distribution of X. A median always exists, but it may not 

be unique. 

FIGURE 3. Risk functions for a die roll X with uniform distribution on {I, ... ,6}. 

Left: Graph of the risk function r(b) = E(IX - bl) for absolute error. (Refer to Example 13)ln 

this example, every number in the interval [3,4] is a median for X. Numbers in this interval ore 

equally good as predictors of X according to the criterion of minimizing the expected absolute 

error, and better than any other number. Right: The risk function r(b) = E[(X - bf] for quadratic 

loss function. (Refer to Example 14.) Now E(X) = 3.5 is the unique best predictor. 

6, 6 

5 ~ 5 
I 

4 'I 4 

3~ 3 

2 j 2 
r(b) = E [(X - b)2] 

1 ~ r(b) = E [IX - bl] 

~L i 

o I b b 

0 1 2 3 4 5 6 7 0 1 2 3 4 567 

Squared error. 

Suppose now the penalty is squared error, using the quadratic loss function L(x, b) = 

(x - b)2. 

Find b that is the best constant predictor of X for this quadratic loss function. 

This time the answer is just the mean. Now 

r(b) = E[(X - b)2] = E(X2) - 2bE(X) + b2 

d~~) = -2E(X) + 2b 

so b = E(X) gives the unique best predictor of X for the quadratic loss function. 
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Properties of Averages 
Def'tnition. The average of a list of numbers Xl, ... ,Xn is 

x = (Xl + ... + xn)/n = L xPn(X) 

all x 

where Pn(x) is the proportion of the n values Xk that are equal to X (empirical 

distribution of the list). 

Constants. If Xk = e for every k, then 

x=e 

Indicators. If every number Xk in a list is either a zero or a one, then 

x = proportion of ones in the list 

Functions. If Yk = g(Xk) for each k, typically fj i- g(x). But 

fj = L g(x)Pn(x) 

all x 

Constant factors. If Yk = eXk for every k, where e is constant, then 

fj = ex 

Addition. If Sk = Xk + Yk for each k, then 

s=x+fj 

Multiplication. If Zk = XkYk for each k, typically z i- xfj. 
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Properties of Expectation 
DefInition. The expectation of a random variable X is 

E(X) = 2:xP(X = x) 
all x 

(average of values of X weighted by their probabilities). 

Constants. The expectation of a constant random variable is its constant value 

E(c) = c 

Indicators. If fA is the indicator of an event A, so fA = 1 if A occurs, 0 

otherwise, then 

Functions. Typically, E[g(X)] -=f. g[E(X)], but 

E[g(X)] = 2: g(x)P(X = x) 
all x 

Constant factors. For a constant c, 

E(cX) = cE(X) 

Addition. The expectation of a sum of random variables is the sum of the 

expectations: 

E(X + Y) = E(X) + E(Y) even if X and Yare dependent. 

Multiplication. Typically, E(XY) -=f. E(X)E(Y). But 

E(XY) = E(X)E(Y) if X and Yare independent. 
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Exercises 3.2 
1. Suppose that 10% of the numbers in a list are 15, 20% of the numbers are 25, and the 

remaining numbers are 50. What is the average of the numbers in the list? 

2. One list of 100 numbers contains 20% ones and 80% twos. A second list of 100 numbers 

contains 50% threes and 50% fives. A third list is obtained by taking each number in 

the first list and adding the corresponding number in the second list. 

a) What is the average of the third list? Or is this not determined by the information 

given? 

Repeat a) with adding replaced by b) subtracting c) multiplying by d) dividing by. 

3. What is the expected number of sixes appearing on three die rolls? What is the expected 

number of odd numbers? 

4. Suppose all the number~, in a list of 100 numbers are non-negative, and the average of 

the list is 2. Prove that at most 25 of the numbers in the list are greater than 8. 

5. In a game of Chuck-a-Luck, a player can bet $1 on anyone of the numbers 1,2,3,4,5, 

and 6. Three dice are rolled. If the player's number appears k times, where k ::0: 1, the 

player gets $k back, plus the original stake of $l. Otherwise, the player loses the $1 

stake. Some people find this game very appealing. They argue that they have a 1/6 

chance of getting their number on each die, so at least a 1/6 + 1/6 + 1/6 = 50% chance 

of doubling their money. That's enough to break even, they figure, so the possible extra 

payoff in case their number comes up more than once puts the game in their favor. 

a) What do you think of this reasoning? 

b) Over the long run, how many cents per game should a player expect to win or 

lose playing Chuck-a-Luck? 

6. Let X be the number of spades in 7 cards dealt from a well-shuffled deck of 52 cards 

containing 13 spades. Find E(X). 

7. In a circuit containing n switches, the ith switch is closed with probability Pi, i = 

1, ... ,n. Let X be the total number of switches that are closed. What is E(X)? Or is it 

impossible to say without further assumptions? 

8. Suppose E(X2) = :3, E(y2) = 4, E(XY) = 2. Find E [(X + y)2]. 

9. Let X and Y be two independent indicator random variables, with 

P(X = 1) = P and P(Y = 1) = r. Find E[(X - y)2] in terms of P and r. 

10. Let A and B be independent events, with indicator random variables IA and lB. 

a) Describe the distribution of (fA + IB)2 in terms of P(A) and P(B). 

b) What is E(fA + Is)2? 

11. There are 100 prize tickets among 1000 tickets in a lottery. What is the expected number 

of prize tickets you will get if you buy 3 tickets? What is a simple upper bound for the 

probability that you will win at least one prize? Compare with the actual probability. 

Why is the bound so close? 
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12. Show that if a and b are constants with Pta ::; X ::; b) = 1, then a::; E(X) ::; b. 

13. Suppose a fair die is rolled ten times. Find numerical values for the expectations of each 

of the following random variables: 

a) the sum of the numbers in the ten rolls: 

b) the sum of the largest two numbers in the first three rolls: 

c) the maximum number in the first five rolls: 

d) the number of multiples of three in the ten rolls: 

e) the number of faces which fail to appear in the ten rolls: 

f) the number of different faces that appear in the ten rolls; 

14. A building has 10 floors above the basement. If 12 people get into an elevator at the 

basement, and each chooses a floor at random to get out, independently of the others, 

at how many floors do you expect the elevator to make a stop to let out one or more 

of these 12 people? 

15. Predicting demand. Suppose that a store buys b items in anticipation of a random 

demand Y, where the possible values of Yare non-negative integers y representing 

the number of items in demand. Suppose that each item sold brings a profit of $7r, 

and each item stocked but unsold brings a loss of $.\. The problem is to choose b to 

maximize expected profit. 

a) Show that this problem is the same as the problem of finding the predictor b of 

Y which minimizes over all integers the expected loss, with loss function 

L( b)={ -7ry+.\(b-y) 
y, -7rb 

if 

if 

b) Let r(b) = E[L(Y,b)]. Use calculus to show that r(b) is minimized over all the 

real numbers b, and hence over all the integers b, at the least integer y such that 

P(Y::; y) 2:: 7r/(.\ + 7r). Note. If 7r =.\, this is the median. If 7r/(.\ + 7r) = k%, 

this y is called the kth percentile of the distribution of Y. 

16. Aces. A standard deck of 52 cards is shuffled and dealt. Let Xl be the number of cards 

appearing before the first ace, X 2 the number of cards between the first and second 

ace (not counting either ace), X3 the number between the second and third ace, X 4 

the number between the third and fourth ace, and X 5 the number after the last ace. 

It can be shown that each of these random variables Xi has the same distribution, 

i = 1,2, ... ,5, and you can assume this to be true. 

a) Write down a formula for P(Xi = k), 0 ::; k ::; 48. 

b) Show that E(X;) = 9.6. [Hint: Do not use your answer to a).J 

c) Are Xl, ... ,X5 pairwise independent' Prove your answer. 

17. A box contains 3 red balls, 4 blue balls, and 6 green balls. Balls are drawn one-by-one 

without replacement until all the red balls are drawn. Let D be the number of draws 

made. Calculate: a) P(D ::; 9); b) P(D = 9): c) E(D). 

18. Suppose that X is a random variable with just two possible values a and b. For x = a 

and b find a formula for p(x) = P(X == x) in terms of a, band 11 = E(X). 
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19. A collection of tickets comes in four colors: red, blue, white, and green. There are twice 

as many reds as blues, equal numbers of blues and whites, and three times as many 

greens as whites. I choose 5 tickets at random with replacement. Let X be the number 

of different colors that appear. 

a) Find a numerical expression for P(X 2: 4). 

b) Find a numerical expression for E(X). 

20. Show that the distribution of a random variable X with possible values 0, 1, and 2 is 

determined by /-li = E(X) and /-l2 = E(X2), by finding a formula for P(X = x) in 

terms of /-li and /-l2, x = 0, 1,2. 

21. Indicators and the inclusion-exclusion formula. Let fA be the indicator of A. 
Show the following: 

a) the indicator of AC, the complement of A, is lAc = 1 - IA; 

b) the indicator of the intersection AB of A and B is the product of IA and I B : 

lAB = IAIB; 

c) For any collection of events AI, ... , An, the indicator of their union is 

d) Expand the product in the last formula and use the rules of expectation to derive 

the inclusion-exclusion formula of Exercise 1.3.12. 

22. Success runs in independent trials. Consider a sequence of n 2': 4 independent trials, 
each resulting in success (S) with probability p, and failure (F) with probability 1 - p. 

Say a run of three successes occurs at the beginning of the sequence if the first four 

trials result in SSSF; a run of three successes occurs at the end of the sequence if the 

last four trials result in FSSS; and a run of three successes elsewhere in the sequence is 

the pattern FSSSF. Let R.3,n denote the number of runs of three successes in the n trials. 

a) Find E(R.3,n). 

b) Define Rm,n, the number of success runs of length m in n trials, similarly for 

1 ~ m ~ n. Find E(Rm,n). 

c) Let Rn be the total number of non-overlapping success runs in n trials, counting 

runs of any length between 1 and n. Find E(Rn) by using the result of b). 

d) Find E(Rn) another way by considering for each 1 ~ j ~ n the number of runs 

that start on the jth trial. Check that the two methods give the same answer. 
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Standard Deviation and Normal 
Approximation 
If you try to predict the value of a random variable X by its mean E(X) = /-1, you 

will be off by the random amount X - /-1. It is often important to have an idea of 

how large this deviation is likely to be. Because 

E(X - /-1) = E(X) - /-1 = 0 

it is necessary to consider either the absolute value or the square of X - /-1 to get an 

idea of the size of the deviation without regard to sign. Because the algebra is easier 

with squares than with absolute values, it is natural to first consider E[(X - /-1?J, 

then take a square root to get back to the same scale of units as X. 

Definition of Variance and Standard Deviation 
The variance of X, denoted Var(X), is the mean squared deviation of X from 

its expected value /-1 = E(X): 

The standard deviation of X, denoted SD(X), is the square root of the variance 

of X: 

SD(X) = JVar(X) 

Intuitively, SD(X) should be understood as a measure of how spread out the dis­

tribution of X is around its mean /-1. Because Var(X) is a central value in the 

distribution of (X - /-1)2, its square root SD(X) gives a rough idea of the typical 

size of the absolute deviation IX - /-11. Variance always appears as an intermediate 

step in the calculation of standard deviation. Variance is harder to interpret than SD, 

but has simpler algebraic properties. Notice that E(X), Var(X), and SD(X) are all 

determined by the distribution of X. That is to say, if two random variables have 

the same distribution, then they have the same mean, variance, and SD. So we may 

speak of the mean, variance, and SD of a distribution rather than a random variable. 

Parameters of a normal curve. If a histogram displaying the distribution of X 

follows an approximately normal curve, the curve will be centered near the mean 

E(X), and SD(X) will be approximately the distance between the center of the 

curve and its shoulders, where the curve switches from being concave to convex. 

See Figure 1 of Section 2.2. This observation is justified at the end of Section 4.l. For 

histograms which are approximately normal in shape, about 68% of the probability 

will lie in the interval within one standard deviation of the mean. 
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Meaning of SD when the distribution is not roughly normal. If the distribution 

of X is not roughly normal, there is no simple way to visualize SD(X) in terms of 

the histogram of X. But no matter what the distribution of X, you should expect X 
to be around E(X), plus or minus a few times SD(X). This is made more precise 

later in this section by Chebychev's inequality. Like the mean E(X), the standard 

deviation SD(X) can be interpreted in terms of a sum Sn = Xl + ... + Xn of a large 

number n of random variables Xi with the same distribution as X. What happens is 

that for large n the distribution of Sn follows an approximately normal curve with 

parameters determined by E(X), SD(X), and n. This is made precise by the central 
limit theorem stated later in this section. 

It is often simpler to calculate an SD using the following formula for variance rather 

than the definition. 

Computational Formula for Variance 

Var(X) = E(X2) - [E(X)]2 = L x2 P(X = x) - [L xP(X = X)]2 
all x all x 

In words: Variance is the mean of the square minus the square of the mean. 

Remark. The order of the two operations, squaring and taking expectation, is ex­

tremely important. Since from its original definition Var(X) is non-negative, and 

zero if and only if P(X = JL) = 1, the computational formula shows that 

with equality if and only if X is a constant random variable. 

Proof. 

E[(X - J1)2] = E[X2 - 2J1X + J12] 

= E(X2) - 2J12 + J12 by rules of E using E(X) = J1 

= E(X2) - J12 

= E(X2) - [E(XW because J1 = E(X) 

The second expression in the box comes from the formula for the expectation of a 

function of X, applied to f(x) = x2, and the definition of E(X). 0 
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Random sampling. 

Suppose n tickets numbered Xl, ... , Xn are put in a box and a ticket is drawn at 

random. Let X be the x-value on the ticket drawn. Then E(X) = x, the average 

of the list of numbers in the box, as shown in Example 3.2.1. The corresponding 

formula for the standard deviation is SD(X) = JVar(X) where 

1 L - 2 1 L 2 -2 Var(X) = - (Xi - X) = - X - X 
n n t 

i i 

The first formula comes from writing X = X J where I has uniform distribution on 

{1, 2, ... , n}, so E[(X - J.L)2] = E[(xJ - x)2] is the expectation of a function of I. 

The second formula follows similarly from the computational formula for variance. 

The numbers Var(X) and SD(X) determined this way by a list of numbers are 

called the variance and standard deviation of the list. For a list of measurements on 

a scale of units like feet or inches, the S D of the list gives an indication of the typical 

magnitude of the difference between measurements in the list and their average, on 

the same scale of units as the measurements. 

Indicators. 

Suppose X is the indicator of an event with probability p. Find SD(X). 

Since 02 = 0 and 12 = 1, we have X 2 = X. Therefore, 

E(X2) = E(X) = p 

so the computational formula gives 

Var(X) E(X2) - [E(X)]2 = P - p2 = p(l _ p) 

SD(X) = JVar(X) = Jp(l- p) 

Since X has a binomial (l,p) distribution, this agrees with the formula vnpq for the 

SD of the binomial (n,p) distribution given in Chapter 2. This formula for n > 1 is 

checked in a later example. 

Number on a die. 

Let X be the number on a fair die. Find SD(X). 

By the computational formula 

Var(X) = E(X2) _ J.L2 = (12 + 22 + 32 + 42 + 52 + 62) _ (3.5)2 = 35 
6 12 

SD(X) = J35/12 = 1.71 



1 88 Chapter 3. Random Variables 

Example 4. 

Problem. 

Solution. 

Example 5. 

Problem. 

Solution. 

Scaling and Shifting 
For constants a and b, SD(aX + b) = laISD(X) 

Shifting by a constant doesn't change the spread of the distribution, but multiplying 

by a or -a spreads out the distribution by a factor of lal. You can check this from the 

definition of SD, using properties of expectation. Compare with the corresponding 

formula for expectation: 

E(aX + b) = aE(X) + b 

Celsius to Fahrenheit. 

Suppose X represents a temperature in degrees Celsius, Y the same temperature in 

degrees Fahrenheit, so 

9 
Y = SX +32 

How are E(Y) and SD(Y) related to E(X) and SD(X)? 

E(Y) = tE(X) + 32 is E(X) converted to degrees Fahrenheit. But the SD behaves 

differently 

SD(Y) = ~SD(X) 

because standard deviation, as a measure of spread, is affected only by the scale 

factor 9/5, and not by the shift of 32. 

Successes and failures. 

Let X be the number of successes in n trials of some kind, Y the number of failures 

in the same sequence of trials. Assuming that every trial results in either success or 

failure, how are E(Y) and SD(Y) related to E(X) and SD(X)? 

X+Y=n so Y=n-X 

E(Y) = n - E(X) SD(Y) = SD(X) 



Histogram of O.5X 
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FIGURE 1. Scaling and shifting. The histograms display distributions of Y = aX + b for various a 

and b. These are derived by rescaling the histogram of X shown at the center of the top row. Under 

the histogram of each Y are marked the points E(Y)-SD(Y), E(Y), and E(Y)+SD(Y). 
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Example 6. 

Problem. 

Solution. 

When making a normal approximation, it is convenient to transform a random vari­

able X into a standardized variable X*, which gives the number of SDs by which 

X differs from its expected value. 

Standardization 
If a random variable X has E(X) = J.l and SD(X) = tJ > 0, the random 

variable 

X* = (X - J.l)/tJ 

called X in standard units, has E(X*) = 0 and SD(X*) = 1. 

Put another way, X* is X relative to an origin at J.l on a scale of multiples of tJ. Pos­

itive values of X* correspond to higher than expected values of X. Negative values 

of X* correspond to lower than expected values of X. Any event determined by the 

value of X can be rewritten in terms of X*. Usually, this is done by manipulating 

inequalities. For example, for any number b, 

P(X '5: b) = P ( X; J.l '5: b: J.l) 

= P ( X* '5: b: J.l ) 

In case the distribution of X is approximately normal, the distribution of X* is 

approximately standard normal. Then the above probability can be approximated 

by <I>[(b- J.l)/ tJ], where <I> is the standard normal c.dJ. For a binomial random variable 

X this is the normal approximation of Chapter 2, except we are now ignoring the 

correction from b to b + 1/2 (called the continuity correction) which is appropriate 

only if the range of possible values of X is a sequence of consecutive integers. 

Heights. 

A person is picked at random from a population of individuals with heights dis­

tributed approximately according to the normal curve. If in this population the mean 

height is 5 feet 10 inches and the SD of heights is 2 inches, what approximately is 

the chance that the person is over 6 feet tall? 

Let X represent the height of the individual. Then E(X) = 5 feet 10 inches and 

SD(X) = 2 inches. Converting to standard units gives 

P(X ..) P (X - 5 feet 10 inches ) 
> 6 leet = h > 1 

2 inc es 

= P(X* > 1) ~ 1 - <I>(I) ~ 16% 

by the normal approximation. 
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Tail Probabilities 

Consider the event that a random variable X is more than three standard deviations 

from its mean. To get used to some notation, look at the following six equivalent 

symbolic expressions of this event, in terms of 

E(X) = J-l, SD(X) = IJ, and X* = (X - J-l)/IJ. 

The inequalities are manipulated by adding an arbitrary constant or multiplying by 

a positive constant. For example, division by IJ turns 0) into (6): 

IX - J-li > 31J 0) 

either X - J-l < -31J or X - J-l > 31J (2) 

either X < J-l- 31J or X> J-l+ 31J (3) 

either 
X-J-l 
--<-3 or 

X-J-l 
-->3 (4) 

IJ IJ 

either X* <-3 or X* > 3 (5) 

IX*I > 3 (6) 

If the distribution of X closely follows the normal curve, the probability of this event 

will be very small: around 3/10 of 1%, according to the normal table. But what if the 

distribution is not normal? How big could this probability be? 3%? or 30%? The answer 

is that it might be 3%, but not 30%. The largest this probability could possibly be, 

for any X whatsoever, is 1/9, or about 11%. This is due to the following inequality, 

which makes precise the idea that a random variable is unlikely to be more than a 

few SDs away from its mean. 

Chebychev's Inequality 
For any random variable x, and any k > 0, 

P [IX - E(X)I ~ k SD(X) 1 :::: :2 
In words: The probability that a random variable differs from its expected value 

by more than k standard deviations is at most 1/ k2 . 
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Example 7. 

Problem. 

FIGURE 2. The probability bounded by Chebychev's inequality. 

E(X) 

Proof. Let 11 = E(X) and a = SD(X). The first step is yet another way of writing 

the event [IX - 111 ~ ka], namely, [(X -11)2 ~ k2a2]. Now define Y = (X - 11)2, 

a = k2a 2 , to see 

P[lX - 111 ~ ka] = P(Y ~ a) 

:::; E(Y) by Markov's inequality of Section 3.2, using Y ~ 0, 
a 

a2 1 
k2a2 k2 by definition of Y, a, and a.D 

Comparison of the Chebychev bound with normal probabilities. Chebychev's 

inequality gives universal inequalities, satisfied by all distributions, no mat~er what 

their shape. For k :::; 1 the inequality is trivial, because then 1/k2 ~ 1. Here are the 

bounds for some values of k ~ 1 compared with corresponding probabilities for the 

normal distribution with parameters 11 and a. 

Probability Chebychev bound Normal value 

P(lX -111 ~ a) at most 1 0.3173 

P(IX - 111 ~ 2a) at most 1/22 = 0.25 0.0465 

P(IX - 111 ~ 3a) at most 1/32 ~ 0.11 0.00270 

P(IX - 111 ~ 4a) at most 1/42 ~ 0.06 0.000063 

As the table shows, Chebychev's bound will be very crude for a distribution that 

is approximately normal. Its importance is that it holds no matter what the shape 

of the distribution, so it gives some information about two-sided tail probabilities 

whenever the mean and standard deviation of a distribution can be calculated. 

Bounds for a list of numbers. 

The average of a list of a million numbers is 10 and the average of the squares of 

the numbers is 101. Find an upper bound on how many of the entries in the list are 

14 or more. 



Solution. 

Remark. 
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Let X represent a number picked at random from the list. Then J1 = E(X) = 10, 

E(X2) = 101, so 

(J = SD(X) = \ohOl - 102 = L 

P (X 2': 14) = P (X - J 1 2': 4(J) :s; P ( I X - Jll 2': 4(J) :s; 1/42 . 

by Chebychev's inequality. Consequently, the number of entries 14 Of over is at most 

106 PiX 2': 14) :s; 106 /16 = 62.500 

If the distribution of the list were known to be symmetric about 10. the probabilities 

PiX 2': 14) and PiX :s; 6) would be equal. Since it is the sum of these two proha­

bilities which is at most 1/16, the bound in this case could he reduced by a factor 

of 2 to 31.250. If the distribution of the list ,vere approximately normal, the number 

would be more like 

106 x [1 - 1>(4)] :::::; 32 

Sums and Averages of Independent 

Random Variables 

The main reason for the importance of variance is the following simple rule for the 

variance of a sum of two independent variables. This rule leads to the right SD to 

use in the normal approximation for a sum of n independent random variahles for 

large n. 

Addition Rule for Variances 

VariX + Y) = VariX) + Var(Y) if X and Yare independent. 

Var(X l + .. +Xn)=Var(Xd+· +Var(X,,) if Xl .... , X" are independent. 

The assumption of independence is important. In contrast to expectations, variances 

do not always add for dependent random variables. For example, if X = Y, then 

VariX + Y) = Var(2X) = [SD(2X)]2 = 12SD(X)]2 = 4 VariX) 

while 

VariX) + Var(Y) = VariX) + VariX) = 2VaT(X) 

Proof of the addition rule for variances. Let S = X + Y. Then E(S) = E(X) + 
E(Y), so 

S - E(S) = [X - E(X)] + [Y - E(Y)] 
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Now square both sides and then take expectations to get 

[S - E(S)]2 = [X - E(X)]2 + [Y - E(y)]2 + 2[X - E(X)][Y - E(Y)] 

Var(S) = Var(X) + Var(Y) + 2E{[X - E(X)][Y - E(Y)]} 

If X and Yare independent, then so are X - E(X) and Y - E(Y). So by the rule 

for the expectation of a product of independent variables, the last term above is the 

product of E[X - E(X)] and E[Y - E(Y)]. This is zero times zero which equals 

zero, giving the addition rule for two independent variables. Apply this addition rule 

for two variables repeatedly to get the result for n variables. D 

Sums of independent random variables with the same distribution. Suppose 

Xl"'" Xn are independent with the same distribution as X. You can think of the Xi 
as the results of repeated measurements of some kind. Because all the expectations 

and variances are determined by the same distribution, 

Var(Xk) = Var(X) (k=l, ... ,n) 

So for the sum Sn = X I + ... + X n 

E(Sn) = nE(X) by the addition rule for expectation 

Var(Sn) = nVar(X) by the addition rule for variance. 

Taking square roots in the last formula gives the formula for SD(Sn) in the next 

box. The results for the average follow by scaling the sum by the constant factor of 

lin. 

Square Root Law 
Let Sn be the sum, Xn = Snln the average, of n independent random variables 

X I, ... , X n, each with the same distribution as X. Then 

E(Sn) = nE(X) SD(Sn) = yTiSD(X) 

SD(Xn) = SD(X) 
..;n 

The expectation of a sum of n independent trials grows linearly with n. But the SD 

grows more slowly, according to a multiple of ..;n. This slow growth of the SD is due 

to the high probability of cancellation between terms which are above the expected 

value and terms which are below. The square root law for SD(Sn) gives a precise 

mathematical measure of the extent to which this cancellation tends to occur. 
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Standard deviation of the binomial distribution. 

Derive the formula vnpq for the SD of the binomial (n, p) distribution. 

This is the distribution of the sum Sn = X I + ... + X n of n indicators of independent 

events, each with probability p. So ,jnpq comes from the square root law for SD(Sn) 
and the formula JPii for the SD of an indicator, found in Example 2. 

The law of averages. While as n increases SD(Sn) grows as a constant times Vii, 
dividing by n makes SD(Xn) tend to zero as a constant divided by Vii. So the SD 

of the average of n independent trials tends to 0 as n --f 00. This is an expression 

of the law of averages, which generalizes the law of large numbers stated in Sec­

tion 2.2 for the proportion of successes in n Bernoulli (p) trials. Roughly speaking, 

the law of averages says that the average of a long sequence of independent trials 

Xl, X 2 ,···, Xn is likely to be close to the expected value of X = Xl. Here is a more 

precise formulation: 

Law of Averages 
Let X I, X 2, ... be a sequence of independent random variables, with the same 

distribution as X. Let I-" = E(X) denote the common expected value of the 

Xi, and let 

be the random variable representing the average of Xl' ... ' X n . Then for every 

€ > 0, no matter how small, 

P(IXn - 1-"1 < €) --f 1 as n --f 00 

In words: as the number of variables increases, with probability approaching 

1, the average will be arbitrarily close to the expected value. 

Proof. From the box for the square root law, E(Xn) = 1-", SD(Xn) = (J / Vii, where 
(J = SD(X I ). Chebychev's inequality applied to Xn now gives 

But for each fixed € the right side tends to 0 as n --f 00, hence so does the left side 

since probabilities are non-negative. Taking complements yields the result. D 
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Exact distribution of sums of independent variables. Suppose the Xi are inde­

pendent indicator variables, with P(Xi = 1) = p and P(Xi = 0) = 1 - p for some 

o < p < 1. For example, Xi could be the indicator of success on the ith trial in a 

sequence of independent trials. Then Sn = Xl + ... + Xn represents the number 

of successes in n trials, and Sn has the binomial (n, p) distribution studied in Chap­

ter 2. In theory, and numerically by computer, the formula of Exercise 3.1.16 for the 

distribution of the sum of two random variables can be applied repeatedly to find 

the distribution of Sn for other distributions of Xi. But the resulting formulae are 

manageable only in a few other cases (e.g., the Poisson and geometric cases treated 

in the next section.) 

Approximate distribution of sums of independent variables. Because there is 

no simple formula for the distribution of the sum Sn of n independent random vari­

ables with the same distribution as X, it is both surprising and useful that no matter 

what the distribution of X, there is a simple normal approximation for the distribu­

tion of Sn. This generalizes the normal approximation to the binomial distribution 

treated in Section 2.2. 

The Normal Approximation 

(Central Limit Theorem) 
Let Sn = X l+-' -+ Xn be the sum of n independent random variables each with 
the same distribution over some finite set of values. For large n, the distribution 

of Sn is approximately normal, with mean E(Sn) = nJ.L, and standard deviation 

SD(Sn) = rJVn, where J.L = E(Xi) and rJ = SD(Xi). That is to say, for all 

a~b 

P (a ~ S:7nJ.L ~ b) ~ ~(b) - ~(a) 

where ~ is the standard normal c.d.f. No matter what the distribution of the 

terms Xi, for every a ~ b the error in using this normal approximation tends to 

zero as n ~ 00. The same result holds for Xi with an infinite range of possible 

values, provided the standard deviation is defined and finite. 

Note that the random variable (Sn - nJ.L)/rJVn appearing in the normal approxi­

mation is Sn in standard units. If the possible values of the Xi form a sequence 

of consecutive integers, the continuity correction should be used as in Section 2.2 

to obtain a better approximation. The normal approximation works just as well for 

averages as for sums, because the factor of n has no effect on the standardized vari­

ables. For any distribution of Xi with just two possible values, the above normal 

approximation follows from the normal approximation to the binomial distribution, 

derived in Section 2.3, by using scaling properties of the mean and standard devia­

tion to reduce to the case when the two possible values are 0 and 1. But a full proof 

of the central limit theorem is beyond the scope of this text. 



Example 9. 

Problem. 

Solution. 
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The pictures at the end of the section show how the distribution of the sum Sn of 

independent and identically distributed Xl, X 2 , ... , Xn depends on the number of 

terms n and the common distribution of the Xi. As a general rule, the more symmetric 

the distribution, and the thinner its tails, the faster the approach to normality as n 
increases. On each page, all histograms are scaled horizontally in standard units, and 

vertically to keep the total area constant. 

Random walk. 

Physicists use random walks to model the process of diffusion, or random motion 

of particles. The position Sn of a particle at time n can be thought of as a sum 

of displacements Xl, ... , X n. Assuming the displacements are independent and 

identically distributed, the theory of this section applies. 

Suppose at each step a particle moving on sites labeled by integers is equally likely 

to move one step to the right, one step to the left, or stay where it is. 

o o o o o o o 

Find approximately the probability that after 10, 000 steps the particle ends up more 

than 100 sites to the right of its starting point. 

Let X represent a single step. Then E(X) = 0, 

(_1)2 02 12 2 
Var(X) = E(X2) - 02 = -- + - + - = -

3 3 3 3 

and 8D(X) = /273 = 0.8165. The problem is to find P(81O ,000 > 100), where 

E(81O,000) = 1O,000E(X) = 0 and 

8D(81O ,000) = JlO, 000 8D(X) = 100 x 0.8165 = 81.65 

by the square root law. The normal approximation gives 

(
8 10 000 100 ) 100 

P(81O ,ooo > 100) = P 81~65 > 81.65 ~ 1 - «1>( 81.65) ~ 11 % 
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Skewness 

Let X be a random variable with E(X) = p, and SD(X) = a. Let X* = (X - p,)/a 
be X in standard units. So the first two moments of X* are 

The skewness of X, (or of the distribution of X) denoted here by Skewness(X), is 

the third moment of X*: 

Skewness is a measure of the degree of asymmetry in the distribution of X. For any 

X with finite third moment, there is the simple formula (Exercise 33): 

Skewness(Sn) = Skewness(X)/vn (7) 

for Sn the sum of n independent random variables with the same distribution as 

X. This implies the formula (1 - 2p)/ "jnpq used in Section 2.2 for the skewness of 

binomial (n, p) distribution. 

It is easy to see that if the distribution of X is symmetric about p" then Skewness (X) = 
O. If the normal approximation to the distribution of X is good, the distribution of 
X must be nearly symmetric about p" so it is be expected that Skewness(X) ~ O. In 

case Skewness(X) is significantly different from 0, the normal approximation to the 

distribution of X will usually not be very good. Formula (7) shows that no matter 

what the skewness of the distribution of X, the skewness of the sum Sn tends to 

zero as n ---+ 00, though rather slowly. This is evidence of the central limit theorem: 

the distribution of Sn is asymptotically normal with skewness 0 in the limit, so has 

small skewness for large n. As in the binomial case studied in Section 2.2, an im­

provement to the normal approximation of Sn is obtained by replacing <p(z) in the 

usual normal approximation by 

1 
<p(z) - ;;;:;-Skewness(X) (Z2 - 1) ¢(z) 

6y n 

where ¢(z) is the standard normal curve. See Section 3.5 for an application to the 

Poisson distribution. 
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Figure 3. Distribution of the sum of n die rolls for n = 1,2,4,8,16,32. 
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Figure 4. Distribution of Sn for n = 1,2,4,8,16,32. 
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Figure 5. Distribution of Sn for n = 1,2,4,8,16,32. 
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Exercises 3.3 
1. Let X be the number of -days in a month picked at random from the 12 months of a 

year (not a leap year). 

a) Display the distribution of X in a table, and calculate E(X) and SD(X). 

b) Repeat with X the number of days in the month containing a day picked at 

random from the 365 days of 1991. 

2. Let Y be the number of heads obtained if a fair coin is tossed three times. Find the 

mean and variance of y2 . 

3. Let X, Y, and Z be independent identically distributed random variables with mean 1 

and variance 2. Calculate: 

a) E(2X + 3Y); b) Var(2X + 3Y); c) E(XYZ); d) Var(XYZ). 

4. Suppose Xl and X2 are independent. Find a formula for Var(X I X 2) in terms of 

J-tl = E(Xl), ai = Var(XI), J-t2 = E(X2)' and a~ = Var(X2). 

5. Show that if E(X) = J-t and Var(X) = a2, then for every constant a 

6. Let Xp represent the number appearing on one roll of a 'shape' which lands flat (1 

or 6) with probability P, as described in Example 1.3.3. Explain without calculation 

why Var(Xp) must increase as P increases. Then compute Var(Xp) and check that it 

increases as P increases. 

7. Suppose three marksmen shoot at a target. The ith marksman fires ni times, hitting the 

target each time with probability Pi, independently of his other shots and the shots of 

the other marksmen. Let X be the total number of times the target is hit. 

a) Is the distribution of X binomial? 

b) Find E(X) and Var(X). 

8. Let AI, A2, and A3 be events with probabilities i, ~, and ~, respectively. Let N be the 

number of these events that occur. 

a) Write down a formula for N in terms of indicators. 

b) Find E(N). 

In each of the following cases, calculate Var(N): 

c) AI, A2, A3 are disjoint; 

d) they are independent; 

e) Al C A2 C A3. 

9. Out of n individual voters at an election, r vote Republican and n - r vote Democrat. 

At the next election the probability of a Republican switching to vote Democrat is PI, 

and of a Democrat switching is P2. Suppose individuals behave independently. Find a) 

the expectation and b) the variance of the number of Republican votes at the second 

election. 
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10. Moments of the uniform distribution. Let X be uniformly distributed on {I, 2, ... ,n}. 
Let 8 (k, n) = 1 k + 2k + ... + n k be the sum of the kth powers of the first n integers. 

a) Show that E(Xk) = 8(k, n) and E [(X + l)k] = 8(k, n + 1) - 1. 
n n 

b) D d h E [kXk-l (k)Xk-2 1] _ (n + l)k - 1 e uce t at + 2 + ... + - n . 

c) Use b) for k = 2 to obtain E(X) = (n + 1)/2 (also obvious by symmetry), and 

hence 8(I,n) = n(n + 1)/2. 

d) Use b) for k = 3 and the above formula for E(X) to deduce that 

E(X2) = ~(n + 1)(2n + 1) and hence 8(2, n) = ~n(n + 1)(2n + 1). 

e) Show that Var(X) = (n 2 - 1) /12. 

t) Check that your formulae c) and e) agree in the case n 

obtained in Example 3 for X the number on a die. 

g) Use the same method to show that s(3, n) = [8(1, n)f 

6 with the results 

[This method can be used to obtain formulae for s(k, n) for an arbitrary positive integer 

k. But the formulae get more complicated as k increases.] 

11. Suppose that Y has uniform distribution on the n numbers {a, a + b, ... , a + (n - 1) b}, 

and that X has uniform distribution on {I, 2, ... , n}. By writing Y as a linear function 

of X and using results of Exercise 10, find formulae for the mean and variance of Y in 

terms of a, b, and 7!. 

12. A random variable X has expectation 10 and standard deviation 5. 

a) Find the smallest upper bound you can for P(X ~ 20). 

b) Could X be a binomial random variable? 

13. Suppose the IQ scores of a million individuals have a mean of 100 and an SD of 10. 

a) Without making any further assumptions about the distribution of the scores, find 

an upper bound on the number of scores exceeding 130. 

b) Find a smaller upper bound on the number of scores exceeding 130 assuming 

the distribution of scores is symmetric about 100. 

c) Estimate the number of scores exceeding 130 assuming that the distribution is 

approximately normal. 

14. Suppose the average family income in an area is $10,000. 

a) Find an upper bound for the percentage of families with incomes over $50,000. 

b) Find a better upper bound if it is known that the standard deviation of incomes 

is $8000. 

15. a) Show that if X and Yare independent random variables, then 

Var(X - Y) = Var(X + Y) 

b) Let Dl and D2 represent two draws at random with replacement from a popula­

tion, with E(Dd = 10 and SD(Dd = 2. Find a number c so that 
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16. A game consists of drawing tickets with numbers on them from a box, independently 

with replacement. In order to play you have to stake $2 each time you draw a ticket. 

Your net gain is the number on the ticket you draw. Suppose there are 4 tickets in the 

box with numbers -2, -1,0,3 on them. If, for example the ticket shows $3 then you 

get your stake back, plus an additional $3. 

a) Let X stand for your net gain in one game. What is the distribution of X? Find 

E(X) and Var(X). 

b) If you play 100 times, what is your chance of winning $25 or more? 

17. Let X be a random variable with 

P(X = -1) = P(X = 0) = 1/4, 

and P( X = 1) = 1/2. Let S be the sum of 25 independent random variables, each with 

the same distribution as X. Calculate approximately 

a) P(S < 0), b) P(S = 0), and c) P(S > 0). 

18. In roulette, the "house special" is a bet on the five pockets 0, 00, 1, 2 and 3. There are 

5 chances in 38 to win, and the bet pays 6 to 1. That is, if you place a dollar bet on the 

house special and the ball lands in one of the five pockets, you get your dollar back 

plus 6 dollars in winnings; if the ball lands in any other pocket, you lose your dollar. If 

you make 300 one-dollar bets on the house special, approximately what is the chance 

that you come out ahead? 

19. A new elevator in a large hotel is designed to carry about 30 people, with a total weight 

of up to 5000 lbs. More than 5000 Ibs. overloads the elevator. The average weight of 

guests at this hotel is 150 Ibs., with an SD of 55 lbs. Suppose 30 of the hotel's guests 

get into the elevator. Assuming the weights of these guests are independent random 

variables, what is the chance of overloading the elevator? Give your approximate answer 

as a decimal. 

20. Suppose you have $100,000 to invest in stocks. If you invest $1000 in any particular 

stock your profit will be $200, $100, $0 or -$100 (a loss), with probability 0.25 each. 

There are 100 different stocks you can choose from, and they all behave independently 

of each other. Consider the two cases: (1) Invest $100,000 in one stock. (2) Invest 

$1000 in each of 100 stocks. 

(a) For case (1) find the probability that your profit will be $8000 or more. 

(b) Do the same for case (2). 

21. Roundoff errors. Suppose you balance your checkbook by rounding amounts to the 

nearest dollar. Between 0 and 49 cents, drop the cents; between 50 and 99 cents, drop 

the cents and add a dollar. Find approximately the probability that the accumulated 

error in 100 transactions is greater than 5 dollars (either way) 

a) assuming the numbers of cents involved are independent and uniformly dis­

tributed between 0 and 99; 

b) assuming each transaction is an exact dollar amount with probability 1/4, and 

given not an exact dollar amount the number of cents is uniformly distributed 

between 1 and 99, independently for different transactions. 
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22. Suppose n dice are rolled. 

a) Find approximately the probability that the average number is between 3 f2 and 

3ti for the following values of n: 105. 420, 1680, 6720. 

b) Use these values to sketch the graph of this probability as a function of n. 

c) Suppose that the numbers 3f2 and 3ti were replaced by 3~ - E and 3~ + f for 

some other small number E instead of E = f2' say f = f4. How would this affect 

the graph? 

23. Suppose that in a particular application requiring a single battery, the mean lifetime of 

the battery is 4 weeks, with a standard deviation of 1 week. The battery is replaced 

by a new one when it dies, and so on. Assume lifetimes of batteries are independent. 

What, approximately, is the probability that more than 26 replacements will have to be 

made in a two-year period, starting at the time of installation of a new battery, and not 

counting that new battery as a replacement? [Hint: Use the normal approximation to 

the distribution of the total lifetime of n batteries for a suitable n.J 

24. A box contains four tickets, numbered 0, 1, 1, and 2. Let SIt be the sum of the numbers 

obtained from n draws at random with replacement from the box. 

a) Display the distribution of S2 in a suitable table. 

b) Find P(S50 = 50) approximately. 

c) Find an exact formula for P(Sn = k) (k = 0, L 2, ... ). 

25. Equality in Chebychev's inequality. Let p., (J, and k be three numbers, with (J > ° 
and k :::: l. Let X be a random variable with the following distribution: 

{

I 

2k2 
P(X=x)= 1-~ 

k2 

° 

if .r = !L + k(J or !L - k(J 

if x = !L 

otherwise. 

a) Sketch the histogram of this distribution for p. = 0, (J = 10, k = 1,2,3. 

b) Show that E(X) = p., Var(X) = (J2, P(IX - p.1 :::: k(J) = 1/k2. 

So there is equality in Chebychev's inequality for this distribution of X. This means 

Chebychev's inequality cannot be improved without additional hypotheses on the dis­

tribution of X. 

c) Show that if Y has E(Y) = p., Var(Y) = (J2, and P(IY - p.1 < (J) = 0, then Y 

has the same distribution as X described above for k = l. 

26. Mean absolute deviation. 

a) Calculate the mean absolute deviation E(IX - p.1) for X, the number on a six-

sided die. 

Your answer should be slightly smaller than the standard deviation found in Example 3. 

This is a general phenomenon, which occurs because the operation of squaring the 

absolute deviations before averaging them tends to put more weight on large deviations 

than on small ones. 

b) Use the fact that Var(IX - p.1) :::: 0 to show that SD(X) :::: E(IX - p.1), with 

equality if and only if IX - p.1 is a constant. 
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That is to say, unless IX - JLI is a constant, the standard deviation of a random variable 

is always strictly larger than the mean absolute deviation. If X is a constant, then both 

measures of spread are zero. 

27. The SD of a bounded random variable. 

a) Let X be a random variable with 0 ::; X ::; 1 and E(X) = JL. Show that: 

(0 0::; JL ::; 1; (ij) 0 ::; Var(X) ::; JL(1- JL) ::; ~ [Hint: Use X2 ::; Xl 

b) Let X be a random variable with a ::; X ::; band E(X) = JL. Show that: 

(i) a::; JL ::; b; (ii) 0::; Var(X) ::; (JL - a)(b - JL) ::; ~(b - a)2; 

(iii) 0::; SD(X) ::; (b - a)/2. 

c) The standard deviation of a list of a million digits 0, 1, 2, ... , 9 is exactly 4~. 

How many nines are there in the list? Or is it impossible to answer this question 

without more information? 

28. Let S be the number of successes in n independent Bernoulli trials, with possibly 

different probabilities PI, ... ,pn on different trials. Show that for fixed JL = E(S), 
Var(S) is largest in case the probabilities are all equal. 

29. Let Dn be the average of n independent random digits from {O, ... ,9}. 

a) Guess the first digit of Dn so as to maximize your chance of being correct. 

b) Calculate the chance that your guess is correct exactly for n = 1,2, and approxi­

mately for a selection of larger values of n, and show the results in a graph. 

c) How large must n be for you to be 99% sure of guessing correctly? 

30. Let Xi be the last digit of D;, where Di is a random digit between 0 and 9. For 

instance, if Di = 7 then D; = 49 and Xi = 9. Let Xn = (Xl + ... + Xn)/n be the 

average of a large number n of such last digits, obtained from independent random 

digits D I , ... ,Dn . 

a) Predict the value of Xn for large n. 

b) Find a number E such that for n = 10,000 the chance that your prediction is off 

by more than E is about 1 in 200. 

c) Find approximately the least value of n such that your prediction of Xn is correct 

to within 0.01 with probability at least 0.99. 

d) Which can be predicted more accurately for large n: the value of Xn , or the value 

of Dn = (DI + ... + Dn)/n? 

e) If you just had to predict the first digit of XlOO , what digit should you choose to 

maximize your chance of being correct, and what is that chance? 

31. Normal approximation for individual probabilities. Let X be an integer valued 

random variable, Sn = Xl + ... + Xn where the Xi are independent with the same 

distribution as X. If the set of possible values of X contains two consecutive inte­

gers it can be shown that there is the following normal approximation to individual 

probabilities in the distribution of Sn: 

P(Sn = k) ~ __ 1_e-!(k-nl')2/(na2) 
v27rnu 

where JL = E(X) and u = SD(X) 
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This approximation holds in the sense described below formula (3) of Section 2.3, which 

is the special case when X has Bernoulli (p) distribution. (Note the change of notation: 

in formula (3), Ji, stands for E(Sn) and cr for SD(Sn).) Suppose the distribution of X 
is uniform on {O, 1, ... ,9}, as in Example 3.l.9. 

a) Find Ji, and cr for this distribution of x. 
b) Use the above normal approximation to verify the claim in the discussion of 

Example 3.l.9 that 

P(S2m = 9m) rv 2/V331Tm as m -> 00. 

c) Let [xl denote the integer part of x. Find b such that in the limit as n -> 00 

P(Sn = [(4.5)n + bfol ) 1 
-> -

P(Sn = [(4.5)n]) 2 

d) For b as in part c), evaluate lim P(ISn - (4.5)nl :::: bfo). 
n~oo 

32. Skewness. For a random variable X with moments Ji,k = E(Xk), derive the following 

properties of Skewnesss (X) = E[((X - Ji,)/cr)3], where Ii = Ji,l and (J = j Ji,2 - Ji,2 is 

assumed strictly positive: 

a) Skewness (X) = (Ji,3 - 3Ji,Ji,2 + 2Ji,3)/cr3 

b) If the distribution of X is symmetric about some point then Skewness(X) = O. 

c) If a> 0 then Skewness(aX + b) = Skewness(X). What if a < O? 

33. Skewness of sums. Show the following: 

a) If X and Yare independent with E(X) = E(Y) = 0 then 

b) If Sn = Xl + ... + Xn for independent X, with the same distribution as X, then 

Skewness( Sn) = Skewness( X) / fo 

c) If Sn has binomial (n, p) distribution, 

Skewness(Sn) = (1 - 2p)/JTLiKi. 



208 Chapter 3. Random Variables 

3.4 Discrete Distributions 
Up to now, random variables were assumed to have a finite number of possible 

values. Probabilities and expectations were calculated as finite sums. But already in 

Chapter 2 useful approximations were obtained by letting the number of trials n 
tend to infinity. These approximations, the normal and the Poisson, lead naturally 

to the study of infinite outcome spaces. This section extends the basic concepts to 

allow a discrete distribution over an infinite sequence of possible outcomes. Impor­

tant examples are the geometric and negative binomial distributions appearing in 

this section, and the Poisson distribution in the next. The following chapters study 

random variables with continuous distributions, like the uniform and normal, with 

an interval of possible values. 

The distribution of the number of times T that you have to roll a fair die to get a six 

was found in Example 2 of Section 1.6: 

(i = 1,2, ... ) 

where q = 5/6 and P = 1/6. This is the geometric distribution on {1, 2, 3, ... } with 

parameter P = 1/6. Here the set of possible values of T can be counted one by one, 

but there is no largest possible value. This is an example of a discrete distribution 

on the positive integers. 

A feature of infinite outcome spaces is that individual outcomes or sets of outcomes 

may be assigned probability zero. Consider, for example, the event T = 00 that a 

six never shows up in repeated rolling of a die. This is an imaginable outcome, and 

you might want to include it in an outcome space. To find the probability of the 
event T = 00 notice that if T = 00, then the first n rolls are not 6. So the rules of 

probability imply 

OS P(T = 00) S P(first n rolls not 6) = (5/6t 

assuming the die is fair and the rolls are independent. But since qn -t 0 as n -t 00 

for Iql < 1, in particular for q = 5/6, this implies P(T = 00) = O. 

A discrete distribution on the set of non-negative integers {O, 1,2, ... } is defined by 

a sequence of probabilities Po, PI ,P2, ... , such that 

Pi 2': 0 for all i and 

wh~re i ranges over 0,1,2, .... By allowing Pi to be zero for all but a finite set of 

i, any distribution over a finite set labeled 0, 1,2, ... ,n could be presented like this. 

Probabilities involving discrete distributions can be calculated using the familiar rules 

of probability, together with a natural extension of the addition rule. 
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Infinite Sum Rule 
If event A is partitioned into AI, A2 , A3 , ... , 

i-::J:j 

then 

To illustrate, for a random variable X with discrete distribution on {O, 1,2, ... } given 

by 

P(X = i) = Pi (i=O,l, ... ) 

5 

P(X ~ 5) = I>i 
i=1 

00 5 

P(X > 5) = I>i = 1 - LPi 
i=6 i=1 

00 

P(X is even) = LP2i 
i=O 

The theory of discrete distributions is mostly a straightforward extension of the theory 

of distributions on finite sets, treated in the previous chapters. The basic concepts 

of conditional probability, random variable, distribution of a random variable, joint 

distribution, and independence, all remain the same. All general formulae involving 

these concepts, in particular the rule of average conditional probabilities and Bayes' 

rule, remain valid simply with infinite sums of probabilities replacing finite ones. 

This can be proved using the infinite sum rule, which justifies familiar formulae such 

as 

P(X = x) = LP(X = x, Y = y) 
y 

for discrete random variables X and Y. Here the sum over y is understood to range 

over the set of possible values of Y, and the infinite series can be evaluated in an 

arbitrary order, which is left unspecified. 
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Example 1. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Example 2. 

Problem 1. 

Solution. 

Examples 

Odd or even. 

Suppose you and I take turns at rolling a die, to see who can first roll a six. Suppose 

I roll first, then you roll, then I roll, and so on, until one of us has rolled a six. What 

is the chance that you roll the first six? 

In terms of T, the number of rolls required to produce the first six, the problem is 

to find the probability that T is even, i.e., either 2, or 4, or 6, or .... By the infinite 

sum rule 

P(T even) = P(T = 2) + P(T = 4) + P(T = 6) + ... 
1 5 

where q = 6' p=-
6 

= qp(l + q2 + q4 + ... ) 
= qp/(l - q2) (geometric series with ratio q2) 

= ~ X ~ / (1 - ~~) = 1
5
1 

What is the chance that I roll the first six? 

This is P(T odd). Of course, a similar calculation could be done again. But there is 

no need. Since we argued earlier that T is certain to be finite, and then T must be 

either even or odd, so 

5 6 
P(T odd) = 1 - - = -

11 11 

The craps principle. 

Suppose A and B play over and over, independently, a game which each time results 

in a win for A, a win for B, or a draw (meaning no decision), with probabilities P(A), 

P(B), and P(D). Suppose they keep playing until the first game that does not result 

in a draw, and call the winner of that game the overall winner. 

Show that 

. P(A) 
P(A wms overall) = P(A)+P(B) 

. P(B) 
and P(B wms overall) = P(A)+P(B) 

P(A wins at game n) = P(first n - 1 games drawn, and A wins game n) 
= [p(D)]n-l P(A), so 

. 00 n-l P(A) P(A) 
P(A wms) = ~[P(D)] P(A) = 1- P(D) = P(A) + P(B) 



Remark. 

Problem 2. 

Solution. 
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Put another way, P(A wins) = P(A I A or B), which you may find intuitively clear 

without calculation. This is the basic principle behind the calculation of probabilities 

in the game of craps, taken up in the exercises. 

Let G be the number of games played, X the name of the winner. Show that G has 

a geometric distribution, and that G and X are independent. 

G is geometric with p = 1 - P(D) (wait until the first nondraw) 

P(G = n, A is the winner) = P(n - 1 games drawn, then A wins) 

= [p(D)]n-l P(A) 

= [p(D)]n-l . [1 _ P(D)]. P(A) 
1 - P(D) 

= P(G = n) . P(A wins) 

Similarly, P(G = n, B wins) = P(G = n)P(B wins). So G and X are independent. 

Moments 

The concept of expectation extends to most discrete distributions. 

Expectation of a Discrete Random Variable 
The expectation of a discrete random variable X is defined by 

E(X) = LXP(X = x) 
x 

provided that the series is absolutely convergent, that is to say, provided 

L IxIP(X = x) < 00 

x 

Here X is allowed to have both positive and negative values. The assumption of 

absolute convergence is necessary to ensure that the value of E(X) is the same, 

regardless of the order in which the terms are summed. If X 2: 0 then the expression 

for E(X) at least always makes sense, provided that E(X) = 00 is allowed as a 

possibility. 

If Y = g(X) is a numerical function of a discrete random variable X there is the 

usual formula 

E[g(X)] = Lg(x)P(X = x) 
x 



212 Chapter 3. Random Variables 

Example 3. 

Problem 1. 

Solution. 

This formula holds in the sense that if either side is defined (possibly as 00) then 

so is the other, and they are equal. The right side is regarded as defined provided 

either g(x) ~ 0, or the series is absolutely convergent. For example, taking X to be 

numerical and g(x) = Ixl 

E(IXI) = 2: IxlP(X = x) 
x 

This is the quantity that must be finite for E(X) to be defined and finite. 

Proof of these facts about expectation involves the theory of absolutely convergent 

series. But you need not worry about this. Just accept that the basic properties of 

expectation listed in Section 3.2 remain valid for discrete random variables provided 

finite sums are replaced where necessary by infinite ones, and it is assumed that the 

sums converge absolutely. It is still important to recognize a random variable as a sum 

of simpler ones and use the addition rule of expectation. Similar remarks apply to 

variance, which is defined for all random variables X with E(X2) < 00. In particular, 

Chebychev's inequality, the law of averages, and the normal approximation all hold 

for discrete random variables X with E(X2) < 00. In fact, the law of averages holds 

for independent and identically distributed random variables Xl, X 2, . .. provided 

that E(Xl ) is defined. But proof of this is beyond the scope of this course. 

Moments of the geometric distribution. 

Let T be the waiting time until the first success in a sequence of Bernoulli (p) trials, 
meaning independent trials each of which results in either success with probability 

p, or failure with probability q = 1 - p. So T has geometric distribution on {1, 2, ... } 

with parameter p. 

Find E(T). 

E(T) = 2:~=1 nP(T = n) = 2:~=1 nqn-lp = pEl where El = 2:~=1 nqn-l. 

A simple formula for El can be found by a method used also to obtain the formula 

for the sum Eo of a geometric series 

Eo = 1 + q + q2 + ... = 1/(1 - q) 

Here is the calculation of E l : 

El = 1 + 2q + 3q2 + .. . 
qI;l = q + 2q2 + .. . 

(1 - q)E l = 1 + q + q2 + ... = Eo = 1/(1 - q) 

El = 1/(1 _ q)2 

This gives E(T) = p/(l - q)2 = l/p. 
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The formula E(T) = lip is quite intuitive if you think about long-run averages. 

Over the long run, the average number of successes per trial is p. And the average 

number of trials per success is lip. 

Find SD(T). 

SD(T) = J E(T2) - [E(T)J2 where E(T) = lip from above, and 

00 

E(T2) = L n2 P(T = n) = PL.2 
n=l 

where 

L.2 = 1 + 4q + 9q2 + ... + n2qn-l + ... 

qL.2 = q + 4q2 + ... + (n - 1)2qn-l + .. . 

(1 - q)L.2 = 1 + 3q + 5q2 + ... + (2n - l)qn-l + ... = 2L.l - L.o 

so L.2 = (1 + q)/(l _ q)3 

Substituting these expressions gives SD(T) = y'qlp. 

Waiting until the rth success (negative binomial distribution). 

Let Tr denote the number of trials until the rth success in Bernoulli (p) trials. To 

illustrate the definition, for the following sequence of results, with 1 = success, 0 = 
failure, 

000100000010010000001000000 ... 

What is the distribution of Tr? 

The possible values of Tr are r, r + 1, r + 2, .... For t in this range 

P(Tr = t) = P( r - 1 successes in first t - 1 trials, and trial t success) 

= (t - l)pr-l(l _ p)t-rp = (t - l)pr(l _ p)t-r 
r-l r-1 

Direct calculation from the formula for the distribution is tedious. The key to a quick 

solution is to notice that 

where Wi is the waiting time after the (i - 1 )th success till the ith success. It is 

intuitively clear, and not hard to check, that 



214 Chapter 3. Random Variables 
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FIGURE 1. Geometric and negative binomial histograms. The histogram in row r and column 

p shows the negative binomial (r,p) distribution of Tr - r the number of failures before the rth 

success in Bernoulli (p) trials, for r = 1,2,3,4,5 and p = 0.75,0.5, and 0.25. Note how as 

either p decreases or r increases, the distributions shift to the right and flatten out. 
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are independent, each with geometric (p) distribution. So by the results of the last 

example, the addition rule for expectation, and the square root law, 

co As r ----t 00 the distribution of Tr becomes asymptotically normal, another example 

of the central limit theorem. But due to the skewness of the geometric distribution 

of the terms being added, the approach to normality is rather slow. Particularly for 

p near a.5, better approximations are obtained using the relation P(Tr > n) = 
P(Sn < r), where Sn is the number of successes in the first n trials, and the normal 

approximation to the binomial (n, p) distribution of Sn. 

(ii) The distribution of Tr - r, the number of failures before the rth success, in 

independent Bernoulli (p) trials, is called negative binomial with parameters rand 

p. This is just the distribution of Tr , shifted from {r, r + 1, r + 2, ... } to {a, 1, 2, ... } 

P(Tr - r = n) = P(Tr = n + r) = (n + r - l)pr(l _ p)n 
r-1 

The collector's problem. 

(n=a,l, ... ) 

Each box of a particular brand of cereal contains one out of a set of n different 

plastic animals. Suppose that the animal in each box is equally likely to be anyone 

of the set of n, independently of what animals are in other boxes. 

What is the expected number of cereal boxes a collector must buy in order to obtain 

the complete set of animals? 

The collector gets one of the n animals in the first box. Each subsequent box contains 

an animal that is different from this first one with probability (n - 1) In, and the same 

with probability lin. Using the independence assumption, the additional number of 

boxes required to get two different animals is a geometric random variable with 

parameter p = (n - 1) In and mean 

1 n 

p n-1 

So the number of boxes required to get two different animals has mean 

n 
1+-­

n-1 

Once two different animals are obtained, each box contains a new animal with 

probability (n-2)ln, and one of the old ones with probability 2/n. So the additional 
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time to get three different animals once two have been obtained is a geometric 

random variable with parameter p = (n - 2)/n, and mean 

1 n 

p n- 2 

So the number of boxes required to get three different animals has mean 

n n 
1+--+-­

n-1 n-2 

Continuing in this way, the mean J.ln of the overall waiting time for the set of all n 

animals is the sum of n terms 
n n n n 

J.ln = 1 + -- + -- + ... + - + -
n-1 n-2 2 1 

= n (~+ _1_ + _1_ + ... + ~ + 1) 
n n-1 n-2 2 

= n (1 + ~ + ~ + ... + ~) 
2 3 n 

by reversing the order of the terms. 

To illustrate, for n = 6 animals, the expected number of boxes required is 

( 1 1 1 1 1) 
J.l6 = 6 1 + - + - + - + - + - = 14.7 

2 345 6 

As a variation of the problem, this is the long-run average number of times you have 

to roll a die in order to see every one of its faces. Similarly, the long-run average 

number of places you must inspect in a table of random digits, before seeing every 

one of the digits 0 through 9, is 

J.l1O = 10 (1 + ~ + ... + 110) = 29.29 

For large n, approximate values of J.ln can be obtained using Euler's approximation 

for the harmonic series 

1 1 1 1 
1 + - + - + ... + - ::::::: log (n) + I + -

2 3 n 2n 

where I = 0.57721 ... is Euler's constant. So 

1 
J.ln ::::::: n log (n) + ,n + "2 

This approximation is good even for small n, as you can check on a calculator. 
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Technical remarks. The infinite sum rule looks natural enough, but there is more 

to it than meets the eye. Consider, for example, a sequence of mutually exclusive 

events A j , each determined by a finite number of independent trials, for example, 

Aj = (T = 2j) that a die first shows six on roll number 2j. As j increases, so 

may the number of trials required to determine whether or not Aj occurs, so the 

event A = Al U A2 U ... may involve an unlimited number of trials, like the event 

A = (T even) in the die example. It seems natural to define P(A) as the sum of the 

infinite series 

00 n 

to use three common notations for the same thing. This limit exists and is a number 

between 0 and 1 because the rules of probability for a finite number of trials imply 

that the partial sums are non-negative, increasing and bounded above by 1. That 

much is fairly straightforward. The hard thing to show is that this definition is con­

sistent, because a given event A might be split up in lots of different ways, and it is 

not obvious that the infinite sum rule gives the same result no matter how the event 

A is split up. Still, mathematicians have shown that it does. So the infinite sum rule 

gives a consistent way of extending the definition of probability from events for a 

finite number of trials to events for an infinite number of trials. Mathematically, the 

infinite sum rule is usually taken to be an axiom. It is then a nontrivial theorem that 

the various distributions studied in this book can be defined over suitable classes 

of subsets so as to satisfy this axiom. Proof of this goes beyond the scope of this 

course; see, for example, Billingsley's book, Probability and Measure. 

Exercises 3.4 
Note: Geometric series should not be left unsimplified. Use 

23 1 l+x+x +x + ... =--
I-x 

(Ixl < 1) 

1. A coin which lands heads with probability p is tossed repeatedly. Assuming indepen-

dence of the tosses, find formulae for 

a) PCexactly.) heads appear in the first 9 tosses); 

b) PCthe first head appears on the 7th toss); 

c) PCthe fifth head appears on the 12th toss): 

d) P(the same number of heads appear in the first 8 tosses as in the next 5 tosses). 

2. An urn contains 10 red balls and 10 black balls. Balls are drawn out at random with 

replacement until at least one ball of each color has been drawn out. Let D be the 

number of draws. Find: a) the distribution of D; b) E(D); c) SD(D). 
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3. Suppose you pick people at random and ask them what month of the year they were 

born. Let X be the number of people you have to question until you find a person who 

was born in December. What is E(X), approximately? 

4. In the game of "odd one out" three people each toss a fair coin to see if one of their 

coins shows a different face from the other two. 

a) After one play, what is the probability of some person being the "odd one out"? 

b) Suppose play continues until there is an "odd one out". What is the probability 

that the duration is r plays? 

c) What is the expected duration of play? 

5. Bill, Mary, and Tom have coins with respective probabilities Pl,P2,P3 of turning up 

heads. They toss their coins independently at the same times. 

a) What is the probability it takes Mary more than n tosses to get a head? 

b) What is the probability that the first person to get a head has to toss more than 

n times? 

c) What is the probability that the first person to get a head has to toss exactly n 

times? 

d) What is the probability that neither Bill nor Tom get a head before Mary? 

6. The geometric (p) distribution on { 0, 1, 2, ... }. The geometric (p) distribution is 

often defined as a distribution on {O, 1, 2, ... } instead of {I, 2, 3, ... }. A random variable 

W has geometric (p) distribution on {O, 1, 2, ... } if 

P(W = k) = lp (k = 0,1, ... ) 

a) Show that this is the distribution of the number of failures before the first success 

in Bernoulli (p) trials. 

b) Find P(W > k) (k = 0, 1, ... ) c) Find E(W). d) Find Var(W). 

7. Suppose that A and B take turns in tossing a biased coin which lands heads with 

probability p. Suppose that A tosses first. 

a) What is the probability that A tosses the first head? 

b) What is the probability that B tosses the first head? For both a) and b) above, find 

formulae in terms of p and sketch graphs. 

No matter what the value of p, A is more likely to toss the first head than B. To try to 

compensate for this, let A toss once, then B twice, then A once, B twice, and so on. 

c) Repeat a) and b) with this scheme. Give formulae and graphs. 

d) For what value of p do A and B have the same chance of tossing the first head? 

e) What, approximately, is B's chance of winning for very small values of p? Give 

both an intuitive explanation and an evaluation of the limit as p -+ 0 by calculus. 

8. Craps. In this game a player throws two dice and observes the sum. A throw of 7 or 

11 is an immediate win. A throw of 2, 3, or 12 is an immediate loss. A throw of 4, 5, 6, 

8, 9, or 10 becomes the player's point. In order to win the game now, the player must 

continue to throw the dice, and obtain the point before throwing a 7. The problem is 

to calculate the probability of winning at craps. Let Xo represent the first sum thrown. 

The basic idea of the calculation is first to calculate P(Win I Xo = x) for every possible 

value x of Xo, then use the law of average conditional probabilities to obtain P(Win). 
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a) Show that for x = 4,5,6,8,9,10, 

P(WiniXo = x) = P(x)/[P(x) + P(7)] 

where P(x) = P(Xi = x) is the probability of rolling a sum of x. (Refer to 

Example 2). 

b) Write down P(WiniXo = x) for the other possible values x of Xo. 

c) Deduce that the probability of winning at craps is 

1952 
P(Win) = 36 x 11 x 10 = 0.493 ... 

9. Suppose we play the following game based on tosses of a fair coin. You pay me $10, 

and I agree to pay you $n 2 if heads comes up first on the nth toss. If we play this game 

repeatedly, how much money do you expect to win or lose per game over the long 

run? 

10. Let X be the number of Bernoulli (p) trials required to produce at least one success 

and at least one failure. Find: 

a) the distribution of X; b) E(X); c) Var(X). 

11. Suppose that A tosses a coin which lands heads with probability PA, and B tosses one 

which lands heads with probability P B. They toss their coins simultaneously over and 

over again, in a competition to see who gets the first head. The one to get the first head 

is the winner, except that a draw results if they get their first heads together. Calculate: 

a) P(A wins); b) P(B wins); c) P(draw); 

d) the distribution of the number of times A and B must toss. 

12. Let WI and Wz be independent geometric random variables with parameters PI and 

P2. Find: 

a) P(Wl = W2); b) P(Wl < W2); c) P(Wl > W2); 

d) the distribution of min (Wl , W2 ); 

e) the distribution of max(Wl , W2 ). 

13. Consider the following gambling game for two players, Black and White. Black puts 

b blacl<, balls and White puts w white balls in a box. Black and White take turns at 

drawing at random from the box, with replacement between draws until either Black 

wins by drawing a black ball or White wins by drawing a white ball. Suppose Black 

gets to draw first. 

a) Calculate P(Black wins) and P(White wins) in terms of P = b/(b + w). 

b) What value of P would make the game fair (equal chances of winning)? 

c) Is the game ever fair? 

d) What is the least total number of balls in the game, (b + w), such that neither 

player has more than a 51% chance of winning? 

14. In Bernoulli (p) trials let Vn be the number of trials required to produce either n suc­

cesses or n failures, whichever comes first. Find the distribution of Vn . 
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15. The memoryless property. Suppose F has geometric distribution on {O, 1, 2, ... } as 

in Exercise 6. 

a) Show that for every k 2: 0, 

P(F-k=mIF2:k)=P(F=m), m=O,l,,,. 

b) Show the geometric distribution is the only discrete distribution on {O, 1,2, ... } 

with this property. 

c) What is the corresponding characterization of the geometric (p) distribution on 

{1,2, ... }? 

16. Fix rand p and let P(k), k = 0, 1, ... , denote the probabilities in the negative binomial 

(r, p) distribution. 

a) Show that the consecutive odds ratios are 

P(k)/P(k - 1) = (r + k -l)q/k (k=1,2, ... ) 

b) Find a formula for the mode m of the negative binomial distribution. 

c) For what values of rand p does the distribution have a double maximum? Which 

values k attain it? 

17. Suppose the probability that a family has exactly n children is (1 - p )pn, n 2: 0. 

Assuming each child is equally likely to be a boy or a girl, independently of previous 

children, find a formula for the probability that a family contains exactly k boys. 

18. Suppose two teams playa series of games, each producing a winner and a loser, until 

one team has won two more games than the other. Let G be the total number of games 

played. Assuming your favorite team wins each game with probability p, independently 

of the results of all previous games, find: 

a) P(G=n)forn=2,3,,,.; 

b) E(G); 

c) Var(G). 

19. Let Tr be the number of fair coin tosses required to produce r heads. Show that: 

a) E(Tr) = 2r; 

b) P(Tr < 2r) = 1/2; 

) C """,.=no (n n+ i) 2- i -_ 2n c lor every non-negative integer n, ~ 

20. Tail sums. Show that for a random variable X with possible values 0, 1, 2, ... 

a) E(X) = ~:'=l P(X 2: n); 

b) E[~X(X + 1)] = ~:'=l nP(X 2: n); 

c) Call the first sum above I:l and the second I:2. Find a formula for Var(X) in 

terms of I:l and I:2, assuming I:2 is finite. 
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21. Section 2.4 shows that the binomial (n,p) distribution approaches the Poisson (f1,) dis­

tribution as n -+ 00, and p -+ 0 with np = f1, held fixed. Consider the negative binomial 

distribution with parameters rand p = 1 - q. Let r -+ 00, and let p -+ 1 so that rq = f1, 

is held fixed. 

a) What does the mean become in the limit? 

b) What does the variance become in the limit? 

c) Show the distribution approaches the Poisson (jj) distribution in the limit. 

22. Factorial moments and the probability generating function. The kth factorial 

moment of X is Jk = E[(X)kJ where (Xh = X(X - 1) ... (X - k + 1). For many 

distributions of X with range {O, 1, ... } it is easier to compute the factorial moments 

than the ordinary moments jjk = E[Xk]. Note that .Tn = E~ Sn.k(X)k for some integer 

coefficients Sn,k. These Sn,k are known as Stirling numbers oj the second kind. 

a) Find Sn,k for 1 :::; n :::; 3 and 1 :::; k :::; n. 

b) Find a formula for f1,n in terms of ik, 1 :::; k :::; n. 

c) Assuming X has non-negative integer values, let P(X = i) = p, for i = 0,1, .... 

Let G (z) = E:o pd, known as the probability generating function of X. 
Assume G(r) < 00 for some r > 1. Show by switching the order of summation 

and differentiation k times, (which can be justified, but you need not show this) 

that the kth derivative G(k) (z) ofthe function G(z) is G(k) (z) = ~:k Pi( i)kZ,-k 

Deduce that!k = G(k)(l). 

23. Geometric generating function and moments. Csing the notation and results of 

Exercise 22: 

a) Find the generating function of the geometric (p) distribution on {O, 1, 2, ... }. 

b) Find the first three factorial moments of the geometric (p) distribution on the 

integer set {O, 1,2, ... } by differentiation of the generating function. Check the 

first two factorial moments yield the mean and variance as given in the text. 

c) Referring to Exercise 3.3.33 for properties of skewness, use the result of b) to find 

the skewness of the geometric (p) distribution on {O, 1, 2, ... }. Without further 

calculation, find the skewness of the geometric (p) distribution {I, 2, ... } and of 

the negative binomial (r, p) distribution. 

24. The collector's problem. In the setting of Example 5, let Tn denote the number of 

boxes to get a complete set of animals. 

a) Find a formula for an = SD(Tn). 

b) Show that an < en for a constant c > o. 

c) Deduce from Chebychev's inequality that Tn will most likely differ from n log n 
by only a small multiple of n. 

d) (Hard.) Find the asymptotic distribution as n -+ 00 of (Tn - nlogn)/n. (It's not 

normal.) 
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3.5 The Poisson Distribution 
The Poisson distribution is an approximation to the distribution of the number N of 

occurrences of events of some kind, when the events all have small probabilities, 

and are independent or nearly so. For example, N might be one of the following 

counting variables: 

Nwins : the number of wins in n games of roulette for a gambler who bets on a 

single number each game. 

Ndrops : the number of raindrops which fall on a particular square inch of roof during 

a one-second interval of time. 

Nparticles: the number of radioactive particles emitted by a piece of radioactive ma­

terial during an interval of time. 

In case there are n independent events with equal probability p, the exact distribution 

of the number N that occurs is binomial (n,p). As shown in Section 2.4, ifp is small 

this distribution is closely approximated by the Poisson distribution with parameter 

J.l = E(N) = np: 

(k=O,l, ... ) 

This justifies the use of the Poisson distribution in each case above. For instance, in 

the raindrops example, think of the square inch as divided into 100 hundredths of a 

square inch, each of which might or might not be hit by a raindrop. Suppose each 

hundredth of a square inch has the same small chance of being hit by a raindrop in 

the given second, independently of what happens elsewhere on the roof, and ignore 

the extremely small probability of the same hundredth of a square inch being hit 

more than once. Then Ndrops is the number of successes in 100 independent trials, 

with small probability of success on each trial. You can think of Nparticles in a similar 

way, by dividing time into small units. By passing to a limit in which the raindrops 

are regarded as hitting random points in the plane, or the particles arrive at random 

instants on the time line, a mathematical model is obtained in which the distribution 

of the count is exactly Poisson. This is the idea of a Poisson random scatter, or 

Poisson process, discussed later in this section. 

Features 

Features of the Poisson (J.l) distribution come from corresponding features of the 

binomial (n, p) distribution, by the passage to the limit as n -+ CXJ and p -+ a with 

np = J.l kept fixed. It was shown in Section 2.4 that in this limit the probabilities of 

individual values converge 
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Since the binomial (n, p) distribution has mean np = /-1, it is natural that the Poisson 

(/-1) limit should also have mean /-1. And the SD of the binomial (n, p) distribution is 

vnpq, which tends to Vfi as n -+ 00 and p -+ 0 with np = /-1. 

Poisson Mean and Standard Deviation 

If N has Poisson (/-1) distribution, 

E(N) = /-1 SD(N) = Vii 

These formulae, made plausible by passage to the limit from binomial, will now be 

verified using the Poisson probability formula and the definitions of mean and SD 

for a discrete distribution. 

Derivation of the mean. 

00 

E(N) = LkP(N = k) 
k=O 

Derivation of the SD. A direct attempt to find E(N2 ) would be to try to repeat 

the last calculation with k2 P(N = k) instead of kP(N = k). This gives terms of a 

constant times /-1kk 2 /k! which are not easy to sum. But /-1kk(k - l)/k! can easily be 

summed, and this solves the problem: 

00 k 

E(N(N-l)) = Lk(k-l)e-!L~! 
k=O 
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so E[N2 ] = E[N(N - 1) + N] = E[N(N - 1)] + E(N) = p,2 + p, 

and Var(N) = E(N2 ) - [E(NW = p,2 + p, - p,2 = P, 

SD(N) = vJj 

How p, affects the shape of the distribution. Let Nil have Poisson (p,) distribution. 

For example, think of Nil as the number of raindrops which hit a portion of a roof 

of area p, in a given length of time, assuming one raindrop is expected per unit area. 

Since Nil has mean p, and SD Vii, you should expect Nil to be around p, plus or 

minus a small multiple of Vii, 
If P, is so close to 0 that p,2 is negligible in comparison to p, (for example, when 

p, = 0.01, p,2 = 0.0001), terms of order p,2 and higher can be neglected in the 

expansion 

so 

P(NIl = 0) = e- Il ~ 1 - P, 

P(NIl = 1) = p,e- Il ~ p, 

P(NIl ~ 2) ~ 0 

where ~ means an approximation for small p, with an error of at most about p,2. In 

the raindrops example, with one drop expected per unit area, this means that for a 

small area p, « 1 the chance of being hit by one drop is about p" and the chance of 

being hit by more than one drop is negligible in comparison. 

Look again at the histograms of Poisson distributions at the end of Section 2.4. For 0 < 
P, < 1 the Poisson (p,) distribution has most probability at 0, and strictly decreasing 

probabilities for higher counts. As p, increases, the distribution shifts toward larger 

values and slowly flattens out, consistent with the formulae p, and Vii for the mean 

and SD. 

Normal approximation. For p, large enough that the standard deviation Vii of 

the Poisson distribution is small in comparison to its mean p" the distribution starts 

to become normal in shape. The distribution of the standardized Poisson variable 

(N/-<- - p,)/ Vii approaches standard normal as p, ----> 00. This can be shown by study 

of consecutive odds ratios as in the binomial case treated in Section 2.3. It is yet 

another instance of the central limit theorem, due to the fact, discussed below, that 

sums of independent Poisson variables are Poisson. 

Skewness. The Poisson(p,) distribution has skewness 1/ Vii (Exercise 20). Because 

this skewness tends to zero very slowly as p, ----> 00 the approach of the Poisson 

distribution to normality is rather slow. Numerical calculations shown in Table 1 

confirm what is apparent in Figure 1: for moderate values of p, the Poisson histogram 

follows a skew-normal curve much more closely than it does the normal curve. 
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FIGURE 1. Normal and skew-normal approximation to the Poisson (9) distribution Both the 

normal curve y = ¢(z) and the skew-normal curve y = ¢(z) - (1/18)¢"/(z) are shown. The 

skew-normal curve follows the histogram much more closely. 

Skew-normal Approximation 

to the Poisson Distribution 
If Nil has Poisson (J.l) distribution, then for b = 0,1, ... 

1 
P(NIl :S b) ~ <I>(z) - 6..ffi (z2 - l)¢(z) where z = (b + ~ - J.l)/..ffi. 

Here <I>(z) is the standard normal c.d.f. and ¢(z) is the standard normal curve. 

k 

It can be shown that if this skew-normal approximation is used twice to approximate 

interval probabilities, the worst error is less than 1/(20J.l) for all J.l. If the skewness 

correction term is ignored, the resulting normal approximation with continuity but 

not skewness correction gives interval probabilities with much larger errors up to 

about 1/(10..ffi) for the worst cases a ~ J.l- .j3ji, b ~ J.l and a ~ J.l, b ~ J.l + .j3ji. If 

J.l is sufficiently large such errors can be ignored. 

The following table shows some numerical results for J.l = 9. The numbers are 

correct to three decimal places. Compare with the very similar behavior of the 

binomial (100,1/10) distribution displayed in Table 2 at the end of Section 2.2. As in 

that table, the ranges selected are the ranges over which the normal approximation is 

first too high, then too low, too high, and too low again. The normal approximation 

to the Poisson (9) distribution is very rough, but the skew-normal approximation is 

excellent. 
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TABLE 1. Approximations to the Poisson (9) distribution. The interval probability P(a :s; N g :s; b) 

is shown for a Poisson (9) random variable N g along with approximations using the normal and 

skew-normal curves. 

range of Poisson (9) probability skew-normal normal 

values a to b P(a ::; Ng ::; b) approximation approximation 

0-3 0.021 0.024 0.033 

4-8 0.434 0.431 0.400 

9 -14 0.503 0.502 0.533 

15 - 00 0.041 0.043 0.033 

Law oflarge numbers. Since E(Np,j f-L) = f-Lj f-L = 1 and 

in the probabilistic sense that Np,j f-L will most likely be very close to 1. This is the 

law of large numbers in the Poisson context. In terms of the raindrops example, 

with one drop expected per unit area, this law of large numbers says that over a 

large area f-L the average number of drops per unit area is nearly certain to be close 

to its expected value of 1. Both the normal approximation and the law of large 

numbers for the Poisson distribution are instances of more general results for sums 

of independent random variables, due to the result of the next paragraph. 

Sums. If a big area is broken up into, say, j small areas, the number of raindrops 

hitting the big area is the sum of the numbers of drops in the j small areas. So the 

following result is very natural: 

Sums of Independent Poisson Variables 

are Poisson 
If Nl"'" N j are independent Poisson random variables with parameters 

f-Ll, ... , f-Lj, then Nl + ... + Nj is a Poisson random variable with parameter 

f-Ll + "'+f-Lj. 

To see this via the approximation to binomial, first consider two separate blocks of 

Bernoulli trials of lengths nl and n2 to see the following: 

If Nl and N2 are independent with binomial (nl,p) and binomial (n2,p) 

distributions, then Nl + N2 has binomial (nl + n2,p) distribution. 
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Now let nl and n2 both tend to 00, and P -'> 0, with nlP -'> J.ll and n2P -'> J.l2. Then 

(nl + n2)p -'> J.ll + J.l2· So Nl and N2 approach independent Poisson variables with 

means J.ll and J.l2, while Nl + N2 approaches Poisson (J.ll + J.l2)' 

Here is an alternative derivation. To simplify notation, let 0: = J.ll and f3 = J.l2. 

k 

P(Nl + N2 = k) = LP(Nl = j)P(N2 = k - j) 
j=O 

k j f3 k - j 
~ _aO: -(3 

= ~ e J! e -:-( k---j)'--! 
J=O 

= e-(a+{3) (0: + (3)k ~ k! 
k! ~ j!(k - j)! 

J=O 

__ (a+{3)(o:+f3)k 
- e k! 

( 0: ) j ( f3 ) k- j 

0:+f3 0:+f3 

because the terms in the previous sum are all the terms in a binomial distribution, 

with sum 1. Thus Nl + N2 has Poisson (0: + (3) distribution. Repeated application of 

this result for two terms gives the result for any number of terms. 

Number of wins. 

Suppose a gambler bets ten times on events of probability 1/10, then twenty times on 

events of probability 1/20, then thirty times on events of probability 1/30, then forty 

times on events of probability 1/40. Assuming the events are independent, what is 

the approximate distribution of the number of times the gambler wins? 

Let NI be the number of wins on the first 10 events of probability 1/10, N2 the 

number of wins on the next 20, N3 the number of wins on the next 30, and N4 the 

number of wins on the next 40. The exact distribution of the gambIer'S winnings is 

the distribution of 

The random variables Ni , i = 1,2,3,4, are independent, and each Ni is binomial 

(Wi, I/Wi), hence approximately Poisson (1). Thus the distribution of N must be 

approximately Poisson (4), by the Poisson sums theorem. 

As the example suggests, the Poisson approximation to the binomial distribution 

extends to the case of independent trials with possibly different probabilities of 

success. It can be shown that if N is the number of events which occur among n 
independent events with probabilities PI, ... ,Pn, then provided all the probabilities 

Pi are small, the distribution of N is approximately Poisson (/-l), where 

J.l = E(N) = PI + P2 + ... + Pn· 
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• 

• 

Random Scaffer 

It has already been argued informally that it would be reasonable to assume a Poisson 

distribution for a random variable like the number of raindrops to hit a given area in a 

given period of time. This idea will now be developed further to give a mathematical 

model for a random scatter of points in a plane such as in the diagram below . 

• 
• 

, 
• ., 

The points might indicate, for example: 

CD points on a surface hit by particles of some kind, for example, raindrops, dust 

particles, atomic particles, or photons; 

(ij) positions of cells of some kind on a microscopic slide; 

(iii) positions of stars on a photographic plate. 

The model is based on simple intuitive assumptions ,,'hich turn out to imply that the 

number of points in a fixed area will have a Poisson distribution. The same idea of 

a random scatter makes sense in any number of dimensions, with length or volume 

instead of area. For example, a mist of raindrops is a three-dimensional scatter. And 

a process of random arrivals, like calls coming into a telephone exchange, can be 

thought of as defining a scatter of points on a time line. The basic ideas will be set 

out here for a scatter in two dimensions. But similar assumptions in any number of 

dimensions lead to the same conclusion of Poisson distributed counts. 

A random scatter has both a discrete and a continuous aspect. Counting the number 

of points in a given region or interval gives a discrete variable. If you know enough 

counts for different regions you can say more or less where the points are. And the 

probabilities of events determined by the scatter can be derived from assumptions 

about the counting variables. This is the approach taken here, with assumptions 

which imply the counts are Poisson distributed. On the other hand, the positions 

in space or time of points in a scatter are typical continuous variables. Section 4.2 

shows how the continuous distributions of these variables are related to the discrete 

Poisson distribution of counts. 

Assumptions. Consider a scatter of a finite number of points in a square. To dis­

tinguish points in the scatter from other points in the square, call the points in the 
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scatter hits. These are the places hit by the raindrops, particles or whatever, idealized 

as points in the square. 

Assumption 1: No Multiple Hits 
That is to say, distinct hits define distinct points in the square. 

To state the next assumption, suppose that for each n = 4,16,64, ... , the square is 

divided into n subsquares of equal area lin, as in the following diagrams. Say a 

subsquare is hit if it contains one or more hits of the scatter, and missed if it con­

tains no hits. Hit squares are black and missed squares white in the diagrams. For 

each n, the pattern of hit squares provides some information about the scatter. This 

pattern gives a digital representation of the scatter, with some loss of information. 

As the number of subsquares n increases the pattern of hit subsquares becomes 

more and more sharply focused on the scatter. This can be seen in the follow­

ing diagram, which shows patterns derived from a scatter of 5 points in the square . 

• 
• 

• 
• 

Assumption 2: 

Randomness of Hits on Subsquares 
For each n, anyone of the n subsquares is hit with the same probability, say 

Pn, independently of hits on the other n - 1 subsquares. 

Note that the randomness assumption refers separately to each digital representation. 

The digital representations of a random scatter for different values of n are, in fact, 

highly dependent. If you know the digital representation for some value of n, the 

representation for smaller values of n is completely determined. 
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Poisson ScaHer Theorem 
The assumptions of no mUltiple hits and randomness imply there is a positive 

constant A such that: 

co for each subset B of the square, the number N(B) of hits in B is a 

Poisson random variable with mean A x area(B); 

(iO for disjoint subsets Bl , ... , B j , the numbers of hits N(Bl ), '" , N(Bj) 
are mutually independent. 

The random scatter is then called a Poisson scatter with intensity A. The in­

tensity is the expected number of hits per unit area. Conversely, CO and (ii) 

imply the assumptions of no multiple hits and randomness. 

A proof of the Poisson scatter theorem is sketched at the end of the section. 

Global interpretation of the intensity A. If the scatter in the square is just part of 

a Poisson scatter over a larger area, the law of large numbers shows that 

A is the limiting average number of hits per unit area over a large area. 

Local interpretation of the intensity A. This refers to sets B with small area. From 

the Poisson distribution of N(B), 

P( one hit on B) = A area(B) e->' area(B) ~ A area(B) as area(B) -+ 0 

and the probability of two or more hits on B is negligible in comparison. So 

A is the probability of a hit per unit area, as the area tends to zero. 

Sums again. The fact that sums of independent Poisson variables are again Poisson 

is built into the concept of a Poisson scatter. For if Bl , ... ,Bj is a partition of a unit 

square into sets with areas Pl, ... ,Pj, where L:i Pi = 1, then the total number of 

hits is N = L:i N(Bi). If the scatter is Poisson with intensity A, then N is Poisson 

(A), while the N(Bi ), 1:::; i :::; j, are independent Poisson variables with means APi, 
which could be any positive numbers with sum A. 

Scatters over other sets. The theorem extends to scatters over other subsets of the 

plane than a square, and scatters on the line or in higher dimensions. Then length 

or volume replaces area. 
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Particle hits. 

Suppose particles hit a square at random according to a 

Poisson random scatter, with 8 particles expected in the 

whole square. What is the probability that the four equal 

subsquares in the diagram are hit by exactly 0, 1, 2, and 

3 particles, respectively? 

Since the numbers of hits on the four squares are inde­

pendent Poisson random variables, all with parameter 

8 x 1/4 = 2, the probability in question is 

• 

e-220 e-221 e-222 e-223 e-826 

----o! x -1-'- x ~ x 3! = ~ 

Bacterial colonies. 

• 

• 
• 

• • 

Suppose a volume of 1000 drops of water contains 2000 bacteria, separate from 

each other and thoroughly mixed in the water. A single drop is smeared uniformly 

over the surface of a dish. The dish contains nutrients on which the bacteria feed 

and multiply. After a few days, wherever a bacterium was deposited on the dish a 

visible colony of bacteria appears. Find the distribution of the number of colonies 

that appear: a) over the whole plate, b) over an area of half the plate. 

It seems reasonable to suppose that the positions of bacterial colonies over the 

plate form a Poisson random scatter. Since 1000 drops contain 2000 bacteria, the 

expected number of bacteria per drop may be estimated as 2000/1000 = 2. So the 

distribution of the number of bacteria on the whole plate is Poisson with mean 2. 

And the distribution of the number in half the plate is Poisson with mean 1. 

Instead of thinking of the scatter over the plate to justify the Poisson distribution, 

you might think that each of the 2000 bacteria was present in the drop smeared on 

the plate with probability 1/1000, independently of the others. Then the number 

of bacteria on the plate would have binomial (2000,1/1000) distribution, which is 

Poisson (2) for all practical purposes. Similarly, for the number on half the plate, you 

get 1jinomial (2000,1/2000), which is approximately Poisson (1). But the assump­

tion of random scatter implies that the numbers in the two halves of the plate are 

independent, something not so obvious by the second method. 

Suppose now it is not certain that a bacterium will survive and produce a visible 

colony, but that this happens with probability p for each bacterium on the plate, 

independently of the others. What now is the distribution for the number of colonies? 

It is intuitively clear that the scatter of colonies must still satisfy the hypotheses 

of a Poisson scatter. The intensity of the colonies can be calculated from its local 

interpretation. Take the area of the whole plate to be 1, so by the previous example 

the intensity for the scatter of all bacteria landing on the plate is 2 per unit area, and 
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Remark. 

take a region B so small that 

P(one bacterium in B) ~ 2area(B) P(2 or more bacteria in B) ~ 0 

where ~ allows an error of order area(B) squared. Then 

P( one colony in B) = P( one bacterium in B and colony) 

+ P(2 or more bacteria in B and colony) 

~ 2 area(B) p = 2parea(B) 

So the scatter of colonies has intensity 2p per unit area. The number of colonies on 

the whole plate therefore has Poisson (2p) distribution. 

Again, the same conclusion can be obtained another way. Think of the number 

of colonies as the sum of 2000 independent indicator random variables, indicating 

whether or not each of the 2000 bacteria gets deposited on the plate and then 

produces a colony. The chance of a bacterium getting on to the plate is 1/1000, and 

the chance of it producing a colony, given that it gets on the plate, is p. So the overall 

probability of being deposited on the plate and then surviving is p/lOOO. This makes 

the number of colonies have binomial (2000,p/1000) distribution, which is Poisson 

(2p) for all practical purposes. 

The last example illustrates a useful property of Poisson scatters, which can be de­

rived in general by the same argument: 

Thinning a Poisson Scaffer 
Suppose that in a Poisson scatter with intensity '\, each point of the scatter 

is kept with probability p, and erased (or thinned:) with probability 1 - p, 

independently both of the positions of points in the scatter and of all other 

thinnings. Then the scatter of points that are kept is a Poisson scatter with 

intensity '\p. 

Similarly, the scatter of points that are thinned is a Poisson process with intensity 

'\q, where q = 1 - p. It can be shown, moreover, that the two scatters, one of points 

that are kept, and the other of points that are thinned, are independent. This means 

that any event determined by the numbers and positions of points in one scatter is 

independent of any such event determined by the other. In the example with the 

bacterial colonies, the numbers and positions on the plate of the bacteria that survive 

to produce colonies are independent of the numbers and positions of those that do 

not. 

If you combine or superpose these two independent Poisson scatters, with intensities, 

say, a = '\p and (3 = '\q, you get back the original Poisson scatter with intensity 

,\ = a + (3. So thinning can be understood as a kind of inverse to the more obvious 
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operation of superposition of two independent Poisson scatters, which gives a new 

Poisson scatter whose intensity is the sum of the intensities of the component scatters. 

Sketch Proof of the Poisson Scatter Theorem 

Step 1. Poisson distribution for the total number of hits. Let N be the total 

number of hits in the whole square, assumed to be of unit area. Let Nn be the 

number of subsquares hit when the unit square is divided into n subsquares. Then 

N n increases as n increases, because each hit on one of the n subsquares must 

contribute one or more hits to all counts with more subsquares. And Nn = N for 

all n large enough that the distance across one of the n subsquares is shorter than 

the smallest distance between two of the hits in the scatter, since then the N hits 

must fall in N different subsquares. (This is where the assumption of no multiple 

hits is essential.) Just how large n must be before Nn = N depends on the scatter. 

But whatever the scatter, Nn eventually equals N. So the distribution of N can 

be found as the limit as n -t 00 of the distribution of Nn . (Technically, this uses 

the infinite sum rule for probabilities, taken here as an axiom.) By the randomness 

assumption, Nn has binomial (n,Pn) distribution, where Pn is the probability that 

one of the subsquares of area lin is occupied. Since Nn increases with n, so does 

its expectation npn. Therefore nPn converges to a limit ,.\ as n -t 00, and you can 

show that ,.\ must be finite (exercise). Consequently, the limit distribution of Nn is 

Poisson (,.\). This is the distribution of N. 

Step 2. Poisson distribution for the number of hits on a subset B. Assuming 

B is a simple subset of the unit square, meaning a finite union of subsquares at 

some level, this is similar to the argument above, with N replaced by N(B) and 

N n replaced by Nn(B), the number of hit squares of area lin within B. For large 

enough n, the simple set B is the union of some number nB of subsquares of area 

lin. In fact, nB = narea(B), since we assume the whole square has unit area, so 

area(B) = nBln. Now Nn(B) has binomial (nB,Pn) distribution, where 

nBPn = nPn area(B) -t ,.\area(B) as n -t 00 

So in the limit the distribution of N(B) is Poisson with mean ,.\area(B). The same 

conclusion for more general subsets B is justified by approximation arguments or 

measure theory. 

Step 3. Independence of counts in disjoint subsets. This comes from the as­

sumed independence of hits in different subsquares, by letting the number of sub­

squares tend to infinity. D 

Exercises 3.5 
1. Suppose 10/0 of people in a large population are over 6 feet 3 inches tall. Approxi­

mately what is the chance that from a group of 200 people picked at random from this 
population, at least four people will be over 6 feet 3 inches talP 
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2. How many raisins must cookies contain on average for the chance of a cookie contain­

ing at least one raisin to be at least 99%? 

3. The cookie dough used by a bakery to make 2-ounce cookies contains an average of 

32 raisins per pound of dough. The bakery sells cookies in bags of a dozen. 

a) Suppose that customers complain if one or more of the cookies in a bag contains 

no raisins. Over the long run, about what proportion of bags of cookies give rise 

to complaints? 

b) Approximately what average number of raisins per pound would ensure that only 

5% of the bags give rise to complaints? 

4. Books from a certain publisher contain an average of 1 misprint per page. What is the 

probability that on at least one page in a 300-page book from this publisher there will 

be at least 5 misprints? 

5. Microbes are smeared over a plate at an average density of 5000 per square inch. The 

viewing field of a microscope is 10-4 square inches of this plate. What is the chance 

that at least one microbe is in the viewing field? What assumptions are you making? 

6. Suppose rain is falling at an average rate of 30 drops per square inch per minute. What is 

the chance that a particular square inch is not hit by any drops during a given 10-second 

period? What assumptions are you making? 

7. Suppose raisin muffins from the recycling bakery have an average of 3 fresh raisins and 

2 rotten raisins per muffin. 

a) What is an appropriate distribution for the number of each kind of raisin, and for 

the total? 

b) If you bite off 20% of a muffin, what is the probability you get no raisins? 

8. A Geiger counter receives pulses at an average rate of 10 per minute. What is the 

probability of three pulses appearing in a given half-minute period? What assumptions 

are you making? 

9. Suppose that X and Yare independent Poisson random variables with parameters 1 

and 2, respectively. Find: 

a) P(X = 1 and Y = 2); 

b) p(XtY 2: 1); 

c) P (X = 11 XtY = 2) 

10. Let X have Poisson (.\) distribution. Calculate: 

a) E(3X+5); b)Var(3X+5); c)E[H\]' 

11. Suppose X, Y, and Z are independent Poisson random variables, each with mean 1. 

Find 

a) P(X + Y = 4): b) E [(X + y)2]; c) P(X + Y + Z = 4). 
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12. Radioactive substances emit a-particles. The number of such particles reaching a counter 

over a given time period follows the Poisson distribution. Suppose two substances 

emit a-particles independently of each other. The first substance gives out a-particles 

which reach the counter according to the Poisson (3.87) distribution, while the second 

substance emits a-particles which reach the counter according to the Poisson (5.41) 

distribution. Find the chance that the counter is hit by at most 4 particles. 

13. Regard the positions of molecules in a room as the points of a Poisson random scatter 

in 3 dimensions. According to physics, there are about 6.023 x 1023 molecules in every 

22.4 liters of air at normal temperature and pressure. (A liter is 1000 cubic centimeters.) 

Let N (x) be the random number of molecules in a particular cube of air with sides of 

length x centimeters. 

a) Calculate the mean JL(x) and standard deviation O'(x) of N(x). 

b) How small does x have to be in order that O'(x) be 1% of JL(x), so fluctuations 

in density of around 1% over a cube of length x are likely to occur? 

14. Assume that each of 2000 individuals living near a nuclear power plant is exposed to 

particles of a certain kind of radiation at an average rate of one per week. Suppose that 

each hit by a particle is harmless with probability 1 - 10-5 , and produces a tumor with 

probability 10- 5 . Find the approximate distribution of: 

a) the total number of tumors produced in the whole population over a one-year 

period by this kind of radiation; 

b) the total number of individuals acquiring at least one tumor over a year from this 

radiation. 

Sketch the histograms of each distribution, and find the means and SD's. 

15. A book has 200 pages. The number of mistakes on each page is a Poisson random 

variable with mean 0.01, and is independent of the number of mistakes on all other 

pages. 

(a) What is the expected number of pages with no mistakes? What is the variance of 

the number of pages with no mistakes? 

(b) A person proofreading the book finds a given mistake with probability 0.9. What 

is the expected number of pages where this person will find a mistake? 

(c) What, approximately, is the probability that the book he'S two or more pages with 

mistakes? 

16. On average, one cubic inch of Granma's cookie dough contains 2 chocolate chips and 

1 marshmallow. 

a) Granma makes a cookie using three cubic inches of her dough. Find the chance 

that the cookie contains at most four chocolate chips. State your assumptions. 

b) Assume the number of marshmallows in Granma's dough is independent of the 

number of chocolate chips. I take three cookies, one of which is made with 

two cubic inches of dough, the other two with three cubic inches each. What 

is the chance that at most 1 of my cookies contains neither chocolate chips nor 

marshmallows? 
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17. Raindrops are falling at an average rate of 30 drops per square inch per minute. 

a) What is the chance that a particular square inch is not hit by any drops during a 

given la-second period? 

b) If each drop is a big drop with probability 2/3 and a small drop with probability 

1/3, independently of the other drops, what is the chance that during 10 seconds 

a particular square inch gets hit by precisely four big drops and five small ones? 

18. A population comprises Xn individuals at time n = 0,1,2, .... Suppose that Xo has 

Poisson (p,) distribution. Between time n and time n + 1 each of the X n individuals 

dies with probability p, independently of the others. The population at time n + 1 is 

formed from the survivors together with a random number of immigrants who arrive 

independently according to a Poisson (p,) distribution. 

a) What is the distribution of Xn? 

b) What happens to this distribution as n ---> oo? 

19. Poisson generating function and moments. Suppose X has Poisson(p,) distribution. 

Using the notation and results of Exercise 3.4.22, 

a) Show that G(z) = e-I'+l'z. 

b) Find the first three factorial moments X. 

c) Deduce the values of the first three ordinary moments of X. 

d) Show that E(X - p,)3 = P, and Skewness(X) = 1/,[ii. 

20. Skewness of the Poisson ( p,) distribution. Derive the formula 1/ yITi for the skewness 

of the Poisson( p,) distribution from the Poisson approximation to binomial distribution 

(you can assume the required switches of sums and limits are justified). 

21. Skew-normal approximation to the Poisson distribution. Derive the skew-normal 

approximation to the Poisson (p,) distribution stated in this section: 

a) from the skew-normal approximation to the binomial (n, p) distribution (in Sec­

tion 2.2) by passage to the Poisson limit as n ---> 00 and p ---> a with np = p,; 

b) from the skew-normal approximation for the sum of n independent random vari­

ables stated at the end of Section 3.3. 

c) For NlO with Poisson (10) distribution, find P(N10 ::; 10) correct to three signifi­

cant figures. 

d) Find the normal approximation to P(N1o ::; 10) with continuity but not skewness 

correction, "correct" to three significant figures. Observe that the last two figures 

are useless: the error of approximation exceeds 0.02. 

e) Find the normal approximation to P(N10 ::; 10) with continuity and skewness 

correction, correct to three significant figures. [All three figures should be correct. 

The actual error of approximation is about 2 x 1O-5 .J 
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Symmetry (Optional) 
This section studies a symmetry property for joint distributions, and illustrates it 

by applications to sampling without replacement. Let (X, Y) be a pair of random 

variables with joint distribution defined by 

P(x,y) = P(X = x, Y = y) 

The joint distribution is called symmetric if P( x, y) is a symmetric function of x and 

y. That is to say, 

P(x,y) = P(y,x) for all (x, y) 

Graphically, this means that the distribution in the plane is symmetric with respect 

to a flip about the upward sloping diagonal line y = x. A glance at the figure on 

page 148 shows that a symmetric joint distribution is obtained for X and Y derived 

by sampling either with or without replacement from the set {I, 2, 3}. A symmetric 

joint distribution is obtained more generally whenever X and Yare two values 

picked by random sampling from some arbitrary list of values, either with or without 

replacement. This is obvious for sampling with replacement, and verified below for 

sampling without replacement. 

In terms of random variables, the joint distribution of (X, Y) is symmetric if and 

only if (X, Y) has the same joint distribution as (Y, X). Then X and Yare called 

exchangeable. If X and Yare exchangeable then X and Y have the same distribution. 

This is true by the change of variable principle: X is a function (the first coordinate) 

of (X, Y), and Y is the same function of (Y, X). 

The joint distribution of three random variables X, Y, and Z is called symmetric if 

P(x, y, z) = P(X = x, Y = y, Z = z) 

is a symmetric function of (x, y, z). That is to say, for all (x, y, z) 

P(x,y,z) = P(x,z,y) = P(y,x,z) = P(y,z,x) = P(z,x,y) = P(z,y,x) 

Call 3! = 6 possible orders of x,y and z). Equivalently, the 6 possible orderings of the 

random variables, 

(X,Y,Z), (X,Z,Y), (Y,X,Z), (Y,Z,X), (Z,X,Y), (Z,Y,X) 

all have the same joint distribution. Then X, Y, and Z have the same distribution, 

and each of the three pairs (X, Y), (X, Z), and (Y, Z) has the same (exchangeable) 

joint distribution, by the change of variable principle again. 

A function of n variables, say f (Xl, ... , x n ), is called symmetric if the value of f 
remains unchanged for all of the n! possible permutations of the variables. Examples 

of symmetric functions are the sum g(xd + g(X2) + ... + g(xn ) and the product 

g(Xdg(X2)'" g(xn ) for any numerical function g(x). 
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Symmetry of a Joint Distribution 
Let Xl"'" Xn be random variables with joint distribution defined by 

The joint distribution is symmetric if P(XI' ... ,xn ) is a symmetric function of 

(Xl, ... ,xn ). Equivalently, all n! possible orderings of the random variables 

Xl"'" Xn have the same joint distribution. Then Xl"'" Xn are called ex­

changeable. Exchangeable random variables have the same distribution. For 

2 :S m :S n, every subset of m out of n exchangeable random variables has 

the same symmetric joint distribution of m variables. 

The simplest example of an exchangeable sequence of random variables is n inde­

pendent trials Xl"'" X n . Then 

where p(x) = P(Xi = x) defines the common distribution of the Xi. This a sym­

metric function of (Xl, X2, ... , xn) because the product is the same evaluated in any 

order. Sampling with replacement is a special case of independent trials. Here is a 

more interesting example: 

Sampling Without Replacement 

The basic setup for sampling without replacement was described in Section 2.5. 

Suppose there is some population of N individuals. Suppose the ith individual in 

the population has some attribute bi , for example the color of the ith ball in a box, or 

the height of the ith individual in a human population. Suppose n items are drawn 

one by one without replacement from the population. Let Xj be the attribute of the 

jth individual in the sample. So Xl"'" Xn might represent the random sequence of 

colors of n balls drawn at random without replacement from a box, or the random 

sequence of heights in a sample without replacement from a human population. 

Symmetry in Sampling Without Replacement 
Let Xl"'" Xn be a sample of size n without replacement from a list of values 

{bl , ... , bN }, where 2 :S n :S N. Then Xl"'" Xn are exchangeable. In par­

ticular, for 1 :S m :S n the joint distribution of any subset of m of the Xi has 

the same distribution as a random sample of size m without replacement from 

the list {bl, ... ,bN }. 
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This is proved in three stages as follows: 

Proof for n = Nand bi = i, 1 ::; i ::; n. In this case (Xl, ... , Xn) is an exhaus-

tive random sample without replacement from the list 1,2, ... 71, that is, a random 

permutation of {I, 2, .. . ,n}, as in Example 3.1.6. The joint probability function was 

calculated in that example and found to be symmetric. So (X I, ... , Xn) is exchange­

able. 0 

Remark. The exchangeability of a random permutation is quite intuitive if you think 

of generating (Xl, ... , Xn) by shuffling and then dealing out in order a deck of 71 

cards labeled 1,2, ... , n. Any particular rearrangement of the variables (Xl, ... , Xn) 
then corresponds to a particular deterministic shuffle before the deal. And it is intu­

itively clear that any particular additional deterministic shuffle of a perfectly shuffled 

deck must keep the deck perfectly shuffled. The exchangeability of a random per­

mutation (XI, ... ,Xn ) is not so intuitive, but still true, for XI"",Xn generated 

by drawing balls at random one by one from an urn containing 71 balls labeled 

1, 2 .... , n. 

Proof for n = N and a general list {b l , ... ,bn }. Now {b l , ... , bn } can be any list of 

values whatever, allowing repetitions of values. The values need not be numerical. 

For example, for 71 = N = 6, bl = b2 = b3 = b, b4 = bs = r, and b6 = w, might 

represent a listing of the colors of balls in a box of 3 black balls, 2 red balls, and 1 

white ball. A typical result of 6 draws from the box without replacement would then 

be the event 

Think of a general list {b l , ... , bn} listing the contents of a box. The result (X I, ... , X n) 
of exhaustive sampling without replacement is a random permutation of the values in 

the list, with all n! possible permutations of the indices equally likely. Write b( k) = bk . 

Then, Xi = b(Yi) where (YI , ... , Yn ) is random permutation of 1,2, ... ,71. So 

Xi = b(Yi) where YI ,··., Yn are exchangeable 

But it is intuitively clear (and a consequence of the change of variable principle), 

that a function b applied to all variables in an exchangeable sequence yields another 

exchangeable sequence. 0 

Proof for 2 <::: n <::: N and a general1ist {b l , ...• bN }. For a sample of size n 

without replacement from a list of N values, the exchangeability follows by viewing 

the sample of size 71 as the first 71 variables in an exhaustive sample, which is ex­

changeable by the previous case, and appealing to the general fact that subsets of 

exchangeable variables are exchangeable. 0 

Examples. The symmetry of sampling without replacement appeared already in 

Section 2.5, in the derivation of the probability of getting 9 good elements and b had 

elements in a sample of size n without replacement from a population of G good 

and B bad elements. That calculation used the fact that the probability of getting 9 
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Example 1. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Discussion. 

Example 2. 

Problem 1. 

Solution. 

good elements and b bad elements in a particular order is the same for all possible 

orders. Other consequences of the symmetry appear in Example 1.4.7 and Example 

3.1.6. Here are two more examples. 

Dealing cards. 

Five cards are dealt from a standard deck of 52 cards. 

What is the probability that the fifth card is a king? 

It is confusing in this problem to think about which of the first four cards are kings. 

Rather, ignore the first four cards. The fifth card is a card drawn at random from the 

deck, just like the first card. So the probability that the fifth card is a king is the same 

as the probability that the first card is a king, that is 1/13. 

What is the chance that the third and fifth cards are black? 

Ignore the first, second, and fourth cards. By the symmetry of sampling without 

replacement, the third and fifth cards are two cards drawn at random without re­

placement from the deck, just like the first two cards. So the probability that the third 

and fifth cards are black is the same as the probability that the first and second cards 
bl k h . 26 25 

are ac, t at IS 52 X 51' 

This kind of intuitive argument is precisely what is justified by the symmetry of sam­

pling without replacement. Particular problems like these can be solved quickly "by 

symmetry" without using random variable notation. But the theoretical justification 

is symmetry of the joint distribution involved. 

Red and black balls. 

Suppose 20 balls are drawn at random without replacement from a box containing 

50 red balls and 50 black balls. 

What is the probability that the 10th ball is red given that the 18th and 19th balls are 

red? 

Let Xi be the color of the ith ball drawn. Then (Xl, X 2 , ... , X 20 ) represents a 

random sample of size 20 without replacement from the population of 100 red and 

black balls. The problem is to calculate 

(X - d I X - d' d X - d)- P(X1O =red andX18 =red and X 19 =red) 
P 10 -re 18 -re an 19 -re - P(X - d d X - d) 

18 -re an 19 -re 

This conditional probability is determined by the joint distribution of X 1O , X 18 , and 

X 19 , which is the same as the joint distribution of X 3 , X 2 and Xl by the symmetry 

of sampling without replacement. So the required probability is the same as 

P(X3 = red I X 2 = red and Xl = red) = 
48 

98 
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since after drawing two red balls on the first two draws there are 48 red balls re­

maining out of 98 balls total. 

Mean and Variance of the Hypergeometric 

Distribution 

Recall from Section 2.5 the distribution of the number of good elements Sn in a 

sample of size n for a population of size N containing G good elements: 

where b = n - g, B = N - G represent numbers of bad elements. The mean and 

standard deviation of Sn are as follows: 

~ -n 
E(Sn) = np and SD(Sn) = --Vnpq 

N -1 

where p = G / N is the proportion of good elements in the population, q = B / N the 

proportion of bad elements in the population. Note that the mean is the same as if the 

sampling were done with replacement, when the distribution of Sn is binomial (n, p). 
And the standard deviation is just the familiar binomial standard deviation of vnpq 

multiplied by the factor J fv =~ , called the finite population correction factor. 

Proof. Write 

where for each j = 1,2, ... ,n, I j is the indicator of the event that the jth draw yields 

a good element. By the symmetry of sampling without replacement just discussed, 

the distribution of I j is the same Bernoulli (G / N) distribution for every j. Thus the 

expectation of Sn can be computed as 

G 
E(Sn) = E(Id + E(h) + ... + E(In) = nE(h) = n­

N 

The variance can now be computed, starting from a calculation of 

E(S~) = E[(L Ij )2] 
j 

= E[LI] +2LIjh] 
j j<k 

= LE(I]) +2LE(Ijh) 
j j<k 
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FIGURE 1. Normal approximation for sampling with and without replacement. The top his· 

togram shows the binomial (100,0.5) distribution of the number of good elements in a sample of 
size n = 100 with replacement from a population of size N = 200 containing G = 100 good 

elements and B = 100 bad ones. The approximating normal curve is superimposed. The bottom 

histogram shows the corresponding hypergeometric distribution for sampling without replacement 

0.15 from this population, together with its normal approximation. Note how the two means are the 

same, but the standard deviation is noticeably smaller for sampling without replacement because 

the sample size is a significant fraction (half) of the population size. 
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_ G (n) G (G - 1) 
- n N + 2 2 N (N - 1) 

because in the first sum there are n identical terms of 

2 G 
E(Ij) = E(Ij) = N 
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(Ij is an indicator variable with value 0 or 1, so IJ = I j ) and in the second sum 

there are G) identical terms with value 

G (G - 1) 
E(IJk) = E(hh) = N . (N - 1) 

the probability of getting good elements on two consecutive draws, since hI2 is one 

if both hand 12 are 1, and 0 otherwise. Now use 

and simplify to obtain the expression for SD(Sn) = JVar(Sn). 0 

Remark. A similar argument shows that the same finite population correction fac­

tor applies for sums or averages of other kinds of variables in sampling without 

replacement, not just indicator variables. See Example 6.4.7. 

The normal approximation. This can be used for sampling without replacement 

exactly as in the binomial case for sampling with replacement, provided the finite 

population correction factor is used for the standard deviation. The approximation 

is good provided the standard deviation is sufficiently large. This can be shown by 

consideration of consecutive odds ratios, just as in the binomial case. See Figure 1 

for an illustration. 

Exercises 3.6 
1. Five cards are dealt from a standard deck of 52. Find 

a) the probability that the third card is an ace; 

b) the probability that the third card is an ace given the last two cards are not aces; 

c) the probability that all cards are of the same suit; 

d) the probability of two or more aces. 

2. Cards. A deck of 52 cards is shuffled and dealt. Find the probabilities of the following 

events: 

a) the tenth card is a queen; 

b) the twentieth card is a spade; 

c) the last five cards are spades; 
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d) The last king appears on the 48th card. 

3. Conditional probabilities. In the setting of Exercise 2, denote by A, B, C, and D the 

events defined in parts a), b), c) and d) of that ~xercise. Find: 

a) P(BIC); b) P(ClB); c) P(BIA); d) P(AIB); e) P(DIC); f) P(CID); 

4. Testing for defectives. Suppose a lot of 5 items contains two defective items. The 

items are tested one by one in random order. Let Tl be the number of the test on which 

the first defective item is discovered, and T2 the number of the test on which the second 

is discovered. 

a) Display the distribution table of T1 . 

b) Without further calculation, display the distribution table of 6 T2 . 

c) Without further calculation, display the distribution table of T2. 

d) Display the joint distribution table of Tl and T2 . 

e) Are the random variables T1 , T2 - T1 , 6 - T2 exchangeable? Prove your answer. 

f) Find the distribution of T2 - T1 . 

5. Suppose n balls are thrown independently at random into b boxes. Let X be the number 

of boxes left empty. Use the method of indicators to find expressions for E(X) and 

Var(X). 

6. Mean and SD of the number of matches. There are n balls labeled 1 through n, and 

n boxes labeled 1 through n. The balls are distributed randomly into the boxes, one in 

each box, so that all n! permutations are equally likely. Say that a match occurs at place 

i if the ball labeled i happens to fall in the box labeled i. Let M be the total number of 

matches. 

a) Find E(M). b) Find SD(M). 

c) For very large n, what do you think is the approximate distribution of M? Give 

an intuitive explanation for your answer. Check that your answer makes sense 

in view of your answers to a) and b) and the answer to Exercise 28 from the 

Chapter 2 Review Exercises. 

7. Suppose n cards are dealt from a standard deck of 52 cards. Calculate a) the expectation 

and b) the variance of the number of red cards among the n cards dealt. 

8. A deck of 52 cards is shuffled and split into two halves. Let X be the number of red 

cards in the first half. Find: a) a formula for P(X = k); 

b) E(X); c) SD(X); d) P(X ;::: 15), approximately, using the normal curve. 

9. A population contains G good and B bad elements, G + B = N. Elements are drawn 

one by one at random without replacement. Suppose the first good element appears 

on draw number X. Find simple formulae, not involving any summation from 1 to N, 

for: 

a) E(X); b) SD(X). 

[Hini: Write X-I as a sum of B indicators.] 



Section 3.6. Symmetry (Optional) 245 

10. Success runs in sampling without replacement. Repeat Exercise 3.2.22 for the ran­

dom sequence of successes and failures obtained by a sampling n times without re­

placement from a population of G good and N - G bad elements, where each draw 

of a good element is called success, and each draw of a bad element a failure. 

11. Sampling without replacement. Let Xj be the indicator of the event that a good 

element appears at place j in a random ordering of n elements consisting of 9 good 

elements and n - 9 bad ones. 

a) Find a formula for P(X1, ... , Xn) = P(X1 = X1, ... ,X1l = XnJ. 

b) Are the random variables X 1, ... , X n independent' Prove your answer. 

c) Are they exchangeable' Prove your answer. 

12. Discrete order statistics. In an exhaustive random sample without replacement of 

a population of N elements, containing n good and N - n bad elements, let 1 ::::: 

T1 < T2 <... < Tn::::: N denote when the good elements appear. Part d) of 

this exercise explains why the random variables T 1 , •.. , Tn with possible values in 

{I, ... , N} are discrete analogs of the order statistics of n independent uniform (0,1) 

variables, studied in Section 4.6. 

a) Show that {T1 , ... , Tn}, the random set of times when good elements appear, 

is uniformly distributed over all subsets of n elements of {1, ... , N}. That is to 

say, the set of times when good elements appear is a simple unordered random 

sample of size n from {I, ... , N}. 

b) Find a formula for P(TI = tl, ... , Tn = tn) for 1::::: tl < t2 < ... < tn ::::: N. 

c) Use a counting argument to find a formula for PiT; = I.) for each i = 1, ... , n 

and t = 1, ... , N. 

d) Let U(1) ::::: U(2) ::::: ... ::::: U(n) denote the order statistics, that is, the values in 

increasing order, of n independent trials U1 , .••• Un with uniform distribution 

on {1. ... , N}. Let D denote the event that the U;, 1 ::::: i ::::: n are all distinct. 

Show that the conditional joint distribution of U(1), .... U(n) given D is identical 

to the joint distribution of T l , ... , Tn found in part b). What is P(D)' Show that 

P(D) -+ 1 as N -+ (X) for fixed n. 

lIt follows that for fixed n, as N -+ 00, the limiting joint distribution of (T1 , ... , Tn)/N 

is the joint distribution of the order statistics of n independent uniform (0,1) ran­

dom variables. In particular, part c) implies the asymptotic distribution of Ti / N is the 

beta (i, n - i + 1) distribution, as obtained directly from the continuous model in Sec­

tion 4.6. A number of interesting results for continuous uniform order statistics can be 

derived via this passage to the limit. See Chapter 6 Review Exercises 31, 32, and 33. 

13. Discrete spacings. As in Exercise 12, let T1 < < Tn he the places that good 

elements appear in a random ordering of n good and N - 71 bad elements. (In terms 

of a shuffled deck of N cards with n aces, T, represents the place in the deck where 

the ith ace lies,) Let WI = Tl - 1, the number of bad elements before the first good 

one. For 2 ::::: i ::::: n, let Wi = Ti - Ti- l - 1, the number of bad elements between the 

(i - l)th and ith good ones. Let W n +1 = N - Tn, the number of bad elements after 

the last good one. Think of the Wi as spacings between the good elements. 

a) Find the joint distribution of W1 , ... , Wn + 1. 
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b) Show that the n + 1 random variables WI, . .. ,Wn+1 are exchangeable, hence 

identically distributed, but not independent. 

c) Find a formula for P(Wi = w) for 0 :s; w :s; N. 

d) Find E(Wi) for 1 :s; i :s; n+ 1 and E(Ti) for 1 :s; i :s; n. [Hint: Use the symmetry.] 

Evaluate in the case N = 52 and n = 4 to find the mean number of cards between 

any two aces, and the mean position in the deck of the ith ace. (See Chapter 6 

Review Exercise 29 for the variance.) 

e) Show that for 1 :s; i < j :s; n + 1 the random variable Wi + Wj has the same 

distribution as T2 - 2. Deduce from Exercise 12c) a formula for P(Wi + Wj = t) 
for 0 :s; t :s; N. 

o Let Dn = Tn - TI - 1, the number of elements between the first and last good 

elements (including the other n - 2 good ones). Use the result of e) to find a 

formula for P(Dn = d), 0 :s; d:S; N, and find E(Dn). 

14. Consecutive pairs. Consider a well-shuffled deck of N cards, with n aces and N - n 
non-aces. 

a) Show by a counting argument that the probability that there are at least two 

consecutive aces somewhere in the deck is 1 - (N-:+I) / (~) [Hint: Look for 

a one-to-one correspondencel. 

b) Check the above formula by more direct counting arguments in each of the fol­

lowing three special cases: n = 2, N = 2n - 1, and N = 2n. 

For the following parts, assume a standard deck of 52 cards, and evaluate the proba­

bilities of the events as decimals: 

c) The ace of spades is next to the ace of clubs. 

d) There are at least two consecutive aces somewhere in the deck. 

e) There are at least two consecutive spades somewhere in the deck. 

o There is no pair of adjacent black cards anywhere in the deck. 

15. Runs and Spacings. As in Exercise 13 let WI, W2, ... , Wn+1 be the exchangeable 

sequence of spacings defined by a random ordering of n aces and N - n non-aces. 

a) Explain why the probability evaluated in Exercise 14, that there are at least two 

consecutive aces somewhere in the deck, is 

1 - P(Wi 2: 1 for every 2 :s; i :s; n) 

b) Show that for any sequence of n + 1 non-negative integers tl, . .. ,tn+1 with 

tl + ... + tn+1 = t, 

c) What special case of b) yields the result of Exercise 14? 

16. Distribution of the longest run. As in Exercises 13 and 15, let WI, W2, ... , Wn+1 

be the exchangeable sequence of spacings defined by a random ordering of n aces and 

N - n non-aces. Let Wmax = maXi Wi where the max is over 1 :s; i :s; n + l. So Wmax 

is the length of the longest run of non-aces in the deck. 
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a) Show by using the result of Exercise 15, and the inclusion-exclusion formula of 

Exercise 1.3.12 that 

b) Denote the above expression for P(Wmax ~ r), which depends on N, n, and r, 

by P( N, n, r). Let S N be the number of successes in N Bernoulli (p) trials and 

RN be the longest run of successes in the N trials. Explain why 

P(RN ~ r\SN = k) = P(N, N - k, r) 

and why this conditional probability does not depend on p. 

c) Show that the probability that there is a run of at least r consecutive successes in 

N Bernoulli (p) trials is 

P(RN ~ r) = t (~)pk(l - p)N-k P(N, N - k, r) 

k=O 

d) Find as a decimal the probability that the longest run of heads in 10 fair coin 

tosses is exactly r for each 0 :=:; r :=:; 10. What is the most likely length of the 

longest run? What is the expected length of the longest run? 

e) What is the probability that there is a run of either at least 5 heads or at least 5 

tails in 10 fair coin tosses? 
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Random Variables: Summary 

Random variable X: symbol representing an outcome. 

Range of X: set of all possible values of X. 

Distribution of X: The probability distribution over the range of X defined by proba­

bilities P(X = x) for x in the range of X. 

P(X E B) = L P(X = x) for B a subset of the range of X. 

xEB 

Change of variable formula: P(f(X) = y) = L P(X = x) gives the distribution 

x:f(x)=y 

of a function f(X) in terms of the distribution of X. 

Joint outcome (X, Y): P(x, y) = P(X = x, Y = y) 

P(X = x) = LP(x,y) P(X < Y) = LLP(x,y) 
all y x y>x 

Equality of random variables: X = Y means P( X = Y) = 1. 

Equality in distribution: X and Y have the same distribution if P(X = x) = P(Y = x) for 

all x in the range of X (= range of Y). If X = Y then X and Y have the same distribution, 

but not conversely. 

Independence: For n random variables 

for all possible values Xi of Xi, i = 1, ... ,n, 
• functions of disjoint blocks of independent random variables are independent. 

Expectation: E(X) = L:x xP(X = x) 

• average value of X weighted by probabilities; 

• long-run average value of independent variables with same distribution as X; 

• center of mass of distribution of X 

• properties: generalize properties of averages: see summary on pages 180 - 181 
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Variance: Var(X) = E(X - J-l)2 = E(X2) - J-l2 where J-l = E(X). 

Standard deviation: SD(X) = JVar(X): measure of spread in the distribution of X. 

Scaling: Var(aX + b) = a2 Var(X), SD(aX + b) = laISD(X). 

1 
Chebychev's inequality: P [IX - E(X)I > kSD(X)] ::;: k2 

Sums: For independent random variables Xl,"" X n, if Sn = Xl + ... + X n, 

Var(Sn) = Var(Xt) + ... + Var(Xn) 

= nVar(Xt) if the Xi all have same distribution. 

Compare E(Sn) = E(X l ) + ... + E(Xn) (true even if dependent) 

= nE(Xt) if the Xi all have same distribution. 
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Square root law: For independent Xi with same distribution, Sn as above, and Xn = Sn/n 
the average 

Lawofaverages: Xn is nearly certain to be close to E(Xt) for large n. 

Normal approximation: For Sn as above, with E(Xi) = J-l, SD(Xi ) = (J, 

Sn - nJ-l (Xn - J-l)yn 
(Jyn (J 

has distribution which approaches standard normal as n -7 00, no matter what the com­

mon distribution of the Xi. 

Inf1nite sum rule. If event A splits into an infinite sequence of mutually exclusive cases 

A l ,A2 ,A3 ·,···, so A=A1 UA2 uA3 U···, where AinAj=0, i-=f.j, then 

Discrete distribution on {O, 1, 2, ... }: defined by a sequence of probabilities Po, Pl, P2, ... 

such that Pi 2: 0 for all i, and 2:i Pi = 1. 

Geometric, negative binomial, and Poisson distributions. 

See Distribution Summaries on pages 476 - 488. 
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Review Exercises 

1. A fair die is rolled ten times. Write down numerical expressions for: 

a) the probability of at least one six in the ten rolls; 

b) the expected number of sixes in the ten rolls; 

c) the expected sum of the numbers in the ten rolls; 

d) the probability of 2 sixes in the first five rolls given 4 sixes in the ten rolls; 

e) the probability of getting strictly more sixes in the second five rolls than in the 

first five. 

2. A fair die is rolled repeatedly. Calculate, correct to at least two decimal places: 

a) the chance that the first 6 appears before the tenth roll; 

b) the chance that the third 6 appears on the tenth roll; 

c) the chance of seeing three 6's among the first ten rolls, given that there were six 

6's among the first twenty rolls; 

d) the expected number of rolls until six 6's appear; 

e) the expected number of rolls until all six faces appear. 

3. Two fair dice are rolled independently. Let X be the maximum of the two rolls, and Y 

the minimum. 

a) What is P(X = x) for x = 1, ... ,6? 

b) What is P(Y = ylX = 3) for y = 1, ... ,6? 

c) What is the joint distribution of X and Y? 

d) What is E(X + Y)I 

4. Let X and Y be independent, each uniform on {O, 1, ... , 100}. Let S = X + Y. For 

n = 0, ... , 200, find: 

a) P(S = n); b) P(S ::; n). c) Sketch graphs of these functions of n. 

5. Someone plays roulette the following way: before each spin he rolls a die, and then he 

bets on red as many dollars as there were spots on the die. For example, if there were 

4 spots he bets $4. 

If red comes up he gets the stake back plus an amount equal to the stake. If red does 

not come up he loses the stake. In the example above, if red comes up he gets the 

stake of $4 back plus an additional $4. If red does not come up he loses his stake of 

54. The probability of red coming up is 18/38. 

a) What is his expected gain on one spin? 

b) What is the expected number of spins it will take until red comes up for the first 

time' 

c) What is the expected number of spins it will take until the first time the person 

bets exactly $4 on one spin and wins. 

6. A gambler repeatedly bets 10 dollars on red at a roulette table, winning 10 dollars with 

probability 18/38, losing 10 dollars with probability 20/38. He starts with capital of 100 

dollars, and can borrow money if necessary to keep in the game. 
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a) Find exact expressions for the probabilities that after 50 plays the gambler is: 

i) ahead; ii) not in debt. 

b) Find the mean and variance of the gambler's capital after 50 plays, 

c) Use the normal approximation to estimate the probabilities in a) above, 

7. Suppose an airline accepted 12 reservations for a commuter plane with 10 seats, They 

know that 7 reservations went to regular commuters who will show up for sure, The 

other 5 passengers will show up with a 50% chance, independently of each other, 

a) Find the probability that the flight will be overbooked, i.e" more passengers will 

show up than seats are available. 

b) Find the probability that there will be empty seats. 

c) Let X be the number of passengers turned away. Find E(X). 

8. A box contains w white balls and b black balls. Balls are drawn one by one at random 

from the box, until b black balls have been drawn. Let X be the number of draws made. 

Find the distribution of X, 

a) if the draws are made with replacement; 

b) if the draws are made without replacement. 

9. The doubling cube. A doubling cube is a die with faces marked 2,4,8,16,32, and 64. 

Suppose two doubling cubes are rolled. Let XY be the product of the two numbers. 

Find a) P(XY < 100); b) P(XY < 200); c) E(XY); d) SD(XY). 

10. Matching. Suppose each of n balls labeled 1 to n is placed in one of n boxes labeled 

1 to n. Assume the n placements are made independently and uniformly at random (so 

each box can contain more than one ball). A match occurs at place k if ball number k 
falls in box k. Find: 

a) the probability of a match at i and no match at j; 

b) the expected number of matches. 

11. Data for performances of a particular surgical operation show that two operations per 

thousand have resulted in the death of the patient. Let X be the number of deaths 

due to the next thousand operations of this kind. Which of these three numbers is the 

smallest and which is the largest 

P(X < 2), P(X = 2), P(X > 2)? 

Explain carefully the assumptions of your answer. 

12. Consider an unlimited sequence of independent trials resulting in success with proba­

bility p, failure with probability q. For 5 = 1,2, ... , f = 1,2, ... calculate the probability 

that 5 successes in a row occur before f failures in a row. [Hint: Let A be the event 

in question, H = P( A I first trial a success), and Po = P( A I first trial a failure). Given 

the first trial is a success, for A to occur, either the next 5 - 1 trials must be successes, 

or the first failure must come at the tth trial for some 2 S; t S; 5, then subsequently the 

event A must occur starting from a failure. This gives one equation relating PI to Po. 

Find another by conditioning on the first trial being a failure, then solve for Po and PI, 

hence P(A).l 
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13. Let X and Y be independent random variables with E(X) = E(Y) = p" Var(X) = 
Var(Y) = (J2. Show that Var(XY) = (J2(2p,2 + (J2). 

14. A circuit contains 10 switches, arranged as in the figure below. Assume switches perform 

independently of each other, and are closed with probabilities indicated in the figure. 

Current flows through a switch if and only if it is closed. 

a) What is the probability that current flows between points A and B? 

b) Find the mean and standard deviation of the number of closed switches. 

15. A roulette wheel is spun independently many times. On each spin the chance of a seven 

appearing is 1/38. 

a) What is the exact distribution of the number of sevens in the first 100 spins? 

b) Give a simple approximation for this distribution. 

c) What is the distribution of the number Z of spins required to produce three 

sevens? 

d) What is E(Z) ? 

16. Random products mod 10. Pick two successive digits from a table of random digits 

from {O, 1, ... ,9}. Multiply them together, and let D be the last digit of this random 

product. For example, 

(3,9) -+ 27 -+ 7 

(2,4) --+ 8 -+ 8 

Find the distribution of D, and calculate its mean. 

17. Suppose N dice are rolled, where 1 :::; N :::; 6. 

a) Given that no two of the N dice show the same face, what is the probability that 

one of the dice shows a six? Give a formula in terms of N. 

b) In a) the number of dice N was fixed, but now repeat assuming instead that N 

is random, determined as the value of another die roll. Your answer now should 

be simply a number, not involving N. 

18. Expected number of records. Suppose 100 cards numbered 1 to 100 are shuffled 

and dealt one by one. 
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a) What is the fair price to pay in advance if you receive one cent for the first card 

and then one cent for each card dealt whose number is greater than those of all 

previous cards dealt? 

b) If you paid 10 cents for each play of this game, and played 25 times (meaning 

you paid a total of 250 cents for 25 separate deals of the 100 card deck) what, 

approximately, is the chance that you would come out ahead? 

19. Suppose that X has Poisson (/L) distribution, and that Y has geometric (p) distribution 

on {O, 1,2, ... } independently of X. 

a) Find a formula for P(Y 2:: X) in terms of p and /L. 

b) Evaluate numerically for p = 1/2 and /L = l. 

20. a) Show that for all p between 0 and 1: p( 1 - p) :s; 1/4. 

b) A certain university has about 12,000 students. To estimate the percentage of 

students who have part-time jobs, someone takes a random sample from a list of 

all students in the university. How big does the sample need to be so that the 

margin of error in the estimate (i.e., the standard deviation of the percentage in 

the sample) is at most 50f0? 

21. Suppose X and Yare independent with P(X = j) = p(1 - p)J for j = 0,1, ... and 

P(Y = k) = (k + l)p2(1 - p)k for k = 0,1, .... Find the distribution of Z = X + Y. 

[Hint: Represent X and Y in terms of a biased coin-tossing sequence.] 

22. The newsboy problem. A newsboy buys papers at 10 cents a copy and sells them on 

the street corner at 25 cents a copy. He must buy all his papers at once, but he can sell 

only as many as are demanded on the street. Left-over papers are a dead loss. Over the 

last few years, demand has been fluctuating at around 100 papers per day. He has been 

buying 100 papers and selling them all about half the time. Assuming that the demand 

for papers has an approximately Poisson distribution, find: 

a) the newsboy'S long-run average profit per day: 

b) how many papers the newsboy should buy each day to maximize his long-run 

average profit. 

23. Suppose you economize your use of toothpicks by breaking whole toothpicks in half 

and only using half at a time. Starting from a full box of n toothpicks, you draw repeat­

edly at random from the box. In case you draw a whole toothpick, you use half and 

throw it away, and replace the other half. In case you draw half a toothpick, you use 

it and throw it away. So the box will be empty after exactly 2n draws. Suppose that 

on any draw, each whole toothpick in the box has the same chance of being drawn, 

and so does each half toothpick, but the halves have half the chance of the wholes. Let 

H be the random number of half toothpicks remaining in the box after the last whole 

toothpick has been drawn and half of it replaced. So H has possible values between 1 

(e.g., if you draw alternately whole-half-whole-half ... ) and n (e.g., if you draw n 

wholes in a row, followed by n halves). 

a) Find a formula for P(H = k), k = 1,2, ... , n. 

b) What happens to the distribution of H as n ---+ oo? 

c) Find an asymptotic formula for E(H) as n ---+ DO. 
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d) If you start with n = 100 toothpicks, about how many halves do you expect to 

be left with? 

e) For n = 100, find a and b so that P(a ::; H ::; b) ~ 95% with b - a as small as 

possible. 

24. The voter paradox. 

a) Can random variables X, Y, and Z be such that each of the three probabilities 

P(X > Y), P(Y > Z), and P(Z > X), is strictly greater than ~? [Hint: Try a 

joint distribution of X, Y, and Z which is uniform on some of the 6 permutations 

of (1, 2,3).] 

b) What is the largest that the minimum of the above three probabilities can possibly 

be? Prove your answer. [Hint: The sum of the probabilities is an expectation.] 

c) A survey is conducted to determine the popularity of three candidates A, B, and 

C. Each voter is asked to rank the candidates in order of preference. When the 

results are analyzed, it is found that more than 50% of the voters prefer A to B, 
more than 50% prefer B to C, and more than 50% prefer C to A. How is this 

possible? Explain carefully the connection to previous parts. 

d) Generalize a) and b) to n :::: 3 random variables instead of n = 3. 

e) Repeat a) for independent X, Y, and Z. [Hint: Try P(X = 5) = PI, 

P(X = 2) = 1 - PI, P(Y = 4) = P2, P(Y = 1) = 1 - P2, 

and P(Z = 3) = l. Deduce that the three probabilities can all be as large as 

the golden mean (-1 + V5)/2. This is known to be the largest possible for 

independent variables, but I don't know the proof.] 

25. Let YI and Y2 be independent random variables each with probability distribution de­

fined by the following table: 

a) Display the probability distribution of YI + Y2 in a table. Express all probabilities 

as multiples of 1/36. 

b) Calculate E(3YI + 2Y2 ). 

c) Let Xl and X 2 be the numbers on two rolls of a fair die. Define a function f so 

that (f (X I), f (X 2)) has the same distribution as (YI , Y2)' 

26. The horn on an auto operates on demand 99% of the time. Assume that each time you 

hit the horn, it works or fails independently of all other times. 

a) How many times would you expect to be able to honk the horn with a 50% 

probability of not having any failures? 

b) What is the expected number of times you hit the horn before the fourth failure? 

27. A certain test is going to be repeated until done satisfactorily. Assume that repetitions 

of the test are independent and that each has probability 0.25 of being satisfactory. 

The first 5 tests cost $100 each to perform and thereafter cost $40 each, regardless of 

the outcomes. Find the expected cost of running the tests until a satisfactory result is 

obtained. 
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28. Let Xl, X 2 , ... be a sequence of independent trials, and suppose that each Xi has 

distribution Plover some range space DI . Let WI, W2, ... be the successive waiting 

times between trials s such that X, is in A, where A is some subset DI , and let YI , Y2 , ..• 

be the successive values in A which appear at trials WI, WI + W2, WI + W2 + W3 , .... 

a) Show that WI, W2, ... , YI , Y2, ... are independent random variables, the W's 

all having geometric distribution on {1, 2, ... } with parameter PdA), and the Y's 

all having the distribution PI conditioned on A. 

b) Deduce from the law of large numbers the long run frequency interpretation of 

PI(BIA) as the limiting proportion of those trials which are A's that turn out also 

to be B's. 

29. Polya's urn scheme. (Continuation of Exercise 1.5.2). An urn contains w white and b 

black balls. A ball is drawn from the urn, then replaced along with d more balls of the 

same color. So after n such draws with multiple replacement, the urn contains w+b+nd 

balls. Let Xi = 1 if the ith ball drawn is black and Xi = 0 if the ith ball drawn is white. 

a) Find a formula for the probability P(XI = Xl .... , Xn = Xn) in terms of w, b, d, n 

and k, where k = Xl + ... +xn is the number of l's in the sequence (Xl, ... , Xn). 

b) Let Sn = Xl + ... + X n. What does Sn represent? Find a formula for P(Sn = k) 

for 0::; k ::; n. 

c) What is the distribution of Sn in the special case b = w = d = 1? 

d) Are Xl, ... , Xn independent? Are they exchangeable? (Refer to Section 3.6.) 

e) Find a formula for P(Xn = 1), the probability of a black ball on draw n, in terms 

of b,w,d, and n. [Hint: The probability does not depend on all of the parameters.l 

f) Find the probability that the fifth ball drawn is black given that the tenth ball 

drawn is black. 

30. Diagonal neighbor random walk. Let (Sn, Tn) denote the position after n steps of 

a random walk on the lattice of points in the plane with integer coordinates, starting 

from (So, To) = (0,0). Suppose that Sn+l = Sn ± 1 and Tn+l = Tn ± 1 where the 

signs are picked by two independent tosses of a fair coin, independently at each step. 

a) For e > O. find the limit as n -> 00 2Jf the probability that (Sn, Tn) is inside the 

square with corners at (±efo, ±efo). 

b) Let Rn = VS~ + n, the distance from the origin. Find E(R;). 

c) Find b, as small as you can, such that E(Rn) ::; VIm for every n. 

d) Let pn denote the probability that the random walk is at (0,0) after n steps. Find 

P4 as a decimal. 

e) Show that p2rn rv elm as m -> 00 for a constant e. What is et 

31. Nearest neighbor random walk. Let (Sn, Tn) be the position after n steps of a random 

walk as in the previous exercise, but now instead of diagonal moves, suppose at each 

step the move is made with equal probability up, down, left or right, to one of the four 

nearest neighbors in the lattice. For e > O. find the limit as n -> 00 of the probability 

that I Sn I < efo· The events I Sn I < efo and I Tn I < efo are clearly not independent 

for this random walk, but they turn out to be approximately independent for large n. 
Assuming the error of this approximation tends to zero as n -> ex; (something not 
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obvious, but true: see Chapter 5 Review Exercise 31 for an explanation), repeat part 

a) of the previous exercise for this random walk. Now repeat the rest of the previous 

exercise for this random walk. 

32. King's random walk. Same as Exercise 30, but now make each move like a king on an 

infinite chessboard, with equal probabilites to the 8 nearest or diagonal neighbors. [The 

two components are still asymptotically independent. This can be proved for any step 

distribution with mean zero and uncorrelated components, that is to say E(SITd = 0,] 

33. From a very large collection of red and black balls, half of them red and half black, I 

pick n balls at random and put these n balls in a bag. Suppose you now draw k balls 

from the bag, with replacement and mixing of the balls between draws. 

a) Show that given that all k balls you pick are red, the chance that the n balls in 

the bag are all red is 

k 

P( n red in bag I pick k red) = 7l( k) 
2n E X 

where X is a binomial (n, 1/2) random variable. 

b) Simplify this expression further in the cases k = 1 and k = 2. 

c) Find a similar formula assuming instead that the sample of size k is drawn from the 

bag without replacement. Deduce by calculating the same quantity in a different 

way that 

E(Xh = (nh/2k, 

where (X)k = X(X - 1) ... (X - k: + 1). 

d) Use the identity of c) to simplify the answer to a) in case k = 3. 

e) Show by a variation of the above calculations that for a binomial (n, p) random 

variable X, 
E(X)k = (nhpk. 

Check that for k = 1 and 2 this agrees with the formulae for E(X) and Var(X). 

34. Probability generating functions. For a random variable X with non-negative integer 

values, let Gx(z) = L:':o P(X = i)z\ be the probability generating function of X, 

defined for Izl < 1. (Refer to Exercises 3.4.22, 3.4.23 and 3.5.19.) Show that: 

a) Gx(z) = E(zX). 

b) If X and Yare independent, then Gx+y(z) = Gx(z)Gy(z). That is to say, 

P(X + Y = k) is the coefficient of Zk in Gx(z)Gy(z). 

Generalize the above result to obtain the probability generating function of Sn = Xl + 
... + Xn for independent Xi. Now identify the generating function and hence the 

distribution of Sn in case the distribution of the Xi is c) binomial (ni' p); 

d) Poisson ()Li); e) geometric (p); f) negative binomial (ri'p); 

35. Binomial moments and the inclusion-exclusion formula. Let X be the number 

of events that occur in some collection of events AI, ... , An. So X = L j I j where I j 

is the indicator of A j . 
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a) Explain the identity of random variables (~) = Li<j Jdj. [Hint: Think in terms 

of a gambler who for every i < j bets that both Ai and Aj will occur. If the 

number of events that occurs is, say x, how many bets has the gambler won'] 

b) For k = 0, 1, ... , n the kth binomial moment of X is bk = E[(~)l. Show: 

b2 = LP(AiAj ); 

i<j 

b3 = L P(AiAJAk) and so on. 

i<j<k 

c) Notice that these are the sums of probabilities that appear in the inclusion -exclusion 

formula from Exercise 1.3.12. Note also that bo = 1. Deduce that 

n 

P(X = 0) = L( -l)kbk 

k=O 

d) Sieve formula. [Hard.] Show that for every m = 1,2, ... n 

[Hint: P(X = m) is the coefficient of zm in the probability generating function 

G x (z) (see Exercise 3.4.22). Consider the Taylor series of G x (z) about 1, and 

use the fact that G x (z) is a polynomial.] 

36. Moments of the binomial distribution. Let Sn he the numher of successes in n 

Bernoulli (p) trials. 

a) Use the formula for binomial moments in Exercise 35 to find a simple formula 

for the kth binomial moment of Sn. 

b) Check that your formula implies the usual formulae for the mean and variance, 

and the formula of Exercise 3.3.33 for the skewness of the binomial (n, p) distri­

bution of Sn. 

37. Binomial moments of the hypergeometric distribution. Let Sn he the number of 

good elements in a sample of size n without replacement from a population of G good 

and N - G bad elements. 

a) Use the formula for binomial moments in Exercise 35 to find a formula for the 

kth binomial moment of Sn for k = 1,2,3. 

b) Check that your formula implies the formulae of this section for the mean and 

variance. 

c) Find the skewness of the distribution of Sn. 

38. limit distribution for the number of matches. Let M n denote the number of matches 

in the matching problem of Chapter 2 Review Exercise 28, for a random permutation 

of n items. 

a) Use the method of Exercise 35 to find the kth factorial moment of Mn. 

b) Show that for 1 ~ k ~ n this kth factorial moment is identical to the kth factorial 

moment of the Poisson (1) distribution. 
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c) Show that for 1 -s; k -s; n the ordinary kth moment of Mn equals the ordinary 

kth moment of the Poisson (1) distribution. Deduce that for every k, as n -t 00, 

the kth moment of the distribution of Afn converges to the kth moment of the 

Poisson (1) distribution. 

d) It is known (though not easy to prove) that if all the moments of a sequence 

of distributions Pn on {O, 1, ... } converge to those of a Poisson (A) distribution, 

then for every k = 1,2, ... , Pn(k) converges to the Poisson (A) probability of k. 

In the present problem, this implies that as n -t 00, the limiting distribution of 

Mn is Poisson (1): P( Mn = k) -t e ~ I / A:!. Deduce this result another way by 

applying part a) and the sieve formula of Exercise 35. 

39. Recovering a distribution over {O,l, .. . ,n} from its moments. Let X be a random 

variable with possible values {O, 1, ... , n}. Assuming the results of Exercise 35, show 

a) For some coefficients Cn,k not depending on the distribution of X, (which you 

need not determine explicitly) 

n 

P(X = 0) = L cn.kE[X k ] 

k=() 

b) Find the values of Cn,k for 0 -s; k -s; n -s; 3. 

c) Show that for every m = 1, ... n, the probability P(X = m) can be expressed 

as a linear combination (which you need not determine explicitly) of the first n 

ordinary moments of X. [Exercise 40 gives a generalization.J 

40. Recovering a distribution on n values from its moments. For a random variable 

X and k = 1,2, ... , let /1k = E(Xk), the kth moment of X. Suppose X has n possihle 

values XI, ... ,Xn . Show that the n prohabilities 

Pi = P(X = x;) (i=l, ... ,n) 

are determined by the first n - 1 moments. [Hint: The vector /1 = (1, /11, ... , /1n ~ I) is 

determined from the vector P = (PI, ... , Pn) as /1 = pAl for a suitable matrix AI. Show 

that AI has rank n, hecause if there were a linear combination of its columns which 

was identically zero, there would be a polynomial of degree n - 1 with n roots. Deduce 

that M has an inverse M~ I. so that p = f.LAr 1J 

41. (Hard.) Suppose you toss a coin ten times and record the exact sequence of outcomes, 

e.g., 

HTHHTTHHTH. 

Of course, many other sequences are possible. About how many times n would you 

have to repeat this ten toss experiment 

a) to be 90% sure of seeing this particular sequence again in these n repetitions? 

b) to be 900;() sure of seeing at least one of the possible sequences twice in the n 

repetitions? 

c) to be 90% sure of seeing every possible sequence at least once in the n repetitions? 

d) to be 90% sure of seeing at least once every sequence in a set comprising exactly 

half of all possible outcomes, where the set is specified in advance. 

e) Same as d), but for a set not specified in advance. 



4 
Continuous 

Distributions 

The basic ideas of previous sectiofis were the notions of a random variable, its prob­

ability distribution, expectation, and standard deviation. These ideas will now be 

extended from discrete distributions to continuous distributions on a line, in a plane, 

or in higher dimensions. This chapter concerns continuous probability distributions 

over an interval of real numbers. One example is the normal distribution, seen al­

ready as an approximation to various discrete distributions. A simpler example is the 

uniform distribution on an interval, defined by relative lengths. Another example, 

the exponential distribution, treated in Section 4.2, is the continuous analog of the 

geometric distribution. Each of these distributions is defined by a probability density 

function, like the familiar normal curve associated with the normal distribution. The 

way a continuous distribution can be specified by such a density function is the 

subject of Section 4.1. Change of variable for distributions defined by densities is the 

subject of Section 4.4. 

The concept of a continuously distributed random variable is an idealization which 

allows probabilities to be computed by calculus. This gives models for chance phe­

nomena involving continuous variables. Such models arise both: 

CD as limits from discrete models (e.g., the normal distribution as an approximation 

to the binomial, or the exponential approximation to the geometric discussed 

in Section 4.2), and 

(ij) directly from physical phenomena most naturally modeled by continuous vari­

ables (e.g., the normal distribution as a model for measurement error, or the 

exponential distribution as a model for the lifetime of an atom). 
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4.1 Probability Densities 
In Chapters 2 and 3 the normal distribution was used as an approximation to the 

distribution of a sum or average of a large number of independent random variables. 

The idea there was to approximate a discrete distribution of many small individual 

probabilities by scaling the histogram to make it follow a continuous curve. The 

function defining such a curve is called a probability density, denoted f(x) here. 

This function determines probabilities over an infinite continuous range of possible 

values. 

The basic idea is that probabilities are defined by areas under the graph of f(x). 
That is, a random variable X has density f(x) if for all a :::; b 

P(a :::; X :::; b) = lb f(x)dx, 

which is the area shaded in the following diagram: 

LL 
a b 

The boxes on pages 262 and 263 show the analogy between a discrete distribution 

of a random variable X defined by the probabilities P(x) = P(X = x) of individual 

values x, and a continuous distribution defined by a rrobability density f(x). In the 

density case, it is of no use to consider P(X = x). This probability is zero for every 

x for a distribution with a density, so it gives no information about the distribution. 

Rather, everything is determined by the density f (x), which gives the probability per 

unit length for values near x. The individual probability P( x) of the event (X = x) is 
replaced everywhere by the infinitesimal probability f(x)dx of the event (X E dx), 
and sums are replaced by integrals. Here (X E dx) stands for the event that X falls 

in an infinitesimal interval of length dx near x, for example, (x :::; X :::; x + dx), or 

(x - dx :::; X:::; x). 

Assuming f is continuous at x, the area representing P(X E dx) is essentially a 

rectangle of sides f(x) and dx, hence area f(x)dx. Note well that it is f(x)dx, not 

just f(x), which is the analog of P(x). It may well be that f(x) > 1 for some values 

of x. Thus f(x) is not a probability, but a probability density. When multiplied by 

small lengths, f(x) gives approximate probabilities of small intervals near x. If you 

cut the interval [a, b] into lots of tiny intervals between a and b, add the probabilities 

of all the tiny intervals, and pass to the limit as the interval widths tend to zero, you 

get the integral formula for P(a :::; X :::; b). So when integrated over an interval, f(x) 
gives the exact probability of the interval. A probability density f (x) thus describes 

a continuous distribution of probability over a number line. 
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Mean, variance and standard deviation. These are defined just as before in terms 

of expectations. 

E(X) = I: xf(x)dx 

If the second integral is finite, then so is the first, and then E(X2) and E(X) can be 

used to calculate Var(X) and SD(X) in the usual way 

Var(X) = E(X2) - [E(X)]2 SD(X) = JVar(X) 

The basic properties of expectation, variance, and standard deviation are the same 

as in the discrete case. For example, Chebychev's inequality holds just as well for 

X with a density as for a discrete random variable X. Proofs of such things parallel 

the discrete case, using properties of integrals instead of properties of sums. 

Independence. Numerical random variables X and Yare called independent if the 

events (X E A) and (Y E B) are independent for any choice of two intervals A 

and B, or more generally any choice of subsets A and B of the line for which the 

probabilities of these events are defined. That is to say 

P(X E A, Y E B) = P(X E A)P(Y E B) 

Only for discrete random variables can this definition be reduced to the case A = 

[x, x] and B = [y, y], when the rule becomes simply 

P(X = x, Y = y) = P(X = x)P(Y = y). 

If X has a distribution with a density, then P(X = x) = 0 for every x, which implies 

P(X = x, Y = y) = 0 = P(X = x)P(Y = y) for all x and y for any random variable 

Y whatever. See Section 5.2 for a more careful treatment of independence of X and 

Y ~ith densities in terms of their joint distribution. Independence of several variables 

is defined by a similar product rule. The basic properties of independent random 

variables are the same in the density case as in the discrete case. In particular, if 

X and Yare independent and both E(X) and E(Y) are defined and finite, then 

E(XY) = E(X)E(Y). The addition rule for the variance of a sum of independent 

random variables follows from this. 
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Discrete Distributions 

Point Probability: 

~(XI 

x 

P(X = x) = P(x) 

So P( x) is the probability that X has integer value x. 

Interval Probability: 

a b 

P(a So X So b) = L P(x) 
a':::;x':::;b 

the relative area under a histogram between a - 1/2 and b + 1/2. 

Constraints: Non-negative with Total Sum 1 

P(x) ~ 0 for all x and LP(x) = 1 

all x 

Expectation of a Function g of X, e.g., X, X2: 

E(g(X)) = Lg(x)P(x) 
all x 

provided the sum converges absolutely. 
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Distributions Defined by a Density 

Immitesimal Probability: 

x x+ dx 

height: f(x) 
area: f(x)d:!; 

P(X E dx) = f(x)dx 

The density f(x) gives the probability per unit length for values near x. 

Interval Probability: 

a b 

P(a::; X ::; b) = lb f(x)dx 

the area under the graph of f(x) between a and b. 

Constraints: Non-negative with Total Integral 1 

f(x) ~ 0 for all x and I: f(x)dx = 1 

Expectation of a Function g of :1:, e.g., X, .K2: 

E (g(X)) = I: g(x)f(x)dx 

provided the integral converges absolutely. 
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Special densities. There are a few particularly important probability densities which 

appear over and over again, both in theory and applications. Most notable are the 

uniform, normal, exponential, gamma, and beta densities. Why these few should be 

so important is not at first obvious, but emerges gradually after study of their proper­

ties and relationships, both with each other and with other discrete distributions. This 

section introduces only the uniform and normal densities. Further developments and 

examples involving other densities follow in subsequent sections. Also, summaries 

of these distributions are given in an Appendix. These include formulae for means, 

variances, etc., which are used routinely in calculations and which you are expected 

to look up as necessary. 

The Uniform Distribution 

A random variable X has uniform distribution on the interval (a, b), if X has density 

f(x) which is constant on (a, b), and 0 elsewhere. The uniform (a, b) density is 

f (x) = { 1/ (b - a) if a <. x < b 
o otherwlse 

The constant value c of the density on (a, b) is l/(b - a), because the total area of 

the rectangle under the density function must be 1: 

(b-a)c=l ==} c=l/(b-a) 

I=l/(b-al 

a b 

As suggested by the verticals at x = a and x = b, the values of f (x) at these endpoints 

do not affect the probabilities defined by areas under the graph. The area of a line 

is zero, and so is the probability that any continuously distributed random variable 

X takes any particular real value. This is an idealization based on the idea that a 

real number is specified with infinite precision. In practice, it would only ever be 

possible to know that X was equal to x to some finite number of decimal places. 

For X distributed uniformly on (a, b), and a < x < b, this event would always have 

strictly positive probability. 

For a uniform distribution, probabilities reduce to relative lengths. So if X has uni­

form (a, b) distribution, then for a < x < y < b, 

( X ) length (x,y) y-x 
Px< <y = =--

length (a, b) b - a 



Section 4.1. Probability Densities 265 

as is obvious from the diagram. 

I I I I 
a x y b 

For example, if X has uniform (0,2) distribution, the probability that X is 1.23 

correct to two decimal places is 

1.235 - 1.225 
P(1.225 < X < 1.235) = 2 = 0.01/2 = 0.5% 

A simple rescaling transforms the interval (a, b) into (0,1). The uniform (a, b) distri­

bution then transforms into the uniform (0,1) distribution, whose density is simply 

1 on (0,1), and 0 elsewhere. In terms of random variables, any problem involving 

a uniform (a, b) random variable X reduces easily to one involving a uniform (0, 1) 
random variable U defined by 

U=(X-a)/(b-a) so X = a + (b - a)U 

This kind of scaling or linear change of variable, is a basic technique for reducing 

problems to the simplest case to avoid unnecessary calculation. To illustrate, the 

expected value of X is 

E(X) = E(a + (b - a)U) 

= a + (b - a)E(U) 

1 
= a + (b - a)2 = (a + b)/2 

This is obvious anyway by symmetry, since (a + b)/2 is the midpoint of (a, b). The 

variance of X is 

Var(X) = Var(a + (b - a)U) 

= (b - a)2 Var(U) 

= (b - a)2[E(U2) - (E(U))2] = (b - a)2[1/3 - (1/2)2] = (b - a)2/12 

Here E(U) = 1/2 without calculation, but E(U2) requires an integraL 

E(U2 ) = i: u2 f(u)du 

1 

3 

since U has density f ( u) = 1 for 0 < u < 1, 0 otherwise 
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The Normal Distribution 

A random variable Z has standard normal distribution if Z has as its probability 

density the standard normal density 

(-00 < Z < (0) 

0.4 

.0 
.~ 

~ 

~ 
c, .-:-;:::: 
~ 
i:3 
~ 

e 
c.... 

0.0 
-4 -3 -2 -1 0 1 2 3 4 

The constant 1/",fiir is put in the definition of the standard normal density so the 

total area under the standard normal curve y = ¢( z) is 1. This is the first integral in 

the following box: 

Standard Normal Integrals 

[: ¢(z) dz = 1; [: z¢(z) dz = 0; 

The first and third of these integrals are evaluated in Section 5.3. The second and 

third integrals show that the standard normal distribution has mean 0 and second 

moment 1, hence variance 1. The mean of this distribution is zero, because of the 

symmetry about zero of the standard normal curve. The third integral in the box can 

be reduced to the first integral by integration by parts. 

There is no simple formula for the standard normal probability of an interval 

<1>(a, b) = P(a < Z < b) = lb ¢(z)dz 

Instead, this probability is found, as in Section 2.2, using a table of the standard 

normal c.dJ. 

<1>(b) = <1>( -00, b) = P(Z ::; b) = [boo ¢(z)dz 
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Normal (11,0"2) Distribution 
If Z has standard normal distribution and p, and a are constants with a 2: 0, 

then 

X=p,+aZ 

has mean p" standard deviation a, and variance a2 . The distribution of X is 

called the normal distribution with mean p, and variance a 2, abbreviated nor­

mal (p" ( 2 ). So X has normal (p" ( 2 ) distribution if and only if the standardized 

variable 

Z = (X - p,)/a 

has normal (0,1) or standard normal distribution. To find P(c < X < d), 
change to standard units and use the standard normal table 

P(c < X < d) = P(a < Z < b) = <I>(b) - <I>(a) 

where a = (c - p,)/a Z = (X - p,)/a 

Formula for the normal (p" ( 2) density. For a> 0, the formula is 

1 1 1 ( )2/ 2 -¢>((x - p,)/a) = --e-'2 x-J1- rr 

a /2ira 
(-00 < x < 00). 

This is the transformation of the standard normal density 1>( z) corresponding to the 

linear change of variable from Z to X = P, + a Z. See Section 4.4 for details of this 

kind of transformation. This formula is rarely used in calculations. It is always simpler 

to transform to standard units as in Example 1 below. If a2 = ° the normal (p" ( 2 ) 

distribution is just the distribution of the constant random variable with value p" with 

probability one at p,. For a2 > 0, the normal (p" ( 2 ) distribution piles up around p, 

for small values of a2 , and become more and more spread out as a2 increases. See 

Figure 1 on the next page. 

Normal approximation to an empirical distribution. The normal distribution is 

often fitted to an empirical distribution of observations. The parameters p, and a are 

usudlly estimated by the mean and standard deviation of the list of observations. This 

is justified by the integral approximation for averages discussed later in this section. 

How well such an approximation works depends on the source of the data and the 

measurement technique. Examples of the kinds of observations where the normal 

approximation has been found to be good are weighings on a chemical balance, 

and measurements of the angular position of a star. 
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FIGURE 1. Some normal (/-t,O'2) densities. 
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The centrallin1it theorem. The appearance of the normal distribution in many 

contexts is explained by the central limit theorem, stated in Section 3.3. According 

to this result, for independent random variables with the same distribution and finite 

variance, as n ----+ 00, the distribution of the standardized sum (or average) of n 
variables approaches the standard normal distribution. It can be shown that this 

happens no matter what the common distribution of the random variables summed 

or averaged, discrete or continuous, provided the distribution has finite variance. 

In particular, the central limit theorem implies that the distribution of the sum or 

average of a large number of independent measurements will typically tend to follow 

the normal curve, even if the distribution of the individual measurements does not. 

This mathematical fact is the basis for most statistical applications of the normal 

distribution. 

History. The normal distribution is also known as the Gaussian distribution, and 

in France as Laplace's distribution. Gauss (1777-1855) and Laplace (1749-1827) 

brought out the central role of the normal distribution in the theory of errors of ob­

servation. Quetelet (1796-1874) and Galton (1822-1911) fitted the normal distribu­

tion to empirical data such as heights and weights in human and animal populations. 

But the normal distribution was actually first discovered around 1720 by Abraham 

De Moivre (1667-1754), as the approximation to the binomial (n, p) distribution for 

large n described in Section 2.2. 



Example 1. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 
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Repeated measurements. 

Suppose a long series of repeated measurements of the weight of a standard kilogram 

yield results that are normally distributed with a mean of one kilogram and an SD 

of 20 micrograms. 

About what proportion of measurements are correct to within 10 micrograms? 

By converting to standard units, this is P( -0.5 :::; Z :::; 0.5) = 21}>(0.5) -1 = 38.29%. 

In 100 measurements, what is the probability that more than 45 measurements will 

be correct to within 10 micrograms? 

It seems reasonable to assume that each measurement is correct to within 10 micro­

grams with chance 38.29%, independently of all others. Out of 100 measurements, 

the number correct to within 10 micrograms has the binomial (100, 0.3829) distribu­

tion. This is approximately normal, with 

f1 = 38.29 a = VlOO x 0.3829 x (1 - 0.3829) = 4.86 

The probability that more than 45 measurements are correct to within 10 micrograms 

is approximately 

1- I}> (45.5 - 38.29) = 1- 1}>(1.48) = 6.94% 
4.86 

In the long series of measurements, some errors are positive and some are negative. 

What is the approximate average absolute size of these errors? 

Here X = observed weight - 1 kilogram, in micrograms, and has normal (0,202 ) 

distribution. We want EIXI. In terms of a standard normal variable Z, X = 20Z, so 

EIXI = 20EIZI = 20 i: Izl¢(z)dz 

= 40 LX! z¢(z) dz by symmetry 
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Example 2. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

Problem 4. 

Solution. 

Further Examples 

Radial distance. 

Suppose a bacterial colony appears at a point uniformly distributed at random on a 

circular plate of radius 1. Let R be the distance of the point from the center of the 

plate. 

Find the probability density of R. 

The basic assumption is that the probability of the colony 

appearing in any particular region of the plate is propor­

tional to the area of the region. From the diagram, for 

0< r < 1, 

P(R E dr) = Area of annulus from r to r + dr 
Total area 

1l'(r + dr)2 - 1l'r2 d 
---'----'---- = 2r r 

by ignoring the term involving (dr)2. So R has density 

{ 2r 0 < r < 1 
f(r) = 0 otherwise 

Find P( a :s; R :s; b) for 0 < a < b < 1. 

P(a:S;R:S;b)= lb2rdr=r2!: =b2 _a2 

(This can also be done using areas in the plane.) 

Find the mean and variance of R. 

100 11 2 11 E(R) = rf(r)dr = 2r2dr = _r3 
-00 0 3 0 

100 11 2 11 E(R2) = r2 f(r)dr = 2r3dr = 4r4 
-00 0 0 

2 2 1 4 1 
Var(R) = E(R ) - (E(R)) = - - - = -

2 9 18 

2 

3 

1 
-
2 

Suppose 100 bacterial colonies are distributed independently and uniformly at ran­

dom on a circular plate of radius 1. What is the probability that the mean distance 

of the colonies from the center of the plate is at least 0.7? 

The problem is to find P(AlOO > 0.7) where 

AlOO = (Rl + R2 + ... + R lOO )/100 



Example 3. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

Remark. 
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and the R are independent random variables with the same distribution as that of 

R calculated in Problem 1. Basic formulae for means and SDs derived in Chapter 3 

still apply to give E(AlOO) = E(R) = 0.667 

fll 
SD(AlOO) = SD(R)/·J!OO = V 18 . Wo ~ 0.0236 

Using the normal approximation, the required probability is approximately 

1 - <1> (0.7 - 0.667) = 1 - <1>(1.40) = 8.7o/c 
0.0236 0 

A distribution with inf1nite mean. 

Suppose that X has probability density 

f(x) = { ~/(1 + x)2 

Find P(X > 3). 

if x> 0 

otherwise 

roo 1 1 1
00 

P(X>3)= J3 (1+x)2 dx =-1+x 3 

1 

4 

Let Xl, X 2, X 3 , X 4 be independent random variables with the same distribution as 

X. Find the chance that exactly two of these variables are greater than 3. 

Since P(Xi > 3) = P(X > 3) = 1/4, and the random variables Xi are independent, 

the events (Xi> 3), i = 1,2,3,4, are four independent events, each with probability 

1/4. The number of these events which occur is therefore a binomial (4, 1/4) random 

variable. Call this random variable N. The required probability is then 

Find E(X). 

27 

128 

roo x roo ( 1 1) 
E(X) = Jo (1 + X)2 dx = Jo 1 + x - (1 + x)2 dx 

100 1 1
00 

= -- dx - 1 = log (1 + x) - 1 = 00 

o l+x 0 

The long-run interpretation is that the average (Xl + ... + Xn)/n of independent 

random variables chosen according to this distribution will, with overwhelming prob­

ability, tend to increase beyond all finite bounds as n ----+ 00. 



272 Chapter 4. Continuous Distributions 

FiHing a Curve to an Empirical Distribution 

The empirical distribution of a data list (Xl, ... , Xn) can be displayed in a histogram, 

as in Figure 4 at the end of Section 1.3. This histogram smoothes out the data to 

display the general shape of the empirical distribution. Such a histogram often follows 

a smooth curve, say y = f(x), as shown in Figure 2. Since histograms are non­

negative it is natural to assume that f(x) ;::: 0 for every x. 

FIGURE 2. A smooth curve fitted to a data histogram. 

30 40 50 60 70 

The basic idea is that if (a, b) is a bin interval, then the area of the bar over (a, b) 
should approximately equal the area under the curve from a to b. Summing such 

approximations over bins, and interpolating between the cut points, suggests a more 

general approximation: for any interval (a, b) the proportion of data in the interval 

should be approximately the area under the curve from a to b. Since the area under 

the curve can be evaluated as an integral, this amounts to the following: 

Integral Approximation 

for Empirical Proportions 
If a histogram of an empirical distribution follows the curve y = f(x), then the 

proportion Pn (a, b) of observations between a and b is approximated by 

Since Pn ( -00,00) = 1, whatever the empirical distribution, any reasonable approx­

imation f(x) to a data histogram must satisfy 

1: f(x) dx = 1 (1) 
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Then f(x) is a probability density function, and the empirical distribution of the data 

is approximated by the theoretical probability distribution with density f (x). 

Averages and Integrals 

Given a data list (Xl"'" xn) and an interval (a, b), the method of indicators provides 

a useful way to express the proportion of values in (a, b) as an average. Define the 

indicator function of (a, b) by 

ifxE(a,b) 
otherwise 

Given a list (Xl"'" Xn), the number of i such that Xi E (a, b) can be calculated by 

going through the list and for each i adding 1 if Xi E (a, b) and adding 0 otherwise. 

The term added for the ith element of the list is I(a,b) (x;). The empirical proportion 

of values in (a, b) is therefore 

In words: the proportion of x-values in (a, b) is the average of I(a,b) (x) as X ranges 

over the n values in the list. Suppose now that the empirical distribution is well 

approximated by a theoretical distribution with density f(x). The integral approxi­

mation for empirical proportions becomes an integral approximation for an empirical 

average: 

1 n lb 100 

;, ~I(a,b)(Xi) = Pn(a,b) ~ a f(x)dx = -00 I(a,b) (x)f(x) dx 

where the last equality holds because I(a,b) (X) = 0 for X outside (a, b). The point of 

writing the integral approximation this way is that it suggests a very useful general­

ization for other functions g(x) besides g(x) = I(a,b)(x). 

Integral Approximation for Averages 
If the empirical distribution of a list (Xl, ... , x n ) is well approximated by the 

theoretical distribution with density f (x), then the average of a function g( x) 
over the n values in the list is approximated by the integral of g(x) times the 

density f(x) over all values of x: 

1 n 100 

;, ~ g(Xi) ~ -00 g(x)f(x) dx 
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Notice that the left-hand average is E[g(X)] for X picked at random from the list of 

n values (Xl"'" Xn). The right-hand integral is E[g(X)] for a random variable X 
with density f (x). 

Apart from indicator functions g(x), the integral approximation is most commonly 

applied to the powers g(x) = xk: 

1 n Joo 
;;;, ~ x~:::::J -00 xk f(x) dx 

The left side is the average value of xk as X ranges over values in the data list, and is 

called the kth moment of the empirical distribution. The right side is called the kth 
moment of the theoretical distribution with density f(x). The cases k = 1 and k = 2 

together imply that the mean and variance of the empirical distribution are close to 

the mean and variance of the theoretical distribution. Thus if a data histogram looks 

like a normal curve, then the mean and variance of the data can be used to estimate 

the parameters of the normal curve. 

Heuristic derivation of the integral approximation for averages. For g(x) the 

indicator of an interval, this is just the integral approximation for proportions. A 

step function g(x) that has a finite number of different values on a finite number of 

disjoint intervals can be written as a finite linear combination 

of indicator functions of intervals. So for a step function g(x) the integral approx­

imation for the average follows by combining the integral approximation for the 

proportions Pn(ai, bi ), using the linearity properties of sums and integrals. The ap­

proximation for a more general function g(x) is obtained by approximating g(x) by 

a step function, much as in the usual approximation of integrals by Riemann sums. 

o 

How good is the integral approximation for an average? This depends both 

on how closely the empirical distribution conforms to the theoretical density f(x), 
and on how rapidly g(x) varies as a function of x. (If g(x) grows too rapidly for 

large absolute values of X the integral J::"oo g(x)f(x) dx might not even be defined.) 

Provided a data histogram follows the density curve closely, and g(x) is a fairly 

smooth function of x that does not grow too rapidly for large lxi, the data average 

~ L:~ g(Xi) will be well approximated by J::"oo g(x)f(x) dx. 

The law of averages. This is a probabilistic way to make the statement of the 

previous paragraph more precise. If the data list (Xl"'" x n ) is obtained by a pro­

cess of repeated measurements of some kind, it may be reasonable to assume that 

(Xl, ... ,xn ) is the result of independent random sampling of points from the theo­

retical distribution with density f(x). More formally, (Xl"'" xn ) is regarded as the 

observed result of (X I, ... , X n) for a sequence of independent random variables 

Xi, each distributed like X with density f(x). According to the law of averages of 
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Section 3.3, which holds just as well for X with a density as for discrete X, provided 

the integral that defines E[g(X)] is absolutely convergent, for large n it is highly 

probable that 

1 n Joo 
-;;; ~9(Xi) ~ E[g(X)] = -00 g(x)f(x)dx 

Assuming Var[g(X)] < 00, Chebychev's inequality gives for any t > 0 

Provided n is large enough that Var[g(X)Jlnt2 is small, the integral approximation 

for the average of n values of g(Xi ) will probably be correct to within E. Note that 

the variance of g(X) will tend to be small provided g(x) does not vary too rapidly 

over the typical range of values x of X, and provided g( x) does not grow too rapidly 

for less typical values x in the tails of the distribution of X. So the factor Var(g[X]) 
in the above probability estimate captures nicely the idea of the previous paragraph 

that the integral approximation for averages will tend to work better for smoother 

functions g(x). The estimate given by Chebychev's inequality is very conservative. 

More realistic approximations to the probability of errors of various sizes in the 

integral approximation for averages are provided by the normal approximation. 

The Monte-Carlo method. It may be that the integral J~oo g(x)f(x)dx is difficult 

to evaluate by calculus or numerical integration, but it is easy to generate pseudo­

random numbers Xi distributed according to density f (x). The value of the integral 

can then be estimated by the average value of g(Xi ) for a large number of such 

Xi. For instance, the value of f01 g(x)dx can be estimated this way using Xi with 

uniform (0,1) distribution. Assuming that some bound on Var[g(X)] is available 

(e.g., if g(x) is a bounded function of x), error probabilities can be estimated using 

Chebychev's inequality or a normal approximation. The same method can be applied 

in higher dimensions to approximate multiple integrals. 

Exercises 4. 1 

1. What is the probability that a standard normal random variable has value 

a) between a and 0.001? b) between 1 and LOOP 

2. Suppose X has density f(x) = c/x4 for x> 1, and f(x) = a othelWise, where c is a 

constant. Find a) c; b) E(X); c) Var(X). 

3. Suppose X is a random variable whose density is f(x) = cX(l - x) for a < x < 1, and 

f(x) = a othelWise. Find: 

a) the value of c; b) P(X ~ 1/2); c) P(X ~ 1/3); 
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d) P(I/3 < X ::; 1/2); e) the mean and variance of X. 

4. Suppose X with values in (0,1) has density f(x) = cx2 (1 - X)2 for 0 < x < 1. Find: 

a) the constant C; b) E(X); c) Var(X). 

5. Suppose that X is a random variable whose density is 

1 
f(x) = 2(1 + Ixl)2 (-oo<;r<oo) 

a) Draw the graph of f(x). b) Find P( -1 < X < 2). 

c) Find P(IXI > 1). d) Is E(X) defined? 

6. Suppose X has normal (IL, 0'2) distribution, and P(X ::; 0) = 1/3, P(X ::; 1) = 2/3. 

a) What are the values of fL and O'? b) What if instead P(X ::; 1) = 3/4? 

7. Suppose the distribution of height over a large population of individuals is approxi­

mately normal. Ten percent of individuals in the population are over 6 feet tall, while 

the average height is 5 feet 10 inches. What, approximately, is the probability that in a 

group of 100 people picked at random from this population there will be two or more 

individuals over 6 feet 2 inches tall? 

8. Measurements on the weight of a lump of metal are believed to be independent and 

identically distributed; each measurement has mean 12 grams and SD 1.1 gram. 

a) Find the chance that a single measurement is between 11.8 and 12.2 grams, 

assuming that individual measurements are normally distributed. 

b) Estimate the chance that the average of 100 measurements is between 11.8 and 

12.2 grams. For this calculation, is it necessary to assume that individual mea­

surements are normally distrihuted? Explain. 

9. Suppose X l ,X2 ,X3 ,X4 are independent uniform (0,1) random variables, and let 

54 = Xl + X 2 + X3 + X 4 . Use the normal approximation to calculate P(54 2: 3) 

approximately. 

10. The distribution of repeated measurements of the weight of an object is approximately 

normal with a mean of 9.7800 gm and a standard deviation of 0.0031 gm. Calculate: 

a) the chance that the next measurement will be between 9.7840 and 9.8000 gm; 

b) the proportion of measurements smaller than 9.7794 gm; 

c) the weight that the next measurement has a 10% chance of exceeding. 

11. A large lot of marbles have diameters which are approximately normally distributed 

with a mean of 1 cm. One third have diameters greater than 1.1 cm. Find: 

a) the standard deviation of the distribution; 

b) the proportion whose diameters are within 0.2 cm of the mean; 

c) the diameter that is exceeded by 75% of the marbles. 

12. Consider a point picked uniformly at random from the area inside one of the following 

shapes: 
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(0,2) 

~)LS 

(-2,0) (1,0) 

(0,2) 

(-2,0) (2,0) (-1,0) 

(2,1) 

(1, -1) 

(0, -2) 

In each case find the density function of the x coordinate. 

13. Suppose a manufacturing process designed to produce rods of length 1 inch exactly, in 

fact produces rods with length distributed according to the density graphed below. 

6 
0.9 1.0 1.1 

For quality control, the manufacturer scraps all rods except those with length between 

0.925 and 1.075 inches before he offers them to buyers. 

a) What proportion of output is scrapped? 

b) A particular customer wants 100 rods with length between 0.95 and 1.05 inches. 

Assuming lengths of successive rods produced by the process are independent, 

how many rods must this customer buy to be 95% sure of getting at least 100 of 

the prescribed quality? 

14. Another manufacturer produces similar rods by a process that produces lengths with the 

same mean and standard deviation as in Exercise 13, but with a distribution following the 

normal curve. This manufacturer uses the same quality control procedure of scrapping 

rods not within 0.075 inches of 1 inch in length. 

a) What proportion of output is scrapped by this manufacturer? 

b) If you were the customer with requirements as in part b) in Exercise 13, which 

manufacturer would you prefer? Explain. 

15. Standard normal c.d.f. in terms of the error function. Many calculators and com-

puter languages have built in the error function erf(x) = (2/ yI7r) fox e- t2 dt. 

a) Find JL and a 2 so that P( IX I :s: x) = erf( x) if X has normal (It, a 2 ) distribution. 

b) Express erf(x) in terms of the standard normal cd.f. <I>(z). 

c) Express <I> ( z) in terms of erf( x ) . 
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4.2 Exponential and Gamma Distributions 
One of the things most commonly described by a distribution with a density is a 

random time of some kind. Some examples are: 

(i) the lifetime of an individual picked at random from some biological population; 

(ii) the time until decay of a radioactive atom; 

(iii) the length of time a patient survives after an operation of some kind; 

(iv) the time it takes a computer to process a job of some kind. 

Such random times will be regarded as random variables with range the interval 

[0, (0). Assume the distribution of a random time T is defined by a probability density 

f(t) for 0::; t < 00, so for 0::; a < b < 00 

P(a < T ::; b) = lb f(t) dt 

If T is interpreted as the lifetime of something, the probability of the thing surviving 

past time s is 

P(T> s) = 100 

f(t) dt 

This is a decreasing function of s, called the survival function. By the difference rule 

for probabilities 

P( a < T ::; b) = P(T > a) - P(T > b) 

So the probability of the random time falling in any interval can be found from the 

survival function. 

The simplest model for a random time with no upper bound on its range is the 

exponential distribution. This distribution fits the lifetimes of a variety of inanimate 

objects that experience no aging effect. More importantly, many models for systems 

that evolve randomly over time, called stochastic processes, are built up from some 

combination of independent exponential random times. A case in point is the Pois­

son process on a time line, which models the tim~s of successive arrivals of some 

kind, such as the times customers arrive at a store. In this model, the successive in­

terarrival times are independent exponential random variables. And the time of the 

rth arrival has a gamma distribution. These exponential and gamma distributions, 

studied in this section, are the continuous analogs of the geometric and negative 

binomial distributions of Section 3.4. 

The following section introduces the concept of a death or hazard rate associated 

with a random time. For the exponential distribution this is constant over time, but 
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for more general distributions the death rate varies over time, indicating an aging 

effect. 

Exponential Distribution 

A random time T has exponential distribution with rate..\, denoted exponential (A), 

where A is a positive parameter, if T has probability density 

f(t) = Ae- At (t 2 0) 

Equivalently, for 0 ::::; a < b < 00 

To see that f(t) is a probability density on [0,00), let a = 0, and let b --+ 00 to find 

the total probability of Ion [0,00). Set a = t and let b --+ 00 to get the next formula 

for the survival function. Calculation of the mean and SD are left as an exercise. 

Exponential Survival Function 
A random time T has exponential distribution with rate A if and only if T has 

survival function 

P(T>t)=e- At (t20) 

Mean and SD: E(T) = SD(T) = t 

Note that the rate A is the inverse of the mean, so an exponential random time with 

a large rate is likely to be small, and one with a small rate is likely to be large. A 

better interpretation of A as a hazard rate will be given shortly. 

Memoryless Property 

of the Exponential Distribution 
A positive random variable T has exponential (A) distribution for some A > 0 

if and only if T has the memoryless property 

P(T> t + siT> t) = P(T > s) (s20, t20) 

In words: Given survival to time t, the chance of surviving a further time s is 

the same as the chance of surviving to time s in the first place. 
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FIGURE 1. Exponential densities for .\ == 0.5,1,2. 

A=2 

A=l 

A = 1/2 
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The memoryless property follows immediately from the formula for the survival 

function, as you should check. The converse hinges on the fact that if T has the 

memoryless property then the survival function G(t) = P(T > t) must be a solution 

of the functional equation 

G(t + s) = G(t)G(s) (t>o, s>O) 

with G(t) decreasing and bounded between 0 and 1. It can be shown that every 

such function G(t) is of the form e- At for some A. 

Thinking of T as the lifetime of something, the memoryless property is this: What­

ever the current age of the thing, the distribution of the remaining lifetime is the 

same as the original lifetime distribution. Some things, such as atoms or electrical 

components, have this property, hence exponential lifetime distribution. But most 

forms of life do not have exponential lifetime distribution because they experience 

an aging process. 

Interpretation of the rate A. For something with an exponentially distributed life­

time, A is the constant value of the instantaneous death rate or hazard rate. That is to 

say, .\ measures the probability of death per unit time just after time t, given survival 

up to time t. To see why, for a time t and a further length of time ~, calculate 

P(T :s: t + ~ IT> t) = 1 - P(T > t + ~ IT> t) 

= 1 - P(T >~) by the memoryless property 

= 1- e-A~ 
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= 1- [1-'\~ + ~,\2~2 _ ... J 

2 

~ ,\~ for small ~ 

where ~ is an approximation with error negligible in comparison to ~ as ~ ----+ O. 

Less formally, for an infinitesimal time increment dt, the result of this calculation is 

that 

P(T :::; t + dt IT> t) = >.. dt or 

P(t < T:::; t+dt)/dt = >..P(T > t) 

Since the left side is the density of T at time t, this explains why the exponential (>..) 

density at t is the death rate>" times the probability e- At of survival to time t. The 

characteristic feature of exponentially distributed lifetimes is that the death rate is 

constant, not depending on t. Other continuous distributions on (0,00) correspond 

to a time-dependent death rate >..(t): see Section 4.3. 

Reliability. 

Under suitably constant conditions of use, some kinds of electrical components, for 

example, fuses and transistors, have a lifetime distribution well fitted by an expo­

nential distribution. Such a component does not wear out gradually. Rather, it stops 

functioning suddenly and unpredictably. No matter how long the component has 

been in use, the chance that it survives a further time interval of length ~ is always 

the same. This probability must then be e->'~ for some rate>.., called the failure rate 

in this context. The lifetime distribution is then exponential with rate >... Roughly 

speaking, so long as it is still functioning. such a component is as good as new. 

Suppose the average lifetime of a particular kind of transistor is 100 working hours, 

and that the lifetime distribution is approximately exponential. Estimate the proba­

bility that the transistor will work for at least 50 hours. 

Since the mean of the exponential distribution is 1/>.., put 

1/>.. = 100 so >.. = 0.01 

and calculate P(T > 50) = e->'50 = e-O.5 = 0.606 ... 

Given that the transistor has functioned for 50 hours, what is the chance that it fails 

in the next minute of use? 

From the interpretation of >.. = 0.01, as the instantaneous rate of failure per hour 

given survival so far, the chance is about 0.01 x 1/60 ~ 0.00017. 

Radioactive decay. 

Atoms of radioactive isotopes like Carbon 14, Uranium 235, or Strontium 90 remain 

intact up to a random instant of time when they suddenly decay, meaning that they 



282 Chapter 4. Continuous Distributions 

split or turn into some other kind of atom, and emit a pulse of radiation or particles 

of some kind. This radioactive decay can be detected by a Geiger counter. Let T be 

the random lifetime, or time until decay, of such an atom, starting at some arbitrary 

time when the atom is intact. It is reasonable to assume that the distribution of T 

must have the memoryless property. Consequently, there is a rate A > 0, the rate 

of decay for the isotope in question, such that T has exponential (A) distribution: 
P(T > t) = e-)"t. 

Probabilities here have a clear interpretation due to the large numbers of atoms typ­

ically involved (for example, a few grams of a substance will consist of around 1023 

atoms). Assume a large number N of such atoms decay independently of each other. 

Then, by the law of large numbers, the proportion of these N atoms that survives 

up to time t is bound to be close to e-)..t, the survival probability for each individual 

atom. This exponential decay over time of the mass of radioactive substance has 

been experimentally verified, confirming the hypotheds that lifetimes of individual 

atoms are exponentially distributed. The decay rates A for individual isotopes can 

be measured with great accuracy, using this exponential decay of mass. These rates 

A show no apparent dependence on physical conditions such as temperature and 

pressure. 

A common way to indicate the rate of decay of a radioactive isotope is by the half 

life h. This is the time it takes for half of a substantial amount of the isotope to 

disintegrate. So 

e-)"h = 1/2 or h = log (2)/ A 

In other words, the half life h is the median of the atomic lifetime distribution 

P(T::; h) = P(T > h) = 1/2 

The median lifetime is smaller than the mean lifetime 1/ A, by the factor of log (2) = 
0.693147 .... This is due to the very skewed shape of the exponential distribution. 

Numerical illustration. Strontium 90 is a particularly dangerous component of 

fallout from nuclear explosions. The substance is toxic, easily absorbed into bones 

when eaten, and has a long half-life of about 28 years. Assuming this value for the 

half-life h, let us calculate: 

a) The decay rate A: From above, this is 

A = logh (2) = 0.693147 ... /28 = 0.0248 per year 

b) The mean lifetime of a Strontium 90 atom: This is 

1 h 

A log (2) 

28 
-:-:-:--::-::--:-:-:- = 40.4 years 
0.693147 ... 
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c) The probability that a Strontium 90 atom survives at least 50 years: This is 

P(T> 50) = e-,X50 = e-O.0248x50 = 0.29 

d) The proportion of one gram of Strontium 90 that remains after 50 years. This 

proportion is the same as the above probability, by the law of large numbers. 

e) The number of years after a nuclear explosion before 99% of the Strontium 90 

produced by the explosion has decayed. Let y be the number of years. Then 

e-O.0248y = 1/100 so y = log (100)/0.0248 ~ 186 years 

Relation to the geometric distribution. The exponential distribution on (0,00) is 

the continuous analog of the geometric distribution on {1, 2, 3, ... }. For instance, in 

the formulation of the memoryless property it was assumed that sand t range over 

all non-negative real numbers. This property for integers sand t, and an integer­

valued random variable T, is a characterization of the geometric distribution. An 

exponential distribution is the limit of rescaled geometric (p) distributions as the 

parameter p tends to O. More precisely, if C has geometric (p) distribution, so that 

P(C > n) = (1 - p)n, and p is small so that E(C) = l/p is large, then the rescaled 

variable C / E( C) = pC has approximately exponential distribution with rate>' = 1: 

P(pC > t) = P(C > tip) ~ (1 - p)t/p Conly ~ because tip may not be an integer) 

by the usual exponential approximation (l-p) ~ e-P for small p. This approximation 

has been used already in the gambler's rule example in Section 1.6. The factor of 

log (2) which appeared there was the median of the exponential distribution with 

rate 1. 

Relation to a Poisson process. A sequence of independent Bernoulli trials, with 

probability p of success on each trial, can be characterized in two different ways as 

follows: 

I. Counts of successes. The distribution of the number of successes in n trials 

is binomial (n, p), and numbers of successes in diSjoint blocks of trials are 

independent. 

II. Times between successes. The distribution of the waiting time until the first 

success is geometric (p), and the waiting times between each success and the 

next are independent with the same geometric distribution. 

After a passage to the limit by discrete approximations, as in Section 3.5, these 

characterizations of Bernoulli trials lead to the two descriptions in the next box of a 

Poisson arrival process with rate >.. This means a Poisson random scatter of points, 

as in Section 3.5, for points now called arrivals on the interval (0,00) interpreted 
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Example 3. 

as a time line, instead of hits on a region in the plane. In the diagram inside the 

box, arrivals are at times marked x on the time line. Think of arrivals representing 

something like calls coming into a telephone exchange, particles arriving at a counter, 

or customers entering a store. 

Two Descriptions of a Poisson Arrival Process 
I. Counts of arrivals. The distribution of the number of arrivals N (1) in a 

fixed time interval Iof length t is Poisson (.\t), and numbers of arrivals in 

disjoint time intervals are independent. 

N(I) = 2 
A 

fixed interval I 

II. Times between arrivals. The distribution of the waiting time WI until the 

first arrival is exponential (.\), and WI and the subsequent waiting times W2 , 

W3 , ... between each arrival and the next are independent, all with the same 

exponential distribution. 

These two descriptions of a random arrival process are equivalent. 

Probabilities of events defined by a Poisson arrival process can be calculated from 

whichever of these two descriptions is more convenient. 

Telephone calls. 

Suppose calls are coming into a telephone exchange at an average rate of 3 per 

minute, according to a Poisson arrival process. So, for instance, N(2, 4), the number 

of calls coming in between t = 2 and t = 4, has Poisson distribution with mean 

.\ ( 4 - 2) = 3 x 2 = 6 ; and W3 , the waiting time between the second and third calls, 

has exponential (3) distribution. Let us calculate: 

a) The probability that no calls arrive between t = 0 and t = 2: Since N(O, 2], the 

number of calls arriving in this interval has Poisson (6) distribution, this is 

P(N(0, 2] = 0) = e-6 = 0.0025 

b) The probability that the first call after t = 0 takes more than 2 minutes to 

arrive. From the exponential (3) distribution of WI this is 

The answer is the same as in a) because the events are, in fact, identical. 
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c) The probability that no calls arrive between t = 0 and t = 2 and at most four 

calls arrive between t = 2 and t = 3. By independence of N(O, 2] and N(2, 3], 

this is 

32 33 34 

P(N(0, 2] = 0) . P(N(2, 3] ~ 4) = e-6 . e-3(1 + 3 + , + , + ,) = 0.0020 
2. 3. 4. 

d) The probability that the fourth call arrives within 30 seconds of the third. This 

is 

P(W4 ~ 0.5) = 1 - P(W4 > 0.5) = 1 - e-3xO.5 = 0.7769 

e) The probability that the first call after t = 0 takes less than 20 seconds to 
arrive, and the waiting time between the first and second calls is more than 3 
minutes. By independence of WI and W2, this is 

P(WI < 1/3) . P(W2 > 3) = (1 - e-3X20/60)e-3X3 

D The probability that the fifth call takes more than 2 minutes to arrive. Since 

the arrival time of the fifth call is the sum of the first five interarrival times, 

the problem is to find P(WI + W2 + W3 + W4 + W5 > 2) where the Wi are 

independent, all with exponential (3) distribution. The general technique for 

finding the distribution of a sum of continuously distributed random variables 

is not discussed until Section 5.4. But this particular problem is solved easily 

by recoding it in terms of the Poisson distributed counts. The fifth call takes 

more than 2 minutes to arrive if and only if at most four calls arrive between 

t = 0 and t = 2. So the required probability is 

P(WI + W2 + W3 + W4 + W5 > 2) = P(N(0,2] ~ 4) 

62 63 64 

= e- 6 (1 + 6 + 2T + 3! + 4!) = 0.2851 

Gamma Distribution 

As in the previous example, let WI, W2, ... be independent exponential (A) vari­

ables, and interpret the Wi as the waiting times between arrivals in a Poisson process 

with rate A. The method used in the last part D of the example can be used to find 

the distribution of the time Tr of the rth arrival, for any r = 1,2, .... Here is a 

general statement of the result: 
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Poisson Arrival Times (Gamma Distribution) 
If Tr is the time of the rth arrival after time 0 in a Poisson process with rate .\ or 

if Tr=W1+W2+·· ,+Wr where the Wi are independent with exponential (>.) 
distribution, then Tr has the gamma (r, >.) distribution defined by either (1) or 

(2) for all t > 0: 

(1) Density: 
(>'W- I 

P(Tr E dt)/dt = P(Nt = r - 1)>' = e-J..t (r _ I)! >. 

where Nt, the number of arrivals by time t in the Poisson process with rate >., 
has Poisson (>.t) distribution. In words, the probability per unit time that the 

rth arrival comes around time t is the probability of exactly r - 1 arrivals by 

time t multiplied by the arrival rate. 

r-I (>. )k 
(2) Right tail probability: P(Tr > t) = P(Nt ::::; r -1) = 'L,e-J..t+ 

k=O 
because Tr>t if and only if there are at most r-1 arrivals in the interval (0, t]. 

(3) Mean and SD: 

Formula (2) is the extension of the numerical example t) above from the case r = 
5, >. = 3, t = 2 to general r, >., and t. Formula (1) for the density can be derived 

from (2) by calculus. But here is a neater way. For the rth arrival to come in an 

infinitesimal interval of time of length dt just after time t, it must be that: 

A: there is an arrival in the time dt, 

where P(A) = >'dt, by the local interpretation of the arrival rate >.; 

and (since the possibility of more than one arrival in the infinitesimal interval can 

be safely ignored), that: 

B: there were exactly r - 1 arrivals in the preceding time t, 

where P(B) = P(Nt = r - 1) = e-J..t(>'W- I /(r - I)! 

The5e events A and B are defined by arrivals in disjoint time intervals, so they 

are independent by the basic assumptions of a Poisson process. Multiplying their 

probabilities gives formula (1) for P(AB) = P(Tr Edt). The formulae (3) for the 

mean and S D are immediate from the representation of Tr as a sum of r independent 

exponential (A) variables, and the formulae for the case r = 1, when the gamma 

(1, >.) distribution is just exponential (A). 

The full extent of the analogy between Bernoulli trials and a Poisson process is 

brought out in the display on pages 288 and 289. In this analogy the continuous 

gamma (r, >.) distribution of the time until the rth arrival corresponds to the discrete 
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negative binomial (r, p) distribution of the number of trials until the rth success, as 

derived in Section 3.4. As the display shows, the formulae relating the gamma to the 

Poisson distribution are like similar formulae relating the negative binomial to the 

binomial distribution. 

FIGURE 2. Gamma density of the rth arrival for r = 1 to 10. Note how the distributions shift to 

the righl and flatten out as r increases, in keeping with the formulae r /.\ and Vi /.\ for the mean 

and SD. Due to the central limit theorem, the gamma (r,.\) distribution becomes asymptotically 

normal as r -+ 00. 

5 10 15 20 25 

time in multiples of 1/,\ 
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Summary of Properties of a Bernoulli (p) Trials Process 

4 4 6 10 2 12 4 16 ? 
II II II II II II II II II 

-+- WI- TI - W2----~~ T2~WtT3~W4-T4· W5-··· 

000 1 0 0 0 0 0 1 0 1 000 1 000 

\ T/j = 4 + 6 + 2 + 4 = 16 

1. a) The probability of success per trial is p. 

b) The events of successes on different trials are independent. 

c) The long-run average success rate is p. 

2. a) The number N n of successes in n trials has binomial (n,p) distribution 

with 

P(Nn=k)= (~)pkqn-k (k=O,l, ... ,n, n=1,2, ... ) 

E(Nn ) = np and SD(Nn ) = Vnpq where q = 1 - p 

b) As n -+ 00 the asymptotic distribution of (Nn - E(Nn )) /SD(Nn) is 

standard normal. 

3. The waiting times WI, W 2 , ... between successes are independent geometric 

(p) random variables with 

P(Wk > n) = P(no successes in n trials) 

=P(Nn=O)=qn (n=1,2, ... ) 

P(Wk = n) = P(no successes in first n - 1 trials and trial n is a success) 

= P(Nn- 1 = O)p = qn-Ip (n = 1,2, ... ) 

and (k = 1,2, ... ) 

4. a) The waiting time Tr = WI + ... + Wr until the rth success has negative 

binomial (r,p) distribution shifted to {r, r + I, ... } with 

P(Tr > n) = P(Nn < r) (n = 1,2, ... , r = 1,2, ... ) 

P(Tr = n) = P(r - 1 successes in first n- 1 trials and trial n is a success) 

= P(Nn - 1 = r - l)p 

and (r = 1,2, ... ) 

b) As r -+ 00 the distribution of (Tr - E(Tr)) /SD(Tr) converges to 

standard normal. 
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Summary of Properties of a Poisson (.\) Arrival Process 

)( )( x 

1. a) P(arrival in interval ~t) ::::: A~t as ~t ~ O. 

b) The events of arrivals in disjoint intervals are independent. 

c) The long-run average rate of arrivals per unit time is A. 

2. a) The number Nt of arrivals in time t has Poisson (At) distribution with 

and 

(k = 0,1, ... , t 2 0) 

SD(Nt ) = 5t 

b) As t ~ 00 the asymptotic distribution of (Nt - E(Nt )) /SD(Nt ) 

is standard normal. 

3. The waiting times WI, W 2 , ... between arrivals are independent exponential 

(A) random variables with 

P(Wk > t) = P(no arrivals in time t) 

= P(Nt = 0) = e->.t (t 2 0) 

P(Wk Edt) = P(no arrivals in time t, arrival in time dt) 

= P(Nt = O)P(arrival in time dt) = e- At Adt 

and (k = 1,2, ... ) 

(t 2: 0) 

4. a) The waiting time Tr = WI + ... + Wr until the rth arrival has gamma 

(r, A) distribution with 

P(Tr > t) = P(Nt < r) (t 20, r = 1,2, ... ) 

P(Tr Edt) = P(r - 1 arrivals in time t and arrival in time dt) 

= P(Nt = r - l)Adt 

and (r = 1,2, ... ) 

b) As r ~ 00 the distribution of (Tr - E(Tr )) /SD(Tr ) converges to 

standard normal. 
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Example 4. 

Problem. 

Solution. 

Discussion. 

Sum of two lifetimes. 

A component with lifetime that is exponentially 

distributed with failure rate 1 per 24 hours is put 

into service with a replacement component of the 

same kind which is substituted for the first one 

when it fails. What is the median of the total time 

to failure of both components? 

The problem is to find m such that P(T2 ;::: m) = 

1/2, where T2 = WI + W2 is the sum of two inde­

pendent exponential lifetimes with rate A = 1/24 

y 

per hour. But from formula (2) on page 286 2 

where N m has Poisson (Am) distribution. Put x = 
Am. Then m = X/A where x solves 

1/2 = e- x (1 + x) 

eX = 2 + 2x 

Some trial and error with a calculator gives x ~ 

1.675. So the median is about 1.675/(1/24) ~ 
40.3 hours. 

1 

O-+---+----'--+---x 
o 1 2 

Note how the Poisson formula for P(T2 ;::: t) can be used here for the gamma (2, A) 

distribution of the sum T2 = WI + W2 of two independent exponential (A) variables, 

even though these exponential random variables are not originally defined as inter­

arrival times for a Poisson process. Technically, this is because the distribution of 

a sum of independent random variables is determined by the distributions of the 

individual variables. Section 5.4 goes into this in more detail. Intuitively, you may as 

well suppose the two lifetimes WI and W2 are just the first two in an infinite sequence 

of independent exponentially distributed lifetimes of components replaced one after 

another. In that case the times of replacements would make a Poisson process, with 

Nt representing the total number of replacements by time t. 

Gdmma Distribution for Non-Integer Shape 

Parameter 

A gamma distribution is defined for all positive values of the parameters r and A by 

a variation of the density formula (1) on page 286 for integer r. A random variable 

T has gamma distribution with parameters r and A, or gamma (r, A) distribution, if 
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T has probability density 

t?O 
t < 0 

is a constant of integration, depending on r, called the gamma function. The parame­

ter r is called the index or shape parame~er. And 1/ A is a scale parameter. Comparison 

with formula (1) on page 286 shows that 

f(r) = (r - I)! (r = 1,2, ... ) 

You should think of the gamma function f (r) as a continuous interpolation of the 

factorial function (r - I)! for non-integer r. Integration by parts gives the following: 

Recursion formula for the gamma function: f (r + 1) = r f (r) (r > 0) 

Since it is easy to see that r(1) = 1, the recursion formula implies r(r) = (r - I)! 

for integer r by mathematical induction. 

But there is no explicit formula for f(r) except in case r is a positive integer, or 

a positive half-integer, starting from f(I/2) = y'Jr. See Exercise 5.3.15. Section 5.3 

shows that for half integer r the gamma distributions arise from sums of squares of 

independent normal variables. 

As will be shown in Section 5.4, several algebraic functions of gamma random vari­

ables have distributions which are easy to compute. See the gamma distribution 

summary for a survey. In applications, the distribution of a random variable may be 

unknown, but reasonably well approximated by some gamma distribution. Then re­

sults obtained assuming a gamma distribution might provide useful approximations. 

For non-integer values of r the gamma (r, A) distribution has a shape which varies 

continuously between the shapes for integers r, as illustrated by the following dia­

grams: 

In Figures 3, 4, and 5, both horizontal and vertical scales change from one figure to 

the next. Figure 3 shows how the gamma (r, A) density is unbounded near zero for 

o < r < l. As r -+ 0 the distribution piles up more and more near zero, approach­

ing the distribution of a constant random variable with value O. This is a discrete 

distribution, which does not have a probability density, but assigns probability one 

to the point zero, and may be thought of as the gamma (0, A) distribution. 
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FIGURE 3. Gamma (r, >.) densities for>. = 1 and r a multiple of 1/4, 0 < r ::; 1. 
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FIGURE 4. Gamma (r, >.) densities for>. = 1 and r a multiple of 1/4, 1::; r ::; 2. 
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FIGURE 5. Gamma (r, >.) densities for>. = 1 and r a multiple of 1/4, 2::; r ::; 3. 
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Exercises 4.2 
1. Suppose a particular kind of atom has a half-life of 1 year. Find: 

a) the probability that an atom of this type survives at least 5 years; 

b) the time at which the expected number of atoms is 10% of the original; 

c) if there are 1024 atoms present initially, the time at which the expected number 

of atoms remaining is one; 

d) the chance that in fact none of the 1024 original atoms remains after the time 

calculated in c). 

2. A piece of rock contains 1020 atoms of a particular substance. Each atom has an expo­

nentially distributed lifetime with a half-life of one century. How many centuries must 

pass before 

a) it is most likely that about 100 atoms remain; 

b) there is about a 50% chance that at least one atom remains. What assumptions 

are you making? 

3. Suppose the time until the next earthquake in a particular place is exponentially dis­

tributed with rate 1 per year. Find the probability that the next earthquake happens 

within 

a) one year; b) six months; c) two years; d) 10 years. 

4. Suppose component lifetimes are exponentially distributed with mean 10 hours. Find: 

a) the probability that a component survives 20 hours; 

b) the median component lifetime; 

c) the SD of component lifetime; 

d) the probability that the average lifetime of 100 independent components exceeds 

11 hours; 

e) the probability that the average lifetime of 2 independent components exceeds 

11 hours. 

5. Suppose calls are arriving at a telephone exchange at an average rate of one per second, 

according to a Poisson arrival process. Find: 

a) the probability that the fourth call after time t = 0 arrives within 2 seconds of the 

third call; 

b) the probability that the fourth call arrives by time t = 5 seconds; 

c) the expected time at which the fourth call arrives. 

6. A Geiger counter is recording background radiation at an average rate of one hit per 

minute. Let T3 be the time in minutes when the third hit occurs after the counter is 

switched on. Find P(2 ~ T3 ~ 4). 

7. Let 0 < p < 1. For the exponential distribution with rate A, find a formula for the 100pth 

percentile point tp such that P(T ~ t p ) = 100p%. 
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8. Transistors produced by one machine have a lifetime which is exponentially distributed 

with mean 100 hours. Those produced by a second machine have an exponentially dis­

tributed lifetime with mean 200 hours. A package of 12 transistors contains 4 produced 

by the first machine and 8 produced by the second. Let X be the lifetime of a transistor 

picked at random from this package. Find: 

a) P(X ~ 200 hours); b) E(X); c) Var(X). 

9. Gamma function and moments of the exponential distribution. Consider the 

gamma function f(r) = Jooo xT-1e-xdx (r > 0) 

a) Use integration by parts to show that f('r + 1) = rf(r) (r > 0) 

b) Deduce from a) that r(r) = (r - I)! (r = 1,2, ... ) 

c) If T has exponential distribution with rate 1, then 

(n=0,1,2, ... ) and SD(T) = 1 

d) If T has exponential distribution with rate A, then show AT has exponential 

distribution with rate 1, hence 

(n=0,1,2, ... ) and SD(T) = 1/ A 

10. Geometric from exponential. 

a) Show that if T has exponential distribution with rate A, then int(T), the greatest 

integer less than or equal to T, has a geometric (p) distribution on {O, 1,2, ... }, 

and find p in terms of A. 

b) Let Tm = int(mT)/m, the greatest multiple of l/m less than or equal to T. 

Show that T has exponential distribution on (0, (0) for some A, if and only if 

for every m there is some pm such that mT m has geometric (Pm) distribution on 

{O, 1,2, ... }. Find pm in terms of A. 

c) Use b) and Tm ::; T ::; Tm + l/m to calculate E(T) and SD(T), from the 

formulae for the mean and standard deviation of a geometric random variable. 

11. Suppose the probability that a given kind of atom disintegrates in any particular mi­

crosecond, given that it was alive at the beginning of the microsecond, is A x 10-6 

where A > ° is a constant. Let T be the random lifetime of the atom in seconds. 

a) Show that the distribution of T is approximately exponential with parameter A. 
[Hint: Consider P(T ~ t) for t a multiple of 10-6 .] 

b) What is the chance that the atom has a lifetime of between 1 and 2 seconds? 

12. Gamma distribution. Derive the following features of the gamma (r, A) distribution 

for all positive r: 

a) For r ~ 1 the mode (i.e., the value that maximizes the density) is (r -1)/ A. What 

if 0< r < I? 

b) For k > 0, the kth moment of T with gamma (r, A) distribution is 

In particular E(T) = r / A. 



Section 4.2. Exponential and Gamma Distributions 295 

c) SD(T) = IFI>'" and Skewness(T) = 21IF· 

13. Suppose that under normal operating conditions the operating time until failure of 

a certain type of component has exponential (A) distribution for some A > O. And 

suppose that the random variables representing lifetimes of different components of 

this type may be regarded as independent. 

a) The average lifetime of 10,000 components is found to be 20 days. Estimate the 

value of A based on this information. 

b) Assuming the exponential lifetime model with A = 5% per day, let Nd be the 

number of components among 10,000 components which survive more than d 

days. Find E(Nd) and SD(Nd) for d = 10,20,30. 

14. Interpretation of the rate. In Exercise 13, the exponential model with A = 5% per 

day implies the probability of a component failing in the first day of its use is: 

a) exactly 5%; b) approximately 5%, but slightly less; 

c) approximately 5%, but slightly more. Without doing any numerical calculations, 

pick out which of a), b), or c) is true, and explain your choice. Confirm your choice by 

numerical calculation of the exact probability. 

15. Satellite problem. Suppose that a system using one of the components described in 

Exercise 13, with failure rate 5% per day, is sent up in a satellite together with three 

spare components of the same type. Assume that as soon as the original component 

fails, it is replaced by one of the spares, and when that component fails it is replaced 

by a second spare, and so on. The total operating time of the component plus three 

spares is then Trotal = Tl + T2 + T3 + T4 where Tl is the operating time of the first 

component, T2 is the operating time of the first spare, and so on. Assuming that the 

satellite launch is successful, and normal operating conditions obtain once the satellite 

is in orbit, calculate: 

a) E(Ttotad); b) SD(T"otal); c) P(Ttotal ;:: 60 days). 

16. [n the satellite problem of Exercise 15, how many spares would have to be provided 

to make P(Ttotal :::: 60 days) at least 90%? 

17. Another type of component has lifetime distribution which is approximately gamma 

(2, A) with A = 10% per day. 

a) Redo Exercise 15 for this type of component, making similar independence as­

sumptions. After calculating the answers to a) and b), guess without calculation 

whether the answer to c) should be larger or smaller than under the original 

assumptions of the satellite problem. Confirm your guess by calculation. 

b) Redo Exercise 16 for this type of component. 
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4.3 Hazard Rates (Optional) 
Let T be a positive random variable with probability density f (t), where t ranges 

over (0,00). Think of T as the lifetime of some kind of component. The hazard rate 
>.(t) is the probability per unit time that the component will fail just after time t, 

given that the component has survived up to time t. Thus 

P(T E dt IT> t) = >.(t)dt 

where (T Edt) stands for the event (t < T ~ t + dt) that the component fails in an 

infinitesimal time interval of length dt just after time t. As usual, this is shorthand for 

a limit statement: 

>.(t) = lim P(TE(t,t+~t)IT>t) 
~t--tO ~t 

Depending on what lifetime T represents in an application, the hazard rate >.(t) 
may also be called a death rate or failure rate. For example, T might represent the 

lifetime of some kind of component. Then >.(t) would represent the failure rate for 

components that have been in use for time t, estimated, for example, by the number 

of failures per hour among similar components in use for time t. 

In practice, failure rates can be estimated empirically as suggested above. Often it 

is found that empirically estimated hazard rates based on large amounts of data 

tend to follow a smooth curve. It is then reasonable to fit an ideal model in which 

>.(t) would usually be a continuous function of t. The exponential distribution of the 

previous section is the simplest possible model corresponding to constant failure rate 

>.(t) = >. for some>. > 0. Other distributions with densities on (0, (0) correspond to 

time-varying failure rates. The following box summarizes the basic terminology and 

analytic relationships between the probability density, survival function, and hazard 

rate. 

Formulae (1), (2), and (3) in the box are simply definitions, and (4) is the usual 

integral for the probability of an interval. Formulae (4) and (5) are equivalent by the 

fundamental theorem of calculus. Informally, (5) results from 

f(t)dt = P(T Edt) by (1) 

= P(T > t) - P(T > t + dt) by the difference rule 

= G(t) - G(t + dt) by (2) 

= -dG(t) 
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Probability density: 

Survival function: 

Hazard rate: 

Random Lifetimes 
P(T Edt) = f(t)dt 

P(T> t) = G(t) 

P(T E dtlT > t) = )..(t)dt 

Survival from density: G(t) = Joc f(u)du 

f(t) ___ dG(t) 
Density from survival: dt 

Hazard from density and survival: ).. (t) = f (t) 
G(t) 

Survival from hazard: G(t) = exp (-lot )"(U)dU) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

To ohtain (6), use P(AIB) = P(AB)/ P(B), with A = (T Edt), B = (T > t). Since 

A c B, AB = A, 

P(T Edt) f(t)dt 
)..(t)dt = P(T E dtlT > t) = P(T> t) = G(t) 

by (1) and (2). 

The most interesting formula is (7). To illustrate, in case )"(t) = ).. is constant, 

lot )..(u)du = )..t 

so (7) becomes the familiar exponential survival probability 

P(T > t) = e-)"t if T has exponential ()..) distribution. 

In general, the exponential of the integral in (7) represents a kind of continuous 

product obtained as a limit of discrete products of conditional probabilities. This is 

explained at the end of the section. Formula (7) follows also from (5) and (6) by 

calculus as you can check as an exercise. 
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Example 1. 

Problem. 

Solution. 

Linear failure rate. 

Suppose that a component has linear increasing failure rate, such that after 10 hours 

the failure rate is 5% per hour, and after 20 hours 10% per hour. 

(a) Find the probability that the component survives 20 hours. 

(b) Calculate the density of the lifetime distribution. 

(c) Find the mean lifetime. 

By assumption, 

A(t) = (t/2)% = t/200 

(a) The required probability is by (7) 

P(survive 20 hours) = G(20) = exp (_120 
A(U)dU) 

The integral inside the exponent is 

120 udu 1 21 20 

o 200 = 400 u 0 = 1 

Thus P(survive 20 hours) = e- 1 ~ 0.368 

(b) Put t instead of 20 above to get 

G(t) = exp (_t 2 /400) 

Now by (5) 

d 
f(t) = - dt G(t) 

= 2~0 exp ( - :~O) 
You can sketch the density by calculating a few points, as in the following 

table and graph: 

t 0 5 10 15 20 

f(t) 0 0.023 0.039 0.043 0.037 
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20 30 40 50 60 

(c) The mean can be calculated from 

E(T) = 100 

tf(t) dt 

but there is a shortcut for examples like this where the survival function G(t) 
is simpler than the density f(t). This is to use the following formula: 

Mean Lifetime from Survival Function 

E(T) = 100 

G(t) dt (8) 

This follows by integration by parts from the previous formula for E(T), using 
dG(t) 
-- = - f (t). It is the continuous analog of the formula 

dt 

E(T) = LP(T 2 n) 
n=l 

valid for a random variable T with possible values 0,1,2, . ... In the present 

example, (8) gives 

E(T) = 100 

exp (_t 2 /4(0) dt (9) 

Now the problem is that you cannot integrate the function exp (-t2 /400) in 

closed form. But you should recognize this integral as similar to the standard 

Gaussian integral 

roo e-z2/2 dz = ~ Joo e- z2 / 2 dz = ~& = E 
10 2 -00 2 V'2 

Since t2/400 = ~ ( t rn)2, make the change of variable z = t/10y'2, dz = 
2 1Oy2 

dt/10y'2, dt = 10y'2dz in (9) to get 

E(T) = 10v'21°° e- z2 / 2 dz = 1Ov'2~ ::::0 17.72 
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Derivation ofthe formula G(t) = exp (- J~ >.(u) du). Recall that the exponential 

of a sum is the product of exponentials. An integral is a kind of continuous sum, 

so an exponential of an integral is a kind of continuous product. In this case, the 

continuous product is a limit of discrete products of conditional probabilities. To see 

how, divide the time interval [0, t] into a very large number N of very small intervals 

of length say ~ = t / N. Survival to time t means survival of each of the N successive 

intervals of length ~ between 0 and t 

G(t) = P(T > t) = P(T > N~) 

= P(T > ~, T > 2~, ... ,T > N~) 

= P(T > ~)P(T > 2~IT >~) .. ·P(T > N~IT > (N -1)~) 

= [1 - P(T S ~)] [1 - P(~ S T S 2~ IT> ~)] ... 

~ [1 - ~>'(O)] [1 - ~>.(~)] [1 - ~>'(2~)]··· [1 - ~>. ((N - 1)~)] 

for small ~, by the definition of >.(t) 

~ e-t..'x(O)e-t..,X(t..) ... e-t..'x((N-l)t..) 

for small ~, by the approximation 1 - x ~ e- X for small x 

~ exp [_~ ~' A(i~}l 

~ exp [-1\(U)dU] 
for small ~, by a Riemann sum approximation of the integral. 

As ~ -+ 0, the errors in each of the three approximations ~ above tend to zero. 

So the approximate equality between the first and last expressions not involving ~ 

must in fact be an exact equality. This is (7). 

Note how the exponential appears here, as always, as the limit of a product of more 

and more factors all approaching 1 in the limit. 

Exercises 4.3 
1. For T with survival function G(t) = peT > t), find: 

a) P(Ts::b); b) P(a s::Ts:: b). 

2. Use the formulae of this section to show that the hazard rate .\Ct) is constant if and only 

if the distribution is exponential (.\) for some A. 

3. Business enterprises have the feature that the longer an enterprise has been in business, 

the less likely it is to fail in the next month. This indicates a decreasing failure rate. 

One that has been successfully fitted to empirical data of lifetimes of businesses is 

.\(t) = a/(b + t), where a, b, and t are greater than O. For this .\(t): 
a) find a formula for G(t); b) find a formula for J(t). 
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4. Weibull distribution. Show that the following are equivalent: 

(i) ),(t) = ),ata - I for constants)' > 0 and a > 0 

(ii) G(t) = e- At '" 

(iii) f(t) = ),ata-Ie-At'" 
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This is called the Weibull distribution with parameters), and a. This family of distri­

butions is widely used in engineering practice. It can be verified both theoretically and 

practically that the distribution of the lifetime of a component which consists of many 

parts, and fails when the first of these parts fails, can be well approximated by a Weibull 

distribution. 

5. Moments of the Weibull distribution. Let T have the Weibull distribution described 

in Exercise 4. a) Show that E(Tk) = f(1 + ~), -1;- b) Find E(T) and Var(T). 

6. Suppose that a component is subject to failure at constant rate 5% per hour for the first 

10 hours in use. After 10 hours the component is subject to additional stress producing 

a failure rate of 10% per hour. 

a) Find the probability that the component survives 15 hours. 

b) Calculate and sketch the survival probability function. 

c) Calculate and sketch the probability density function. 

d) Find the mean lifetime. 

7. Second moment from survival function. 

a) Show that E(T2) = 2 Jooo tG(t) dt 

b) Use this formula to calculate the SD of the component in Example l. 

e) If 100 components of this type operate independently, what approximately is the 

probability that the average lifetime of these components exceeds 20 hours' 

8. Suppose the failure rate is ),( t) = at + b for t 2' O. 

a) For what parameter values a and b does this make sense' 

b) Find the formula for G(t). c) Find the formula for f(t). 

d) Find the mean lifetime. e) Find the SD of the lifetime. 

9. Calcu1us derivation ofG(t) = exp{- J; ),(u)du} (Formula (7» 

a) Use (5) and (6) to show ),(t) = -1:t logG(t). 

b) Now derive (7) by integration from 0 to t. 

10. Suppose a component has failure rate ),(t) which is an increasing function of t. 

a) For s, t > 0, is P(T> s + tiT> s) larger or smaller than P(T > tl' 

b) Prove your answer. 

c) Repeat a) and b) for ),(t) which is decreasing. 
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4.4 

Example 1. 

Change of Variable 
Many problems require finding the distribution of some function of X, say Y = g(X), 
from the distribution of X. Suppose X has density Ix(x), where a subscript is 

now used to distinguish densities of different random variables. Then provided the 

function y = g(x) has a derivative dy/dx which does not equal zero on any interval 

in the range of X, the random variable Y = g(X) has a density Jy(y) which can be 

calculated in terms of Ix (x) and the derivative dy / dx. How to do this calculation is 

the subject of this section. 

Linear Functions 

To see why the derivative comes in, look first at what happens if you make a linear 

change of variable. For a linear function y = ax + b, the derivative is the constant 

dy / dx = a. The function stretches or shrinks the length of every interval by the same 

factor of lal. 

Uniform distributions. 

Suppose X has the uniform (0,1) distribution, with density 

Ix(x) = { ~ O<x<l 
otherwise 

Then for a> 0, you can see that Y = aX + b has the uniform (b, b + a) density 

Jy(y) = { ~/a, b<y<b+a 
otherwise 

Similarly, if a < 0, then Y = aX + b has the uniform (b + a, b) distribution 

Jy(y) = { ~/Ial, b+a<y<b 
otherwise 

You might guess the density of Y = aX + b at y was the density of X at the 

corresponding point x = (y - b)/a. But this must be divided by lal, because the 

probability density gives probability per unit length, and the transformation from x 

to ax + b multiplies lengths by a factor of lal: 

Linear Change of Variable for Densities 

1 (y - b) 
laX+b(Y) = ~ Ix -a-



2 

1 

Section 4.4. Change of Variable 303 

FIGURE 1. Linear change of variable for uniform densities. The graphs show the densities of 

Y = aX + b for various a and b, where X has uniform (0.1) distribution. Notice how if a > 1 

the range is spread out and the density decreased. And if 0 < a < 1 the range is shrunk and the 

densi~' increased. Adding b > 0 shifts to the right by b, and adding b < 0 shifts to the left by -b. 

Density of X Density of 2X Density of 2X - 1 
2 2 

1 1 

O~----~----~---, O~----~----.----+ O~----,,----~---. 

-1 o 1 2 -1 o 1 2 -1 o 1 2 

Density of 0.5X Density of 0.5X + 1 Density of -0.5X 
2 2 2 

1 1 1 

O~----~~--.----, O~--L-+----,----~ 

-1 o 

Example 2. 

2 -1 o 1 2 -1 o 1 2 

Normal distributions. 

Take X with standard normal density ¢(x). a = (j > 0, and b = J-l. The linear 

change of variable formula then gives the density of the normal (J-l, (j2) distribution, 

displayed on page 267. 

One-to-One DiHerentiable Functions 

Let X be a random variable with density Ix (x) on the range (a, b). Let Y = g( X) 

where 9 is either strictly increasing or strictly decreasing on (a, b). For example, X 

might have an exponential distribution on (0, (0), and Y might be X 2,,;x, or 1/ X. 

The range of Y is then an interval with endpoints g(a) and g(b). 

The aim now is to calculate the probability density function Jy (y) for y in the range 

of Y. For an infinitesimal interval dy near y, the event (Y E dy) is identical to the 

event (X E dx), where dx is an infinitesimal interval near the unique x such that 

y = g( x). See Figure 2, where each of the two shaded areas represents the probability 

of the same event 

P(Y E dy) = P(X E dx) where y = g(x) 
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Example 3. 

Problem. 

Solution. 

This identity P(Y E dy) = P(X E dx), where y = g(x), makes 

fy(y)dy = fx(x)dx 

and so dx /dY Jy(y) = fx(x) dy = fx(x) dx where y = g(x) 

The case of a decreasing function 9 is similar except that the calculus derivative 

dy / dx now has a negative sign. This sign must be ignored because it is only the 

magnitude of the ratio of lengths of small intervals which is relevant. To summarize: 

One-to-One Change of Variable for Densities 
Let X be a random variable with density fx(x) on the range (a, b). 
Let Y = g(X) where 9 is either strictly increasing or strictly decreasing on 

(a, b). The range of Y is then an interval with endpoints g(a) and g(b). And 

the density of Y on this interval is 

Jy(y) = fx(x) / I ~~ I where y = g(x) 

The equation y = g(x) must be solved for x in terms of y, and this value of 

x substituted into fx(x) and dy/dx. This will leave an expression for Jy(y) 
entirely in terms of y. 

Square root of an exponential variable (illustrated by Figure 2) 

Let X have the exponential density, fx(x) = e- X (x> 0) 
Find the density of Y = fl. 

Step 1. Find the range of y: here 0 < x < 00, y = .;x, so 0 < y < 00. 

Step 2. Check the function is one-to-one by solving for x in terms of y: here x = y2 

dy dy d 1 
Step 3. Calculate dx: here dx = dx ..;x = 2.;x 

Step 4. Plug density of X and the result of Step :3 into Jy(y) = fx(x) / I ~~ I : 

Step 5. Use result of Step 2 to eliminate x from the right side 

Jy(y) = e-Y -- = 2ye-Y 2/ 1 2 
2# 

(y > 0) 



Example 4. 

Problem 1. 

Solution. 
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FIGURE 2. Change of variable formula for densities. The diagram shows the graph of y = g(x) 

for the increasing function g(x) = y'x, x> o. Density fx(x) is graphed upside down below the 

x-axis. Density jy(y) is graphed on the side of the y-axis. The densities are as in Example 3. 

y+ dy= g(x+ dx) 

--Y---I Y = g(x) 

x+ dx 

4 

Log of uniform. 

Let X have uniform (0,1) distribution. 

Find the distribution of Y = -A -1 log (X) , where A > O. 

This follows the steps of the previous example in a slightly different order. Here 
y = -A-1logx has 

dy 1 
- = - - < 0 for 0 < x < 1 
dx Ax 

so y decreases from 00 to 0 as x increases from a to 1. The density of Y is then 

Jy (y) = f x (x) / I ~~ I = 1/ A~ = Ax 

where -A-1logx=y, or x=e->'y, so 

(y > 0) 
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Discussion. 

Problem 2. 

Solution. 

Discussion. 

Conclusion: Y is exponentially distributed with rate A. 

This way of obtaining an exponential variable as a function of a uniform (0,1) vari­

able is a standard method of simulating exponential variables by computer. The next 

section shows how any distribution on the line can be obtained as the distribution 

of a function of a uniform variable. 

Find the distribution of -A -1 log (1 - X), where A > 0. 

Clearly the technique used to solve Problem 1 could be repeated. But this is unneces­

sary. It is intuitively clear (and easy to check) that X' = 1- X is also a uniform (0, 1) 
random variable, so -A -1 log (1 - X) = -A -1 log (X') has the same distribution as 

-A -1 log (X). Therefore, -A -1 log (1 - X) also has exponential (A) distribution. 

The justification of the short argument in the last solution is the change of variable 

principle. This principle, stated for discrete random variables in Section 3.1, is worth 

restating here. The principle can often be used as in the last example to eliminate 

calculations by reducing a change of variables problem to one whose solution is 

already known: 

Change of Variable Principle 
If X has the same distribution as Y, then g(X) has the same distribution as 

g(Y), for any function g. 

Many,to-one functions. Suppose the function y = g(x) has a derivative that is 

zero at only a finite number of points. Now some values of y may come from more 

than one value of x. Consider Y = g(X) for a random variable X. As shown in the 

diagram, Y will be in an infinitesimal interval dy near y when X is in one of possibly 

several infinitesimal intervals dx near points x such that g( x) = y. 

y = g(x) 

y+dY~-----1~------~r-------~----­
y-r-----,~------~~------~+_-----

~ {x:g(xt = y} / 



Example 5. 

Problem. 

Solution. 
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Now 

P(Y E dy) = I: P(X E dx) 
{x:g(x)=y} 

This gives 

Jy(y) = I: fx(x) / I ~~ I 
{x: g(x)=y} 

Density of the square of a random variable. 

Suppose X has density fx(x). Find a formula for the density of Y = X2. 

Here, for y > 0, there are two values x such that x 2 = y, 

namely, x = JY and x = -JY. Since dy/dx = 2x, 

Jy(y) = I: fx(x)/12xl 
{x=±y'Y} 

= [fx(JY) + fx(-JY)J/2JY. 

y 

x=+fii 
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Expectation of a function of X. If you just want to calculate the expectation of 

Y = g(X), it is not necessary to calculate the density of Y, and usually simpler not 

to. For instance, there is no need to use the linear change of variable formula for 

densities to calculate E(Y) or SD(Y) tor Y = aX +b. Instead use the simple scaling 

rules 

E(aX + b) = aE(X) + b and SD(aX + b) = laISD(X) 

whenever E(X) or SD(X) are defined. More generally, if Y = g(X), where both 

X and Y have densities, then 

E(Y) = i: yJy(y) dy = i: g(x)fx(x) dx 

Often the second integral is easier to evaluate than the first. The equality of the two 

integrals is the density analog of the basic discrete formula for the expectation of a 

function of X that was derived in Section 4.1. The equality of integrals can also be 

checked by the calculus technique of substitution 

y = g(x), dy = g'(x)dx. 
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Example 6. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

Problem 4. 

Solution. 

Example 7. 

Problem 1. 

Further Examples 

Here are some more geometric problems solved by the same basic technique of 

finding the probability in an infinitesimal interval by calculus. 

Projection of a uniform random variable on a circle. 

A point is picked uniformly at random from the perimeter of a unit circle. 

Find the probability density of X, the x-coordinate of the point. 

From the diagram, since two places on the circle 

map to one x-value, 

P(X E dx) = 2IdBI/27r = IdBI/7r 

where x = cos B, 0 < B < 7r. So 

dx = -sinB=-~ 
dB 

dB 1 

dx V1 - x2 

P(X E dx) = ~ I dB 1= 1 
dx 7r dx 7rv"f=X2 

(-1<x<1) 

Find E(X). 

Easily, E(X) = 0, since the density of X is symmetric about O. 

Find the probability density of Y = IX!, the absolute value of X. 

Since two x values +y and -y, with the same probability density, map to any given 

value of y with 0 < y < 1, P(Y E dy) = 2 x P(X E dy), and so 

Find E(Y). 

2 
Jy(y) = ~2 

7rv 1. - y-

E(Y) = - Y dy = --J1=Y2 211 2 11 
7r 0 J1=Y2 7r 0 

(0 < y < 1) 

2 

Projection of a uniform random variable on a sphere. 

Let 8 be the latitude, between -7r /2 and 7r /2, of a point chosen uniformly at random 

on the surface of a unit sphere. 

Find the probability density of 8. 
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Problem 2. 
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From the diagram: 

---+--7 ~d(} ------------'" 
r-----------------.ltd(} 

of 21T cos(} ---~ 

P(8 E dB) = Indicated Area = 21Tcos(}d(} 

Total Surface Area 41T 

cos () 1T 1T 
fe«(}) = -2- (-"2 < () < "2) 

Let Y be the vertical coordinate of the point on the sphere, between -1 and 1. Find 

the probability density of Y. 

P(Y E, dy) = P( 8 E dB) with y = sin B, which implies that dy = cos B dB and 

cos B dB dy 
P(Y E dy) = P(8 E dB) = fe(B)dB = 2 = -, 2 (-l<y<l) 

Conclusion: Y has uniform (-1, 1) distribution. 

This calculation shows that the surface area of the sphere between two parallel 

planes cutting the sphere depends only on the distance between the planes, and not 

on exactly how they cut the sphere. This fact was discovered by Archimedes. The 

formula 41Tr2 for the total surface area, used in Problem 1, is a consequence. 

Exercises 4.4 
1. Suppose X has an exponential (),) distribution. What is the distribution of eX for a 

constant e > O? 

2. Scaling of gamma distributions. Show that a nndom variable T has gamma (r,),) 
distribution, if and only if T = Td)" where Tl has gamma (r, 1) distribution. 

3. Suppose U has uniform (0, 1) distribution. Find the density of U 2 

4. Suppose X has uniform distribution on (-1, 1). Find the density of Y = X2. 

5. Suppose X has uniform [-1,2] distribution. Find the density of X2 
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6. Cauchy distribution. Suppose that a particle is 

fired from the origin in the (x, y)-plane in a straight 

line in a direction at random angle <P to the x-axis, 
and let Y be the y-coordinate of the place where 

the particle hits the line {x = I}. Show that if <P has 

uniform (-7r /2, 7r /2) distribution, then 

y 

(1, Y) 

1 
fy(y) = 7r(1 + y2) 

o I'--..l.---+----~ X 

This is called the Cauchy distribution. Show that 

the Cauchy distribution is symmetric about 0, but 

that the expectation of a Cauchy random variable is 

undefined. 

7. Show that if U has uniform (0,1) distribution, then tan (7rU - ~) has the Cauchy 

distribution, as in Exercise 6. 

8. Arcsine distribution. Suppose that Y has the Cauchy distribution as in Exercise 6. 

Let Z = 1/(1 + y2). 

a) Show Z has density 

1 
fz(z) = -r=== 

7rJz(l-z) 
(0 < z < 1) 

b) Show P(Z ~ x) = (2/7r)arcsin(v'x) (0 < x < 1). 

c) Find E(Z). d) Find Var(Z). 

[This arcsine distribution of Z is the special case r = s = 1/2 of the beta(r, s) dis­

tribution. This distribution arises naturally in the context of random walks. If Sn = 
Xl + ... + Xn for Xi with values ±1 determined by tosses of a fair coin, and Ln is 

the last time k ~ n such that Sk = 0, then the limit distribution of Ln/n as n ~ 00 

is the arcsine distribution. See Feller, An Introduction to Probability Theory and Its 
Applications, Vol. I.] 

9. Weibull distribution. 

a) Show that if T has the Weibull (A, a) distribution, with density 

(t > 0) 

where A > 0 and a > 0, then TO. has an exponential (A) distribution. (Note the 

special case when a = 1.) 

b) Show that if U is a uniform (0,1) random variable, then T = (-A -l!og U)!; 
has a Weibull (A, a) distribution. 

10. Let Z be a standard normal random variable. Find formulae for the densities of each of 

the following random variables: 

a) IZI; b) Z2; c) l/Z; d) 1/Z2. 

11. Explain how the calculations of Example 7 imply the formula 47rr2 for the surface area 

of a sphere of radius r. 
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Cumulative Distribution Functions 
One way to specify a probability distribution on the line is to say how much prob­

ability is at or to the left of each point x. In terms of a random variable X with the 

given distribution, this probability is a function of x, 

F(x) = P(X ~ x) 

called the cumulative distribution function (c.d.f.) of X. For example, the standard 

normal c.d.f. is the function F(x) = <1?(x) used in calculations with the normal distri­

bution. But the cumulative distribution function can be defined for any distribution 

of a random variable X over the line, whether continuous, discrete, or neither. 

If you can define or calculate the c.d.f. of X then, by using the rules of probability, 

you can find the probability of any event determined by X, for example, the prob­

ability that X falls in an interval, or the probability that X is an even integer. To 

clarify terminology, the distribution of X refers broadly to the assignment of prob­

abilities to all such events determined by X. Technically, this means probabilities 

defined for a collection of subsets of the line, satisfying the rules of probability, now 

including the infinite sum rule of Section 3.4. The c.d.f. just gives the probabilities 

of the intervals (-00, xl as a function of the point x. 

Interval probabilities. The formula P(a < X ~ b) = F(b)-F(a), a consequence of 

the difference rule for probabilities, is familiar from the special case of the standard 

normal c.d.f. Because probabilities must be non-negative, this shows that a c.d.f. 

F (x) must be a non decreasing function of x 

FIGURE 1. Graph of a continuous c.d.f 

1 - - - - - - - - - .- - - - - - - - - - - - - - - - - - - - - - - -;---------

F(b)=:-I 

p(a<X<b)=F~ 

F(a) --.....",r 

0-------.£ 
a b possible values of X 

The distributiOn is called continuous if the c.dJ. is a continuous function. Then it 

can be shown that 

P(X = x) = 0 for all x 

so it makes no difference in formulae involving the c.d.f. whether inequalities are 

strict or weak. For example, using the rule of complements, 

P(X > x) = 1 - F(x) 

P(X ~ x) = 1 - F(x) 

whatever the distribution of X 

if the distribution of X is continuous 
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More generally, it can be shown that the c.d.f. determines the probability of every 

interval, and also the probability of more complicated sets by the addition rule. To 

summarize: 

A probability distribution over the line is completely determined by its c.d.f. 

Most distributions of practical interest are either discrete or defined by densities. 

These two cases will now be discussed in more detail. 

Discrete Case 

Here is an illustration: 

FIGURE 2. Individual probabilities and the c.d.f. for an indicator variable. Consider the c.dJ 

of an indicator variable X which is 0 with probability 0.3 and 1 with probability 0.7. The value of 

F(x) is 0 for x < 0 because there is no chance for X:::; x for a negative x. The value of F(x) is 

0.3 for 0:::; x < 1, because for such an x the event (X :::; x) is the same as the event (X = 0), 

which has probability 0.3. And the value of F(x) is 1 for 1 :::; x < 00, because for these x the 

event (X:::; x) is certain. Thus F(x) jumps by 0.3 = P(O) at x = 0 and by 1-0.3 = 0.7 = P(I) 

at x = 1. 

P( x) :..1.-1---+-------11-----
o 1 x 

F(,) :...J...1 __ --+1 __ +-1 __ _ 

o 1 x 

In general, the c.d.f. of a discrete random variable X looks like a staircase with a 

rise of P(x) = P(X = x) at each possible value x of X: 

F(x) = L P(y) 
y'5,x 

and P(x) is the jump of the c.d.f. at x: 

P(x) = F(x) - F(x-) 
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where F(x-) = P(X < x) is the limit of values of F approaching x from the left. 

Figure 3 gives a more interesting example. 

FIGURE 3. The c.d.f. and individual probabilities for the binomial (100,0.5) distribution. Here 

F(x) is the probability of getting x or less heads in 100 fair coin tosses, P(x) is the probability 

of exactly x heads. The value of F(x) is simply the sum of values P(y) over all integers y less 

than or equal to x. Each integer x introduces a new term P(x) into the sum. Thus the graph of F 

jumps by P(x) at each integer x, and is flat between. Put another way, the probability P(x) of an 

individual value x shows the difference between F(x) and F(x-), where F(x-) = F(x - 1) is 

the value of F(y) for any y in the interval [x - 1, x). 

1.0.---------------------------------~=_----------~ 

F(x) 

0.5 

o.o+-----------~~--------,_----------_,----------~ 

30 40 50 60 70 

02,---------------------------------------------------~ 

F(x) 0:1 J 
o. (I +~ ----~,t---'-' -I---l-~__I___L__LI___'_I_+I---'-I---'-I---L-I----'---JL-L-L--L-, +-r ------I 

30 40 50 60 70 

Density Case 

As usual in this case, sums become integrals. So if X has density f(x), then F(x) is 

the area under the density function to the left of x 

F(x) = P(X ::; x) = lXoo f(y)dy 

Similarly, discrete differences become derivatives, 

dF(x) = F(x + dx) - F(x) = P(X E dx) = f(x)dx 

so f(x) = dF(x) = F'(x) 
dx 

That is to say, the density f(x) is the slope at x of the c.dJ. This is an instance of 

the fundamental theorem of calculus. Conversely, it can be shown that if the c.d.f. is 

x 

x 
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everywhere continuous, and differentiable at all except at perhaps a finite number of 

points, then the corresponding distribution has density f (x) = F' (x). In this density 

case, F(x) is a particular choice of an indefinite integral of f(x), namely, the one 

which vanishes at -00. 

FIGURE 4. The c.d.f. and density for the normal (50,25) distribution. This distribution, with mean 

50 and variance 25, is the usual normal approximation to the preceding binomial distribution. Its 

c.d.f. and density are just scale changes of the standard normal ones plotted in Section 2.2. 

1.0,-------------------==------, 

F (x) 

0.5 

O.O+------------=~~----------~------------~------------~x 

30 40 50 60 70 

0.1,-------------------------, 

f(x) 

0.05 

O.O+-----~~----~------------~------------~--~~~----~x 

30 40 50 60 70 

A distribution with a density can be specified by a formula for the density f(x), or 

by a formula for the c.d.f. F(x). Either of these functions can be obtained from the 

other by calculus. 

You might think that every continuous distribution has a density, but this turns out 

not to be so. Still, you don't have to worry about continuous distributions without 

densities in this course. The famous mathematician Poincare thought such distribu­

tions "were invented by mathematicians to confound their ancestors". For a nice 

picture of one, see Mandelbrot's book, The Fractal Geometry of Nature. 
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The uniform (0, 1) distribution. 

The density is 

J(x) = { ~ 

and the c.d.f. is 

for 0 < x < 1 

otherwise 

for 0 ::; x ::; 1 

for x < 0 

for x> 1 

Here is an application: If U is uniform (0,1), 

then so is X = 21U - ~I, because 

P(X~; x) = P (21u - ~I::; x) 

= P (~ - ~ < U < ~ + ~) 
2 2- -2 2 

= F(x) 

1 

f(x} 

o 

1 

F(x) 

o 
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1 x 

1 x 

as defined above. This technique is an alternative to the method of the previous 

section for calculating the distribution of a function of a random variable. 

Uniform on a disc. 

Let (X, Y) be a point chosen uniformly at random from the unit disc 

{( x, y) : x 2 + y2 ::; I}. Calculate the c.dJ. and density function of X. 

It is easiest to find the density function first. Sup-

pose ixl ::; 1. The event (X E dx) is shaded in 

the diagram. For small dx the event in question 

is approximately a rectangle with height 2V1 - x2 

and width dx. Dividing by the total area 7r gives its 

probability, then dividing by dx gives the density 

J(x) = { 5V1 - x2 Ixl ::; 1 

otherwise 

---;----~-rr_+_--~ x 

as graphed on the right. This is half an ellipse ob­

tained by rescaling the upper semi-circle. The c.dJ. 

F (x), which represents the relative area of the disc 

to the left of x, is now obtained by calculus 

F(x) = J(z)dz = - 2~dz Jx 1 JX 
-1 7r -1 

-1 1 
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This is not a very easy integral. Still, because F(x) has derivative f(x) which you 

know, and F(x) is 0 for x::; -1 and 1 for x ~ 1, you should be able to sketch the 

graph of F(x) and see it must have the shape shown below. Some more calculus 

(or consulting a table of integrals) gives 

F(x) = ~ + ~ [xJ(l- x2 ) + arcsinx] (Ixl ::; 1). 

1.-----------~--

F(x) 

-1 o 1 

Maximum and Minimum of Independent 

Random Variables 

Cumulative distribution functions make it easy to find the distribution of the maxi­

mum and minimum 

and 

of a collection of independent random variables Xl, X 2 , ... , X n . Let Fi denote the 

c.dJ. of Xi, i = 1, ... , n. The c.dJ. of either the maximum or the minimum of the 

X's can be written in terms of the individual distribution functions Fi, once you 

notice the following key facts: 

For any number x: 

(a) Xmax is less than or equal to x if and only if all the X's are less than or 

equal to x; 

(b) Xmin is greater than x if and only if all the X's are greater than x. 

The c.dJ. of the maximum is then 

Fmax(x) = P(Xmax ::; x) (-oo<x<oo) by definition 

= P(XI ::; x, X 2 ::; x, ... , Xn ::; x) by (a) 

= P(XI ::; x)P(X2 ::; x)··· P(Xn ::; x) by independence 

= FI(x)F2 (x)··· Fn(x) 
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The c.d.f. of the minimum is 

Fmin(X) = P(Xmin ~ x) (-00 < x < 00) 

= 1 - P(Xmin > x) 

= 1 - P(X1 > x, X2 > x, ... , Xn > x) by (b) 

= 1- (1 - F1(X))(1 - F2 (x))··· (1 - Fn(x)). 

317 

It is best not to try and memorize these formulae. Just remember (a) and (b), and 

derive the formulae when you need them. 

Minimum of independent exponential variables is exponential. 

Let Xl, X 2 ,···, Xn be independent random variables, and suppose Xi has expo­

nential distribution with rate Ai, i = 1, ... , n. 

Find the distribution of Xmin the minimum of Xl"'" X n . 

For i = 1, ... ,n, the c.d.f. of Xi is 

if x < 0 

if x ~ 0 

Since the X's are non-negative, so is their minimum. So Xmin has c.d.f. 

For x ~~ 0, 

Fmin(X) = 1 - e->I1 Xe - A2X ... e- AnX 

= 1 - e-(Al+A2+"+An)X 

(x < 0) 

This is the c.d.f. of the exponential distribution with rate A1 + A2 + ... + An. So 

the minimum of independent exponential variables with rates Ai is simply a new 

exponential variable with rate the sum of the rates Ai. 

Expected lifetime of a circuit. 

An electrical circuit consists of five components, connected as in the following dia­

gram. The lifetimes of the components, measured in days, have independent expo-
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Problem. 

Solution. 

nential distributions with rates indicated in the diagram. 

What is the expected lifetime of the circuit? 

We want E(L), where L denotes the lifetime of the circuit. Let L top and Lboltom 
denote the lifetimes of the top and bottom parts of the circuit. Then L top and Lbottom 

are independent, and 

since the top and bottom parts are linked in parallel. 

Now L top is the minimum of three independent exponential lifetimes, since the top 

consists of three components linked in series. By Example 3, L top has exponential 

distribution with rate 0.3 + 0.4 + 0.3 = 1. So the top is expected to last about 1 day. 

By a similar argument, Lbottom has exponential (0.2) distribution, so the bottom is 

expected to last about 1/0.2 = 5 days. 

Since L is the maximum of L top and Lbottom , its c.d.f. is 

Since L is a positive random variable 

E(L) = 100 

(1 - Fdx))dx 

(See Exercise 9 .) For x ~ 0, 

x<O 
x~O 

Fdx) = 1 - e-x _ e-O.2x + e-1.2x 

1 - Fdx) = e-x + e-O.2x _ e-1.2x 

so 

E(L) = 100 
(e- X + e-O.2x - e-1.2X)dx = 1 + (1/0.2) - (1/1.2) = 5.17 

So the circuit is expected to last about 5.17 days. 



Section 4.5. Cumulative Distribution Functions 319 

Note. Once you have the c.d.f. of L, you can, of course, compute its expectation by first 

differentiating to find the density, then using the density to find the expectation by 

integration. But that involves more work than the method used here. 

Suppose now that in addition to being independent, the X's are continuous random 

variables with the same density. For example, the X's could be a sequence of ran­

dom numbers produced by a uniform random number generator. Let f denote the 

common density function of the X's, and F the common c.d.f. The maximum Xmax 

and minimum Xmin are also continuous random variables, whose densities can be 

obtained by differentiating their c.d.f.'s 

Fmax(x) = (F(x))n (-00 < x < 00) 

fmax(x) = d~ (F(x)t = n (F(x)t- 1 f(x) (-oo<x<oo) 

by the chain rule of calculus. Similarly, 

Fmin(X) = 1 - (1 - F(x)t (-00 < x < 00) 

fmin(X) = n(l- F(x))n-l f(x) (-00 < x < 00) 

These densities can also be found more directly by a differential calculation explained 

in the next section. 

Percentiles and the Inverse Distribution 
Function 

Given a distribution of X and a value x, the c.d.f. F(x) gives the probability that X 

is less than or equal to x. Often the question gets turned around. For instance: For 

what value of x is there probability 1/2 that X is less than or equal to x? Such an x 
is a median of the distribution. More generally, given a probability p, for what x is 

P(X :::: x) = p? By definition of the c.d.f. this x must solve the equation 

F(x) = p 

In the case of F(x) given by a formula, the formula can usually be rearranged to 

express x in terms of p. In general, assuming this equation has a unique solution, as 

it does for most continuous distributions of interest and 0 < p < 1, the solution of 

this equation defines the inverse c. d.f. 

x = F-l(p) 
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Example 5. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

FIGURE 5. Relation between a c.dJ and its inverse. 

1- - - - - - - - - - - - - - - - - - - - - - - - - - -=-------

~ 

p 

:= 
1i 
~ 

..C: 
0 

'" 0-
F(x) 

0 
F -1 (p) = pth quantile values of X x 

See Figure 5. This point x, such that P(X ::; x) = p, is called the pth quantile of the 

distribution of X. This term is a generalization of the more common quartile, decile, 

and percentile in case p is expressed as a multiple of 1/4, 1/10, or 1/100. 

Finding percentiles. 

For the exponential (,X) distribution, find a formula for the pth quantile, 0 < p < l. 

Since the c.d.f. is F(x) = 1 - e->'x for x> 0, the required point x is found from 

1 - e->'x = p so 
1 

x = - - log (1 - p) 
,X 

Find the 75th percentile point of the standard normal distribution. 

This is cJ>-1(0.75) where cJ> is the standard normal c.d.f. Just as there is no simple 

formula for cJ>, there is none for cJ> -1. But numerical values of cJ> -1 are easily found 

by backwards lookup in the table of values of cJ>. Inspection of the table gives 

cJ>(0.67) = 0.7486 and cJ>(0.68) = 0.7517, so cJ>-1 (0.75) :::::: 0.675. 

Simulation via Inverse Distribution Function 

Given a distribution on the line, how can you create random variables with this 

distribution? This problem arises in computer simulation of random variables. The 

random number generator on a computer provides a sequence of numbers between 

o and 1, say U1 , U2,.'" which behaves in most respects like a sequence of indepen­

dent uniform (0, 1) random variables. For example, the long-run proportion of values 

Ui in any subinterval of [0, 1] will be very close to the length of the subinterval. How 

can these variables be transformed into a sequence Simulating independent random 

variables with some other distribution? The problem is to find a function 9 such that 

if U has uniform (0,1) distribution, then X = g(U) has a prescribed c.dJ., say F(x): 

P(g(U) ::; x) = F(x) for all x 
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There are many ways to solve this problem by tricks depending on the desired 

distribution. Which method is best depends on considerations such as computational 

efficiency, not discussed here. One method will now be described which works no 

matter what the required distribution. Here is a simple example to illustrate the 

method. 

Simulating a binomial (2, 0.5) random variable. 

The left graph shows the required c.d.f. The right graph shows a function 9 from 

(0,1) to {O, 1, 2}. This graph should be read on its side as a kind of inversion of 

the graph of the c.d.f. The staircase is the same in both graphs. Imagine U picked 

at random from the vertical unit interval. Then g(U) E {O, 1, 2} has the required 

distribution. 

1 1 r-----
F(x) 

O~----~r----,-L--.--- O~------~----+----.---

o 1 x 2 o 1 
g(u) 

2 

In detail, as it would be programmed on a computer, the rule for getting from the 

uniform (0,1) variable U to the binomial (2,0.5) variable g(U) is 

if 0 ::::: U ::::: 0.25 then g(U) = 0 

if 0.25 < U ::::: 0.75 then g(U) = 1 

if 0.75 < U::::: 1.0 then g(U) = 2 

This 9 does the job because by construction the intervals on which 9 takes the values 

0, 1, and 2 have lengths 0.25, 0.5, and 0.25, respectively, as required by the binomial 

(2,0.5) distribution. 

Simulation of a discrete distribution. The method of the previous example gen­

eralizes easily to any discrete distribution. For example, to get a random variable 

with discrete distribution on 1,2, ... defined by probabilities PI, P2, ... define 

g(u) = k if PI + ... + Pk-l < u ::::: PI + ... + Pk-l + Pk 

Then if U has uniform (0,1) distribution 
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since this is the length of the interval of U-values that make g(U) = k. This means 

g(U) has the given discrete distribution. 

The inverse distribution function. The function g( u) defined in the discrete case 

above is always a kind of inverse of the c.d.f. P(x), in the sense that 

g(P(x)) = x for all possible values x 

Check this inverse relation in the example above for x = 0,1,2. Given any c.d.f. P, 

not necessarily continuous or strictly increasing, a function g satisfying the above 

inverse relation can be defined. Because of the inverse relation, g( u) is usually de­

noted p-l(U), and called the inverse c.d.f. In general, the inverse c.d.f. F-l(U) can 

be defined as the least value x such that F(x) ;::: u. This function has the following 

important property: 

Inverse c.d.f. Applied to Standard Uniform 
For any cumulative distribution function P, with inverse function p-l, if U has 

uniform (0, 1) distribution, then p-l(U) has c.d.f. F. 

To restate this result more intuitively, if you pick a percentage uniformly at random 

on (0, 100), then take that percentile point in a distribution, you get a random variable 

with that distribution. 

Proof. The discrete case has already been treated. The continuous case is more 

interesting. Assume, for simplicity, that P(x) is a continuous and strictly increasing 

function of x. Then p-l (u) is the usual inverse function of F(x), as discussed earlier, 

and 

w ::; x {::::::} P(w) ::; P(x) 

The events (p-l(U) ::; x) and (p(p-l(U)) ::; P(x)) are therefore identical. But 

since p(p-l(U)) = u for every u in (0,1), by definition of the inverse function, we 

can calculate 

p(p-l(U) ::; x) = p(F(p-l(U)) ::; P(x)) 

= P(U ::; P(x)) 

= F(x) from the c.d.f. of U 

Thus the random variable p-l(U) has c.d.f. F. 0 
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The method of generating random variables via F-1 is efficient computationally in 

simulations only if F-1 turns out to be a fairly simple function to compute, as it is 

for the uniform distribution on (c, d) for any c < d, or the exponential distribution. 

But F--1 is laborious to compute for the normal distribution. In this case it is quicker 

and nearly as accurate to approximate using the central limit theorem, using, for 

instance, a standardized sum of 12 independent uniform (0,1) variables. See also 

Exercise 5.3.13 for another method of generating normal variables from uniform 

ones. 

Exercises 4.5 
1. For the exponential (.\) distribution: 

a) Show the c.d.f. is F(x) = 1 - e->'x for x::::: o. b) Sketch this c.d.f. for.\ = 1. 

2. Find and sketch the cumulative distribution functions of: 

a) the binomial (3,1/2) distribution; 

b) the geometric (1/2) distribution on {I, 2, ... }. 

3. l.et (X, Y) be as in Example 2. 

a) Find jy and Fy. [Hint: No calculations required!] 

b) Let R = J X2 + y2. Sket.::h the event {R :::; r} as a subset of the circle. Deduce 

a formula for the c.d.f. of R, and check by differentiating that you get the same 

density for R as in Example 4.1.2. 

4. Let X be a random variable with c.dJ. F(x). Find the c.d.f. of aX + b first for a > 0, 

then for a < o. 

5. Find the c.d.f. of X with density function fx(x) = ~e-Ixl (-00 < x < 00). 

6. Let X be a random variable with c.d.f. F(x) = x3 for 0:::; x :::; 1. Find: 

a) P(X::::: ~); b) the density function f(x); c) E(X). 

d) Let Y1 , Y2 , Y3 be three points chosen independently and uniformly on the unit 

interval, and let X be the rightmost point. Show that X has the distribution 

described above. 

7. Let T have the exponential distribution with parameter .\, and let Y = fl. 

a) Find the density of Y. 

b) Find the expectation of Y, correct to two decimal places, for .\ = 3. 

c) A random number generator produces uniform [0, 1] random numbers. How could 

you use these to generate random numbers which have the distribution of Y? 
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8. Components in the following series-parallel systems have independent exponentially 

distributed lifetimes. Component i has mean lifetime P,i. In each case, find a formula 

for the probability that the system operates for at least t units of time, and sketch the 

graph of this function of t in case P,i = t for each t. 

9. Expectation from c.d.f. Let X be a positive random variable, with c.d.f. F, as in the 

following diagram for example: 

lr---------------~==~======~ 

F(x) 

x 

a) Show, using the representation X = F-l(U) for a uniform [0, 1] random variable 

U, that E(X) can be interpreted as the shaded area above the c.d.f. of X, both 

for X with a density, and for discrete X. Deduce that 

E(X) = 100

[1 - F(x)] dx = 100 

P(X > x) dx 

b) Deduce that if X has possible values 0, 1,2, ... , then E(X) = I::::"=l P(X :::: n). 

c) Use these formulae to rederive the means of the exponential and geometric dis­

tributions. 

d) Show that for a random variable X with both positive and negative values (either 

discrete or with a density), E(X) = E(X+) - E(X_) where X+ = XI(X > 0), 

and X_ = (-X)I(X < 0), so E(X) is area (+) minus area (-) defined in terms 

of the c.d.f. as indicated below: 

~1 ~X) 
o x 
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Order Statistics (Optional) 
Let Xl, X 2, ... , Xn be random variables. Let X(1) denote the smallest of the X's, 
X(2) the next smallest, and so on, so that 

This relabeling of the X's corresponds to arranging them in increasing order, as 

shown below, for one particular ordering of five values Xl"'" X 5 . 

Notice that 

In general, X(k) is called the kth order statistic of Xl"'" X n . 

This section deals with properties of order statistics of independent and identically 

distributed random variables. Beta distributions appear as the distributions of order 

statistics of independent uniform (0,1) random variables. 

Let Xl, X 2 , ... , Xn be independent random variables, all with the same density func­

tion f and cumulative distribution function F. For example, the X's could be a se­

quence of random numbers produced by a uniform random number generator. The 

object is to find a formula for the density of the kth order statistic X(k)' This has 

been done already in Section 4.5 in the case of the maximum X(n) and minimum 

X(1) by first finding the c.d.f., then differentiating. But here is another argument in 

these special cases which generalizes more easily. First of all, it can be shown that 

in a sequence Xl"'" Xn of independent continuous random variables, all n values 

are distinct with probability 1. Taking this for granted, here is a calculation of the 

density of the maximum X(n) 

J(n)(x)dx = P(X(n) E dx) 

= P(one of the X's E dx, all others < x) 

= P(XI E dx, all others < x) + P(X2 E dx, all others < x) 

+ '" + P(Xn E dx, all others < x) 

= nP(X1 E dx, all others < x) by symmetry 

= nP(X1 E dx)P(all others < x) by independence 

= nf(x)dx (F(x)r- 1 
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in agreement with the previous calculation in Section 4.5. Similarly, 

f(1)(x) dx = P(X(1) E dx) 

= P(one of the X's E dx, all others> x) 

= nf(x) dx (1 - F(x))n-l 

The same method can be used to derive a formula for the density of the kth order 

statistic of Xl. ... , X n. Recall that X(k) is the kth smallest of Xl,"" X n. The density 

f(k)(X) of X(k) is found as follows. For -00 < x < 00 

f(k) (x)dx = P(X(k) E dx) 

= P(one of the X's E dx, exactly k - 1 of the others < x) 

= nP(XI E dx, exactly k - 1 of the others < x) 

= nP(XI E dx)P(exactly k - 1 of the others < x) 

= nf(x)dX(n -1) (F(x))k-l (1- F(x)t- k 
k-1 

using the binomial formula. To summarize: 

Density of the kth Order Statistic 
Let X(k) denote the kth order statistic of Xl, X 2 •..• , X n, where Xl"'" Xn are 
independent, identically distributed random variables with common density f 
and c.d.f. F. The density of X(k) is given by 

f(k)(X) = nf(x) (~= ~) (F(x))k-l (1 - F(x)t-k (-oo<x<oo) 

It is best not to memorize the formula, but to remember how it is derived. 

Order Statistics of Uniform Random Variables 

Let Xl"'" Xn be independent random variables each with uniform distribution on 

(0,1). The common density of the X's is 

f(x) = { ~ 

Their common c.d.f. is 

O<x<l 
otherwise 

x<O 
0:::::x:::::1 
x>l 
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By the boxed formula above, the density of the kth order statistic of the n uniform 

random variables is 

O<x<l 

otherwise 

Some of these densities are graphed in Figure 1 on the next page. 

Notice how as n increases, the density for the minimum gets more concentrated 

near 0, the density for the maximum gets more concentrated near 1, and the density 

for the middle value of the X's gets more concentrated near 1/2. This is what you 

would expect intuitively. 

Notice also the functional form of the density: a constant, times x raised to a power, 

times 1 - x raised to a power. This simple form for a density on (0,1) appears in 

many settings. Here is a general definition: 

Beta (r,s) Distribution 
For r, s > 0, the beta (r, s) distribution on (0,1) is defined by the density 

1 r-1(1 )8-1 ---x -x 
B(r,s) 

(O<x<l) 

where 

B(r, s) = 11 xr-1(1 - xy-1dx 

is the normalizing constant which makes the density integrate to 1. 

Viewed as a function of rand s, B(r, s) is called the beta function. 

A comparison of the last two boxes shows the following: 

Beta Distribution of Uniform Order Statistics 
The kth order statistic of n independent uniform (0,1) random variables has 

beta (k, n - k + 1) distribution. 

A nice corollary of the formula for the density of X(k) derived above is that for 

integers rand s, the beta function B(r, s) is evaluated. Since f(k) is a density it must 

integrate to lover [0,1]. So 

11 xk-l(l _ x)n-kdx = _1_ = (k - l)!(n - k)! 
(n-1) , 

o n k-1 n. 
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FIGURE 1. Densities of order statistics of independent uniform variables. For n = 1,2, ... ,6 

and k = 1,2, ... ,n, the density of the kth order statistic of n independent uniform (0,1) random 

variables, which is the beta density with parameters k and n - k + 1, is plotted as the kth graph 

in the nth row of the diagram. 

4 ~ 

o 1--1 -, ~, 

o 1 

b 

1 I~ 
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Substitute r = k and s = n - k + 1 and recall that f (r) = (r - 1)! for positive integers 

r to get the following result for integers rand s: 

Evaluation of the Beta Integral 
For positive rand s 

B(r, s) = r1 xr-l(l _ x)S-ldx = f(r)f(s) 
io f(r+s) 

The beta (r, s) distribution is defined, and the above evaluation of the beta integral 

is valid, for all positive rand s, not necessarily integers. See Section 5.4, especially 

Exercise 5.4.19 for a proof of this and explanation of the connection between the 

beta and gamma distributions. 

Moments of the beta distribution. The expectation and variance of a beta random 

variable with integer parameters are now easy to calculate. If X has beta distribution 

with positive integer parameters rand s, 

E(X) = r1 
x· _1_ xr- 1(1_ xy-1dx 

io B(r,s) 

= _1_ r1 
xCr+1)-l(l _ x)S-ldx 

B(r,s) io 
B(r+1,s) 

B(r, s) 

r!(s - 1)! 

(r+s)! 
r 

r+s 

(r+s-1)! 

(r - l)!(s - 1)! 

E(X2) can be calculated in the same way, and used to find a formula for the variance 

of X. This is left as an exercise. 

The kth order statistic of n independent uniform (0,1) random variables has beta 

distribution with parameters k and n - k + 1, so 

k 
E(XCk)) =-­

n+1 

Thus the smallest of four uniform random numbers is expected to be around 1/5, 

the next smallest around 2/5, the third smallest around 3/5, and the largest around 
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4/5. In other words, if you think of picking four points at random from [0,1] as 

cutting the interval into five pieces 

)( )( )( )( 

all the pieces are expected to have the same length. In fact, more is true: It can be 

shown that when an interval is split at random like this by any number of indepen­

dent uniform random points, the length of each piece has the same beta distribution 

as the length of the first piece. See Chapter 6 Review Exercise 32. 

Exercises 4.6 
1. Four people agree to meet at a cafe at noon. Suppose each person arrives at a time 

normally distributed with mean 12 noon and SI) 5 minutes, independently of all the 

others. 

a) What is the chance that the first person to arrive at the cafe gets there before 

11:50? 

b) What is the chance that some of the four have still not arrived at 12:15? 

c) Approximately what is the chance that the second person to arrive gets there 

within ten seconds of noon? 

2. Let X have beta (r,8) distribution. 

a) Find E(X2), and use the formula for E(X) given in this section to find Var(X). 

b) Find a formula for E(Xk), for integers k ~ 1. 

3. Let U(1), ... , U(n) be the values of n independent uniform (0,1) variables arranged in 

increasing order. Let O:S: x < y :s: 1. Find simple formulae for: 

a) P(U(1) > x and U(n) < y); b) P(U(1) > x and U(n) > y); 

c) P(U(1) < x and U(n) < y); d) P(U(l) < x and U(n) > y); 

e) P(U(k) < x and U(k+l) > y) for 1:S: k :s: n - 1; 

o P(U(k) < x and U(k+2) > y) for 1:S: k :s: n - 2. 

4. Let X = min (5, T) and Y = max(5, T) for independent random variables 5 and T 

with a common density f. Let Z denote the indicator of the event 5 < T. 

a) What is the distribution of Z? 

b) Are X and Z independent? Are Y and Z independent? Are (X, Y) and Z inde­

pendent? 

c) How can these conclusions be extended to the order statistics of three or more 

independent random variables with the same distribution? 

5. C.d.f. of the beta distribution for integer parameters. 

a) Let Xl, X 2, ... , X n be independent uniform (0, 1) random variables, and let X (k) 

be the kth order statistic of the X's. Find the c.d.f. of X(k) by expressing the event 

X(k) :s: x in terms of the number of Xi that are :s: x. 
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b) Use a) to show that for positive integers rand s, the c.d.f. of the beta (r, s) 

distribution is given by 

c) Expand the power of (1 - x) in the beta density using the binomial theorem, and 

then integrate, to obtain the following alternative formula for the c.d.f. of the beta 

(r, s) distribution: 

~ ~(S-:-l)(_lrxi/(r+i) 
B(r, s) L.J t 

,=0 

(O:::;x:::;l) 

[Equating the results of these two calculations yields an algebraic identity that is not 

easy to prove directly.] 
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Continuous Distributions: Summary 
For a random variable X with probability density f (x): 

Differential formula: P(X E dx) = f(x)dx. 

Integral formula: P(a ~ X ~ b) = lb f(x)dx. 

Interpretation: f (x) is the chance per unit length for values of X near x. 

Properties of j(x): Non-negative, total integral 1. 

Expectation of a function g of X 

E ((g(X)) = I: g(x)f(x)dx provided I: Ig(x)lf(x)dx < 00 

Uniform, exponential, normal distributions: See Distribution Summaries. 

Hazard rates 

Let T be a positive random variable with probability density f. Think of T as the lifetime of 

a component. The hazard rate (or failure rate, or death rate) function >,(t) is the probability 

per unit time that the component will fail just after time t, given that it has survived up to 

time t 

peT E dtlT > t) = >,(t)dt 

For relations between A and the density, survival function, etc., ofT, see the table "Random 

Lifetimes" on page 297. 

Expectation from the survival function: For a non-negative random variable T, 

E(T) = 100 

G(t)dt 

where G(t) = P(T > t) is the survival function of T. 

One-to-one change of variable for densities 
Let X be a random variable with density f x (x) in the range (a, b). 

Let Y = g(X) where g is either strictly increasing or strictly decreasing on (a, b). The 

range of Y is then an interval with endpoints g(a) and g(b). And the density of Yon this 

interval is 
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fy(y) = fx(x) / I ~~ I 

where dy/dx is the derivative of y = g(x), and g-l is the inverse function of g. 

Linear change of variable for densities: 

1 (y - b) 
faX+b(Y) = ~ fx -a-

Change of variable principle: If X has the same distribution as Y, then g(X) has the 

same distribution as g(Y), for any function g. 

Cumulative distribution function of X: F(x) = P(X :::; x) 

If the distribution has a density f (x), then 

F(x) = [Xoo f(y) dy 

and the density function at x is the derivative of the c.d.f. at x 

provided F'(x) is continuous at x. 

Percentiles 

f(x) = dF(x) = F'(x) 
dx 

The kth percentile point of a distribution is the value x such that F(x) = k/lOO, written 

x = F-1(k/lOO), where F- 1 is the inverse c.d.f 

Transformation by the inverse c.d.f. 

If U has uniform (0,1) distribution, then F-l(U) has c.d.f. F. 

Order statistics 

If Xl, ... ,Xn are independent with common density f and c.d.f. F, then the kth order 
statistic X (k), that is, the kth smallest value among the Xl, ... , X n, has density 

fX(k) (x) = nf(x) (~= ~) (F(x))k-l (1 - F(x)t-k 

If the Xi have uniform (0, 1) distribution, then XCk) has beta (k, n - k + 1) distribution. 
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Review Exercises 

1. Suppose atoms of a given kind have an exponentially distributed lifetime with rate A. 
Let X t be the number of atoms still present at ,ime t ;::: 0, starting from Xo = n. Find 

formulae in terms of n, t, and A for a) E(Xt); b) Var(X t ). 

2. Find the constant c which makes the function f(x) = C(X+X2) for 0 < x < 1 the density 

of a probability distribution on (0,1). Find the corresponding c.dJ. F(x). Sketch the 

graphs of f(x) and F(x). Find the expectation fL and standard deviation (j of a random 

variable X with this distribution. Mark the points fL, fL + (j on your graphs. 

3. Let Y1 , Y2 , and Y3 be three points chosen independently and uniformly from (0, 1), and 

let X be the rightmost (largest) point. Find the c.dJ., density function, and expectation 

of X. 

4. Let X be a random variable with density f(x) = 0.5e- lxl (-00 < x < (0). Find: 

a) P(X < 1); b) E(X) and SD(X); c) the c.dJ. of X2 

5. An ambulance station, 30 miles from one end of a 100-mile road, services accidents 

along the whole road. Suppose accidents occur with uniform distribution along the 

road, and the ambulance can travel at 60 miles an hour. Let T minutes be the response 

time (between when accident occurs and when ambulance arrives). 

a) Find P(T > 30). 

b) Find P(T > t) as a function of t. Sketch its graph. 

c) Calculate the density function of T. 

d) Calculate the mean and standard deviation of T. 

e) What would be a better place for the station? Explain. 

6. Electrical components of a particular type have exponentially distributed lifetimes with 

mean 48 hours. In one application the component is replaced by a new one if it fails 

before 48 hours, and in case it survives 48 hours it is replaced by a new one anyway. 

Let T represent the potential lifetime of a component in continuous use, and U the time 

of such a component in use with the above replacement policy. Sketch the graphs of: 

a) the c.dJ. of T; b) the c.dJ. of U. Is U discrete, continuous, or neither? 

c) Find E(U). [Hint: Express U as a function of T.) 

d) Does the replacement policy serve any good purpose? Explain. 

7. Two-sided exponential distribution. Suppose X with range (-00, (0) has density 

f(x) = o:e-!3lxl where 0: and (3 are positive constants. 

a) Express 0: in terms of (3. b) Find E(X) and Var(X) in terms of (3. 

c) Find P(IXI > y) in terms of y and (3. d) Find P(X :::; x) in terms of x and (3. 

8. The principle of ignoring constants. In calculating the density of a random variable 

X, a quick method is to ignore constant factors as you go along, to end up with an 

answer of the form P(X E dx)/dx = f(x) with f(x) = c h(x) for a known function 

h(x) and mystery constant c. The point is that provided your calculation has been 

consistent with the basic rules of probability, the density of X must integrate to 1, so 

J c h(x) dx = J f(x) dx = 1 
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a) Use this identity to evaluate c in terms of J h(x) dx. 

b) You can often recognize at the end of a calculation that h( x) = C1 h (x) for some 

named density h(x) (e.g. one of the densities displayed in the table on page 477 

and some constant C1. Deduce that then c = 1/ C1 and f (x) = h (x). 

Use this method to evaluate the constant factor c that makes ch(x) a probability density 

for each of the following functions h(x), assumed to be zero except for the indicated 

range of x, and find E(X) and Var(X) in each case from the table on page 477. 

_ 1. x2 ( ) 
c) e 2 -00 < x < 00 

e) 1 (0 < :r < 10) 0 e- 5x 

d)x (O<x<l) 

(x > 0) 

9. Use the method of Exercise 8 to evaluate the constant factor c that makes f(x) = ch(x) 

a probability density for each of the following functions h(x), assumed to be zero except 

for the indicated range of x, where a and b are positive parameters. Also find E(X) 

and Var(X) in each case: 

a) e-(x-a)2 (-00 < x < (0); 

c) e-aX x5 (x > 0); d) e- a1xl 

e) .r7 (1 - X)9 (0 < X < 1); 

10. Evaluate the following integrals: 

b) e-(X-fl)2/ b2 (-00 < .r < (0); 

(-00 < x < (0); 

Ox'(b-X)9 (O<x<b). 

100 

x 2 

a) 0 e- dx; 11 
_,,2 

b) a e . dx; 100 

_:r2 

c) a .r e dx; 100 

2 _x 2 

d) a 1; e dx. 

11. Evaluate the following integrals: 

100 

'3 _z2 
a) a z' e dz; c) 1100 

2 2 
o x (100 - x) dx. 

12. A Geiger counter is recording background radiation at an average rate of 2 hits per 

minute; the hits may be modeled as a Poisson process. Let T be the time (in minutes) 

of the third hit after the machine is switched on. Find P(l < T < 3). 

13. Local calls are coming into a telephone exchange according to a Poisson process with 

rate Aloe calls per minute. Independently of this, long-distance calls are coming in at a 

rate of Adis calls per minute. Write down expressions for probabilities of the following 

events: 

a) exactly 5 local calls and 3 long-distance calls come in a given minute; 

b) exactly 50 calls (counting both local and long distance) come in a given three­

minute period; 

c) starting from a fixed time, the first ten calls to arrive are local. 

14. Particles arrive at a Geiger counter according to a Poisson process with rate 3 per 

minute. 

a) Find the chance that less than 4 particles arrive in the time interval 0 to 2 minutes. 

b) Let Tn minutes denote the arrival time of the nth particle. Find 
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c) Find the conditional distribution of the number of arrivals in 0 to 2 minutes, 

given that there were 10 arrivals in 0 to 4 minutes. Recognize this as a named 

distribution, and state the parameters. 

15. Two Geiger counters record arrivals of radioactive particles. Particles arrive at Counter 

I according to a Poisson process, at an average rate of 3 per minute. Independently, 

particles arrive at Counter II at an average rate of 4 per minute, also according to a 

Poisson process. In a particular one-minute period, the counters recorded at total of 8 

arrivals. Given this, what is the chance that each counter recorded four arrivals? 

16. Cars arrive at a toll booth according to a Poisson process at a rate of 3 arrivals per 

minute. 

a) What is the probability that the third car arrives within three minutes of the first 

car? 

b) Of the cars arriving at the booth, it is known that over the long run 60% are 

Japanese imports. What is the probability that in a given ten-minute interval, 

15 cars arrive at the booth, and 10 of these are Japanese imports? State your 

assumptions clearly. 

17. Show that T has exponential distribution with rate A if and only if 

P(T'5:,t)=l-e->..t forall O'5:,t<oo 

18. Bus lines A, E, and C service a particular stop. Suppose the lines come as indepen­

dent Poisson processes with rates AA, AB, and AG buses per hour respectively. Find 

expressions for the following probabilities: 

a) exactly one A bus, two E buses, and one C bus come to the stop in a given 

hour; 

b) a total of 7 buses come to the stop in a given two hour time period; 

c) starting from a fixed time, the first A bus arrives after t hours. 

19. A piece of rock contains 1020 atoms of a particular substance, each with a half-life of 

one century. How many centuries must pass before: 

a) most likely about 100 atoms remain; 

b) there is about a 50% chance that at least one atom remains. 

20. Hazard rates (refers to Section 4.3) Suppose a component with constant failure rate 

A is backed up by a second similar component. When the first component burns out the 

second is installed, and is thereafter subject to failure at the same rate A, independently 

of when it was installed and how long it has been in use. Let T be the total time to 

failure of both components. Find for T: 

a) the density function; b) the survival function; c) the hazard rate function. 

d) Suppose A = 1 per hour. Given T :::: 2 hours, what is the approximate probability 

of failure in the next minute? 

21. Suppose Rl and R2 are two independent random variables with the same density 

function f(x) = xexp (_~X2) for x:::: O. Find 

(a) the density of Y = min {Rl, R2}; b) the density of y2; c) E(y2). 
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22. Let X be a random variable that has a uniform distribution on the interval (O,a). 

a) Find the c.dJ. of Y = min (X, a/2). 

b) Is the distribution of Y continuous? Explain. c) Find E(Y). 

23. An earthquake of magnitude M releases energy X such that M = log X. For earth­

quakes of magnitude greater that 3, suppose that M - 3 has an exponential distribution 

with mean 2. 

a) Find E(M) and Var(M) for an earthquake of magnitude greater than 3. 

b) For an earthquake as in part a), find the density of X. 

c) Consider two earthquakes, both of magnitude greater than 3. What is the proba­

bility that the magnitude of the smaller earthquake is greater than 4? Assume that 

the magnitudes of the two earthquakes are independent of each other. 

24. Suppose stop lights at an intersection alternately show green for one minute, red for 

one minute (ignore amber). Suppose a car arrives at the lights at a time distributed 

uniformly at random relative to this cycle. Let X be the delay of the car at the lights, 

neglecting any delay due to traffic congestion. 

a) Find a formula for the c.d.f. of X, and sketch its graph. 

b) Is X discrete, continuous, or neither? c) Find E(X) and Var(X). 

d) Suppose that the car encounters a succession of ten such stop lights. Make an 

independence assumption and use the normal approximation to estimate the 

probability that the car will be delayed more than four minutes by the lights. 

25. Suppose the random variable U is distributed uniformly on the interval (0,1). Find: 

a) the density of the random variable Y = min {U, 1 - U} (indicate where the 

density is positive); 

b) the density of 2Y; c) E(Y) and Var(Y). 

26. Suppose that the weight Wt of a tumor after time t is modeled by the formula W t = 

X etY where X and Yare independent random variables, X distributed according to 

a gamma distribution with mean 2 and variance 1, and Y distributed uniformly on 1 to 

1.5. Find formulae for: a) E(Wt}; h) SD(Wt}. 

27. Suppose Ul , U2 , ... are independent uniform (0,1) variables, and let N be the first 

n ~ 2 such that Un > Un-l. Show that for ° ~ u ~ 1: 

u n - l un 
a) P(Ul ~ u and N = n) = (n _ I)! n! n ~ 2; 

b) P(Ul ~ u and N is even) = 1 - e- u . 

c) E(N) = e. 

28. A point is chosen uniformly at random from the circumference of a circle of diameter 

1. Let X be the length of the chord joining the random point to an arbitrary fixed point 

on the circumference. Find: a) the c.dJ. of X; b) E(X); c) Var(X). 
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29. A gambling game works as follows. A random variable X is produced; you win $1 if 

X> 0 and you lose $1 if X < O. Suppose first that X has a normal (0,1) distribution. 

Then the game is clearly "fair". Now suppose the casino gives you the following option. 

You can make X have a normal (b, 1) distribulion, but to do so you have to pay $cb 
which is not returned to you even if you win. Here c > 0 is set by the casino, but you 

can choose any b > O. 

a) For what values of c is it advantageous for you to use this option? 

b) For these values of c, what value of b should you choose? 

30. A manufacturing process produces ball bearings with diameters which are indepen­

dent and normally distributed with mean 0.250 inches and SD 0.001 inches. In a high­

precision application, 16 bearings are arranged in a ring. The specifications are that: 

(i) each bearing must be between 0.249 and 0.251 inches in diameter; 

(ii) the sum of the diameters of the 16 bearings must be between 3.995 and 4.005 

inches. 

a) What is the expected number of bearings which must be produced by the process 

to obtain 16 satisfying specification (O? 

b) Given 16 bearings obtained like this, what is the chance that they meet specifi­

cation (ii)? 

[Hint for b): Write x2¢(x) = x[x¢(x)] and use integration by parts to show that 

I: x2¢(x)dx = 21>(z) - 1 - 2z¢(z).] 

31. The skew-normal pseudo-density. Referring to the end of Section 3.3, let 

B 2 
1>o(z) = 1>(z) - 6(z - l)¢(z) 

This is the substitute for the normal c.d.f. 1>(z) which for ~ i= 0 typically gives a better 

approximation than 1>(z) to the c.d.f. of a random variable with mean zero, variance 1 

and third moment B. 

a) Let ¢o(z) = 1:;-1>0 (z). Show ¢o(z) = [1 - ~(3z - Z3)]¢(Z). 

b) Show that for every B 

I: ¢o(z)dz = 1; I: z¢o(z)dz = 0; I: z2¢0(z)dz = 1; I: z3¢0(z)dz = B 

[So ¢o (z) is very like the probability density of a distribution with mean zero, 

variance 1 and third moment B. This explains the choice B = Skewness(X) = 
E(K;) in the skew-normal approximation to the distribution of a standardized 

variable X* = (X - f.L)/0".] 

c) Show that ¢o is negative for large negative z if B > 0, and negative for large 

positive z if B < o. So for B i= 0, ¢o(z) is in fact not a probability density. It may 

be called instead a pseudo-density. 

d) Find a probability in the Poisson(9) distribution whose normal approximation 

with continuity and skewness corrections is a negative number. 

e) Explain carefully why, despite c) and d) the functions ¢1/3(Z) and 1>1/3(Z) pro­

vide practically useful approximations to the Poisson(9) and other distributions 

which are roughly normal in shape but slightly skewed. 



5 
Continuous Joint 

Distributions 

The joint distribution of a pair of random variables X and Y is the probability 

distribution over the plane defined by 

P(B) = P((X, Y) E B) 

for subsets B of the plane. So P(B) is the probability that the random pair (X, Y) 

falls in the set B. Joint distributions for discrete random variables were considered 

in Section 3.1. This chapter shows how these ideas for discrete random variables 

are extended to two or more continuously distributed random variables with sums 

replaced by integrals. 

Section 5.1 concerns the simplest kind of continuous joint distribution, a uniform 

distribution defined by relative areas. Section 5.2 introduces the concept of a joint 

density function. Joint probabilities are then defined by volumes under a density 

surface. The important special case of independent normal variables is studied in 

Section 5.3. Then Section 5.4 deals with a general technique for finding the distribu­

tion of a function of two variables. 
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5.1 Uniform Distributions 
The uniform distribution on an interval was discussed in Section 4.1. The idea ex­

tends to higher dimensions with relative lengths 1 eplaced by relative areas or relative 

volumes. For example, a random point (X, Y) in the plane has uniform distribution 

on D, where D is a region of the plane with finite area, if: 

CD (X, Y) is certain to lie in D; 

(ii) the chance that (X, Y) falls in a subregion C of D is proportional to the area 

ofC 

P((X, Y) E C) = area CC) 
area CD) 

for C c D 

Here is an important observation: 

Independent Uniform Variables 
If X and Yare independent random variables, each uniformly distributed on 

an interval, then (X, Y) is uniformly distributed on a rectangle. 

To see why, suppose X and Yare independent and uniformly distributed on, say, 

(0, a) and (0, b), respectively. For intervals A and B the event (X E A, Y E B) is 

the event that (X, Y) falls in the rectangle A x B, as shown in the following Venn 

diagram: 

b 

~(XeA) 

" 
( YeB) 

-......... 

--- (XeA, YeB) 

o 
o a 



Example 1. 

Problem 1. 

Solution. 

1 ,-------, 

y 

o L...-___ -' 
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So for any rectangle A x B 

P((X,Y) E A x B) = P(X E A,Y E B) 

= P(X E A)P(Y E B) by independence of X and Y 

length (A) length (B) 

a b 
by assumed uniform distributions of X and Y 

area (A x B) 

ab 

Thus the probability that (X, Y) E C is the relative area of C in (0, a) x (0, b) for 

every rectangle C. The same must then be true for finite unions of rectangles, by 

the addition rule of probability and for area, hence also for any set C whose area 

can be defined by approximating with unions of rectangles. Conclusion: (X, Y) has 

uniform distribution on the rectangle (0, a) x (0, b). 

The above observation allows probabilities involving two independent uniform vari­

ables X and Y to be found geometrically in terms of areas. The key step is correct 

identification of areas in the plane corresponding to events in question. Skill at doing 

this is essential for all further work in this chapter. 

Probabilities for two independent uniform random variables. 

Suppose X and Yare independent uniform (0,1) random variables. 

Find p(X2 + y2 S; 1). 

Proceed by 3 steps as in the diagram below: 

Draw a unit square with coordinates X, Y. 

Notice that X 2 + y2 = 1 gives the equation of a circle of radius l. 

Recognize (X2 + y2 S; 1) as the region inside both the square and circle. 

Use the formula for the area of a circle to get P(X2 + y2 S; 1) = i. 

o X 1 

Problem 2. 

Solution. 

Find the conditional probability P(X2 + y2 S; 11X + Y ~ 1). 

After flrst identifying X 2 + y2 S; 1 as above, next: 

- Recognize (X + Y = 1) as the line through the points (0,1) and (1,0). 
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Problem 3. 

Solution. 

Example 2. 

Deduce that (X + Y 2: 1) is the shaded region above this line. 

1 ..--;;:-----, 
(X2 + y2 $ 1)--+::: ~ 

(X+Y=l) (X + y ~ 1) 

1 

- Now compute the required relative area: 

p(X2 + y2 < 11X + Y > 1) = p(X2 + y2 :::; 1, X + Y 2: 1) 
- - P(X + Y 2: 1) 

7r/4-1/2 7r 
= = --1 

1/2 2 

Graph Y = X2 . 

Recognize (Y ::; X2) as the region under this graph. 

Compute the area of this region by calculus. 

lr------. lr-----. 

Y Y 

o ........::'---__ --' 
o x 1 o 1 

1 
-
3 

Discussion. Note well how only in the last of these problems was it necessary to 

resort to calculus to find the area. Always sketch the relevant regions first, then look 

out for familiar shapes, rectangles, triangles, and circles. If all else fails, use calculus. 

More probabilities for two independent uniform variables. 

Let X and Y be independent random variables, each uniformly distributed on (0,1). 

Calculate the following probabilities: 



a) 

b) 

c) 

Example 3. 

Problem . 

Solution . 
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P(IX - YI ~ 0.5) = indicated area 

1 
1.-- ~- ..., 

= 1- - = 0.75 
4 

P (I ~ -11 ~ 0.5) = P (~X ~ Y ~ 2X) 

= indicated area 

= 1- ~ (~+~) = 152 

P (Y 2 XIY 2 ~) = indicated areal ~ 

=(~-~)/~=~ 

Probability of meeting. 

0 
0 1 

1 

2/3 

1 

1 
(Y;:: X V;:: 1/2 ) 

1 

Two people try to meet at a certain place between 5:00 P.M. and 5:30 P.M. Suppose 

that each person arrives at a time distributed uniformly at random in this time interval, 

independent of the other, and waits for the other at most 5 minutes. What is the 

probability that they meet? 

Let X and Y be the arrival times measured as fractions of the 30 minute interval, start­

ing from 5:00 P.M. Then X and Yare independent uniform (0,1) random variables. 

The people meet if and only if IX - YI ~ 1/6. 

lr--'--'---r--.--~~ 

O~~-~-L __ ~~~ 
o 1 

Desired probability = indicated area = 1 _ (~)2 = j~ 
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Uniform Distribution over a Volume 

This is the extension of the idea of relative lengths in one dimension and rela­

tive areas in two dimensions to relative volumes in three and higher dimensions. If 

U1 , ... , Un are n independent random variables, with Ui uniformly distributed on an 

interval (ai, bi ), then the same argument given earlier for the case n = 2 shows that 

the joint distribution of (U1 , ... , Un) is the uniform distribution defined by relative 

volumes within the n-dimesional box 

whose n-dimensional volume is the product (b1 - ad(b2 - a2) ... (bn - an) of the 

lengths of its sides. 

To illustrate, a random point in the unit cube (0,1) x (0,1) x (0,1), with approxi­

mately independent coordinates, is obtained by three successive calls of a pseudo­

random number generator, say (RNDl' RND2, RND3). For any subvolume B of the 

unit cube bounded by a reasonably smooth surface (e.g., the portion of a box, pyra­

mid, or sphere that lies inside the unit cube) the long-run frequency of times that 

(RNDl' RND2, RND3) is in B will be approximately the volume of B, that is P(B) 
for the uniform distribution on the unit cube. For example, the long-run frequency 

of triples (RNDl' RND2, RND3) with 

is approximately the volume of the subset of the unit cube 

This is the volume of a sphere of radius! centered at (!, !, !), which is 11l' (!) 3 = ~. 

Exercises 5. 1 

1. Let (X, Y) have uniform distribution on the set 

{ ( x, y) : 0 < x < 2 and 0 < y < 4 and x < y}. 

Find: a) P(X < 1); 

2. A metal rod is I inches long. Measurements on the length of this rod are equal to I plus 

random error. Assume that the errors are uniformly distributed over the range -0.1 inch 

to +0.1 inch, and are independent of each other. 

a) Find the chance that a measurement is less than 1/100 of an inch away from I. 

b) Find the chance that two measurements are less than 1/100 of an inch away from 

each other. 
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3. Suppose X and Yare independent and uniformly distributed on the unit interval (0, 1). 

Find: 

P(Y ~ ~ IY ~ 1 - 2X). 

4. Let X and Y be independent random variables each uniformly distributed on (0,1). 

Find: 

a) P(IX - YI :::; 0.25); b) P(IX/Y - 11 :::; 0.25): c) P(Y ~ X I Y ~ 0.25). 

5. A very large group of students takes a test. Each of them is told his or her percentile 

rank among all students taking the test. 

a) If a student is picked at random from all students taking the test, what is the 

probability that the student's percentile rank is over 90%? 

b) If two students are picked independently at random, what is the probability that 

their percentile ranks differ by more than Im·il' 

6. A group of 10 people agree to meet for lunch at a cafe between 12 noon and 12:15 

P.M. Assume that each person arrives at the cafe at a time uniformly distributed between 

noon and 12:15 P.M., and that the arrival times are independent of each other. 

a) Jack and Jill are two members of the group. Find the probability that Jack arrives 

at least two minutes before Jill. 

b) Find the probability of the event that the first of the 10 persons to arrive does so 

by 12:05 P.M., and the last person arrives after 12:10 P.M. 

7. Let X and Y be two independent uniform (0, 1) random variables. Let M be the smaller 

of X and Y. Let 0 < x < 1. 

a) Represent the event (M ~ x) as the region in the plane, and find P(M ~ .r) as 

the area of this region. 

b) Use your result in a) to find the c.d.f. and density of Iv!. Sketch the graph of these 

functions. 

8. Let U(J), ... , U(n) be the values of n independent uniform (0,1) random variables 

arranged in increasing order. Let 0 :::; x < y :::; l. 

a) Find and justify a simple formula for P(U(l) > .r and U(n) < y). 

b) Find a formula for P(U(1) :::; x and U(n) < y). 

9. A triangle problem. Suppose a straight stick is broken in three at two points chosen 

independently at random along its length. What is the chance that the three sticks so 

formed can be made into the sides of a triangle? 



346 Chapter s. Continuous Joint Distributions 

5.2 Densities 
The concept of a joint probability density function f(x, y) for a pair of random 

variables X and Y is a natural extension of the idea of a one-dimensional probabil­

ity density function studied in Chapter 4. The function f(x, y) gives the density of 

probability per unit area for values of (X, Y) near the point (x, y). 

FIGURE 1. A joint density surface. Here a particular joint density function given by the formula 

f(x, y) = 5! x(y - x)(l - y) (0 < x < y < 1), is viewed as the height of a surface over 

the unit square 0 :=:; x :=:; 1,0 :=:; y :=:; l. As explained later in Example 3, two random variables X 

and Y with this joint density are the second and fourth smallest of five independent uniform (0,1) 

variables. But for now the source and special form of this density are not important. Just view it as 

a typical joint density surface. 

values of x 

Examples in the previous section show how any event determined by two random 

variables X and Y, like the event (X > 0.25 and Y > 0.5), corresponds to a region 

of the plane. Now instead of a uniform distribution defined by relative areas, the 

probability of region B is defined by the volume under the density surface over B. 

This volume is an integral 

P((X, Y) E B) = J J f(x, y)dx dy 

B 

This is the analog of the familiar area under the curve interpretation for probabilities 

obtained from densities on a line. Examples to follow show how such integrals can 

be computed by repeated integration, change of variables, or symmetry arguments. 

Uniform distribution over a region is now just the special case when f(x, y) is con­

stant over the region and zero elsewhere. As a general rule, formulae involving joint 

densities are analogous to corresponding formulae for discrete joint distributions 

described in Section 3.1. See pages 348 and 349 for a summary. 
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FIGURE 2. Volume representing a probability. The probability P(X > 0.25 and y > 0.5), 

for random variables X and Y with the joint density of Figure 1. The set B in this case is 

{(x , y) : x > 0.25 and y > 0.5}. You can see the volume is about half the total volume un· 

der the surface. The exact value, found later in Example 3, is 27/64. 

Informally, if (X, Y) has joint density f(x, y), then there is the infinitesimal proba­
bility formula 

P(X E dx, Y E dy) = f(x, y)dx dy 

This means that the probability that the pair (X, Y) falls in an infinitesimal rectangle 

of width dx and height dy near the point (x, y) is the probability density at (x, y) 
multiplied by the area dx dy of the rectangle. 

I 
(Ye dy) 

P(Xedx yedY)~ 
=/(x,y)dxdy 
= volume of box 

dx -
height /(x,y) of 

rns;ty unace=_----
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Discrete Joint Distribution 
Probability of a point: 

P(X = x, Y = y) = P(x,y) 

The joint probability P(x, y) is the probability of the single point (x, y). 

Probability of a set B: The sum of probabilities of points in B 

P((X, Y) E B) = L P(x, y) 

(x,Y)EB 

Constraints: Non-negative with total sum 1 

P(x,y) 20 and L LP(x,y) = 1 
all x all y 

Marginals: 

P(X = x) = LP(x,y) 
all y 

P(Y = y) = LP(x,y) 
all x 

Independence: P(x, y) = P(X = x)P(Y = y) (for all x and y) 

Expectation of a function 9 of (X,¥), e.g., XY, 

E(g(X,Y)) = LLg(x,y)P(x,y) 
all x all y 

provided the sum converges absolutely. 
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Joint Distribution Defined by a Density 
InfInitesimal probability: 

P(X E dx, Y E dy) = f(x, y) dx dy 

The joint density f(x, y) is the probability per unit area for values near (x, y). 

Probability of a set B: The volume under the density surface over B 

P((X,Y) E B) = fhf(x,y)dXdY 

Constraints: Non-negative with total integral 1 

f(x,y) ~ 0 and 1: 1: f(x,y) dxdy = 1 

Margina1s: 

Independence: 

fx(x) = 1: f(x, y)dy 

Jy(y) = i: f(x, y)dx 

f(x, y) = fx(x)Jy(y) (for all x and y) 

Expectation of a function g of (X, y), e.g., XY 

E(g(X, Y)) = f f g(x, y)f(x, y)dx dy 

provided the integral converges absolutely. 
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The infinitesimal probability formula 

P(X E dx, Y E dy) = f(x,y)dxdy 

is really shorthand for a limiting statement about the ratio of probability per unit 

area for small areas, which, strictly speaking, holds only at points (x, y) such that 

the joint density is continuous at (x, y). But the infinitesimal formula conveys the 

right intuitive idea, and can be manipulated to obtain useful formulae which turn 

out to be valid even without assuming that the joint density is continuous. 

Marginal densities. If (X, Y) has a joint density f(x, y) in the plane, then each 

of the random variables X and Y has a density on the line. These are called the 

marginal densities. As shown in the preceding display, the marginal densities can 

be calculated from the joint density by integral analogs of the discrete formulae for 

marginal probabilities as row and column sums in a joint distribution table. Proba­

bilities of discrete points are replaced by densities, and sums by integrals. 

Independence. In general, random variables X and Yare called independent if 

(1) P(X E A, Y E B) = P(X E A)P(Y E B) for all choices of sets A and B. 

Joint Density for Independent Variables 
Random variables X and Y with joint density f(x, y) are independent if and 

only if the joint density is the product of the two marginal densities: 

(2) f(x, y) = fx(x)Jy(y) (for all x and y) 

Intuitively (2) follows from (1) by taking A to be a small interval (x, x + dx) near x, 
B a small interval (y, y + dy) near y, to obtain 

(3) P(X E dx, Y E dy) = P(X E dx)P(Y E dy) 

so f(x, y) dxdy = fx(x) dx Jy(y) dy 

Cancelling the differentials dx and dy leaves the product formula for densities. Con­

versely, (1) is obtained from (2) by integration. 



Example 1. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

Problem 4. 

Solution. 

Problem 5. 

Solution. 

Remark. 
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Uniform on a triangle. 

Suppose (X, Y) is uniformly distributed over the region {(x,y) : 0 < x < y < I}. 

Find the joint density of (X, Y). 

By the assumption, f(x, y) = c for 0 < x < y < 1 

and 0 elsewhere. Because the triangle has area ~, 

c = 2. 

Find the marginal densities fx(x) and Jy(y). 

fx(x) ,= [: f(x, y) dy 

y 

1 t------:~ -

--r----1---~ ~ x 
o 1 

1Y=1 

:= 2dy since f(x, y) = 2 for 0 < x < y < 1, 0 elsewhere 
y=x 

= 2(1 - x) for 0 < x < 1 and 0 elsewhere. 

Jy(y) := [: f(x, y) dx 

= 2dx l x=y 

since f (x, y) = 2 for 0 < x < y < 1 
x=o 

,= 2y for 0 < y < 1 and 0 elsewhere. 

Are X and Y independent? 

No, since f(x, y) ::j:. fx(x)Jy(y). 

Find E(X) and E(Y). 

100 11 1 
E(X) := xfx(x) dx = 2x(1 - x) dx = -

-00 0 3 

100 11 2 
E(Y) == yJy(y) dy = 2y2 dy = -

-00 0 3 

Find E(XY). 

o elsewhere 

E(XY) = Jr r xyf(x,y)dxdy = 211 dylY xydx = 211 y3 dy = ~ 
J R2 y=o x=O y=o 2 4 

You can show that the joint distribution of X and Y considered here is that of 

X = min (U, V), Y = max(U, V), where U and V are independent uniform (0,1) 

variables. Example 3 gives a more difficult derivation of this kind. 
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Example 2. 

Problem. 

Solution. 

Remark. 

Independent exponential variables. 

Let X and Y be independent and exponentially dis­

tributed random variables with parameters A and /1, 

respectively. Calculate P(X < Y). 

The joint density is 

by independence. And P(X < Y) is found by integra­

tion of this joint density over the set {(x, y) : x < y}: 

Done in the other order, the integral is 

y 

~----------------x 

y 

IL-----------------x 

which simplifies to the same answer. As a general rule, provided the integrand is 

positive, as always when finding probabilities, double integrals done in either order 

produce the same result. 

Example 3. Joint distribution of order statistics. 

Problem 1. 

Suppose U(1) < U(2) < ... < U(5) are the order statistics of 5 independent uniform 

(0, 1) variables U 1 , ..• , u's, so U( i) is the ith smallest of U 1 , ... , U 5 , as, for example, 

in the following diagram: 

Find the joint density of U(2) and U( 4). 



Solution. 

)( 

o 

Problem 2. 

Solution. 
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This is very like the calculation of the density of U(i) done in Section 4.6. The 

following diagram shows one way of getting U(2) in dx and U(4) in dy for 0 < x < 
y < 1: 

dx 
x~ 

I )( I 

P(U(2) E dx, U(4) E dy) 

)( 

dy 
y~ 

I )( I )( 

= P( one Ui in (0, x), one in dx, one in (x, y), one in dy, one in (y, 1) ) 

= 5! P(U2 E (0, x), U4 E dx, U3 E (x, y), U1 E dy, U5 E (y,l)) 

= 5! xdx(y - x) dy(l- y) 

Here the 5! is the number of different ways of deciding which variables fall in which 

intervals. The conclusion is that the joint density of U(2) and U(4) is 

P(U(2) Edx,U(4) Edy)/dxdy= {~!x(Y-X)(l-Y) 

This is the density surface shown in Figure 1 on page 346. 

Find P(U(2) > 1/4 and U(4) > 1/2). 

The volume representing this probability is shown in 

Figure 2 on page 347. This is the volume under the den­

sity surface over the area shaded in the diagram at right. 

This area is the intersection of: 

en the region representing the event; and 

(ij) the region where the density is strictly positive. 

This determines the ranges of integration. The required 

probability is thus 

for 0 < x < y < 1 

elsewhere 

5! 11 jY x(y - x)(l - y) dx dy 
y=1/2 x=1/4 

1'---~-- ---- ----7 

= 5! 11 (1 - y) dy [~X2y - ~x3] IY 

y=1/2 2 3 1/4 

y 

= 5! 11 (1 _ y) dy [y3 _ JL __ 1_] = 27 
y=I/2 6 25 3 X 26 64 

by straightforward integration of the polynomial. 

1/4 x 
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Exercises 5.2 
1. Suppose that (X, Y) is uniformly distributed over the region {(x, y) : 0 < Iyl < x < 1}. 

Find: 

a) the joint density of (X, Y); b) the marginal densities fx(x) and Jy(y). 

c) Are X and Y independent? d) Find E(X) and E(Y). 

2. Repeat Exercise 1 for (X, Y) with uniform distribution over {(x, y) : 0 < Ixl + Iyl < 1}. 

3. A random point (X, Y) in the unit square has joint density f(x, y) = c(x2 + 4xy) for 

o < x < 1 and 0 < y < 1, for some constant c. 

a) Evaluate c. b) Find P(X ::::: a), 0 < a < 1. c) Find P(Y ::::: b), 0 < b < 1. 

4. For random variables X and Y with joint density function 

f(x,y) = 6e- 2x - 3y (x, y > 0) 

and f (x, y) = 0 otherwise, find: 

a) P(X::::: x, Y ::::: y); b) fx(x); c) Jy(y). 

d) Are X and Y independent? Give a reason for your answer. 

5. Let X be exponentially distributed with rate )., independent of Y, which is exponentially 

distributed with rate /1. Find P(X :::: 3Y). 

6. Let X and Y have joint density 

{ 
90(y - X)8 

f(x, y) = 0 
O<x<y<l 
otherwise 

a) Find P(Y > 2X). b) Find the marginal density of X. 

c) Fill in the blanks (explain briefly): 

The joint density f above is the joint density of the ___ and ___ of 

ten independent uniform (0, 1) random variables. 

7. Two points are picked independently and uniformly at random from the region inside 

a circle. Let Rl and R2 be the distances of these points from the center of the circle. 

Find P(R2 ::::: Rd2). 

8. Random variables X and Y have joint density 

Here c is a constant. 

-y::::: x::::: y, y> 0 

otherwise 

a) Show that Y has a gamma density, and hence deduce that c = 1/8. 

b) Find the density of 4y3. 

c) Explain why E(IXI) is at most 4. 

9. Minimum and maximum of two independent exponentials. Let X = min (S, T) 

and Y = max(S, T) for independent exponential()') variables Sand T. Let Z = Y -x. 
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a) Find the joint density of X and Y. Are X and Y independent? 

b) Find the joint density of X and Z. Are X and Z independent? 

c) Identify the marginal distributions of X and Z. 

10. Minimum and maximum of n independent exponentials. Let Xl, X 2, ... , X n be 

independent, each with exponential (,\) distribution. Let V == min (Xl, X 2 , ..• , Xn) 
and W == max(Xl , X 2 , . .. ,Xn ). Find the joint density of V and W. 

11. Suppose X and Yare independent random variables such that X has uniform (0,1) 

distribution, Y has exponential distribution with mean 1. Calculate: 

a) E(X + V); b) E(XY); c) E[(X - y)2]; d) E(X2e2Y ). 

12. Let Tl and T5 be the times of the first and fifth arrivals in a Poisson process with rate 

'\, as in Section 4.2. Find the joint density of Tl and T5. 

13. Uniform spacings. Let X == min (U, V) and Y == max(U, V) for independent uniform(O, 1) 

variables U and V. Find the distributions of 

a) X; b) 1 - Y; c) Y - X. 

14. Let Ul , U2 , U3 , U4 , U5 be independent, each with uniform distribution on (0,1). Let R 

be the distance between the minimum and the maximum of the Ui's. Find 

a) E(R); 

b) the joint density of the minimum and maximum of the U;'s; 

c) P(R> 0.5) 

15. C.d.f.'s in two dimensions. The cumulative joint distribution function of random 

variables X and Y is the function of x and y defined by F(x,y) == P(X S; x, Y S; y). 

a) Find a formula in terms of F(x,y) for P(a < X:S b, c < Y:S d). 

b) For X and Y with joint density f(x,y), express F(x,y) in terms of f. 

c) For X and Y with joint density f(x,y), express f(x,y) in terms of F. 

These are analogs of formulae of Section 4.5 for cumulative distribution functions in 

one dimension. They are not used much, as there are few joint distributions for which 

there is an explicit formula for F (x, y). But here are two examples. 

d) Find F(x, y) in terms of the marginal c.d.rs for independent X and Y. 

e) Find F(x, y) for X the minimum and Y the maximum of n independent uniform 

(0,1) variables, and 0< x < y < 1. Deduce the joint density of X and Y. 

16. Suppose Xl, X 2, X3 are independent exponential random variables with parameters 

>'1,>'2,>'3 respectively. Evaluate P(XI < X 2 < X3). 

17. Let (X, Y) be picked uniformly from the unit disc R2 S; 1, where R2 == X2 + y2 Find: 

a) the joint denSity of R and X; 

b) repeat a) for a point (X, Y, Z) picked at random from inside the unit sphere 
R2 :S 1, where now R2 == X2 + y2 + Z2. 

18. Suppose Xl, X 2 are independent random variables with the same density function. 
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a) Evaluate P(XI < X 2 ). 

b) Continuing, suppose Xl, X 2 , X3 are independent random variables with the same 

density function. Evaluate P(Xil < X i2 < Xi3) where (i l ,i2,i3) is a given 

permutation of (1,2,3). 

19. Let Lat be the latitude, Lon the longitude of the point of impact of the next meteorite 

that strikes the Earth's surface. Measure Lat in degrees from -900 (South Pole) to +90 0 

(North Pole), and measure Lon similarly from -180 0 to + 1800 . Assuming the point of 

impact is uniformly distributed over the Earth's surface, find 

a) the density of Lon; b) the density of Lat; 

c) the joint density of Lat and Lon. d) Are Lat and Lon independent? 

20. Let X and Y be independent and uniform (0,1) and let R = ylX2 + y2 Show that: 

a) fR(r) = { ~r[11' ] 
2r '4 - arccos (l/r) 

b) FR(r) = { ~11'r2 [11' ] 
~ + '4 - arccos (l/r) r2 

c) Show without explicitly calculating E(R) that 

VI < E(R) < VI 
d) (Hard.) Show that E(R) i':j 0.765. 

21. Suppose two points are picked at random from the unit square. Let D be the distance 

between them. The main point of this problem is to find E(D). This is hard to do 

exactly by calculus. But some information about E(D) can be obtained as follows. 

a) It is intuitively clear that E(D) must be greater than E(Dcenter), where Dcenter is 

the distance from one point picked at random to the center of the square, and 

less than E( Dcorner), the expected distance of one point from a particular corner 

of the square. Assuming this to be the case, find the values of these bounds on 

E(D) using the results of Exercise 20. 

b) Compute E(D2) exactly. 

c) Deduce from b) a better upper bound for E(D) . 

d) Computer simulation of 10,000 pairs of points gave mean distance 0,5197, and 

mean square distance 0.3310. Use these results to find an approximate 95% con­

fidence interval for the unknown value of E(D). 
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Independent Normal Variables 
The most important properties of the normal distribution involve two or more inde­

pendent normal variables. Suppose first that X and Yare independent, each with 

standard normal density function 

(a) 
1 

C=--

y'2; 
where the formula 

taken for granted up to now, will be verified in this section. The joint density of X 

and Y is given by 

Cb) 

The key property of this joint density is that it is a function of r2 = x2 + y2, where r 

is the radial distance from the origin of the point (x, y). This makes the graph of this 

joint density a round bell-shaped surface over the (x, y) plane, with cross sections 

proportional to the standard normal curve. 

FIGURE 1. Perspective plot of the jOint density of X and y. 

+4 

-4 

The rotational symmetry of this bivariate distribution obtained from two indepen­

dent normal variables is a very special property. It can be shown that this property 

distinguishes the normal distribution from all other probability distributions on the 

line. And this rotational symmetry is the key to understanding several important 

properties of the normal distribution, now considered in turn. 
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Evaluation of the Constant of Integration 

The value of the constant c in the normal density (a) is found as a byproduct of 

calculating the distribution of the random variable 

which is the distance from the origin of a random point (X, Y) with joint density 

¢(x)¢(y). 

y R 

x 

FIGURE 2. Geometry of x, Y, and R. 

y 

(X,y) 
(R E dr) 

r+ dr 
-------+ ~-----r-----+~--~-- x 

The event (R E dr) corresponds to (X, Y) falling in an annulus of infinitesimal width 

dr, radius r, circumference 27l'r, and area 27l'r dr, as in Figure 2. And P(R E dr) is the 

volume over this infinitesimal annulus beneath the joint density. But on the annulus 

the joint density has nearly constant value 

so the volume in question is just this nearly constant value times the area of the 

annulus. Thus 

(r> 0) 

This shows that R has probability density function 

The integral of this density from 0 to 00 must be 1: 
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This makes 

and c = 1/.,fi; 

So the constant of integration in the normal density involves 7r, due to the fact that 

the joint density of two independent standard normal variables is constant on circles 

centered at the origin. 

The distribution of R appearing here, with density function 

(cl) (r > 0) 

and c.dJ. 

(c2) (r > 0) 

is called the Rayleigh distribution. 

FIGURE 3. Density of the Rayleigh distribution of R. 

2 3 

Ccdculating the Variance of the Standard 

Normal Distribution 

4 

Since E(X) = 0 by symmetry, the variance of a standard normal random variable X 

is 

This integral can be reduced by an integration by parts to the integral of the standard 

normal density (exercise). But two independent standard normal variables X and Y 
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Example 1. 

Problem 1. 

Solution. 

can also be used to show that (j2 = 1. This, too, involves the radial random variable 

R. Because R2 = X 2 + y2, 

using the fact that X and Y have the same distribution. So 

But S = R2 has density given by the change of variable formula 

I ds 
f5(S) = fR(r) dr (s = r2 > 0) 

1 2 2 
=re- 2r /2r (s=r >0) 

1 -18 ( ) = -e 2 S > 0 
2 

Since this is the exponential density with parameter>. = 1/2, 

E(R2) = E(S) = 1/>. = 2 

Shots at a target. 

An expert marksman firing at a target produces 

a random scatter of shots which is roughly 

symmetrically distributed about the center of 

the bull's eye, with approximately 50% of the 

shots in the bull's eye, as in the diagram. 

by (el) 

What is the approximate fraction of shots inside a circle with the same center as the 

bull's eye, but twice the radius? 

Suppose that the marksman's shots are distributed approximately like (X, Y), where 

X and Yare independent normal random variables with mean 0 and variance (j2. 

This would give such a symmetric distribution. By measuring distances in standard 

units, that is, relative to (j, we may as well assume (j = 1. Then the formulae obtained 

above for the distribution of R = v' X2 + y2 apply directly. Let r denote the radius 

of the bull's eye, measured in standard units. Using the normal approximation, the 

probability of each shot hitting the bull's eye would be 

from formula (c2) on page 359. Estimating this probability as 50% from the empirical 

data gives 

so r = J210g (2) = 1.177 ... standard units 



Problem 2. 

Solution. 
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Similarly, the fraction of shots inside a circle of twice the radius of the bull's eye 

should be approximately 

1 (2 )2 1 2 4 4 15 
FR(2r) = 1 - e-2' r = 1 - (e-2'r) = 1 - (1/2) = - = 0.9375 

16 

What is the approximate average distance of the marksman's shots from the center 

of the bull's eye? 

Using the law of large numbers, this average should be approximately 

E(R) = 100 

rfR(r)dr = 100 r2e-~r2 dr by (cl) on page 359 

1100 
2 1 2 = - x e-2'x dx 

2 -00 

by symmetry 

= 12K 100 

x2cjJ(x)dx 
2 -00 

by definition of cjJ( x) 

=~ because standard normal variance is 1 

:::::: 1.253 standard units 

:::::: 1.253/1.177 = 1.065 times the bull's eye radius r 

Linear Combinations and Rotations 

Linear combinations of independent normal variables are always normally distributed. 

This important fact is another consequence of the rotational symmetry of the joint 

distribution of independent standard normal random variables X and Y. To see 

why, let Xe be the first coordinate of (X, Y) relative to new coordinate axes set up 

at angle () relative to the original X and Y axes, as in Figure 4. 

As the diagram shows, 

Xe = X cos () + Y sin () 

But due to the rotational symmetry of the joint distribution, it is clear without calcu­

lation that the probability distribution of Xe must be the same as that of X, namely, 

standard normal, no matter what the angle () of rotation. For example, the event 

x ::::; Xe ::::; x + ~x corresponding to (X, Y), falling in the area shaded in the left 

diagram of Figure 5, must have the same probability as the event x ::::; X ::::; x + ~x 
corresponding to (X, Y), falling in the area shaded in the right diagram, because the 

shape of the bivariate normal density is the same over the two shaded regions. So, 

P(x ::::; Xe ::::; x + ~x) = P(x::::; X ::::; x + ~x) 
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FIGURE 4. Projection Xo onto axis at angle e to X-axis: Xo = X cose + Y sin e. 
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FIGURE 5. Events (x :::; Xo :::; x + Dox) and (x :::; X :::; x + Dox). Rotational symmetry of the joint 

density implies these two events have the some probability. 
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for every x and ~x. This shows that XI) has normal (0,1) distribution, for every 

e. Since cos e and sin e may be arbitrary numbers 0: and f3, subject only to the 

constraint that 0:2 + f32 = 1, the rotational symmetry of the joint distribution of two 

independent normal variables X and Y implies that: 

Cd) If X and Yare two independent normal (0, 1) random variables, then o:x +f3Y 

has normal (0,1) distribution for all 0: and f3 with 0: 2 + f32 = 1. 

In pal1icular, taking 0: = f3 = 1/.;2, corresponding to rotation by 45°: 

Ce) If X and Yare independent normal (0, 1) random variables, then (X + Y)/.;2 

has normal (0, 1) distribution. 

If Z has normal (0,1) distribution, then a Z has normal (0, ( 2 ) distribution. Taking 

a = .;2, (e) implies: 

CD If X and Yare independent normal (0,1) random variables, then X + Y has 

normal (0,2) distribution. 

This argument extends to give the following general conclusion, which includes Cd), 

Ce), and CD, as special cases. 

Sums of Independent Normal Variables 
If X and Yare independent with normal (A, ( 2) and normal (J.l, r2) distribu­
tions, then X + Y has normal (A + J.l, a2 + r2) distribution. 

Proof. Recall that X has normal (A, ( 2) distribution if and only if (X - A)/a has 

normal (0,1) distribution. Transform all the variables to standard units by letting 

U = (X - A)/a and V = (Y - J.l)/r and W = X + Y - (A + J.l) --yra=;2;=+==r2;;=-'---"-

Then U and V are independent normal (0,1) random variables. By algebra, 

a 2 

W = aU + f3V where 0.2 = 2 2 
a + r 

so 0:2 + 132 = 1 

Apply Cd) above with (U, V) instead of (X, Y) to deduce that W has normal (0,1) 

distribution. So X + Y = (A+J.l)+Va2 + r2W has normal (A+J.l, a2+72) distribution. 
o 
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Example 2. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

Several Independent Normal Variables 

The result that the sum of two independent normal variables is normal extends to 

sums and linear combinations of several independent normal random variables, by 

repeated applications of the result for two variables. For example, if Xl, ... ,Xn are 

independent and normal (0,1), then Xl + ... + Xn has normal (0, n) distribution, 

with standard deviation ,,;n. 

linear combinations of normals. 

For (J = 1,2,3 suppose Xa has normal (0, (J2) distribution, and these three random 

variables are independent. 

Find P(XI + X 2 + X3 < 4). 

Let S = Xl + X 2 + X 3 . Then S has normal (0,12 + 22 + 32) distribution, and if 

Z = S / v14 is S standardized, the problem is just to find 

P(S < 4) = P(Z < 4/v'i4) = <I>(4/v'i4) ~ 0.857 

Rearranging the statement of the inequality shows this is the same as 

P(4XI - X 2 - X3 < 10) = P(L < 10) where L = 4X I - X 2 - X3 

Since the linear combination L has normal distribution with mean 0 and variance 
42 x 12 + (_1)2 X 22 + (_1)2 X 32 = 29, the probability is 

P(L < 10) = <I>(10/V29) ~ 0.968 

The Chi-Square Distribution 

By the same calculation as in two dimensions, the joint density of n independent 

normal variables at every point on the sphere of radius r in n-dimensional space 

is (1/ v"21r) n exp ( - ~ r2). This joint density is symmetric with respect to arbitrary ro­

tations of the coordinates in n-dimensional space, or spherically symmetric. So a 

cloud of points (or a galaxy of stars), in ordinary 3-dimensional space, with ap­

proximately independent normally distributed coordinates with common variance, 

appears spherical when viewed at a distance, from any perspective. For independent 

standard normal Zi let 

denote the distance of (Zl,"" Zn) from the origin in n-dimensional space. The n­

dimensional volume of a thin spherical shell of thickness dr at radius r is enrn-l dr 
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where Cn is the (n - 1 )-dimensional volume of the "surface" of a sphere of radius 1 

in n dimensions. (For n = 3, C3 = 47l', by the formula 47l'r2 for the surface area of 

a sphere of radius r in 3 dimensions.) The same argument used in two dimensions 

shows that 

(r > 0) (1) 

A change of variable allows the constant en to be evaluated by recognizing that 

the density of R; = Zr + ... + Z; is the gamma (n/2, 1/2) density introduced in 

Section 4.2: 

(t > 0) (2) 

Exercise 15 and Chapter 5 Review Exercise 26 give formulae for Cn and f(n/2). 

Statisticians call this gamma (n/2, 1/2) distribution of R; the chi-square distribution 

with n degrees of freedom. The chi-square distribution provides a useful test of good­

ness of fit, that is, how well data from an empirical distribution of n observations 

conform to the model of random sampling from a particular theoretical distribution. 

If there are only two categories, say success and failure, the model of independent 

trials with probability P of success is tested using the normal approximation to the 

binomial distribution. But for data in several categories the problem is how to com­

bine the tests for different categories in a reasonable way. This problem was solved 

as follows by the statistician Karl Pearson (1857-1936). For a finite number of cat­

egories m, let N; denote the number of results in category i. Under the hypothesis 

that the N; are counting results of independent trials with probability Pi for category 

i on each trial, it turns out that no matter what the probabilities Pi, for large enough 

n the so-called chi-square statistic 

that is the sum over categories of (observed - expected)2 / expected, has distribution 

that is approximately chi-square with m - 1 degrees of freedom. In statistical jargon, 

a value of the statistic higher than the 95th percentile point on the chi-square distri­

bution with m -1 degrees of freedom would "reject the hypothesis at the 5% level". 

Unusually small values of the chi-square statistic are sometimes taken as evidence 

to suggest that an observer fudged the data to suit the hypothesis. The exact joint 

distribution of the Ni under the hypothesis of randomness is multinomial with pa­

rameters n and Pi, ... ,Pm' The above result can be derived from a multivariate form 

of the normal approximation to the binomial. The joint distribution of N i , ... , N m 

is essentially m - 1 dimensional due to the constraint Ni + ... + N m = n. This is 

why the relevant chi-square distribution has m - 1 degrees of freedom. 

For tables of the chi-square distribution, and similar chi-square tests of other hypothe­

ses such as independence, consult a statistics book. The mean, standard deviation 
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and skewness of the chi-square distribution of R~ with n degrees of freedom are 

easily calculated (Exercise 15) 

and Skewness(R~J = 4/~ 

For large n the chi-square distribution is approximately normal, by the central limit 

theorem. Because the skewness is quite large even for moderate values of n, the 

normal approximation with skewness correction gives the better approximation 

J2 
P(R; ~ x) >:::: <I>(z) - 3y1n(z2 - 1)4>(z) where z = (x - n)/~ and x> 0 

TABLE 1. Distribution of radial distance in three dimensions. The probability that a point with 

independent standard normal coordinates in three dimensions lies inside a sphere of radius r, 

that is, P(R3 :::; r) = P(R~ :::; r2), was obtained by numerical integration of the density. 

These probabilities are shown along with their approximations obtained using the skew-normal 

approximation to the chi-square (3) distribution of R~. The approximations are surprisingly good 

considering the small value of n. 

radius r 1 2 3 4 

probability P(R3 ~ r) 0.199 0.739 0.971 0.999 

skew-normal approximation 0.233 0.741 0.966 1.000 

Exercises 5.3 
1. Continuing Example 1, calculate the following, where all distances are measured in 

standard units: 

a) the probability of a shot falling inside a circle of radius 1/2; 

b) the probability of a shot falling in the region of the positive quadrant between 

radii 1 and 2; 

c) the approximate average absolute distance of the shots from the horizontal line 

through the center of the bull's eye; 

d) the probability that a shot hit within distance r of the vertical axis through the 

center (r = radius of bull's eye in standard units); 

e) the probability of hitting a square touching the outside of the bull's eye; 

f) the probability of hitting a square touching the inside of the bull's eye; 
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g) the probability of hitting a rectangle of sides rand 2r positioned as shown relative 

to the bull's eye. 

2. Let X and Y be independent random variables, with 

E(X) = 1, E(Y) = 2, Var(X) = 3, and Var(Y) = 4. 

a) Find E(10X2 + 8y2 - XY + 8X + 5Y - 1). 

b) Assuming all variables are normally distributed, find P(2X > 3Y - 5). 

3. W, X, Y and Z are independent standard normal random variables. Find (no integra­

tions are necessary!) 

a) P(W+X>Y+Z+l); b)P(4X+3Y<Z+W); 

c) E(4X + 3Y - 2Z2 - W 2 + 8); d) SD(3Z - 2X + Y + 15). 

4. Suppose the true weight of a standard weight is 10 grams. It is weighed twice inde­

pendently. Suppose that the first measurement is a normal random variable X with 

E(X) = 10 g and SD(X) = 0.2 g, and that the second measurement is a normal 

random variable Y with E(Y) = 10 g and SD(Y) = 0.2 g. 

a) Compute the probability that the second measurement is closer to 10 g than the 

first measurement. 

b) Compute the probability that the second measurement is smaller than the first, 

but not by more than 0.2 g. 

5. Let X and Y be independent and normally distributed, X with mean 0 and variance 1, 

Y with mean l. Suppose P(X > Y) = 1/3. Find the standard deviation of Y. 

6. Let X and Y be independent standard normal variables. Find: 

a) P(3X + 2Y > 5); b) P( min (X, Y) < 1); 

c) P(I min (X, Y)I < 1); d) P( min (X, Y) > max(X, Y) - 1). 

7. Suppose the AC Transit bus is scheduled to arrive at my corner at 8: 10 A.M., but its actual 

arrival time is a normal random variable with mean 8:10 A.M" and standard deviation 

40 seconds. Suppose I try to arrive at the corner at 8:09, but my arrival time is actually 

normally distributed with mean 8:09 A.M., and standard deviation 30 seconds. 

a) What percentage of the time do I arrive at the corner before the bus is scheduled 

to arrive? 
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b) What percentage of the time do I arrive at the corner before the bus does' 

c) If I arrive at the stop at 8:09 A.M. and the bus still hasn't come by 8:12 A.M., what 

is the probability that I have already missed it? 

(State your assumptions carefully.) 

8. Peter and Paul agree to meet at a restaurant at noon. Peter arrives at a time normally 

distributed with mean 12:00 noon, and standard deviation 5 minutes. Paul arrives at 

a time normally distributed with mean 12:02 P.M., and standard deviation 3 minutes. 

Assuming the two arrival times are independent, find the chance that 

a) Peter arrives before Paul; b) both men arrive within 3 minutes of noon; 

c) the two men arrive within 3 minutes of each other. 

9. Suppose heights in a large population are approximately normally distributed with a 

mean of 5 feet 10 inches and an SD of 2 inches. Suppose a group of 100 people is 

picked at random from this population. 

a) What is the probability that the tallest person in this group is over 6 feet 4 inches 

tall? 

b) What is the probability that the average height of people in the group is over 5 

feet 10.5 inches? 

c) Suppose instead that the distribution of heights in the population was not nor­

mal, but some other distribution with the given mean and SD. To which of the 

problems a) and b) would the answer still be approximately the same? Explain 

carefully. 

10. In a large corporation, people over age thirty have an annual income whose distribution 

can be approximated by a normal distribution with mean $60,000 and standard devi­

ation $10,000. The incomes of those under age thirty are also approximately normal, 

but with mean $40,000 and standard deviation $10,000. 

a) Two people are selected at random from those over age thirty. What is the chance 

that the average of their two incomes is over $65, ODD? 

b) One person is selected at random from those over thirty, and independently, one 

person is selected at random from those under thirty. What is the chance that the 

younger's income exceeds the older's? 

c) What is the chance that the smaller of the two incomes in b) exceeds $50, OOO? 

11. Einstein's modelfor Brownian motion. Suppose that the X coordinate of a particle 

performing Brownian motion has normal distribution with mean 0 and variance (72 at 

time 1. Let X t be the X displacement after time t. Assume the displacement over any 

time interval has a normal distribution with parameters depending only on the length 

of the interval, and that displacements over disjoint time intervals are independent. 

a) Find the distribution of X t . 

b) Let (Xt, Yi) represent the position at time t of a particle 'moving in two dimen­

sions. Assume that X t and Yi are independent Brownian motions starting at 0 at 

time t = O. Find the distribution of Rt = J Xl + ~2, and give the mean and 

standard deviation in terms of (7 and t. 
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c) Suppose a particle performing Brownian motion (Xt, ytl as in b) has an X coor­

dinate after one second which has mean ° and standard deviation one millimeter 

(mm). Calculate the probability that the particle is more than 2 mm from the point 

(0,0) after one second. 

12. Suppose two shots are fired at a target. Assume each shot hits with independent nor­

mally distributed coordinates, with the same means and equal unit variances. 

a) Find the mean of the distance between the points where the two shots strike. 

b) Find the variance of the same random variable. 

13. Independence of radial and angular parts. Let X and Y be independent normal 

(0,0"2) random variables. Let (R, 8) be (X, Y) in polar coordinates, so X = Reas8, 

Y = Rsin8. 

a) Show that Rand 8 are independent, and that 8 has uniform (0,271") distribution. 

b) Let Rand 8 now be arbitrary random variables such that R/O" has the Rayleigh 

distribution (el), 8 has uniform (0,271") distribution, and Rand 8 are indepen­

dent. Explain why the random variables X = R cos 8 and Y = R sin 8 must be 

independent normal (0,0"2). 

c) Find functions hand k such that if U and V are independent uniform (0,1) 

random variables, then X = O"h(U) cos [k(V)] and Y = O"h(U) sin [k(V)] are 

independent normal (0,0"2). [This gives a means of simulating normal random 

variables using a computer random number generator. Try generating a random 

scatter of independent bivariate normally distributed pairs if you have random 

numbers available. It should look like the scatter in Example 1.] 

14. Let X and Y be independent standard normal variables. Suppose they are transformed 

into polar coordinates, X = R cos 8 and Y = R sin 8 with ° < 8 < 271" and ° < R < 
00, as in Exercise 13. 

a) Derive the distribution of 28 mod 271". [The quantity x mod a denotes the 

remainder when x is divided by a.J 

b) Derive the joint distribution of R cos 28 and R sin 28. 

c) Show that both 
2XY 

and 

have the standard normal distribution. Are they independent? 

15. Chi-square distributions. These are the special case of half-integer gamma distribu­

tions which come from sums of squares of independent standard normal variables. 

Show: 

a) If Z has standard normal distribution, then Z2 has gamma (1/2,1/2) distribution, 

and f(1/2) = .,.fo. 

b) If n is an odd integer, then f(n/2) _ .,.fo(n - I)! 
- 2n~1(n;-1)! 

c) If X has normal (0,0"2) distribution, then X 2 has gamma (1/2, 1/2(T2) distribu-

tion. 
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d) If Zl, ... , Zn are independent standard normal random variables, then Z I 2 + ... + 
Zn 2 has gamma (n/2, 1/2) distribution, also known as the chi-square distribution 

with n degrees of freedom, or chi-square (n) distribution. 

e) If YI , ... ,Yn are independent chi-square random variables with k l , ... ,kn de-

grees of freedom, respectively, then YI + ... + Yn has chi-square (k l + ... + kn ) 

distribution. 

f) The mean, variance and skewness of the chi-square (n) distribution are as stated 

on page 366. 

16. Poisson formula for the chi-square (2m) c.d.f. For m = 1,2, ... let R~m have chi­

square (2m) distribution. Use the connection between the gamma distribution and the 

Poisson process to find formulae in terms of appropriate Poisson probabilities for: 

a) the c.dJ. of R~m; b) the c.dJ. of R2m . 

c) Check that your formulae agree with the formulae in the text for m = 1. Now 

make a table of P(R4 ~ r) for r = 1, ... 5. 

17. Skew-normal approximation to the chi-square distribution. Let R~ have chi­

square (n) distribution. 

a) Find the approximation to P(R4 ~ r) for r = 1, ... 5 obtained from the skew­

normal approximation to the distribution of R~. Compare to the exact results 

found in Exercise 16. 

b) Find both the plain normal approximation and the skew-normal approximation 

to p(Rio ~ 9.34) = 0.500. Which approximation is better? 

18. Suppose a large number n identical molecules are distributed independently at random 

in a box with sides of 1 centimeter. Let X, Y, Z be the coordinates in centimeters of 

the center of mass of the n molecules at a particular instant, relative to the center of the 

box. Thus, 

X = (Xl + ... + Xn)/n 

and so on, where (Xi, Yi, Z;) are the coordinates of the ith molecule in centimeters. 

Let R = v' X2 + y2 + Z2 be the distance of the center of mass of the n molecules 

from the center of the box. Given that for the chi-square distribution with 3 degrees of 

freedom the 95th percentile is at 7.82, find approximately the value of r such that R is 

95% sure to be smaller than r. 
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Operations (Optional) 
Many applications require calculation of the distribution of some random variable Z 

which is a function of X and Y, where X and Yare random variables with some 

joint density f(x, y). Here the function of X and Y might be, for example, X + Y, 

XY, X/Y, max(X, Y), min (X, Y), or v'X2 + y2. This kind of calculation has been 

done in special cases in previous sections. For example, maxima and minima in 

Section 4.5, sums and v' X2 + y2 for normal variables in Section 5.3. This section 

gives a general technique for computing such distributions by integration. 

Calculating the whole distribution of a function of X and Y can sometimes be 

tedious. So keep in mind that for some purposes it may be enough to calculate an 

expectation. The expectation of a function of X and Y can always be expressed as 

an integral with respect to the density of (X, Y). For example, for the product XY, 

E(XY) = jjXYf(x,Y)dXdY 

= E(X)E(Y) if X and Yare independent 

despite the fact that there are very few examples where the whole distribution of a 

product of independent random variables can be found explicitly. 

One method of finding the distribution of Z = g(X, Y) is to find the c.d.f. P(Z :<:; z) 
by integration of f(x, y) over the region in the (x, y) plane where g(x, y) :<:; z. 
Provided this integral can be evaluated fairly explicitly, the density of Z can then 

be found by differentiation of the c.d.f. Usually a quicker method of finding the 

distribution of Z is to anticipate that Z will have a density function f z, and to find 

this density f z (z) = P( Z E dz) / dz by integrating the joint density of X and Y over 
the subset (Z E dz) in the (X, Y) plane. This technique gives integral formulae for 

the density for the sum X + Y, for other linear combinations like X - Y, and for the 

product XY, and ratio X/Yo The formulae for sums and ratios will now be worked 

out in detail. Results for other operations are similar and left as exercises. 

Distribution of Sums 

A good deal has already been said on this topic. Recall the addition rule for expec­

tation 

E(X + Y) = E(X) + E(Y) whatever the joint distribution of X and Y 

the addition rule for variances in the case of independence, and the central limit 

theorem governing the asymptotic distribution for the sum of a large number of 

independent and identically distributed terms. Also, the exact distribution of sums 

has been computed in special cases by a variety of methods. The following table 

reviews some important examples: 
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Distribution of terms Distribution of sum See Section 

n independent Bernoulli (p) binomial (n,p) 2.1 

independent Poisson (JLi) Poisson (L:JLi) 3.5 

independent normal (JLi, crT) normal (L:JLi' L:cr7) 5.3 

r independent geometric (p) negative binomial (r, p) 3.4 

r independent exponential (A) gamma (r, A) 4.2 

In the discrete case the distribution of the sum of random variables is determined 

by the formula 

P(X + Y = z) = L P(X = x, Y = z - x) 
all x 

found in Section 4.1. The following display gives the corresponding formula for 

densities: 

Density of X + y 
If (X, Y) has density f(x, y) in the plane, then X + Y has density on the line 

fx+y(z) = I: f(x, z - x)dx 

Density Convolution Formula 

If X and Yare independent, then 

fx+y(z) = I: fx(x)Jy(z - x)dx 

Note: If the random variables X and Yare non-negative, then the lower limit 

of integration in the convolution formula can be changed from -00 to 0, since 

fx(x) = ° for all x < 0, and the upper limit can be changed from 00 to z, 
since Jy(z - x) = ° for x> z. 

The convolution formula is the special case of the formula for the density of X + Y 

when f(x, y) = fx (x)Jy(y) by independence. This operation on probability density 

functions fx and fy is called convolution. It leads to a new density, the density of 

the sum of random variables X and Y, assumed independent. 

To avoid confusion about limits of integration in particular examples, sketch the sub­

set of the plane where the joint density is strictly positive. and the line of integration 

corresponding to X + Y = z, as in examples below. 
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Derivation of the density of X + Y. Let Z = X + Y. The event (Z E dz) is shaded 

in the following diagram: 

(X e dx) 

(Xedx Zedz) 
y= z- x r----__''\... 

x x+ dx z+ dz 

The event (Z E dz) can be broken up into vertical slices according to the values of 

X, as suggested by the vertical shading in the diagram. The heavily shaded paral­

lelogram contained in the event (Z E dz) near the point (x, z - x), represents the 

intersection of the events (X E dx) and (Z E dz), and has area dx dz. The probability 

density near this little parallelogram is f (x, z - x), so 

(al) P(X E dx, Z E dz) = f(x, z - x)dxdz 

This formula gives the joint density of X and Z. The marginal density of Z = X + Y 

is therefore obtained by integrating out the x-variable 

(a2) P(Z E dz) = [1: f(x, z - X)dX] dz 

This gives the boxed formula for the density of Z = X + Y. Intuitively, you can 

think of (a2) as obtained by summing over infinitesimal parallelograms as in (anD 

Sums of independent exponential variables. 

In Section 4.2 a Poisson process argument was used to show that the distribution 

of the sum of r independent exponential (>.) random variables is gamma (r, >'): If 

fr,).. (t) denotes the density of such a sum, then 

(t ~ 0) 
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This fact can also be derived using the convolution formula. Here is the calculation 

for r = 2. 

Suppose T and U are independent, each exponentially distributed with rate ),. By 

independence, the joint density of T and U at (t, u) is 

(t,u ~ 0) 

Note how this joint density is a function of t + u. You can see the effect of this in 

Figure 1. 

The density of S = T + U at s is given by the convolution formula 

fs(s) = i: h(t)fu(s - t)dt 

= 1s 
h(t)fu(s - t)dt 

= 1s ),e->.t ),e->.(s-t)dt 

= 1s 
),2e->.sdt 

(s ~ 0) 

since h (t) = 0 if t < 0 

and fu(s - t) = 0 if t > s 

See Figure 1. For small s the factor of s makes the density grow linearly near zero. 

For large s the exponential factor e->'s brings the density down to zero very rapidly. 

Another way to derive this density is to argue infinitesimally: Let s ~ O. The prob­

ability of (S E ds) is the integral of the joint density over the infinite strip (( t, u) : 
s ::; t + u ::; s + ds). We need only integrate over the (approximately) rectangular 

segment ((t, u) : s ::; t + u ::; s + ds, t ~ 0, u ~ 0), where the joint density is 

nonzero. This segment has length v'2s and width ds / v'2, and the joint density has 
nearly constant value ),2e->.(t+u) = ),2e->'s for points (t, u) in this segment; so the 

desired probability is 

(s ~ 0) 

The fact that the sum of r independent exponential (),) variables has gamma (r,),) 
distribution can be derived from the convolution formula by mathematical induction 

on r. 
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FIGURE 1. Distribution of the sum of two independent exponential variables. Here is a random 

scatter of points suggesting the joint density of independent exponential variables T and U , along 

with grophs of the densities of T, U, and S = T + U. 
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Sums of independent gamma variables. 
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Recall from Section 4.2 that the gamma (r, A) distribution is defined for every real 

r > 0 by the density 

t>O 
t::;O 

If Tr and Ts are independent random variables with gamma (r, A) and gamma 

(s, J\) distributions, respectively, then Tr + Ts has gamma (r + s, A) distribution. 

Proof for positive integers rand s. This case follows from the representation of a 

gamma variable as the sum of independent exponential variables. To see how, note 

first that the density of an independent sum Tr + Ts is determined by the densities 
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of Tr and Ts, by the convolution formula. So it is enough to derive the result for any 

convenient pair of independent random variables with gamma (r,'x) and gamma 

(s, ,X) distributions. But the conclusion is obvious if we consider 

Tr = WI + ... + Wr and T~ = W{ + ... + W~ 

defined by r + s independent exponentials WI"" Wr, W{, ... , W;. Because then 

Tr + T~ = WI + ... + Wr + W{ + ... + W~ 

is the sum of r + s independent exponentials, with gamma (r + s,'x) distribution. 0 

Proof for positive half-integers r and 8. The case r = n/2 and s = m/2 for 

positive integers nand m can be derived almost the same way, using the result found 

in Section 5.3 that the gamma (n/2, 1/2) distribution is the chi-square distribution of 

the sum of squares of n independent standard normal variables. Adding the sum of 

squares of n variables to the sum of squares of m variables gives the sum of squares 

of n + m variables. Changing the rate parameter 1/2 to a general ,X is just a matter of 

multiplying of the chi-square variables by 1/(2'x). (See Exercises 5.3.15 and 4.4.2). 
o 

Proof for general positive r and 8. For r > 0, s > 0, let Tr and Ts be independent, 

with gamma (r,'x) and gamma (s,'x) distributions, and let Z = Tr + Ts. Then by the 

convolution formula 

(x = zu,dx = zdu) 

where fr+s,>.(z) is the gamma (r+s,'x) density. The integral on the right is a constant 

which does not depend on z. Since both fz (z) and fr+s,>. (z) are probability densities 

on (0,00), integrating both sides with respect to z from 0 to 00 gives 

1 = 1 x rl f(r + s) ur - l (l _ u)S-ldu 
10 f(r)f(s) 
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So the integral must equal 1. Therefore Z has the gamma (r + s, >.) density. 0 

The last line of the previous argument evaluates an important integral: 

The Beta Integral 

B(r, s) = r1 ur - 1(1 _ uy-1du = r(r)r(s) 
10 r(r+s) 

(r > 0, s > 0) 

This evaluation of B(r, s) in terms of the gamma function agrees with the evaluation 

in Section 4.6 for integer rand s because r(r) = (r - I)! for positive integers r. 

Sums of independent uniform variables. 

Two terms. Suppose X and Yare independent, each with uniform (0,1) distribu­

tion. To find the density of X + Y it is simpler to work directly with a diagram than 

to use the convolution formula. Here (X, Y) has uniform distribution on the unit 

square. See Figure 2 on page 380. 

2 - z .... 

'.1 dz ..... 

'---___ --' .. '>: :t..~. ~~ . ':-'-::>1 
z 2 

1 2 z 

For 0 < z < 1, the event (X + Y E dz) is rep­

resented as in the diagram by a shape of area 

z dz + ~ (dZ)2, by splitting the area into a paral­

lelogram with altitude z perpendicular to sides 

of length dz, plus half a square of side dz. 
Ignoring the (dz)2 as negligible in comparison 

to dz, gives simply 

P(Z E dz) = zdz 

since the total area is 1. Similarly, for 1 :::; z < 2, 

P(Z E dz) = (2 - z)dz 

Thus Z = X + Y has a tent-shaped density, 

O<z<l 
1:::;z<2 
otherwise 

Three terms. Consider now T = X + Y + W where X, Y, and Ware independent 

uniform (0,1). The joint distribution of (X, Y, W) is now uniform on a unit cube, and 

the density of T is proportional to the areas of slices through the cube perpendicular 

to an axis passing through the long diagonal. As you can convince yourself by 

handling a real cube, there are now several cases depending on which faces of the 

cube cut the slicing plane. This 3-dimensional geometry is tricky, but it reduces to 

two simpler two-dimensional problems. 
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To compute the density of T = X + Y + W where X, Y, and Ware independent 

uniform (0, 1), write T = X + Y + W = Z + W, say, where the density of Z = X + Y 
was found before. The convolution formula gives the density of T = Z + W as an 

integral 

h(t) = i: fz(z)fw(t - z)dz 

= it fz(z)dz since fw(t - z) = 1 for t - 1 < z < t, 0 else 
t-l 

= P(t - 1 < Z < t) by definition of fz 

So the probability density of T at t turns out in this case to be a probability defined 

in terms of Z and t. This probability is represented by the shaded areas under the 

density fz(z) in the diagrams that follow. There are 3 cases to consider. 

Case 1. 0 < t < 1. Then t - 1 < 0, so 

1 
h(t) = P(t - 1 < Z < t) = 2't2 

by the formula for area of a triangle. 

t 1 2 

Case 2. 1 < t < 2. Then 0 < t - 1 < 1. The relevant area is a unit square less two 

triangles, hence 

h(t) = P(t - 1 < Z < t) 

= 1 - ~(2 - t)2 - ~(t - 1)2 
2 2 

= _t2 + 3t - ~ 
2 

o t -1 1 
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Case 3. 2 < t < 3. Then 1 < t - 1 < 2. The relevant area is now another triangle 

1 
fr(t) = P(t - 1 < Z < t) = 2(3 - t)2 

o 1 

To summarize, the density of the sum T = X + Y + W of three independent uniform 

(0,1) variables is fr(t), as defined above by quadratic functions of t, on each of the 

intervals (0,1), (1,2), and (2,3), and zero elsewhere. See Figures 2 and 3. Note the 

symmetric bell shape of the density of T. 

° 1 3/2 2 

Illustration of Example 3 by numerical calculations. Let T = X + Y + W wh'ere 

X, Y, and Ware independent with uniform (0,1) distribution. Let us find: 

a) P(T < 3/2) = 1/2 by symmetry of the density of T about 3/2, 

b) P(1/2 < T < 3/2) = P(T < 3/2) - P(T ::; 1/2) 

11/2 t2 23 
= 1/2 - -dt = - by a) and Case 1 on page 378 

o 2 48 

c) P(T> 5/2) = P(T ::; 1/2) = 1/48 by integral evaluated in b); 

d) E(T) = 3/2 by symmetry; 

e) SD(T) = V3SD(W) where W is uniform (0,1), by the square root law 

= V3. 1/V12 by calculation done in Section 4.1 

= 1/2 
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FIGURE 2. Distribution of the sum of two independent uniform (0,1) variables X and Y. The 

joint density of (X, Y) is suggested by a scatter, along with graphs of the densities of X, Y, and 

X+Y. 
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FIGURE 3. Distribution of the sum of three independent uniform (0,1) variables X, Y, and W. 

The joint density of (X + Y, W) is suggested by a scatter, along with graphs of the densities of 
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FIGURE 4. Density of the sum of n independent uniform (0,1) variables. The graphs are all 

centered at the mean with a constant horizontal distance on the page representing one standard 

unit in each graph. This shows how rapidly the shape of the distribution becomes normal as n 

increases. 

n=l 

o 1 

n=2 

o 1 2 

n=3 

o 1 2 3 

n=4 

o 1 2 3 4 

n=5 

o 1 2 3 4 5 
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Example 4. Roundoff errors. 

Problem. Suppose three numbers are computed, each with a roundoff error known to be 

smaller than 10-6 in absolute value. If the roundoff errors are assumed indepen­

dent and uniformly distributed, what is the probability that the sum of the rounded 

numbers differs from the true sum of the numbers by more than 2 x 1O-6? 

Solution. Let Xi be the error in the ith number in multiples of 10-6 , so the Xi are independent 

uniform (-1,1). To reduce to previous calculations, let Ui = (Xi + 1)/2, so the Ui 
are independent uniform (0,1). The problem is to find 

P(IX1 + X 2 + X 3 1 > 2) = 2P(X1 + X 2 + X3 > 2) by symmetry 

= 2P(2U1 - 1 + 2U2 - 1 + 2U3 - 1 > 2) 

= 2P(U1 + U2 + U3 > 5/2) 

= 2/48 by numerical calculation c) of Example 3 above. 

Distribution of Ratios 
Let Z = Y / X. The event (Z E dz) is shaded in the following diagram, for z > o. 

y 

y= (z+ dz)x 

y=zx 

(XE dx) 

The event (Z E dz) is broken up into vertical slices according to values of X. 
The heavily shaded region, near (x ,xz), represents the event (X E dx,Z E dz). 
For small dx and dz this region is approximately a parallelogram. The left side has 

length Ixldz, and there is distance dx between the two vertical sides, so the area of 

the parallelogram is approximately Ixldz dx = Ixldx dz. The probability density over 

the small parallelogram can be taken to be J(x, xz), so as dx and dz tend to zero 

we obtain the formula 

P(X E dx ,Y/X E dz) = J(x,xz)lxldxdz 

This works just as well for z < 0, though the picture looks a little different. Integrating 

out x yields 
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Problem. 

Solution. 

Remark. 
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CD h/x(z) = 1: Ixl!(x, xz)dx 

As a special case, if X and Yare independent positive random variables, CD reduces 

to !y/x(z) = 0 for z::::; 0, and 

(g) h/x(z) = 100 

x!x(x)Jy(xz)dx (0 < z < 00) 

Ratio of independent normal variables. 

Suppose that X and Yare independent and normally distributed with mean 0 and 

variance a 2 . 

Find the distribution of X/Yo 

We may assume a = 1, since 

X 

Y 
and both X/a and Y/a 

By symmetry between X and Y and CD above 

are standard normal. 

fx/y(z) = h/x(z) = i: Ixlfx,Y(x, xz)dx 

That is, X/Y has Cauchy distribution (see Exercise 4.4.6). 

This calculation illustates the general method, but is a bit heavy handed. In fact 

the distribution of X/Y is Cauchy whenever the joint distribution of X and Y is 

symmetric under rotations. See Exercise 14 below. 
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Exercises 5.4 
1. Let Xl be uniform (0, 1) independent of X 2 , that is, uniform (0, 2). Find: 

a) P(XI + X2 ::; 2); b) the density of Xl + X 2; c) the c.d.f. of Xl + X 2. 

2. Let Sn be the sum of n independent uniform (0,1) random variables. Find 

a) P(S2 ::; l.5); b) P(S3 ::; l.5); c) PUh ::; 1.1); 

d) P(l.O::; S3 ::; l.001) approximately. 

3. A computer job must pass through two queues before it is processed. Suppose the 

waiting time in the first queue is exponential with rate 0:, and the waiting time in {he 

second queue is exponential with rate (3, independent of the first. 

a) Find the density of the total time the job spends waiting in the two queues. Sketch 

the density in case 0: = 1 and (3 = 2. 

b) Find the expected total waiting time in terms of 0: and (3. 

c) Find the SD of the total waiting time in terms of 0: and (3. 

4. A system consists of two components. Suppose each component is subject to failure at 

constant rate .\, independently of the other, up to when the first component fails. After 

that moment the remaining component is subject to additional load and to failure at 

constant rate 2,\. 

a) Find the distribution of the time until both components have failed. 

b) What are the mean and variance of this distribution? 

c) Find the 90th percentile of this distribution. 

5. Let X be the number on a die roll, between 1 and 6. Let Y be a random number which 

is uniformly distributed on [0, 1l, independent of X. Let Z = lOX + lOY. 

a) What is the distribution of Z? Explain. 

b) Find P(29 ::; Z ::; 58). 

6. Suppose Xl, X2, ... ,Xn are independent and Xi has gamma (1'i'.\) distribution. What 

is the distribution of Xl + X2 + ... + Xn? Explain. 

7. Let X and Y have joint density f(x, y). Find formulae for the densities of each of the 

following random variables: a) XY; b) X -- Y; c) X + 2Y. 

8. Let X and Y be independent exponential variables with rates 0: and {3. Find the c.d.f. 

of X/Yo 

9. Find the density of X = UV for independent uniform (0, 1) variables U and V. 

10. Find the density of Y = U/V for independent uniform (0,1) variables U and V. 

11. Find the distribution of min (U, V)/ max(U, V) for independent uniform(O, 1) variables 

U and V. 

12. Let U, V be independent random variables, each uniform on (0,1). 

(a) Find the density of X = -log {U(l - V)}. b) Compute E(X) and Va1'(X). 
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13. Find the density of Z = X - Y for independent exponential (A) variables X and Y. 

14. Let X and Y have a joint distribution which is symmetric under rotations (e.g., uni­

form on a circle around 0, or uniform on a disc centered at 0). By changing to polar 

coordinates, show that 

a) the distribution of X/Y is Cauchy (see Exercise 4.4.6); 

b) the distribution of X 2 /(X2 + y2) is arcsine (see Exercise 4.4.8). 

15. Let Z = min (X, Y)/ max(X, Y) for independent exponential (A) variables X and Y. 

a) Explain with little calculation why the distribution of Z does not depend on A 

b) Let 0 < z < 1. Identify the set (Z ::; z) as a subset of the (x, y) plane, and 

calculate P( Z ::; z) by integration of the joint density over this subset. 

c) Find the density of Z at z for 0 < z < 1. 

16. Consider the c.d.f. of T with gamma (r, A) distribution, F(r, A, t) = P(T ::; t). Sec­

tion 4.2 gives a formula for F(r, A, t) for integer r, but for r not an integer there is no 

simple formula for F(r, A, t). 

a) Show that for fixed rand t, F(r, A, t) is an increasing function of A. [Hint: Rescale 

to the gamma (r, 1) distribution.l 

b) Show that for fixed A and t, F(r, A, t) is a decreasing function of r. [Hint: ese 

sums of independent gamma variables.l 

17. Take a unit cube in three dimensions. Cut the cube by a plane perpendicular to the line 

from its corners (0,0,0) and (1,1,1), that cuts this line at the point (t/3, t/3, t/3). 

a) What is the cross-sectional area of this slice through the cube? 

b) Check your answer by describing geometrically the shape of the cross section in 

the case when t ::; 1 and t = 3/2. 

18. Let In be the density function and Fn the c.d.f. of the sum 8n of n independent uniform 

(0, 1) random variables. 

a) Show that In(x) = Fn-l(X) - Fn-I{x - 1). 

b) Show that on each of the n intervals (i - 1, i) for i = 1 to n, In is equal to a 

polynomial of degree n - 1, and Fn is equal to a polynomial of degree n. 

c) Find In(x) and Fn(x) for 0::; x ::; 1. 

d) Find In(x) and Fn(x) for n - 1::; x ::; n. 

Find also: e) P(O ::; 84::; 1); f) P(l ::; 84 ::; 2); g) P(1.5 ::; 84 ::; 2). 

19. Let X and Y be independent variables with gamma (r, A) and gamma (8, A) distribution. 

respectively. Show that X / (X + Y) has beta (r, 8) distribution, independently of X + Y. 



386 Chapter 5. Continuous Joint Distributions 

Continuous Joint Distributions: Summary 

Differential Formula for Joint Density 

P(X E dx, Y E dy) = f(x, y)dx dy 

The density f(x, y) is the probability per unit area for values near (x, y). See pages 348 

and 349 of Section 5.2 for properties of joint densities, and comparison with joint distri­

butions in the discrete case. 

Central Limit Theorem 

Let Xl, X 2 , ... be a sequence of independent, identically distributed random variables, 

each with mean J-l and variance a-2 . Let Sn = Xl + ... + X n. Provided a-2 < 00, the limit 

distribution, as n --+ 00, of the standardized sum Zn = [Sn - nJ-ll/( y'na-) is the standard 

normal distribution. 

Formula for Density of X + y 

If (X, Y) has density f(x, y) in the plane, then X + Y has density on the line 

fx+y(z) = I: f(x, z - x)dx. 

Convolution Formula 

If X and Yare independent, then 

fx+y(z) = I: fx(x)Jy(z - x)dx. 

Exact distribution of various functions of particular variables. See distribution summaries. 

The Rayleigh Distribution 

If X and Yare independent standard normal variables, then R = J X2 + y2 has the 

Rayleigh distribution, with density 

fR(r) = re-!r2
, r > 0, 

and distribution function 

r > O. 

The variable R represents the distance from the origin of the random point (X, Y). 



Summary 

Review Exercises 

1. For X and Y independent and uniform (0, 1), find P(Y :2: 1/21 Y :2: X2). 

2. For X and Y independent and both uniform ( -1, 1), find 

a) P(IX + YI ::; 1); b) E(IX + YI)· 
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3. Coin in a can. A coin of diameter 1 inch is tossed in the air and caught in an empty 

soup can of bottom radius 3 inches. The coin lies flat on the bottom. 

a) What is the chance that the coin covers the center point of the bottom of the can? 

Suppose that instead of the soup can, the coin is dropped into a box whose bottom is 

a square with sides of length 5 inches. 

b) What is the chance that the coin covers the center point of the bottom of the box? 

c) Consider one of the main diagonals of the bottom of the box. What is the prob­

ability that part of the coin crosses that diagonal line? 

State any assumptions you make. 

4. Let X and Y be independent with uniform ( -1, 1) distribution. Find 

a) p(X2 + y2) ::; r2; b) the c.d.f. of R2 = X 2 + y2; c) the density of R2 

5. A point is chosen uniformly at random from a unit square. Let D be the distance of the 

point from the midpoint of one side of the square. Find a) P(D :2: ~); b) E(D2 ). 

6. For a particular kind of call, the phone company charges $1 for the first minute or any 

portion thereof, and one cent per second for time after the first minute. Calculate the 

approximate value of the long-run average charge per call assuming the distribution of 

call duration is: 

a) exponential with mean 1 minute; 

b) exponential with mean 2 minutes; 

c) gamma with shape parameter 2 and mean 1 minute. 

7. Suppose that Xl, X 2 , •.• ,XlOO are independent random variables, with normal (/1, 1) 
distribution, representing 100 measurements whose average X = (Xl + ... + X 100) / 1 00 

should be close to the number /1. Calculate the probability that IX - /11 :2: 0.25. 

8. Suppose that Xl, ... , X lOO are independent random variables with common distribution 

with mean /1 and variance 1, but not necessarily normally distributed. Repeat Exercise 7 

with these assumptions. Explain why the answer will be approximately the same. 

9. Let X be the number of heads in two fair coin tosses. Suppose U has uniform distribu­

tion on (0,1), independently of X. 

a) Find the density of X + U and sketch its graph. 

b) Find an alternate distribution for U such that for any integer-valued random vari­

able X independent of U, the graph of the density of X + U is simply the usual 

histogram of the distribution of X. 

10. Let X, Y be independent exponential random variables with parameters A and /1. 
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a) Find the density function for Z = min(X, Y). 

b) Calculate P(X 2': Y). 

c) Calculate P(! < X/Y < 2), in the case A = J1. [Hint: Use the result of b).] 

11. Let U and V be two independent uniform (0,1) random variables. Let X = U/V. 

a) For 0 < x < 1, calculate P(X > x). 

b) Find the c.dJ. F of the random variable X. Sketch the graph of F. 

c) Find the density function f of X. Sketch the graph of f. 

12. A marksman fires at the center of a target; he hits a random point (X, Y) (measured 

relative to the center of the target) such that X and Yare independent normal (0, a2 ) 

random variables. A second marksman fires, and hits at (X', yl) where X' and y' 

are independent with normal (0, b2 ) distributions. What is the chance that the second 

marksman hits closer to the center of the target than the first marksman? 

13. Suppose (X, Y) is uniformly distributed according to relative arc length on the circum­

ference of the circle {(x, y) : x2 + y2 = I}. Find the c.dJ. of 

a) X; b) Y; c) X + Y. 

14. Suppose UI, U2, U3 are independent and uniform (0,1). Find: a) P(UI < U2 < U3); 

b) E(UIU2U3); c) Va1'(UIU2U3); d) P(UIU2 > U3): e) P(max(UI , U2) > U3). 

15. Repeat Exercise 14 for Zi instead of Ui , where the Zi are independent normal (0,1) 

random variables. Find also: 

o P(Z? + zi > 1) g) P(ZI + Z2 + Z3 < 2); 

h) P(ZdZ2 < 1); i) P(3Z1 - 2Z2 < 4Z3 + 1). 

16. A point is picked randomly in space. Its three coordinates X, Y and Z are independent 

standard normal variables. Let R = ..; X2 + y2 + Z2 be the distance of the point from 

the origin. Find 

a) the density of R2; b) the density of R; c) E(R); d) Va1'(R). 

17. Let Xl, X 2 , ... , be independent normally distributed random variables having mean 0 

and variance 1. Use the normal approximation to find: 

a) P(Xf + X? + ... + Xfoo 2': 80); 

b) a number c such that P(100 - c :::; Xf + ... + Xfoo :::; 100 + c) ~ 0.95. 

18. For X and Y independent normal (0,1) variables, show that for l' > 0 

~ 1 lr2 
P(aX + bY:::; 1'v a2 + b2 for all a, b 2': 0) = <1>(1') - "4e- 2 

19. Independent Poisson processes. Suppose particles of d different kinds, labeled k = 

1,2, ... , d, arrive at a counter according to independent Poisson processes at rates Ak. 
Let Wk be arrival time of the first particle of kind k. Let KI be the kind of the first 

particle to arrive, K2 the kind of the second particle to arrive, and so on. So the K n 

are discrete random variables with values in the set {I, ... , d}. 

a) Express the event (K I = k) in terms of the random variables WI, ... , Wd. 
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b) Use this expression to find Pk = P(K1 = k), 1 :s: k :s: d in terms of AI, ... ,Ad. 

c) Explain informally why K 1 ,K2 , ... are independent with identical distribution. 

d) Assuming the result of c), derive the formula for Pk in another way after filling in 

the blanks in the following statements e). f) and g): After a very long time T, 

e) the number of arrivals of type k should be about ___ _ 

f) the number of all arrivals of all types should be about ___ _ 

g) the fraction of all arrivals that are of type k should be about ___ _ 

20. Minimum of independent exponential variables. Let Tl and T2 be two independent 

exponential variables, with rates Al and A2. Think of Ti as the lifetime of component i, 

i = 1,2. Let Tmin represent the lifetime of a system which fails whenever the first of the 

two components fails, so Tmin = min(T1' T2)' Let Xmin designate which component 

failed first, so Xmin has value 1 if T1 < T2 and value 2 if T2 < T1. Show: 

a) that the distribution of Tmin is exponential (AI + A2); 

A 
b) that the distribution of X min is given by the formula P(Xmin = i) = -,--'- for 

III + A2 
i = 1,2; 

c) that the random variables Tmin and Xmin are independent; 

d) how these results generalize simply to describe the minimum of n independent 

exponential random variables with rates AI, ... , An. 

21. Closest point. Consider a Poisson random scatter of points in a plane with mean 

intensity A per unit area. Let R be the distance from ° to the closest point of the scatter. 

a) Find formulae for the c.d.f. and density of R, and sketch their graphs. 

b) Show that V2An"R has the Rayleigh distribution described in Section 5.3 

c) Use b) to find formulae for the mean and SD of R from results of Section 5.3. 

d) Find the mode and the median of the distribution of R. 

22. [n Maxwell's model of a gas, molecules of mass m are assumed to have velocity com­

ponents, Vx , Vy, Vz that are independent, with a joint distrihution that is invariant under 

rotation of the three-dimensional coordinate system. Maxwell showed that Vx, Vy, Vz 

must have normal (0, cr 2 ) distribution for some (T. Taking this result for granted: 

a) find a formula for the density of the kinetic energy 

1 2 1 2 1 2 

K = 2'mVx + 2'mVy + 2'mVz 

b) find the mean and mode of the energy distribution. 

23. Let Y be the minimum of three independent random variables with uniform distribution 

on (0,1), and let Z be their maximum. Find: 

a) P(Z:S: ~IY2': ~); b)P(Z:S: ~IY:S: ~). 

24. A coin of diameter d is tossed at random on a grid of squares of side s. Making appro­

priate assumptions, to be stated clearly, calculate: 

a) the probability that the coin lands inside some square (i.e., not touching any line); 
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b) the probability that the coin lands heads inside some square. 

Suppose now that the coin is tossed four times. Let X be the number of times it lands 

inside a square, Y the number of heads. Assume d = s/2. Calculate: 

c) P(X = Y); d) P(X < Y); e) P(X > Y). 

25. Joint distribution of order statistics. Let VI < V2 < ... < Vn be the order statistics 

of n independent uniform (0,1) variables. (Refer to Section 4.6.) Let 1:::; k < m :::; n. 

a) Find the joint density of Vk and V m. 

Now show that each of the following variables has a beta distribution, and identify the 

parameters: b) Vm - Vk; c) Vk/Vm; 

26. Averages of order statistics. Let VI, ... , Vn be the order statistics of n independent 

uniform (0,1) variables. Let 

AaU = (VI + ... + Vn)/n 
Ain = (VI + Vn)/2 
Amid = 1/(n+I)/2 the middle value, where you can assume n is odd. 

a) Show that for sufficiently large n, each of these three variables is most likely very 

close to 1/2. 

b) For all large enough values of n, one of these variables can be expected to be 

very much closer to 1/2 than either of the two others. Which one, and why? 

c) Confirm your answer to b) for n = 100 by finding for each of the A's a good 

approximation to the probability that it is between 0.49 and 0.51. 

27. A box contains n balls numbered 1, . .. , n. Balls are drawn at random until the first draw 

that produces a ball obtained on some previous draw. Let Dn be the random number 

of draws required. So the possible values of Dn are 2, ... ,n + 1. 

a) Check that for 0 < x < 00, 

lim P(Dn/vn> x) = e- x2
/ 2 

n~oo 

That is to say, the limit distribution of D n / vn is the Rayleigh distribution. 

b) Assuming a switch in the order of the limit and integration can be justified Cit can, 

but do not worry about that), deduce that 

lim E(Dn/vn) = v;J2 
n~oo 

c) There seems to be no simpler expression for E(Dn) than a sum of n or n + 1 

terms. But the terms can be arranged in some interesting ways. Show by writing 

E(Dn) as the sum of the tail probabilities P(Dn > k) in reverse order that 

E(Dn) = P(Xn :::; n)n!n-nen 

where Xn is a Poisson random variable with mean n. 

d) Deduce the limit of P(Xn :::; n) as n -> 00 from the central limit theorem, then 

combine b) and c) to give a derivation of Stirling's formula 

n! "" v27rn (; r 
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e) Derive the following formula, which is surprisingly simple in view of c) 

f) Transform the identity e) as in the calculation c) to derive the formula 

2nn +1 

E(IXn - nil = --, 
enn. 

and give yet another derivation of Stirling's formula, much as in d) above, this 

time using the central limit theorem instead of a). 

28. Volumes in higher dimensions. Use the derivation of the chi-square distribution to 

derive part a), then use a) for the remaining parts: 

a) Find the constant C n such that the (n - I)-dimensional volume of the "surface" 

of a sphere of radius r in n-dimensional space is cnrn- l . 

b) Find dn so the n-dimensional volume inside a sphere of radius r is dnrn 

c) An n-dimensional sphere of radius r is packed inside an n-dimensional cube with 

sides of length 2r. What proportion pn of the volume of the cube is inside the 

sphere? 

d) Use Stirling's formula f(s) rv y'2:;;:ss-I/2 e-s as s -+ 00 to find a simple approxi­

mation for Pn for large n. What is the limit of pn as n -+ oo? 

e) Interpret pn probabilistic ally in terms of n independent uniform ( -1, 1) variables. 

29. A needle is tossed at random on a grid of equally spaced parallel lines. Assume the 

needle is so much longer than the spacing between the lines that the possibility of the 

needle not crossing any line can be neglected. Let X be the distance between the center 

of the needle and the closest point at which the needle crosses one of the lines. Find: 

a) the distribution function of X; 

b) the density function of X. 

30. Random walk inside squares. Draw a square centered at (0,0) with sides of length 

2 parallel to the axes, so the corners are at (± 1, ± 1). Let (Xl, Yl ) be picked uniformly 

at random from the area inside this square. Given (X I, Yl ), draw a square centered at 

(Xl, YI), with sides of length 2 parallel to the axes, so the corners are at (Xl ±1, X2±1). 
Let (X2 , Y2 ), be picked uniformly at random from the area inside this square, and so 

on: Given (Xl, YI), ... , (Xn, Yn) let (Xn+l , Yn+I) be picked uniformly at random from 

the area inside the square with corners at (Xn ± 1, Yn ± 1). For n = 300, use a normal 

approximation to find the following probabilities: 

a) P(IXnl > 10); b) P(IYnl > 10). 

c) The probability that (Xn , Yn) lies outside the square with corners at (±1O, ±10). 

d) The probability that (Xn, Yn) lies outside the circle of radius 10 centered at (0,0). 

31. Random walk inside circles. Fix r > O. Draw a circle centered at (0,0) with ra­

dius r. Let (Xl, Yl ) be picked uniformly at random from the area inside this cir­

cle. Given (Xl, Yl ), draw a circle with radius r centered at (Xl, Yl ). Let (X2 , Y2 ), 

be picked uniformly at random from the area inside this circle, and so on. Given 

(Xl, Yl ), ... , (Xn, Yn), let (Xn+1' Yn+l) be picked uniformly at random from the area 

inside the circle around (Xn, Yn) with radius r. 
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a) Find r so that for large n the distribution of Xn in this problem is nearly the same 

as in Exercise 30 for a square of side 2 instead of the circle of radius r. [Hint: 
Find E[Xf] by considering E[YI2] as well.] 

b) Are Xn and Yn independent? 

c) The point (Xn, Yn ) is projected onto the line rotated an angle 0 from the X­
axis at Xn cos 0 + Yn sin 0 measured from the origin along this line. Use the 

normal approximation for sums of independent random variables to show that 

with r as in part a), for every 0 E [0,27l'] and for large n, the distribution of 

X n cos 0 + Yn sin 0 is nearly the same for both the circle of radius r and the 

square of side 2. 

d) It is known that a joint distribution of (X, Y) in the plane is determined by the 

distributions of all the projections X cos 0 + Y sin 0 as 0 ranges over [0, 27l']. In 

particular if X cos 0 + Y sin 0 has standard normal distribution for every 0 then 

X and Yare independent standard normal variables. An approximate version of 

this result is also true: if X cos 0 + Y sin 0 has approximately the standard normal 

distribution for every 0, then X and Yare approximately independent standard 

normal variables. Apply this result and part c) to approximate the probability that 

for r as in part a), and n = 300, the point (Xn, Yn) defined using circles of radius 

r lies outside the circle of radius 10 centered at the origin. 

32. Random walk on circles. Repeat Exercise 31 for the motion defined by picking points 

at random according to the uniform distribution on the perimeter of the circle of radius 

r, so each new point is at distance r from the previous one, in a random direction. 

33. Mixture of discrete and continuous. Repeat Exercise 31 for the motion defined by 

repeatedly picking points at random according to the uniform distribution (proportional 

to length) on the perimeter of a square centered at the current point with sides of length 

2r. Note that the distribution of Xn in this case is neither discrete nor continuous but a 

mixture of the two kinds. The second moment of XI is defined by adding the discrete 

and continuous parts. It can be shown that the usual method of calculating the second 

moment of Xn is still valid, and that the normal approximation is still correct in the 

limit of large n. Following parts a) to d) as in Exercise 31, 

e) Calculate and plot the graph of the distribution function of XI. 

f) Calculate and plot the graph of the distribution function of X2. 

g) What is the total probability in the discrete part of the distribution of Xn? 

34. Ratios of sums of squares. 

a) Use the result of Exercise 5.4.19 to show that if X, Y and Z are independent 

normal (0, 1) random variables, then X 2/(X2 + y2 + Z2) has beta (1/2, 1) dis­

tribution, independent of X2 + y2 + Z2. 

b) Suppose that (U, V, W) has uniform distribution on the surface of the unit sphere 

in three dimensions. Deduce from a) that U2/(U2 + V2 + W2) has beta (1/2, 1) 

distribution. 

c) What is the distribution of U2/(U2 + V2 + W2) if (U, V, W) has uniform distri­

bution over the volume inside the unit sphere in three dimensions? 

d) Suppose that U1 , U2 , ... , Un are independent uniform (-1,1) variables. For 1 ~ 

k ~ n, let Sk = U? + ... + Ur Find the the conditional distribution of Sk/Sn 

given that Sn ~ 1. 



6.1 

6 
Dependence 

This chapter treats features of a joint distribution which give insight into the nature 

of dependence between random variables. Sections 6.1 and 6.2 concern conditional 

distributions and expectations in the discrete case. Then parallel formulae for the 

density case are developed in Section 6.3. Covariance and correlation are introduced 

in Section 6.4. All these ideas are combined in Section 6.5 in a study of the bivariate 

normal distribution. 

Conditional Distributions: Discrete Case 
This section translates into the language of random variables the conditioning ideas 

of Section 1.4. The dependence between two variables X and Y can be understood 

in terms of the marginal distribution of X and the conditionai distribution of Y given 

X = x, which may be a different distribution for each possible value x of X. Given 

this information, the distribution of Y is found by the rule of average conditional 

probabilities, and the conditional distribution of X given Y = y is found by Bayes' 

rule. 
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Example 1. 

Problem 1. 

Solution. 

01 

Number of successes in a random number of trials. 

Suppose a fair die is rolled. Then as many fair coins are tossed as there are spots 

showing on the die. 

Find the distribution of the number of heads showing among the coins. 

Let Y denote the number of heads showing among the coins. The problem is to 

calculate the probabilities 

P(Y = y) = P(y heads) (y = 0,1,2, ... ,6) 

Let X represent the number showing on the die. If X = x, that is to say the die rolls 

x, then x coins are tossed, so the chance of y heads given the die rolls x is given 

by the binomial formula for the probability of y successes in x trials with probability 

1/2 of success on each trial: 

P(y heads I die rolls x) = P(y heads in x fair coin tosses) = G) 2-x 

where (~) = 0 if x < y. In random variable notation, 

P(Y = ylX = x) = G)2- X 

This formula states that the conditional distribution of Y given X = x is the binomial 

distribution with parameters n = x and p = 1/2. 

FIGURE 1. Conditional distribution of Y given X = x for x = 1,2, ... ,6 in Example 1. 

012 

X=2 

0123 

X=3 

01234 

X=4 

012345 

X=5 

0123456 

X=6 

The assumption that the die is fair specifies the unconditional distribution of X: 

P(X = x) = P(die rolls x) = 1/6 (x = 1,2, ... ,6) 
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These ingredients are combined by the rule of average conditional probabilities to 

give P(Y = y), the unconditional probability of getting y heads: 

6 

P(Y = y) = P(y heads) = L P(die rolls x and y heads) 

x=l 

6 

= L P(y heads I die rolls x )P( die rolls x) 
x=l 

6 

= LP(Y = ylX = x)P(X = x) 
x=l 

= ~ t (x)2-X 
x=l y 

where (~) = 0 if x < y. For example, 

P(Y = 0) = ~ [~ + ~ + ... +~] = ~ x 63 = ~ 
6 2 22 26 6 64 384 

Y _ 4 _ ~ [(4) ~ (5) ~ (6)~] _ ~ P( - ) - 6 4 24 + 4 25 + 4 26 - 384 

and so on. Continuing in this way we obtain P(Y = y) for each y = 0,1,2, ... ,6, 

as shown in Table 1. 

TABLE '1. Probability P(Y = y) of getting y heads. 

I P(v' 
, 0 1 2 3 4 5 6 

= y) 63 120 99 64 29 8 1 
384 384 384 384 384 384 384 

Example 1 introduces the important idea of conditional distributions. 

Conditional Distribution of Y Given X = x 
For each possible value x of X, as y varies over all possible values of y, the 

probabilities P(Y = y I X = x) form a probability distribution, depending on 

x, called the conditional distribution of Y given X = x. 

The given value x of X can be thought of a as parameter in the distribution of Y 

given X = x. In Example 1, the distribution of Y given X = x is the binomial 

distribution with parameters n = x and p = 1/2. 

According to the rule of average conditional probabilities, the unconditional distri­

bution of Y, found in Example 1, is the average or mixture of these conditional 
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Example 1 introduces the important idea of conditional distributions. 

Conditional Distribution of Y Given X = x 
For each possible value x of X, as y varies over all possible values of y, the 

probabilities P(Y = y I X = x) form a probability distribution, depending on 

x, called the conditional distribution of Y given X = x. 

The given value x of X can be thought of as a parameter in the distribution of Y 

given X = x. In Example 1, the distribution of Y given X = x is the binomial 

distribution with parameters n = x and p = 1/2. 

According to the rule of average conditional probabilities, the unconditional distri­

bution of Y, found in Example 1, is the average or mixture of these conditional 

distributions, with equal weights 1/6 defined by the uniform distribution of X. This 

distribution of Y may be called the overall, marginal, or unconditional distribution 

of Y, to distinguish it from the conditional distributions used to calculate it. The key 

step in the calculation of Example 1 was the following: 

Rule of Average Conditional Probabilities 

P(Y = y) = LP(Y = ylX = x)P(X = x) 
x 

This is just a basic rule of probability expressed in random variable notation. The 

rule holds for every pair of discrete random variables X and Y defined in the same 

probabilistic setting. The method of finding the distribution of a random variable Y 

by using this formula is called conditioning on the value of X. Note that in the sum 

for P(Y = y) the term 

P(Y = ylX = x)P(X = x) = P(X = X, Y = y) 

is the generic entry in the joint probability table for X and Y. See Table 2 for example. 

You can use the above formula to calculate the distribution of a random variable Y if 

you can find a random variable X such that you either know or can easily calculate: 

(0 the distribution of X; 

(ij) the conditional probabilities P(Y = y I X = x) for all possible values x of X. 
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If Y is determined by some two-stage or multistage process, the distribution of Y 

can often be calculated this way by letting X be the result of the first stage. 

(Continued.) 

As in the previous example, let Y be the number of heads in X fair coin tosses, 

where X is uniformly distributed on {I, ... ,6}. 

Find the conditional distribution of X given Y = y for y = 0, 1, ... 6. 

The problem now is to find P(X = x I Y = y) as x varies, for each possible value y of 

Y. These conditional probabilities are calculated using Bayes' rule, as in Section 1.5. 

All that is new here is the random variable notation and terminology. As a start, the 

division rule for conditional probabilities gives 

where the joint probabilities 

P(X = x, Y = y) = P(Y = y I X = x)P(X = x) 

are the individual terms in the sum used previously to calculate P(Y = y). Sub­

stituting the values of P( X = x) and P(Y = y I X = x), the joint probabilities 

P(X = x, Y = y) are displayed in Table 2. 

TABLE 2. Joint distribution table for (X, Y). 

Possible values x for X 

Marginal 

1 2 3 4 5 6 distn. of Y 

0 1 1 1 1 1 1 1 1 1 1 1 1 63 
62 64 68 6 16 6 32 6 64 384 

1 1 1 12 13 1 4 1 5 1 6 120 
62 64 68 6 16 6 32 6 64 384 

Possible 2 0 1 1 13 1 6 110 1 15 99 
64 68 6 16 6 32 6 64 384 

values y 3 0 0 1 1 1 4 1 10 120 64 
68 6 16 6 32 6 64 384 

for Y 4 0 0 0 1 1 1 5 1 15 29 
6 16 6 32 6 64 384 

5 0 0 0 0 1 1 1 6 8 
6 32 6 64 384 

6 0 0 0 0 0 1 1 1 
6 64 384 

[ ______ ~_d_~_s;_~_~_:_:_~~ __ i ____ 6_1 ____ i ____ i _____ i _____ i __ ~IIL_ ___ l ____ ~ 
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~ 
123456 

y=o 

In column x of the table you see numbers proportional to the binomial (x, 1/2) 

probabilities forming the conditional distribution of Y given X = x. The constant 

of proportionality is 1/6, which is the marginal probability of (X = x). Similarly, in 

row y of the table you see numbers proportional to the conditional distribution of X 

given Y = y. The conditional probabilities themselves are obtained by dividing the 

numbers in the row y by the constant factor P(Y = y), their sum, which appears in 

the margin. For example, the conditional distribution of X given Y = 2 is displayed 

in Table 3. 

TABLE 3. Conditional distribution of X given Y = 2. 

x 1 2 3 4 5 6 

P(X=xIY=2) 0 16 24 24 20 15 
99 99 99 99 99 

So, given two heads, the number of coins tossed is equally likely to be either 3 or 

4, and these are the most likely values. 

Similar tables of the conditional distributions are easily made for other values y of 

Y. Here is a graphical display of all seven of these conditional distributions using 

histograms. 

FIGURE 3. Conditional distribution of X given Y = y. 

~ riTlll rfill ~ J 
123456 23456 3456 456 56 6 

Y=l Y=2 Y=3 Y=4 Y=5 Y=6 

Exercises 6. 1 
1. Suppose I toss three coins. Some of them land heads and some land tails. Those that 

land tails I toss again. Let X be the number of heads showing after the first tossing, Y 

the total number showing after the second tossing, including the X heads appearing 

on the first tossing. So X and Yare random variables such that 0 ::; X ::; Y ::; 3 no 

matter how the coins land. Write out distribution tables and sketch histograms for each 

of the following distributions: 

a) the distribution of X; 

b) the conditional distribution of Y given X := x for x = 0,1,2,3; 
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c) the joint distribution of X and Y (no histogram in this case); 

d) the distribution of Y; 

e) the conditional distribution of X given Y = y for y = 0,1,2,3. 

o What is the best guess of the value of X given Y = y for y = 0,1,2,3' That is, 

for each y, choose x depending on y to maximize P(X = xlY = y). 

g) Suppose the random experiment generating X and Y is repeated independently 

over and over again. Each time you observe the value of Y, and then guess the 

value of X using the rule found in 0. Over the long run, what proportion of times 

will you guess correctly? 

2. In a particular town 10% of the families have no children, 20% have one child, 40% have 

two children, 20% have three children, and 10% have four. Let T represent the total 

number of children, and G the number of girls, in a family chosen at random from this 

town. Assuming that children are equally likely to be boys or girls, find the distribution 

of G. Display your answer in a table and sketch the histogram. 

3. Suppose the names of all the children in the town of Exercise 2 are put into a hat, and 

a name is picked out at random. So now a child is picked at random instead of a family 

being picked at random. Let U be the total number of children in the family of the child 

chosen at random. 

a) Find the distribution of U. Why is this distribution different from the distribution 

of T in Exercise 2? 

b) What is the probability that the child picked at random comes from a family 

consisting of two girls and a boy? 

c) Is this the same as the probability that a family picked at random consists of two 

girls and a boy' Calculate and explain. 

4. Let AI, ... ,A2o be independent events each with probability 1/2. Let X be the number 

of events among the first 10 which occur and let Y be the number of events among the 

last 10 which occur. Find the conditional probability that X = 5, given that X + Y = 12. 

5. Let Xl and X 2 be independent Poisson random variables with parameters )'1 and ..\2. 

a) Show that for every n :::: 1, the conditional distribution of Xl, given Xl +X2 = n, 

is binomial, and find the parameters of this binomial distribution. 

b) The number of eggs laid by a certain kind of insect follows a Poisson distribution 

quite closely. It is known that two such insects have laid their eggs in a particular 

area. If the total number of eggs in the area is 150, what is the chance that the 

first insect laid at least 90 eggs? (State your assumptions, and give approximate 

decimal answer.) 

6. Conditioning independent Poisson variables on their sum. Let Ni be independent 

Poisson variables with parameters "\i. Think of the Ni as the number of points of a 

Poissson scatter in disjoint parts of the plane with areas ..\i, where the mean intensity 

is one point per unit area. 

a) What is the conditional joint distribution of (N 1, ... , N m) given Nl + ... + N m = 
n? [Hint: See Exercise 5 for a special case.] 
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b) Suppose now that N has POisson(>.) distribution, and given N = n the con­

ditional joint distribution of some m-tuple of random variables (N l , ... , Nm ) is 

exactly what you found in part a). What can you conclude about the uncondi­

tional distribution of (Nl , ... , Nm )? 

7. Poissonization of the binomial distribution. Let N have Poisson (>.) distribution. 

Let X be a random variable with the following property: for every n, the conditional 

distribution of X given (N = n) is binomial (n,p). 

a) Show that the unconditional distribution of X is Poisson, and find its parameter. 

It is known that X-rays produce chromosome breakages in cells. The number of such 

breakages usually follows a Poisson distribution quite closely, where the parameter 

depends on the time of exposure, etc. For a particular dosage and time of exposure, the 

number of breakages follows the Poisson (0.4) distribution. Assume that each breakage 

heals with probability 0.2, independently of the others. 

b) Find the chance that after such an X-ray, there are 4 healed breakages. 

8. Independence in Poissonization of the binomial distribution. Suppose you roll 

a random number of dice. If the number of dice follows the Poisson (>.) distribution, 

show that the number of sixes is independent of the number of nonsixes. [Hint: Let N 

be the number of dice, X the number of sixes, and Y the number of nonsixes. Exercise 

7 gives you the marginal distributions of X and Y. To show that the joint distribution 

of X and Y is the product of the marginals, show 

P(X = x, Y = y) = P(N = x + y, X = x, Y = y) 

and then use the multiplication rule.] 

9. Conditional independence. Random variables X and Yare called conditionally in­
dependent given Z if given the value of Z, X, and Yare independent. That is, 

P(X = x, Y = y I Z = z) = P(X = :r: I Z = z)P(Y = y I Z = z) 

for all possible values x, y, and z. Prove that X and Yare conditionally independent 

given Z if and only if the conditional distribution of Y given X = x and Z = z is a 

distribution which depends only on z: 

P(Y = y I X = x, Z = z) = P(Y = y I Z = z) 

for all possible values x, y, and z. Give a further equivalent condition in terms of the 

conditional distribution of X given Y = y and Z = z. 

10. Conditional independence (continued). Suppose as in Example 5 of Section 3.1 

that two sequences of n draws with replacement are made from a box containing an 

unknown number of red tickets among a total of 10 tickets. Regard the number of red 

tickets in the box as the value of a random variable R, with probability distribution 

P(R = r) = 7rr , r = 0,1, ... ,10. Let Xl be the number of red tickets in the first 

n draws, and X 2 the number in the second n draws. Assuming that Xl and X 2 are 

conditionally independent and binomially distributed given R = r, find expressions for 

the following: 

a) P(R=r,Xl =xl,X2=X2); b)P(R==rIXl=xl); 

c) P(X2 = :r:2IR = r,X l = xd; d) P(X2 = x21X l = Xl). 

e) Calculate numerical values for the conditional probabilities in d) assuming that 

7rr = 1/11 for r = 0, 1, ... ,10 and n = 1. Are Xl and X 2 independent? 
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Example 1. 

Solution. 
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Conditional Expectation: Discrete Case 
Conditional expectations are simply expectations relative to conditional distributions. 

Conditional Expectation Given an Event 
The conditional expectation of a random variable Y given an event A, de~ 

noted by E(Y I A), is the expectation of Y under the conditional probability 

distribution given A: 

E(YIA) = LYP(Y = ylA) 

all y 

This is just the definition of E(Y), with probabilities replaced by conditional proba~ 

bilities given A. Intuitively, E(Y I A) is the expected value of Y, given the information 

that event A has occurred. 

Conditioning on at most 2 heads on 4 coin tosses. 

Let Y be the number of heads in four tosses of a fair coin. Calculate the conditional 

expectation of Y given 2 or less heads. What is the long~run interpretation of this 

quantity? 

Here the conditioning event is A ,= (Y :s; 2). Since Y has the binomial (4,~) 

distribution 

P(Y = y) = G) /24 (y = ° to 4) 
P(Y :<::: 2) = (1 + 4 + 6)/16 = 11/16 

Hence 

P(Y = y I Y :<::: 2) = G) /11 (y=0,1,2) 

and 

E(YIY:S; 2) = ty(4)/11 = (1·4 + 2·6)/11 = 16/11 
y=o y 

The long~run interpretation is that if you repeatedly toss four fair coins, the long~ 

run average number of heads, averaging only over the trials that produce 0, 1, or 2 

heau,;, will be 16/11. 
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Properties of Conditional Expectation 

For a fixed conditioning event A, conditional expectation has familiar properties of 

expectation like linearity. For instance, there is t:le addition rule 

E(X + YIA) = E(XIA) +E(YIA) 

and so on. For a fixed random variable Y, as A varies, there is a useful general­

ization of the rule of average conditional probabilities, a rule of average conditional 

expectations: If AI"'" An is a partition of the whole outcome space, then 

n 

E(Y) = L E(Y I Ai)P(Ai) 
i=l 

In the special case when Y is an indicator random variable, say Y = I B , the indicator 

of event B, this reduces to the rule of average conditional probabilities 

n 

P(B) = L P(B I Ai)P(Ai) 
i=l 

The general case can be derived from this special case by linear operations. It is most 

convenient for applications to express the general rule as follows, for the partition 
generated by values of a discrete random variable X: 

Rule of Average Conditional Expectations 
For any random varia hie Y with finite expectation and any discrete random 

variable X, 

E(Y) = LE(YIX = x)P(X = x) 
all x 

This formula is also called the formula for E(Y) by conditioning on X. This formula 

gives a useful method of calculating expectations, as shown by the examples helow. 

The next box introduces a useful short notation: 

Definition of E(YIX) 
The conditional expectation of Y given X, denoted E(Y I X), is the function 

of X whose value is E(Y I X = x) if X = x. 
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Problem 1. 

Solution. 

Problem 2. 

Solution. 

Discussion. 
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Here E(Y I X) is actually a random variable, since by definition it is a particular 

function of X, and a function of a random variable defines another random variable. 

It can be shown that E(Y I X) is the best predictor of Y based on X, in the sense of 

mean-square error. That is to say, E(Y I X) is the function g(X) that minimizes the 

mean square prediction error E[(Y - g(X) )2]. See Exercise 17. Because E(Y I X) is 

a random variable, it makes sense to consider its expectation. The result is stated in 

the next box. 

Expectation is the Expectation 

of the Conditional Expectation 

E(Y) = E [E(Y I X)] 

This is a condensed form of the rule of average conditional expectations, obtained 

by application to g(x) = E(Y I X = x) of the formula 

E[g(X)] = L g(x)P(X = x) 
all x 

Examples 

Tossing a random number of coins. 

As in Example 1 of the previous section, let Y be the number of heads in X tosses 

of a fair coin, where X is generated by a fair die roll. 

Find the conditional expectation of Y given X = x. 

Since the conditional distribution of Y given X = x is binomial with parameters 

n = :1:' and p = 1/2, the conditional expectation of Y given X = x is the mean of 

the binomial(n,p) distribution, that is np, for n = x and p = 1/2: 

E(YIX = x) = x/2 (x=I,2, ... ,6) 

Find E(Y), 

Since from the previous solution E(Y I X) = X/2, and E(X) = 3.5 

E(Y) = E[E(Y I X)] = E(X/2) = E(X)/2 = (3.5)/2 = 1.75 

Of course, the expectation of Y can also be calculated from the distribution of Y, 

shown in Table 1 of Section 6,1. But the method of conditioning on X gives the 

result more quickly. Also, the method of computing E(Y) by conditioning on a 
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Problem 3. 

Solution. 

Example 3. 

Problem. 

Solution. 

Remark. 

Example 4. 

Problem. 

suitable random variable X can be applied in problems where it is difficult to obtain 

a formula for the distribution of Y. 

Find E(XIY = 2) 

There is no simple formula for E(X I Y = y) as a function of y in this problem. 

But these conditional expectations can be calculated one by one from the various 

conditional distributions of X given Y = y for y = 0 to 6. Using the conditional 

distribution of X given Y = 2 displayed in Table 3 of Section 6.1 gives 

E(X I Y = 2) = (2x 16 + 3x24 + 4x24 + 5x20 + 6x 15)/99 = 390/99 ~ 3.94 

Number of girls in a family. 

Suppose the number of children in a family is a random variable X with mean IL, and 

given X = n for n ::::: 1, each of the n children in the family is a girl with probability 

P and a boy with probability 1 - p. 

What is the expected number of girls in a family? 

Intuitively, the answer should be PIL. To show this is correct, let G be the random 

number of girls in a family. Given X = n, G is the sum of n indicators of events 

with probability p, so 

E(GIX = n) = np 

Note that this is correct even for n = O. By conditioning on X, 

E(G) = LE(GIX = n)P(X = n) =P LnP(X = n) =PIL 
n n 

In short notation, 

E(GIX) = pX 

E(G) = E[E(GIX)] = E(pX) =pE(X) 

Success counts in overlapping series of trials. 

Let Sn be the number of successes in n independent trials with probability p of 

success on each trial. 

Calculate E(Sm I Sn = k) for m :::::: n. 



Solution. 

Discussion. 
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Since Sm = Xl + ... + Xm where Xj is the indicator of success on the jth trial 

m 

E(Sm I Sn = k) = L E(Xj I Sn = k) where 

j=l 

E(Xj I Sn = k) = P(jth trial is a success I Sn = k) 

P(jth trial is a success, Sn = k) 

P(Sn = k) 

P(jth trial success, k - 1 of other n - 1 trials are successes) 

p(~=Dpk-l(l _ p)n-k 

(~)pk(l _ p)n-k 

k 

n 

mk 
E(SmISn =k) =-

n 

so 

P(Sn = k) 

using independence and 

the binomial distribution 

In short notation, the conclusion is that for 1 :::; m :::; n 

This is a rather intuitive formula. It says that given Sn successes in n trials, the number 

of successes to be expected in m of the trials is proportional to m. The formula can 

be derived in other ways. By symmetry, E(Xj I Sn) must be the same for all j, and 

equal to E(XI I Sn). Since 

n 

Sn = E(Sn I Sn) = L E(Xj I Sn) = nE(Xll Sn) 
j=l 

it follows that E(XI I Sn) = Sn/n and hence 

m 

E(Sm I Sn) = L E(Xj I Sn) = mE(Xll Sn) = m Sn 
j=l n 

This argument shows that formula 

(1 :::; m :::; n) 

holds whenever Sn is a sum of n independent and identically distributed variables 

Xl"'" X n. In fact all that is required is that the variables Xl"'" Xn are exchange­
able, as defined in Section 3.6. This is an example where a conditional expectation 

can be calculated using symmetry and linearity, even though there is no nice formula 

for the conditional distribution. 
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Example 5. 

Problem. 

Solution. 

Treating a conditioned variable as a constant. When computing conditional 

probabilities or expectations given X = x, the random variable X may be treated as 

if it were the constant x. Intuitively, this is quite obvious: on the restricted outcome 

space (X = x), the random variable X has only one value, namely, x. To illustrate, 

if g is a function of two random variables X and Y, the conditional distribution of 

g(X, Y) given X = x, is the same as the conditional distribution of g(x, Y) given 

X = x. And if g has numerical values 

E [g(X, Y) IX = xl = E [g(x, Y) IX = xl 

For instance 

E[XYIX = xl = E[xYIX = xl = xE[YIX = xl 

which reads in short notation 

E[XYIXl = XE[YIXl 

Another example is 

E[aX + bYIX = xl = E[ax + bYIX = xl = ax + bE[YIX = xl 

which reads in short notation 

E[aX + bYIXl = aX + bE[YIXl 

Conditional expectation of a sum given one of the terms. 

Suppose X and Yare independent. 

Find E(X + YIX = x). 

E(X + YIX = x) = E(XIX = x) + E(YIX = x) 

= x+E(Y) 

Here E(X I X = x) = x because X may be treated as the constant x given X = x. 

And E (Y I X = x) is the mean of the conditional di stribution of Y given X = x, and 

by independence this is just the unconditional distribution of Y with mean E(Y). 

Exercises 6.2 
1. Let Xl and X 2 be the numbers on two independent fair-die rolls. Let X be the minimum 

and Y the maximum of Xi and X 2 . Calculate: a) E(YIX = x); b) E(XIY = y). 
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2. Repeat Exercise 1 above, with Xl and X 2 independent and uniformly distributed on 

{l,2, ... ,n}. 

3. Repeat Exercise 1 with Xl and X2 two draws without replacement from {I, 2, ... , n}. 

4. An item is selected randomly from a collection labeled 1,2, ... , n. Denote its label by 

X. Now select an integer Y uniformly at random from {I, ... , X}. Find: 

a) E(Y); b) E(y2); c) SD(Y); d) P(X + Y = 2). 

5. Suppose an event A is independent of a pair of random variables Xl and X 2 , whose 

c.d.f's are FI and F2 . Define a random variable X by: 

if A occurs 

if A does not occur 

Find and justify formulae for: 

a) the c.dJ. F(x) of X, in terms of H(x), F2(X), and p = P(A); 

b) E(X) in terms of E(XI)' E(X2), and p. 

c) Var(X) in terms of E(XI), E(X2), Var(XI ), Var(X2 ) and p. 

6. Suppose that N is a Poisson random variable with parameter f-i. Suppose that given N = 

n, random variables Xl, X 2 .... , Xn are independent with uniform (0,1) distribution. So 

there are a random number of X's. 

a) Given N = n, what is the probability that all the X's are less than U 

b) What is the (unconditional) probability that all the X's are less than U 

c) Let S N = X I + ... + X N denote the sum of the random number of X's. (If N = 0 

then SN = 0') Find P(SN = 0). Explain. 

d) Find E(SN). 

7. Suppose that N is a counting random variable, with values {O, 1, ... , n}, and that given 

{N = k), for k ::: 1, there are defined random variables X I, ... , X k such that 

Define a random variable SN by 

Show that E(SN) = f-iE(N). 

(l:Sj:Sk) 

if (N = k), 1 :S k :S n 

if (N = 0) 

8. Suppose that each individual in a population produces a random number of children, 

and the distribution of the number of children has mean f-i. Starting with one individual, 

show, using the result of Exercise 7, that the expected number of descendants of that 

individual in the nth generation is f-i n. 

9. Let T, be the place at which the ith good element appears in a random ordering of 

N - k bad elements and k good ones. Use the results of Exercise 3.6.13 to calculate: 
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first for h < i, then for h > i. 

10. What is the expected number of black balls among n ::; b+w+d balls drawn at random 

from a box containing b black balls, w white balls, and d balls drawn at random from 

another box of bo black balls and Wo white balls? Assume all draws are made without 

replacement. 

11. A deck of cards is cut into two halves of 26 cards each. As it turns out, the top half 

contains 3 aces and the bottom half just one ace. The top half is shuffled, then cut into 

two halves of 13 cards each. One of these packs of 13 cards is shuffled into the bottom 

half of 26 cards, and from this pack of 39 cards, 5 cards are dealt. What is the expected 

number of aces among these 5 cards? 

12. Conditional expectations in Polya's urn scheme. An urn contains 1 black and 2 

white balls. One ball is drawn at random and its color noted. The ball is replaced in 

the urn, together with an additional ball of its color. There are now four balls in the 

urn. Again, one ball is drawn at random from the urn, then replaced along with an 

additional ball of its color. The process continues in this way. 

a) Let Bn be the number of black balls in the urn just before the nth ball is drawn. 

(Thus BI is 1.) For n ~ 1, find E(Bn+IIBn). 

b) For n ~ 1, find E(Bn). [Hint: E(BI) = 1; now use part a) and induction on n.] 

c) For n ~ 1, what is the expected proportion of black balls in the urn just before 

the nth ball is drawn? 

13. Conditioning on the number of successes in Bernoulli trials. Let Sn = X I + ... + 
Xn be the number of successes in of n independent Bernoulli(p) trials.X I , X 2 , . .. ,Xn. 

a) For 1 ::; m ::; n, show that the conditional distribution of Sm, the number of 

successes in the first m trials, given Sn = k, is identical to the distribution of the 

number of good elements in a random sample of size m without replacement 

from a population of k good and n - k bad elements. 

b) Use the result of a) to rederive the result of Example 4 that 

E(Sm I Sn = k) = mk/n. 

c) Find Var(Sm I Sn = k). 

14. Sufficiency of the number of successes in Bernoulli trials. Let Sn = Xl + ... + Xn 
be the number of successes in n independent Bernoulli (p) trials X I, X 2, ... , X n. As 

a continuation of Exercise 13, show that conditionally given Sn = k, the sequence of 

zeros and ones X I, ... , X n is distributed like an exhaustive sample without replacement 

from a population of k ones and n - k zeros. [Note that this conditional distribution 

does not depend on p. In the language of statistics, when p is an unknown parameter 

Sn is called a sufficient statistic for p. If you want to estimate an unknown p given 

observed values of Xl, ... , X n , and are committed to the assumption of Bernoulli (p) 
trials, it makes no sense to use any aspect of the data besides Sn in the estimation 

problem, because given Sn = k, the parameter p does not affect the distribution of the 

data at all. One natural estimate of p given the data is Sn/n, the observed proportion 

of successes. But other functions of Sn may be considered. See Exercise 6.3.15.] 
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15. Let 11 be a random proportion between 0 and 1, for example, the proportion of black 

balls in an urn picked at random from some population of urns. Let S be the number 

of successes in n Bernoulli trials, which given 11 = p are independent with probability 

p, for example, the number of black balls in n draws at random, with replacement from 

the urn picked at random. 

a) Find a formula for E(S) in terms of nand E(I1). 

b) Find a formula for Var(S) in terms of n, E(I1), and Var(I1). 

c) For given nand E(I1) = p, say, which distribution of 11 makes Var(S) as large 

as possible? Which as small as possible? Prove your answers using your answer 

to b). 

16. Expectation of a product by conditioning. Let X and Y be random variables, and 

let h be a function of X. Show that 

E [h(X)Y] = E [h(X)E(YIX)] 

[Hint: Look at E(h(X)YIX = x).] Remark: This identity, for indicator functions h(x), 

is used in more advanced treatments of probability to define conditional expectations 

given a continuous random variable X. 

17. Prediction by functions. Suppose you want to predict the value of a random variable 

Y. Instead of just trying to predict the value of Y by a constant. as was done in Sec­

tion 3.2. suppose that some additional information pertinent to the prediction of Y is 

available. For instance, you might know the value of some other random variable X, 
whose joint distribution with Y is assumed known. The problem here is to predict the 

value of Y by a function of X, call it g(X). Once the value x of X is known, the value 

g(x) of g(X) can be calculated and used to predict the unknown value of Y. 

One measure of the goodness of the predictor g(X) is its mean square error (MSE) 

MSE(g(X)) = E[(Y - g(X))2] 

[t is a measure of, on average, how far off the prediction is. Show that g(X) = E(YIX) 

minimizes the MSE. [Hint: Condition on the value of X 

2 "'"" 2 E[(Y - g(X)) ] = ~ E[(Y - g(X)) IX = x]P(X = x) 

and minimize each term in the sum separately.l 

18. Conditional variance. Define Var(YIX), the conditional variance of Y given X, 

to be the random variable whose value, if (X = x), is the variance of the conditional 

distribution ofY given X = x. So Var(YIX) is a function of X, namely h(X), where 

h(x) = E(y2IX = x) - [E(YIX ,= x)f Show that 

Var(Y) = E[Var(YIX)] + Var[E(YIX)] 

In words, the variance is the expectation of the conditional variance plus the variance 

of the conditional expectation. 
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6.3 Conditioning: Density Case 
This section treats conditional probabilities given the value of a random variable X 

with a continuous distribution. In the discrete case, the conditional probability of an 

event A, given that X has value x, is defined by 

P(AIX = x) = P(A,X = x) 
P(X = x) 

whenever P(X = x) > O. In the continuous case P(X = x) = 0 for every x, so the 

above formula gives the undefined expression 0/0. This must be replaced, as in the 

usual calculus definition of a derivative dy/dx, by the following: 

Infinitesimal Conditioning Formula 

P(AIX = x) = P(A,X E dx) 
P(X E dx) 

Intuitively, P(A I X = x) should be understood as P(A I X E dx), the chance of 

A given that X falls in a very small interval near x. It is assumed here that in the 

limit of small intervals this chance does not depend on what interval is chosen near 

x. So, like a derivative dy/dx, P(A I X E dx) is a function of x, hence the notation 

P(A I X = x). In terms of limits, 

P(A,X E ~x) 
P(AIX=x)= lim P(AIXE~x)= lim P(X ~) 

~x->O ~x->O E x 

where ~x stands for an interval of length ~x containing the point x. It is assumed 

here that the limit exists, except perhaps for a finite number of exceptional points x 

such as endpoints of an interval defining the range of X, or places where the density 

of X has a discontinuity. See the book Probability and Measure by P. Billingsley for 

a rigorous treatment of conditioning on a continuously distributed variable. 

Most often, the event A of interest is determined by some random variable Y, for 

instance, A = (Y > 3). If (X, Y) has a joint density f(x, y), then P(A I X = x) can 

be found by integration of the conditional density of Y given X = x, defined as 

follows: 
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Conditional Density of Y given X = X 

For random variables X and Y with joint density f (x, y), for each x such that 

the marginal density fx(x) > 0, the conditional density of Y given X = x is 

the probability density function with dummy variable y defined by 

Jy(y I X = x) = f(x, y) / fx(x) 

Intuitively, the formula for Jy(y I X = x) is justified by the following calculation of 

the chance of (Y E dy) given X = x: 

P(Y E dylX = x) = P(Y E dylX E dx) 

P(X E dx, Y E dy) 

P(X E dx) 

f(x,y) dxdy 

fx(x) dx 

= fy(YIX =x)dy 

The formula J f(x, y)dy = fx(x), the marginal density of X, implies that 

J Jy(yIX=x)dy=l 

So for each fixed x with fx(x) > 0, the formula for Jy(y I X = x) gives a proba­

bility density in y. This conditional density given x defines a probability distribution 

parameterized by x, called the conditional distribution of Y given X = x. In exam­

ples, this will often be a familiar distribution, for example, a uniform or a normal 

distribution, with parameters depending on x. 

The conditional density of Y given X = x can be understood geometrically by 

taking a vertical slice through the joint density surface at x, and renormalizing the 

resulting function of y by its total integral, which is fx(x). Conditional probabilities 

given X = x of events determined by X and Y can be calculated by integrating 

with respect to this conditional density. For example 

P(Y > blX = x) = 100 

Jy(y I X = x)dy 

P(Y>2XIX=x)= roo Jy(yIX=x)dy 
J2x 

Such expressions are obtained formally from their discrete analogs by replacing a 

sum by an integral, and replacing the probability of an individual point by the value 

of a density times an infinitesimal length. See the display at the end of this section 

for details of this analogy. 
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FIGURE 1. Joint, marginal, and conditional densities. 
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Key to Figure 1 

Top: Joint density surface. This is a perspective projection of the surface 

z = f(x,y) 

defined by a particular joint density function f (x, y). 

Middle left: Slices for some values of X and the marginal density of X. Here 

are seven slices, or cross sections through the density surface for given values X 
ranging from 1/8 to 7/8. (The last two are so low that they are invisible.) The 

probability that X falls in a short interval of length ~ near x is the volume of such 

a slice of thickness ~, which for small enough ~ is essentially ~ times the area of 

the slice at x. This area equals 

J f(x, y)dy = fx(x) 

the height of the marginal density of X at x, graphed at back. This marginal density 

shows how probability is distributed between slices according to the distribution of 

X. The heights of the vertical segments shown in the graph of the marginal density 

are proportional to the areas of corresponding slices. 

Middle right: Slices for some values Yand the marginal density of Y. Here are 

perpendicular slices through the density surface for given values of Y. The area of 

the slice at y equals 

J f(x,y) dx = Jy(y), 

the height of the marginal density of Y at y, shown at right. 

Bottom left: Conditional density of Y for some given values of X. Rescaling 

each section of the diagram above by its total area, the marginal density of X at 

x, gives the conditional density of Y given X = x, shown here using the same 

vertical scale as for the marginal densities in the middle diagrams. Given X = x, Y 

is distributed with density proportional to the section of the density surface f(x, y) 
through x. Dividing by the total area of the section through x gives the conditional 

density of Y given X = x. Note how the shape of the two invisible sections in 

the middle left diagram can now be seen, due to the normalization of each section 

by its total area. The marginal density of Y (see middle right) is the average of all 

the conditional densities of Y given X = x weighted according to the marginal 

distrihution of X (middle left). 

Bottom right: Conditional density of X for some given values of Y. These arc 

interpreted just as above, with the roles of X and Y switched. 
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Example 1. 

Problem. 

Solution 1. 

Solution 2. 

Uniform on a triangle. 

Suppose that a point (X, Y) is chosen uniformly at random from the triangle 

{(x,y) : x ~ O,y ~ O,x + y:S 2}. Find P(Y > 11X = x). 

To illustrate the basic concepts, three slightly different solutions will be presented. 

Informal approach. Intuitively, it seems obvious that given X = x, the random point 

(X, Y) should be regarded as uniformly distributed on the vertical line segment 

{(x,y) : y ~ O,x + y :S 2} with length 2 - x. This is the conditional distribution 

of (X, Y) given X = x. If x is between ° and 1, the portion of this segment above 

y = 1 has length (2 - x) -1 = 1- x. Otherwise, no portion of the segment is above 

y = 1. So the answer is 

P(Y>l
I
X=X)={ ~1-X)/(2-X) O:Sx<l 

otherwise 

Definition of conditional probability. To see that Solution 1 agrees with the formal 

definition 

P(Y> 11X = x) = lim P(Y> 11X E ~x) 
.:lx---+O 

look at the following diagram which shows the events (Y > 1) and (X E ~x) = 
(x :S X :S x + ~x): 

X+ Y=2 

o T 1 
(X E ~ x) 

2 

Since the triangle has area 2, the probability of an event is half its area. So, for 

° :S x < 1, x + ~x :S 1, there are the exact formulae 

1, 1 
P(X E ~x) = -~x(2 - x - -~x) 

2 2 
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Discussion. 
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1 1 
P(Y> 1,X E ~x) = 2~x(l- x - 2~x) 

Therefore, for 0 :::; x < 1, 

P( IX A) = P(Y > I,X E ~x) 
Y>1 E~x P(XE~X) 

1- x - l~x 
2 

2 - x - l~x 
2 

I-x 
-+--

2-x 
as ~x -+ 0 

415 

This verifies the formula of Solution 1 for 0 :::; x < 1. The formula for x > 1 is 

obvious because the event (Y > 1, X E ~x) is empty if x :::: 1. 

Calculation with densities. Let us recalculate P(Y > 11 X = x) using the conditional 

density Jy (y I X = x). The uniform distribution on the triangle makes the joint 

density 

f(x, y) = { ~/2 x :::: 0, y :::: 0, x + y :::; 2 

otherwise 

So for 0 :::; x :::; 2, 

and 

100 12~x 1 1 
fx(x) = f(x, y)dy = -dy = -(2 - x) 

o 0 2 2 

{ 
f(x,y) 1 

Jy (y I X = x) = ; x (x) = 2 - x 

otherwise 

That is, given X = x for 0:::; x :::; 2, Y has uniform (0,2 - x) distribution, as is to be 

expected intuitively. So 

{ 
/,

2~X dy 

P(Y > 11 X = x) = 01 2 - x 

as before. 

I-x 

2-x 

otherwise 

The point of the first solution is that conditional distributions are often intuitively 

obvious, and once identified they can be used to find conditional probabilities very 

quickly. The second solution shows how this kind of calculation is justified by the 

formal definition. This method is not recommended for routine calculations. The 

third solution is essentially a more detailed version of the first. While rather pedantic 
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Example 2. 

Problem 1. 

Solution. 

Problem 2. 

Solution. 

in the present problem, this kind of calculation is essential in more difficult problems 

where you cannot guess the answer by intuitive reasoning. 

Rules for conditional densities. These are analogs of corresponding rules in the 

discrete case. Note that every concept defined by the distribution of a real-valued 

random variable Y, in particular, the notions of density function, distribution func­

tion, expectation, variance, moments, and so on, can be considered for conditional 

distributions, just as well as for unconditional ones. There is just an extra parameter, 

x, the given value of X. 

When the density of X is known, and a conditional density for Y given X = x is 

specified for each x in the range of X, the joint density of X and Y is calculated by 

the following rearrangement of the formula Jy (y I X = x) = f (x, y) / f x (x). 

Multiplication Rule for Densities 

f(x, y) = fx(x)Jy(y I X = x) 

Gamma and uniform. 

Suppose X has gamma (2,).) distribution, and that given X = x, Y has uniform 

(0, x) distribution. 

Find the joint density of X and Y. 

By the definition of the gamma distribution 

x>o 
x::;O 

and from the uniform (0, x) distribution of Y given X = x 

Jy(YIX=x)={ ~/x 

So by the multiplication rule for densities 

O<y<x 
otherwise 

{ 
).2e->'x 

f(x, y) = fx(x)Jy(y I X = x) = 0 

Find the marginal density of Y. 

O<y<x 
otherwise 

Integrating out x in the joint density gives the marginal density of Y: for y > 0 
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Solution. 

Problem 4. 

Solution. 
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The density is of course D for y ::; D. That is to say, Y has exponential (A) distribution. 

Show that X and Y have the same joint distribution as T2 and T j , where T J is the 

first arrival time and T2 is the second arrival time in a Poisson arrival process with 

rate A. 

That X has the same distribution as T2 , and that Y has the same distribution as T J , 

follovvs from the above calculation and the result of Section 4.2 that the ith arrival 

time in a Poisson process with rate A has gamma(i. A) distribution. That the joint 

distribution of X and Y is the same as the joint distribution of T2 and T j requires a 

little more calculation, because a joint distribution is not determined by its marginals. 

The simplest way to verify this is to observe that for () < y < J.' 

P(T1 E dy. T2 E dI) 

is the probability of no arrivals in the time interval [D, y] of length y, one arrival in 

time dy, no arrivals in the time interval [y + dy, :r] of length :r - y - dy :::::: .r - y, 

and finally one arrival in dx. By independence and Poisson distribution of counts in 

disjoint intervals, and neglecting a term of order (dy) '2. this event has probability 

Dividing the last expression by dydx shows that the joint density of (T2. T j ) at (:T. y) 

with 0 < y < x is identical to the joint density found in Problem 1. Since obviously 

P(Tj < T2 ) = 1, the joint density of (T2' T J ) can be taken to be zero except if 

o < y < J:. Thus (T2' TJ ) has the same joint density function as (X, Y), hence the 

same joint distribution. 

For Tl and T2 the first two arrival times in a Poisson process with rate A, find the 

conditional distribution of Tl given T2 = :T. 

Since according to the solution of the previous problem, T2 and Tl have the same 

joint density as X and Y, found in Problem 1. the conditional distribution of TJ 

given T2 = :T is identical to the conditional distribution of Y given X = .r. which 

was given at the start, that is to say, uniform on (O.J'). 

Averaging Conditional Probabilities 

For a random variahle X with density fx, the rule of average conditional probabil­

ities becomes the following: 

Integral Conditioning Formula 

PtA) = J P(AIX = x)fx(.r) d:r 
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Example 3. 

Problem 1. 

Solution. 

The integral breaks up the probability of A according to the values of X: 

P(A I X = x)fx(x) dx = P(AI X E dx)P(X E dx) = P(A, X E dx) 

Just as in the discrete case, P(A I X = x) is often specified in advance by the 

formulation of a problem. Then P(A) can be calculated by the integral conditioning 

formula, assuming also that the distribution of X is known. Bayes' rule then gives 

the conditional density of X given that A has occurred: 

P(X d IA) = P(X E dx)P(AIX = x) = fx(x)P(AIX = x) d 
E x P(A) P(A) x 

The following example shows how the integral conditioning formula arises naturally 

by taking limits of discrete problems. In this example, as is often the case, the limits 

defined by integrals are much easier to work with than the discrete sums. The ex­

ample makes precise the idea of independent trials with probabilty p of success in 

a setting where it makes clear sense to think of p as picked at random from some 

distribution before the trials are performed. In the first problem p is picked from a 

discrete uniform distribution on N + 1 evenly spaced points in [0,1]. Passing to the 

limit as N ----t 00 leads to p that is uniformly distributed on [0,1]. Bayesian statisticians 

view this as a model for independent trials with unknown probability of success. 

Discrete uniform -binomial. 

Suppose there are N + 1 boxes labeled by b = 0, 1,2, ... ,N. Box b contains b black 

and N - b white balls. A box is picked uniformly at random, and then n balls are 

drawn at random with replacement from whatever box is picked (the same box for 

each of the n draws). Let Sn denote the total number of black balls that appear 

among the n balls drawn. 

Find the distribution of Sn. 

Let II denote the proportion of black balls in the box picked. Let G N denote the 

grid of N + 1 possible values p of II: 

For each pEG N the binomial formula for n independent trials with probability p of 

success on each trial gives 

Averaging with respect to the uniform distribution of II over the N + 1 values in 

GN, and substituting p = biN, gives the unconditional distribution of Sn: 
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Solution. 
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(1) 

It is hard to simplify this expression further. But the expression is easily evaluated 

for small values of nand N. To illustrate, for N = n = 2 the result is shown in the 

next table. The limiting behavior for large N is the subject of the next problem. 

Distribution of S2 for N = 2 

k 0 1 2 

P(S2 = k) 5 2 5 
12 12 12 

For a fixed value of n, find the limiting distribution of Sn, the number of black balls 

that appear in n draws, as the number of boxes N tends to 00. 

Expression (1) for P(Sn = k) is (~) times a discrete approximation to the beta 

integral 

The approximation in (1) is obtained by taking the average value of the function 

pk(1_p)n-k at N +1 evenly spaced points p, beween 0 and 1. In the limit as N -+ 00, 

the discrete average converges to the continuous integral. Using the expression for 

the beta integral in terms of the gamma function, and f (m + 1) = m! for integers m, 

gives 

B(k k) r(k+1)f(n-k+1) (n)-11 
+1 n- +1 = -

, f(k+1+n-k+1) - k n+1 

The conclusion is that as N -+ 00 

P(Sn = k) -+ (~) (~) -1 n: 1 
1 

n+1 

(2) 

for every 0 ~ k ~ n. That is, the limiting distribution of Sn as N -+ 00 is uniform on 

{O,1, ... ,n}. 
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Example 4. 

Problem 1. 

Solution. 

Discussion. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

Continuous uniform-binomial. 

Suppose that II is picked uniformly at random from (0,1). Given that II = p, let Sn 

be the number of successes in n independent trials with probability p of success on 

each trial. 

Find the distribution of Sn. 

By the limiting result obtained in the previous example as N -+ 00, the answer must 

be uniform on {O, 1, ... n}. This can be derived directly in the continuous model 

using the integral conditioning formula. Since the density of II is In (p) = 1 for 

0< p < 1, and 0 otherwise, 

P(Sn = k) = J P(Sn = k I II = P)/n(p)dp 

= 11 (~)pk(l - pt-kdp 

1 

n+1 

by evaluation of the beta integral as in the previous problem. 

(3) 

Note the close parallel between the expression (3) for P(Sn = k) obtained by 

the integral conditioning formula for II with uniform distribution on (0,1), and the 

corresponding expression (1) for P(Sn = k) in the previous example for II with 

uniform distribution on the set of N + 1 values in G N. All that happens is that the 

sum is replaced by an integral, and l/(N + 1), which is both the probability of each 

point in G N and the difference between adjacent points in G N, is replaced by the 

calculus differential dp representing the probability that the uniform variable falls in 

an infinitesimal length dp near p. 

Find the conditional distribution of II given that Sn = k. 

Using Bayes' rule, for 0 < p < 1, 

P(II diS = k) = P(II E dp)P(Sn = k I II = p) 
E P n P(Sn = k) 

= (n + 1) (~)pk(l _ p)n-kdp 

Thi~ is the density at p of the beta distribution with parameters k+ 1 and n-k+ 1, times 

dp. Conclusion: the conditional distribution of II given Sn = k is beta(k+ 1, n-k+ 1). 

In the above setup, given that n trials have produced k successes, what is the prob­

ability that the next trial is a success? 

Given II = p and Sn = k, the next trial is a success with probability p, by the 

assumption of independent trials with constant probability p of success given II = p. 

Given just Sn = k, the value of II is unknown. Rather, II is a random variable with 

beta (k + 1, n - k + 1) distribution. By the integral conditioning formula, the required 
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Solution. 

Problem 2. 

Solution. 
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probability is the conditional expectation of II given Sn = k, which is (k + 1) / (n + 2), 

by the formula a/(a + b) for the mean of the beta (a, b) distribution. In detail: 

P(next trial a success I Sn = k) 

= 11 P(next trial a successlSn = k,II = p)!rr(pISn = k)dp 

/
1 k+1 

= p!rr(pISn = k)dp = E(IIISn = k) =-
° n+2 

In particular, for k = n, given n successes in a row, the chance of one more success 

is (n + l)/(n + 2). This formula, for the probability of one more success given a 

run of n successes in independent trials with unknown success probability assumed 

uniformly distributed on (0,1), is known as Laplace's law of succession. Laplace 

illustrated his formula by calculating the probability that the sun will rise tomorrow, 

given that it has risen daily for 5000 years, or n = 1,826,213 days. But this kind 

of application is of doubtful value. Both the assumption of independent trials with 

unknown P and the uniform prior distribution of P make little sense in this context. 

Simulation of uniform-binomial. 

Suppose you have available a random number generator which you are willing to 

believe generates independent uniform (0,1) variables Un, U1 , .... 

How could you simulate a pair of values from the joint distribution of II and Sn 
considered above, with II uniform on (0,1), and Sn binomial(n,p) given II = p? 

Set 

n 

II = Un, and Sn = L I(U; < Un) 
i=l 

where I(U; < Un) is an indicator variable that is 1 if (Ui < Uo) and 0 otherwise. If 

II = P, then Sn = L~=l I(Ui < p) is the sum of n independent indicator variables, 
each of which is 1 with probability P and 0 with probability 1--p, exactly as required. 

Use this construction to calculate P(Sn = k) without integration. 

By construction of Sn from Un, U1 ,· .. , Un 

(Sn = 0) if and only if Uo is the smallest of the Un, U1 ,. _., Un 

(Sn = 1) if and only if Uo is the second smallest of the Un, U1 , ... , Un 

(Sn = n) if and only if Uo is the largest of the Un, U1 ,· _., Un 

Since all (n + I)! possible orderings of the Un, U1 , ... , Un are equally likely, each of 

these events has the same probability 1/ (n + 1). 



422 Chapter 6. Dependence 

Remark. This calculation is closely related to the distribution of order statistics treated in 

Section 4.6. For j = 1, ... , n+1, let U(j) denote the jth smallest of the n+1 variables 

Uo, ... , Un. Then the event Sn = j - 1, that there are exactly j - 1 values Ui less 

than Uo, is identical to the event U(j) = Uo, that the jth smallest of the Ui equals 

Uo. The solution of Problem 2 in Example 4 now translates into the following: the 

conditional distribution of Uo, or of U(j), given that U(j) = U 0, is beta (j, n - j + 2). 

By symmetry, the same is true for Uk instead of Uo for any 1 :s k :s n. Consequently, 

the distribution of U(j), the jth smallest of n+ 1 independent uniform (0,1) variables, 

is beta (j, n - j + 2), independently of K, where K is the random index k such that 

Uk = U(j). This agrees with the result of Section 4.6, with the present n + 1 and j 

instead of nand k in that section. 

Independence 

In the continuous case, just as in the discrete case, it can be shown that each of the 

following conditions is equivalent to independence of random variables X and Y: 

• the conditional distribution of Y given X = x does not depend on x; 

• the conditional distribution of X given Y = y does not depend on y. 

By integration with respect to the distribution of X, the common conditional distri­

bution of Y given X = x then equals the unconditional distribution of Y. That is to 

say, for all subsets B in the range of Y 

P(Y E B I X = x) = P(Y E B) 

Similarly for all subsets A in the range of X 

P(X E AIY = y) = P(X E A) 

These are variations of the basic definition of independence of X and Y, which is 

P(X E A,Y E B) = P(X E A)P(Y E B) 

for all subsets A and B in the ranges of X and Y respectively. When X and Y have 

densities, X and Yare independent if and only if Jy (y I X = x) = Jy (y) for all x 
and y, and again if and only if fx(x I Y = y) = fx (x) for all x and y. So the general 

multiplication rule for densities reduces in this case to the formula 

f(x, y) = fx(x)Jy(y) 

for independent variables X and Y. This formula was applied in Section 5.2. 
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Conditional Expectations 

The conditional expectation of Y given X = x, denoted E(Y I X = x), is defined as 

the expectation of Y relative to the conditional distribution of Y given X = x. More 

generally, for a function g, assuming that Y has a conditional density Jy(y I X = x), 

E[g(Y) I X = x] = J g(y)Jy(y I X = x)dy 

Taking g(y) = y gives E(Y I X = x). And integrating the conditional expectation 

with respect to the distribution of X gives the unconditional expectation 

E[g(Y)] = J E[g(Y) I X = xlfx(x) dx 

These formulae are extensions to general functions 9 of the basic conditional prob­

ability formulae, which are the special cases when 9 is an indicator. As a general 

rule, all the basic properties of conditional expectations, considered in the discrete 

case in Section 6.2, remain valid in the density case. 

Uniform distribution on a triangle. 

Suppose, as in Example 1, that (X, Y) is chosen uniformly at random from the 

triangle {(x, y) : x ?: 0, y ?: 0, x + y ~ 2}. Find E(Y I X) and E(X I Y). 

As argued before, given X = x, for 0 < x < 2, Y has uniform distribution on 

(0,2 -- x). Since the mean of this conditional distribution is (2 - x)/2, 

E(YIX = x) = (2 - x)/2 

In short notation 

E(YIX) = (2 - X)/2 

Similarly, because joint density of X and Y is symmetric in x and y, 

E(XIY) = (2 - Y)/2 
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Conditioning Formulae: Discrete Case 

Multiplication rule: The joint probability is the product of the marginal 

and the conditional 

P(X = x, Y = y) = P(X = x)P(Y = y I X = x) 

Division rule: The conditional probability of Y = y given X = x is 

Bayes'rule: 

P(Y=yIX=x)= P(X=x,Y=y) 
P(X = x) 

P(X = xlY = y) = P(Y = ylX = x)P(X = x) 
P(Y ~ y) 

Conditional distribution of Y given X = x: Sum the conditional proba­

bilities 

P(Y E B I X = x) = L P(Y = y I X = x) 
yEB 

Conditional expectation of g (Y) given X = x: Sum g against the con­

ditional probabilities 

! 

E (g(Y) I X = x) = L g(y)P(Y = y I X = x) 
all y 

Average conditional probability: 

P(B) = LP(BIX = x)P(X = x) 
all x 

P(Y = y) = LP(Y = ylX = x)P(X = x) 
all x 

Average conditional expectation: 

E(Y) = LE(YIX = x)P(X = x) 
all x 
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Conditioning Formulae: Density Case 

Multiplication rule: The joint density is the product of the marginal and 

the conditional 

f(x, y) = fx(x)Jy(y I X = x) 

Division rule: The conditional density of Y at y given X = x is 

Bayes'rule: 

f ( I X = ) = f(x, y) 
y y x fx(x) 

f ( Iy = ) = Jy(yIX = x)fx(x) 
x x y Jy(y) 

Conditional distribution of Y given X = x: Integrate the conditional 

density 

P(YEBIX=x)= lJy(yIX=x)dY 

Conditional expectation of g (Y) given X = x: Integrate g against the 

conditional density: 

E (g(Y) I X = x) = J g(y)Jy(y I X = x)dy 

Average conditional probability: 

P(B) = J P(BIX = x)fx(x) dx 

Jy(y) = J Jy(y I X = x)fx(x) dx 

Average conditional expectation: 

E(Y) = J E(YIX = x)fx(x) dx 
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Exercises 6.3 

1. Suppose X has uniform (0,1) distribution and P(AIX = x) = x2 What is P(A)' 

2. Let X and Y have the following joint density: 

f(x,y) = { ~x+2Y-4Xy for 0 S :1: S 1 and ° S y S 1 
otherwise 

a) Find the marginal densities of X and Y. 

b) Find fy(ylX = :j-). c) Find E(YIX = :j-). 

3. Let (X, Y) be as in Example l. Find a formula for P(Y S ylX = x). 

4. Suppose X, Yare random variables with joint density 

a) Find the density of Y. What is E(Y)? 

for 0 < x < y 

otherwise 

b) Compute E(XIY = 1). 

5. Suppose (X, Y) has uniform distribution on the triangle shown in the diagram. For x 

between -1 and 1, find: 

a) P(Y ~ ~IX = x); 

b) P(Y < ~IX = x); 

c) E(YIX = x); 

d) Var(YIX = x). 
~~------r-----~~x 

1 

6. Suppose X, Yare random variables with joint density 

f () 1 e -y/2 
X,Y x, Y = . / 

27ry x(y - x) 
(0 < x < y) 

a) Find the distribution of Y. [Hint: For integration use the substitution x = y 8.] 

b) Compute E(XIY = 1). 

7. Suppose that Y and Z are random variables with the following joint density: 

f(y,z) = { ~(z - y) 

for some constant k. Find: 

for ° S y S z S 1 
otherwise 

a) the marginal distribution of Y; b) P (Z < ~ I Y = ~). 

8. The random variable X has a uniform distribution on (0,1). Given that X = x, the 

random variable Y is binomial with parameters n = 5 and p = x. 

a) Find E(Y) and E(y2). b) Find P(Y = y and x < X < x + dx). 

c) Find the density of X given Y = y. Do you recognize it? If yes, as what? 
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9. Let A and B be events and let Y be a random variable uniformly distributed on (0,1). 

Suppose that, conditional on Y = p, A and B are independent, each with probability 

p. Find: 

a) the conditional probability of A given that B occurs; 

b) the conditional density of Y given that A occurs and B does not. 

10. Conditioning a Poisson process on the number of arrivals in a fixed time. Let TI 

and Ts be the time of the first and fifth arrivals in a Poisson process with rate .\, as in 

Section 4.2. 

a) Find the conditional density of TI given that there are 10 arrivals in the time 

interval (0,1). 

b) Find the conditional density of Ts given that there are 10 arrivals in the time 

interval (0,1). 

c) Recognize the answers to a) and b) as named densities, and find the parameters. 

11. Suppose X has uniform distribution on (-1,1) and, given X = x, Y is uniformly 

distributed on (-v"f=X2, VI - X2). Is (X, Y) then uniformly distributed over the unit 

disk {(x, y) : X2 + y2 < I}? Explain carefully. 

12. Suppose there are ten atoms, each of which decays by emission of an a-particle after 

an exponentially distributed lifetime with rate 1, independently of the others. Let TI be 

the time of the first a-particle emission, T2 the time of the second. Find: 

a) the distribution of T I ; 

b) the conditional distribution of T2 given T I ; 

c) the distribution of T2 . 

13. Let X and Y be independent random variables, X with uniform distribution on (0,3), 

Y with Poisson (.\) distribution. Find: 

a) a formula in terms of'\ for P(X < Y); 

b) the conditional density of X given X < Y, and sketch its graph in the cases 

A = 1,2,3; 

c) E(XIX < Y). 

14. Bayesian sufficiency. Let Sn = Xl + ... + Xn be the number of successes in a 

sequence of n independent Bernoulli (p) trials X I, X 2, ... , X n with unknown success 

probability p. Regard p as the value of a random variable IT whose prior distribution 

has some density f(p) on (0,1). Show that the conditional (posterior) distribution of IT 

given Xl = Xl, . .. ,Xn = Xn, for any particular sequence of zeros and ones Xl, ... ,Xn 
with Xl + ... + Xn = k, depends only the observed number of successes k in the n 

trials, and not on the order in which the k successes and n - k failures appear. Deduce 

that this conditional distribution is identical to the posterior distribution of IT given 

Sn = k. [This is another expression of the fact that S" is a sufficient statistic for p. See 

Exercise 6.2.14.1 

15. Beta-binomial. As in Exercise 14 let Sn = Xl + ... + Xn be the number of successes 

in a sequence of n independent Bernoulli (p) trials X I, X 2, ... , X n, with unknown 

success probability p, regarded as the value of a random variable IT. 
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a) Suppose the prior distribution of II is beta (r, s) for some r > 0 and s > O. Show 

that the posterior distribution of II given 8 n = k is beta (r + k, s + n - k). [Hint 

for quick solution: It is enough to show that the posterior density is proportional 

to the beta (r + k, s + n - k) density. See Chapter 4 Review Exercise 8.1 

b) Using the fact that the total integral of the beta (r + k, s + n - k) density is 1, find 

a formula for the unconditional probability P(Sn = k). 

c) Check your result in part b) agrees with the distribution of Sn found in Example 4 

in the case r = s = 1. 

d) For general rand s find the posterior mean E(II I Sn = k) and the posterior 

variance Var(IIISn = k). 

e) Suppose n is very large and the observed proportion of successes p = kin is not 

very close to either 0 or 1. Show that no matter what rand s, provided n is large 

enough, E(II I S1] = k) :::::; p and Var(II I Sn = k) :::::; p(1 - p)ln. 

[It can be shown that the posterior distribution of II given Sn = k is approximately 

normal under the assumptions in e). So 

for large enough n, the conditional distribution of the unknown value of p, given the 

observed proportion of successes p in n trials, is approximately normal with mean p 

and standard deviation Vp(l- p)lyin, 

regardless of the prior parameters rand s. The same conclusion holds for any strictly 

positive and continuous prior density f (p) instead of a beta prior. In the long run, any 

reasonable prior opinion is overwhelmed by the data. The italicized assertion should 

be compared to the following paraphrase of the normal approximation to the binomial 

distribution: 

for large enough n, the distribution of proportion of successes p in n trials, given 

the probability p of success on each trial, is approximately normal with mean p and 

standard deviation V p(1 - p) I yin. 
While the assertions are very similar, and both true, it is not a trivial matter to pass 

from one to the other. There is a big conceptual difference between, on the one hand, 

the distribution of p for a fixed and known value of p, which has a clear frequency 

interpretation in terms of repeated blocks of n trials with the same p, and on the other 

hand, the posterior distribution of p given p, which while intuitive from a subjective 

standpoint, is almost impossible to interpret in terms of long-run frequencies. Long-run 

frequency of what? The problem is that for large n, in any model of repeated blocks of 

n trials, the exact value of p observed in the first block will typically not be observed 

even once again until after a very large number of blocks have been examined. The 

number of blocks required to find the first repeat is of order yin if the same p is used in 

each block, and order n if p is randomized for each block using the prior distribution: 

this is because the probability of the most likely values of p is of order II yin in the 

first case, by the normal approximation to the binomial, and order lin in the second 

case, as typified when the prior is uniform on (0, 1) and the distribution of p is uniform 

on the n + 1 possible multiples of lin. Either way, it is hard to make a convincing 

frequency interpretation of the conditional distribution of p given an exact observed 

value of p.l 

16. Negative binomial distribution for number of accidents. Consider a large popula­

tion of individuals subject to accidents at various rates. Suppose the empirical distribu­

tion of accident rates over the whole population is well approximated by the gamma 

(r, a) distribution for some r > 0 and a > O. Suppose that given an individual has 
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accident rate A per day, the number of accidents that individual has in t days has 

Poisson (At) distribution. Let A be the accident rate and N be the number of accidents 

in t days for an individual picked at random from this population. So A has gamma 

':r, a) distribution, and given A = >-, N has Poisson (At) distribution. 

a) Show by integration that 

r(r+k) T k 
P(N = k) = r(r)k! p q (k = 0,1,2 ... ) where p = a/(Ha), q = t/(Ha) 

b) Evaluate r( r + k) Ir( r) as a product of k factors. Deduce that if r is a positive 

integer, the distribution of N is the same as the distribution of the number of 

failures before the rth success in Bernoulli (p) trials, as found in Section 3.4. 

[In general, the distribution of N defined in a) is called the negative binomial (r, p) dis~ 

tribution, now defined for arbitrary r > 0 and 0 < p < 1. The terminology is explained 

by the following relation between this distribution and the binomial expansion for the 

negative power -r.] 

c) Show, either by conditioning on A, or from a) and b), that N has generating 

function 

(Izl < 1) 

d) Find E(N) and E(N 2 ) in terms of rand p by conditioning on A. Deduce a for~ 

mula for Var(N). Check for integer r that your results agree with those obtained 

in Section 3.4. 

e) Derive E(N) and Var(N) another way by differentiating the generating function. 

(Refer to Exercise 3.4.22.) 

o Show that for each integer k ;:: 0, the conditional density of A given N = k is a 

gamma density, and find its parameters. 

17. Sums of independent negative binomial variables. Consider, as in Exercise 16, a 

large population of individuals subject to accidents at various rates. Suppose now that 

an individual picked at random from the population is subject (0 one kind of accident 

at rate Al per day, and another kind of accident at rate A2 per day. where Al and A2 

are independent gamma variables with parameters (rl. 0) and (rL' 0) for some n > O. 

Assume that given Al = ..\1 and A2 = A2 the two types of accidents occur according to 

independent Poisson processes with rates Al and A2. Let NI and N2 be the numbers 

of accidents of these two kinds the individual has in t days. 

a) Describe the joint distribution of Nl and N 2 . 

b) What is the distribution of NI + N 2 ' [Hint: No calculation required. Use results 

about sums of independent random variables with gamma or Poisson distribu~ 

tions.] Check your conclusion is consistent with the mean and variance formulae 

of Exercise 16. 

c) Suppose Xi, 1 :S i :S k are k independent random variables. and that Xi has 

negative binomial (r"p) distribution for some r, > 0,0 < p < l. What is the 

distribution of Xl + ... + Xn? Explain carefully how your conclusion follows from 

parts a) and b). 

d) Derive the result of c) another way using generating functions [see Chapter :~ 

Review Exercise 34]. 
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6.4 Covariance and Correlation 
Covariance is a quantity which appears in calculation of the variance of a sum of 

possibly dependent random variables. This qu«ntity is useful in variance calcula­

tions, but like variance is hard to interpret intuitively. Correlation is a standardized 

covariance which is easier to interpret. It provides a measure of the degree of linear 

dependence between two variables. In Section 3.3, the formula 

Var(X + Y) = Var(X) + Var(Y) if X and Yare independent 

was derived from the more general formula 

Var(X + Y) = Var(X) + Var(Y) + 2E [(X - flx )(Y - flY)] 

where flx = E(X) and fly = E(Y). For independent random variables, the last 

term vanishes. In general, for two random variables X and Y with finite second 

moments, there is the following: 

Definition of Covariance 
The covariance of X and Y, denoted Cov(X, Y), is the number 

Cov(X, Y) = E [(X -flx)(Y -flY)] 

where Ilx = E(X), fly = E(Y) 

Alternative Formula 

Cov(X, Y) = E(XY) - E(X)E(Y) 

Variance of a Sum 

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) 

Proof of alternative formula for covariance. Expand 

(X -flx)(Y -flY) = XY -flxY - Xfly + flxflY 

and take expectations.D 

Variance. Notice that Cov(X, X) = Var(X), so these formulae for covariance are 

extensions of old formulae for variance. 

Independence. If X and Yare independent then Cov(X, Y) = O. 

Warning. Cov(X, Y) = 0 does not imply X and Yare independent. See Exercises. 
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Indicators 

Let X = IA be the indicator of event A, and Y = IB the indicator of another event 

B. These could be events in any outcome space, where there is given a probability 

distribution P. In this case 

is the indicator of the intersection of the events A and B. Thus 

Cov(IA, IB) = P(AB) - P(A)P(B) 

This covariance is 

positive iff P(AB) > P(A)P(B), when A and B are called positively dependent; 

zero iff P(AB) = P(A)P(B), when A and B are independent; 

negative iff P(AB) < P(A)P(B), when A and B are called negatively dependent. 

In the case of positive dependence, learning that B has occurred increases the chance 

of A: 

P(AJB) > P(A) and vice versa P(BJA) > P(B) 

For negative dependence, learning that B has occurred decreases the chance of A: 

P(AJB) < P(A) and vice versa P(BJA) < P(B) 

These formulations of positive and negative dependence are easily seen to be equiv­

alent to those in the box, by using the formula for P(AJB), and rearranging inequal­

ities. The most extreme case of positive dependence is if A is a subset of B, with 

o < P(A) ~ P(B) < 1. Then, given that A occurs, B is certain to occur. In this case, 

given that B occurs, A is more likely to occur than before 

P(AJB) = P(AB)/ P(B) = P(A)/ P(B) > P(A) 

The most extreme case of negative dependence is if A and B are mutually exclusive 

events B with P(A) > 0 and P(B) > O. Then, given that A occurs, B cannot occur, 

and vice versa. 
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Example 1. Draws with and without replacement. 

Consider two draws at random from a box of b black balls and w white balls, where 

b > 0, w > 0. Let Blacki and Whitei denote the events of getting a black or a white 

ball on the ith draw, i = 1,2. Then you can check that the dependence between 

pairs of these events from different draws is affected by whether the sampling is 

done with or without replacement, as shown in the following table. 

Dependence Between Events on Different Draws 

Pairs of events Sampling with replacement Sampling without replacement 

Black!, Black2 independent - dependent 

Black!, White2 independent + dependent 

White!, White2 independent - dependent 

White!, Black2 independent + dependent 

The Sign of the Covariance 

As a general rule, the sign of Cov(X, Y) is positive if above-average values of X 

tend to be associated with above-average values of Y, and below-average values of 

X with below-average values of Y. The random variable (X - J.lx )(Y - J.ly) is then 
most likely positive, with a positive expectation. 

The sign of Cov(X, Y) is negative if above-average values of X tend to be associated 

with below-average values of Y, and vice versa. Then (X - J.lx )(Y - J.ly) is most 

likely negative, with a negative expectation. 

Cov(X, Y) is zero only in special cases when there is no such association between 

the variables X and Y. Then (X - J.l x) (Y - J.l y) has positive values balanced by 

negative values, and expected value zero. 

While the sign of the covariance can be interpreted as above, its magnitude is hard 

to interpret. It is easier to interpret the correlation of X and Y, denoted here by 

Corr(X, Y), which is defined as follows: 

Definition of Correlation 

Cov(X, Y) 
Corr(X, Y) = SD(X)SD(Y) 

Assume now that neither X nor Y is a constant, so SD(X)SD(Y) > 0. The sign of 

Cov(X, Y) is then the same as the sign of Corr(X, Y). 
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Conditions for X and Y to be Uncorrelated 
The following three conditions are equivalent: 

Corr(X, Y) = 0 

Cov(X, Y) = 0 

E(XY) = E(X)E(Y) 

in which case X and Yare called uncorrelated. Independent variables are 

uncorrelated, but uncorrelated variables are not necessarily independent. 

Let X* and Y* now denote X and Y rescaled to standard units. So 

X* = (X - Mx)/SD(X) and Y* = (Y - My)/SD(Y) 

Then 

E(X*) = E(Y*) = 0 and SD(X*) = SD(Y*) = 1 

by the scaling properties of E and S D. And you can check that 

Corr(X, Y) = Cov(X*, Y*) = E(X*Y*) 

So correlation is a kind of standardized covariance that is unaffected by changes of 
origin or units of measurement. See Exercises. 

Correlations are between -1 and + 1 

-1 ::; Corr(X, Y) ::; 1 

no matter what the joint distribution of X and Y. 

Proof. Since E(X*2) = E(y*2) = 1 

o ::; E(X* - y*)2 = 1 + 1 - 2E(X*Y*) 

0::; E(X* + y*)2 = 1 + 1 + 2E(X*Y*) 

Thus -1::; E(X*Y*) ::; 1, and Corr(X, Y) = E(X*Y*) by the preceding 

discussion. 0 
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Example 2. 

Correlations of ± 1. The proof that correlations are between ± 1 shows C orr (X, Y) = 
+ 1 if and only if E(X* - y*)2 = 0, that is, if and only if X* = y* with probability 

one. This means there are constants a and b with a > 0 such that 

Y = aX +b 

with probability 1. That is to say, a correlation of + 1 indicates a deterministic linear 

relationship between X and Y with positive slope. Similarly, a correlation of -1 

indicates a deterministic linear relationship between X and Y with negative slope. 

Correlations between -1 and + 1 indicate intermediate degrees of linear association 

between the two variables. 

Empirical correlations. 

Like expectation and variance, covariance and correlation are generalizations to ran­

dom variables of corresponding notions for empirical variables. Suppose (Xl, YI), ... , 
(Xn, Yn) is a list of n pairs of numbers, and (X, Y) is one of these pairs picked uni­

formly at random. Then the joint distribution of (X, Y) puts probability lin at each 

of the pairs, as suggested by the scatter diagram: 

y 

. . 

.. 
. -. . .-

.. . .. 
.. . 

.. . 
. . . . 

---r--------------------~ x 

E(X) = x and SD(X) = 

and similarly for Y instead of X. Also 

1 n 

E(XY) = - L xkYk so 
n 

k=l 

Cov(X, Y) = E(XY) - E(X)E(Y) and 
Cov(X, Y) 

Corr(X, Y) = SD(X)SD(Y) 
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can be computed from the list of number pairs. If the list of number pairs is a list of 

empirical measurements, or a sample of some kind, these may be called empirical or 

sample quantities. These quantities are all defined in terms of averages, which may 

be expected to converge to theoretical expectations as the sample size n increases, 

under conditions of random sampling. For example, the empirical correlation of n 

obsenred values of independent random variables (Xl, Yd, (X2, Y2)"" ,(Xn , Yn ), 

all with the same joint distribution, will most probably be close to the theoretical 

correlation of Xl and YI , provided n is suffiCiently large. Thus a correlation in a 

theoretical model is often estimated by an empirically observed correlation based 

on a random sample. In particular, the empirical correlation of two variables over a 

large population can be estimated this way by the procedure of random sampling. 

Correlation and distribution of the sum. 

This example shows in a simple case how the distribution of the sum of random 

variables X and Y is affected by their correlation. Suppose a gambler can bet on 

the value of a number U chosen uniformly at random from the numbers 1,2, ... ,8. 

The gambler can choose any set A of four numbers, such as A = {1,2,3,4}, and 

place an even-money bet of $1 on A. SO the gambler wins $1 if U E A, and loses 

$1 if U E A c. Let $X denote the gambler's net gain from this contract. Then, X has 

value + 1 if U E A, -1 if U E A c. In terms of indicators, 

X = 2IA -1 

Clearly E(X) = O. The bet is fair no matter what set A the gambler chooses, because 

P(A) = P(AC) = 1/2 for every set of four numbers A. 

Suppose now that in addition to placing a bet on A, the gambler is also free to 

place at the same time a similar bet on a second set of four numbers B, for example 

B = {l, 3, 5, 7}. Let 

Y = 2lB -1 

denote the net gain to the gambler from this second bet. Then the gambler'S overall 

gain from the placement of the two bets is the sum 

Notice that the distribution of X and the distribution of Yare the same, uniform on 

{-1, I}, regardless of the gambler'S choice of sets A and B. But the distribution of 

S is affected by the degree of dependence between X and Y, which is governed in 

turn by the amount of overlap between A and B. Clearly, E(S) is zero no matter 

what the choice of A and B. But SD(S) is affected by the gambler'S choice of A and 

B. This standard deviation gives an indication of the likely size of the fluctuation in 

the gambler'S fortune due to the combined bet. 
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Problem. 

Solution. 

Discussion. 

Find how the standard deviation of S is determined by the choice of A and B. 

Use the addition rule for variance 

Var(S) = Var(X) + Var(Y) + 2 Cov(X, Y) 

= 2 + 2 Corr(X, Y) 

because SD(X) = SD(Y) = I, so Corr(X, Y) = Cov(X, Y) in this case. Because 

X = 2IA - I, Y = 2IB - 1, and the correlation coefficient is unchanged by linear 

transformations, 

Cov(IA,IB) ( 1) /1 
Corr(X, Y) = Corr(IA,!B) = SD(IA)SD(IB) = P(AB)-4: 4: =4P(AB)-1 

This used P(A) = P(B) = 1/2, which makes SD(IA) = SD(IB) = 1/2. Using the 

earlier expression for Var(S) this gives 

SD(S) = JSP(AB) = J#(AB) 

where #(AB) is the number of points in the intersection of A and B, so P(AB) = 

#(AB)/S. 

The formula shows that the larger the overlap between A and B, the larger will be 

the likely size of the fluctuation in the gambler'S fortune as a result of betting on 

both A and B, This is intuitively clear if you think about the following special cases: 

Case #(AB) = 0, Corr(X, Y) = -I, SD(S) = O. This means B = AC. Then Y = 
- X, because whatever is gained on one bet is lost on the other. So S = 
X + Y = O. This is a strategy of extreme hedging, with zero result. 

Case #(AB) = I, Corr(X, Y) = -1/2, SD(S) = 1. Intuitively, this is still hedg­

ing, The two bets tend to cancel each other. 

Case #(AB) = 2, Corr(X, Y) = 0, SD(S) = J2. In this case A and B are inde­

pendent. Therefore, so too are the indicator random variables IA and IB, and 

the random variables X = 2IA - 1, Y = 2IB - 1 representing the net gains 

from the two bets. So the net effect of betting on both A and B in one game 

is the same as the effect of betting on A in one game, then betting on A again 

in a second game, independent of the first. The distribution of S in this case 

is the familiar binomial (2,1/2) distribution, but centered at 0 and rescaled by 

a factor of 2, because 

where IA + IB is the number of successes in two independent trials with 

probability 1/2 of success on each trial, with binomial (2,1/2) distribution. 

The appearance of J2 as the standard deviation in this case illustrates the 

square root law for the standard deviation of the sum of n = 2 independent 

variables. 
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Case #(AB) = 3, Corr(X, Y) = 1/2, SD(S) = v'3. This is a bolder strategy. 

Case #(AB) = 4, Corr(X, Y) = 1, SD(S) = 2. Now A = B. All the gambler's 

eggs are in one basket. This is the boldest strategy for the gambler, effectively 

doubling the stake on A from $1 to $2. 

Red and black. 

Let N R be the number of reds that appear, N B the number of blacks, in n spins of a 

roulette wheel that has proportion r of its numbers red, proportion b black, and the 

rest of its numbers green. (So r + b < 1. For a Nevada roulette wheel, as described 

at the end of Section 1.1, r = b = 18/38.) 

Find Corr(NR , NB ). 

Notice first, without calculation, that the answer ought to be negative for the usual 

case with r + b ~ 1. If r + b = 1 (no green numbers on the wheel) then N B = n - N R 

which makes C orr( N R, N B) = -1. For r + b ~ 1 this relation is still approximately 

correct, so you should expect a correlation close to -1. Since N R is a binomial (n, r) 
random variable, 

and similarly for N B, with b instead of r. Since 

to calculate 

the only missing ingredient is E(NRNB ). You might try to calculate this from the 

joint distribution of N Rand N B, but you will find this a frightful task. It is difficult 

to calculate even the variance of N R directly from its binomial distribution, and the 

covariance with N B is worse. The way around this difficulty is to use the connection 

between Cov(N R, N B) and the variance of N R + N B 

The point is that N R + N B is just the number of spins which are either red or black, 

which is a binomial (n, r + b) random variable, with variance n(r + b)(l - r - b). 
Rearrange the equation and substitute all the variances to get 

1 
Cov(NR , NB ) = "2n [(r + b)(l - r - b) - r(l - r) - b(l - b)] = -nrb, 
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Problem. 

Solution. 

Example 6. 

hence, 

rb 

(l-r)(l-b) 

In particular, for a Nevada roulette wheel, 

r/(l - r) = b/(l - b) = 18/20 = 0.9 so 

Note the interesting fact that the correlation does not depend at all on the number 

of spins n, only on the proportions of red and black. Also, the correlation is always 

negative, no matter what the proportions rand b. 

Correlations in the multinomial distribution. 

Suppose the joint distribution of (Nt, ... ,Nm ) is multinomial with parameters nand 

(PI,." ,Pm)' 

Find Corr(Ni , N j ). 

Call results in category i red, results in category j black, and results in all other 

categories green. Then the joint distribution of Ni and N j is is the same as the 

joint distribution of NR and NB in the previous problem, for r = Pi, b = Pj. Since 
the correlation between two variables is determined by their joint distribution (by 

definition of Gmelation and the change of variable principle) this choice of rand 

b makes Corr(Ni , N j ) = Corr(NR , N B ). That is to say, from the solution of the 

previous problem, 

Correlation and Conditioning 

An important connection between the ideas of correlation and conditioning is brought 

out by the following example. 

Sharkey'S Casino. 

At Sharkey'S Casino the roulette wheels spin an average of one thousand times a 

day. Every day, Sharkey records the total numbers of red and black spins for the day 

on a computer. One day he notices that over the years he has been keeping data, the 

correlation between the number of reds and number of blacks has come out around 
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+0.8, rather than around -0.9 as predicted by the above calculation. Sharkey is very 

concerned that his roulette wheels are not obeying the laws of chance, and that 

someone might take advantage of it. 

Should Sharkey get new roulette wheels? 

Despite the fact that no matter what the number of spins n, the correlation between 

numbers of reds and blacks is -0.9, this does not imply that the same is true for a 

random number of spins, say N, the number of spins in a day picked at random 

at Sharkey's. While the expected value of N may be estimated as 1000 based on 

the long-run average of 1000 spins a day, it is reasonable to expect some spread in 

the distribution of N due to fluctuations in the number of customers and the rate 

of play. Since to a first approximation NB ~ ~~N, NR ~ ~~N, both NB and NR 
are positively correlated with N. If there is enough spread in the distribution of N, 

this will make for a positive correlation between N Band N R. SO Sharkey need not 

be concerned, provided his data give a standard deviation of N consistent with a 

correlation of +0.8 between NR and NB. 

To find the precise relation between SD(N) and Corr(NR, NB), for NR and NB, 
now numbers of reds and blacks in a random number N of spins, use the formula 

where each expectation can be computed by conditioning on N. First, if N is treated 

as a constant, then by previous calculations, 

For random N, these are conditional expectations given N. But since expectations 

are expectations of conditional expectations, this gives 

E(NR) = E(N)r, E(NB) = E(N)b 

E(NRNB) = E(N2 )rb - E(N)rb, hence 

Cov(NR, NB) = E(NRNB) - E(NR)E(NB) 

= rb [E(N 2 ) - E(N) - [E(NWJ 

= rb [Var(N) - E(N)] 

In particular, Cov(NR,NB) will be positive provided Var(N) > E(N). Thus for 

E(N) = 1000, if SD(N) > yi1000 ~ 32, there will be a positive correlation between 

N Rand N B. The same method of calculation gives 

Var(NB) = b2 Var(N) + b(l- b)E(N) 
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For b = r this gives 

b2 [Var(N) - E(N)] 
Corr(NR,NB) = b2 Var(N)+b(1-b)E(N) 

9 Var(N) - 9000 

9 Var(N) + 10,000 
for b = ~~, E(N) = 1,000. 

If Var(N) = 0 this simplifies to -0.9 as before. But as Var(N) increases the correla­

tion increases, and approaches 1 for large values of Var(N). Set Corr(N R, N B) = P 
and solve for SD(N) = JVar(N) to get 

SD(N) = 
9000 + 10, OOOp 

9(1 - p) 

17,000 

9 x 0.2 

~ 100 

for p = 0.8 

So a correlation of 0.8 between N Rand N B is consistent with a standard deviation 

of about 100 for the number of spins per day. Provided that is the case, Sharkey 

need not be concerned. 

The example makes the important point that two variables, like NR and NB, may 

be positively correlated due to association with some third variable, like N, even if 

there is zero or negative correlation between the two variables for a fixed value of N. 

Here is another example. For children of a fixed age, the correlation between height 

and reading ability would most likely come out around zero. But if you looked at 

children of ages from 5 to 10, there would be a high positive correlation between 

height and reading ability, because both variables are closely associated with age. For 

data variables, looking at distributions or relationships between some variables for 

a fixed value of another variable, N say, is called controlling for N. In a probability 

model the corresponding thing is conditioning on N. Whether or not you condition 

or control on one variable typically has major effects on relationships between other 

variables. 

The calculations in the example show in general that for two mutually exclusive 

outcomes in independent trials, like red and black at roulette, the counts of results 

of the two kinds that occur in any fixed number of trials will be negatively correlated. 

If the number of trials N is random, the two counts will be positively or negatively 

correlated according to whether Var(N) > E(N) or Var(N) < E(N). In the case 

where Var(N) = E(N), the two counts will be uncorrelated. In particular this is the 

case if N has a Poisson distribution. Then the two counts are actually independent. 

See Exercise 6.1.8. 
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Variance of a Sum of n Variables 

The general formula involving covariance for the variance of a sum of two random 

variables has the following extension to n variables. The formula shows that the 

simple addition rule for the variance of a sum of independent random variables 

works just as well for uncorrelated ones, but in general there are G) covariance 

terms to be considered as well. 

Variance of a Sum of n Variables 

Var (2: Xk) = 2: Var(Xk) + 2 2: Cov(XjXk) 

k k j<k 

where L:k denotes a sum of n terms from k = 1 to n, and L:j<k denotes a 

sum of (~) terms indexed by j and k with 1 ::; j < k ::; n. 

Proof: The variance of the sum is by definition the expectation of 

by the algebraic identity 

[~Xk ~ ~Mkr 

[~(Xk~MkJ 
= 2)Xk - f.Lk)2 + 2 L(Xj - f.Lj)(Xk - f.Lk) 

k j<k 

(2: ak f = 2: a~ + 22: ajak 
k j<k 

applied to ak = X k - f.Lk. Now use the linearity of expectation and the definition of 

Cov(Xj, X k). In the sum over all j < k, there are exactly G) terms, one for each 

way of choosing two indices j < k from the set {I, 2, ... , n}. 0 

Variance of sample averages. 

Let x(1),x(2), ... ,x(N) be a list of N numbers. Think of x(k) as representing the 

height of the kth individual in a population of size N. Let 

1 n 

X = - 2:x(k) and 
n 

k=l 
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Problem. 

Solution. 

So x is the population mean, and 0'2 is the population variance. Let X I, X 2, ... , X n 
be the heights obtained in a random sample of size n from this population. More 

formally, for i = 1,2, ... , n, the ith height in the sample is Xi = x(Ki ), where 

K I , K2' ... ' Kn is a random sample of size n from the index set {I, 2, ... , N}. This 

random sample might be taken either with replacement or without replacement. 

Either way, each random index Ki has uniform distribution over {I, 2, ... , N}, by 

symmetry. So each Xi is distributed according to the distribution of the list of heights 

in the total population, with 

E(Xi ) = x and SD(Xi ) = a (i=1,2, ... ,n) 

Let 

be the sample average. This is the average height of individuals in the sample of 

size n. Note that this is a random variable: repeating the sampling procedure will 

typically produce a different sample average. Whereas x, the population average, is 

a constant. Since E(Xi ) = x for i = 1,2, ... , n, the rules of expectation imply that 

also 

still no matter whether the sampling is done with or without replacement. In the 

case with replacement, the random variables Xi are independent, all with standard 

deviation a, so 

(with replacement) 

by the square root law of Section 3.3. So the average height in a random sample of 

size n is most likely only a few multiples of 0'/ y'n away from the population average 

x. If a can be bounded or estimated, this gives an indication of the quality of the 

sample average Xn as an estimator of the unknown population average x. 

Intuitively, for sampling without replacement, Xn should provide a better estimate of 

x than for sampling with replacement. In this case, the random variables Xl' ... ' Xn 
turn out to be negatively correlated, which affects the formula for SD(Xn). The 

problem is how to correct for the dependence. 

Calculate SD(Xn) for sampling without replacement. 

Let Sn = Xl + ... + X n, so Xn = Sn/n. Then 

Var(Sn) = L Var(X j ) + 2 L Cov(Xj , X k ) 

j j<k 



Discussion. 

Section 6.4. Covariance and Correlation 443 

because Cov(Xj, Xk) = COV(Xl' X2 ) by the symmetry of sampling without replace­

ment discussed in Section 3.6: (Xj, Xk) is for every j < k a simple random sample 

of size 2, with the same distribution as (Xl, X 2 ). This formula for Var(Sn) holds for 

every sample size n with 1 :S n :S N. But for n = N 

is constant, because in a complete sample of the population each element appears 

exactly once, so the sum defining SN is just the sum on the right done in a random 

order. Thus Var(SN) = O. Comparison with the previous formula for Var(Sn), in 

the case where n = N, shows 

hence 

and 

This shows that the standard deviation for the average in sampling without replace­

ment is the corresponding standard deviation for sampling with replacement, re-

duced by the correction factor J IJr =~. The same is true for the sum as well as the 

average, by scaling. 

The same correction factor appears in the formula for the variance of the hyperge­

ometric distribution, calculated in Section 3.6. Though covariances are not used in 

that calculation, it is still a special case of the current example, with Xj = 0 or 1 for 

every j. 

It is remarkable that the same correction factor works no matter what the distribution 

of the empirical variable x. The correction factor takes care of the slight negative 

correlation between terms, which also does not depend on the distribution of x: 

The correlation is negative because observation of a large value of Xj removes a 

large value from the population, and tends to make large values of X k less likely. 

Similarly, small values of Xj tend to make small values of Xk less likely. This means 

there is a greater tendency for the deviations Xj - E(Xj) to cancel each other out 
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for sampling without replacement than for sampling with replacement, when these 

deviations are independent. This reduces the likely size of the deviation for the sum 

n 

Sn - E(Sn) = L (Xj - E(Xj)) 
j=l 

Ultimately, for n = N, the deviation of SN is zero, which was the key to calculating 

the correction factor. 

Bilinearity of Covariance 

The following formulae for covariances of linear combinations of variables are easily 

derived from the definition. These formulae can often be used to simplify covariance 

calculations. 

Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z) 

Cov(W + X, Y) = Cov(W, Y) + Cov(X, Y) 

For constants a and b 

Cov(aX, Y) = aCov(X, Y) and Cov(X, bY) = bCov(X, Y) 

and so on for linear combinations of several variables. For example 

Cov(aW +bX, cY +dZ)=acCov(W, Y)+adCov(W, Z)+bcCov(X, Y)+bdCov(X, Z) 

To summarize: 

Covariance is Bilinear 

Cov (LaiXi, Lbj'Yj) = LLaibjCov(Xi,'Yj) 
, J , J 

Here the ai and bj are arbitrary constants. If there are n terms in the sum over i and 

m terms in the sum over j there are nm terms in the double sum on the right side. 

Taking n = m, ai = bi = 1 and Xi = Yi for 1 SiS n, this formula reduces to the 

formula for the variance of L:i Xi. 
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Exercises 6.4 
1. Suppose A, B are two events such that P(A) = 0.3, P(B) = 0.4, and P(AUB) = 0.5. 

a) Find P(AIB). b) Are A and B independent, positively or negatively dependent' 

c) Find P(K B). d) Let X = lA, Y = lB. Find Corr(X, Y). 

2. Use the formula P(A) = P(AIB)P(B) + P(AIBC)P(B C
) to prove: 

a) if P(AIB) = P(AIB C
) then A and B are independent; 

b) if P(AIB) > P(AIW) then A and B are positively dependent; 

c) if P(AIB) < P(AIB C
) then A and B are negatively dependent. 

Now prove the converses of a), b), and c). 

3. Suppose that the failures of two components are positively dependent. If the first com­

ponent fails, does that make it more or less likely that the second component works? 

What if the first component works? 

4. Let (X, Y) have uniform distribution on the four points (-1,0), (0, 1), (0, -1). (1. 0). 

Show that X and Yare uncorrelated but not independent. 

5. Let X have uniform distribution on { -1,0,1} and let Y = X2. Are X and Y uncorre­

bted? Are X and Y independent? Explain carefully. 

6. Let Xl and X 2 be the numbers on two independent fair die rolls, X = Xl - X 2 and 

Y = Xl + X 2 . Show that X and Yare uncorrelated, but not independent. 

7. Let X 2 and X3 be indicators of independent events with probabilities 1/2 and 1/3, 

respectively. 

a) Display the joint distribution table of X 2 + X3 and X2 - X 3 . 

b) Calculate E(X2 - X3)3 

c) Are X 2 and X3 uncorrelated? Prove your answer. 

8. You have N boxes labeled Box1, Box2, ... , BoxN, and you have k balls. You drop 

the balls at random into the boxes, independently of each other. For each ball the 

probability that it will land in a particular box is the same for all boxes, namely l/N. 
Let Xl be the number of balls in BoxI and XN be the number of balls in BoxN. 

Calculate Corr(XI, XN). 

9. Suppose n cards numbered 1,2, ... ,n are shuffled and k of the cards are dealt. Let Sk 

he the sum of the numbers on the k cards dealt. Find formulae in terms of nand k for: 

a) the mean of S k; b) the variance of S k. 

10. Overlapping counts. A fair coin is tossed 300 times. Let HlOO be the number of heads 

in the first 100 tosses, and H300 the total number of heads in the 300 tosses. Find 

Corr(HlOo , H300). 

11. Let TI and T3 be the times of the first and third arrivals in a Poisson process with rate 

;\. Find Corr(TI , T3). 
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12. Suppose 0:, (3, 1 denote the proportions of Democrats (D), Republicans (R) and Others 

(0) in a large population of voters. (So 0 :::; 0:, (3, 1 :::; 1 and 0:+(3+1 = 1.) An individual 

is selected at random from the population. Write X = 1, Y = 0, Z = 0 if that individual 

is D, write X = 0, Y = 1, Z = 0 if the individual is R and write X = 0, Y = 0, Z = 1 

if the individual is O. Find: 

a) E(X), E(Y); b) Var(X), Var(Y); c) Cov(X, Y). 

Suppose next that n individuals are selected independently and randomly with replace­

ment from the population. The total number of D's may be written, Dn = Xl + ... + X n. 
Similarly let Rn = YI + ... + Yn. and let On = Zl + ... + Zn. Let Dn - Rn denote the 

excess of D's over R's selected. Find d) E(Dn - Rn); e) Var(Dn - Rn). 

13. Let A and B be two possible results of a trial, not necessarily mutually exclusive. Let 

N A be the number of times A occurs in n independent trials, N B the number of times 

B occurs in the same n trials. True or false and explain: If N A and N Bare uncorrelated, 

then they are independent. 

14. Show that for any two random variables X and Y 

ISD(X) - SD(Y)I :::; SD(X + Y) :::; ISD(X) + SD(Y)I 

15. Covariance is bilinear. Show from the definition of covariance that: 

a) Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z) 

b) Cov(W + X, Y) = Cov(W, Y) + Cov(X, Y) 

c) COV(Li Xi, L j Yj) = Li L j Cov(Xi , Yj ) 

d) Use c) to rederive the formula for COV(NR,NB) in Example 6. 

16. Invariance of the correlation coefficient under linear transformations. Show that 

for arbitrary random variables X and Y, and constants a, b, c, d with a i= 0, c i= 0, 

{ 
Corr(X, Y) 

Corr(aX + b, cY + d) = -Corr(X, Y) 
if a and c have the same sign 

if a and c have opposite signs. 

Thus the correlation coefficients are affected only by the sign of a linear change of 

variable. They are therefore unaffected by shifts of origin or changes of units. 

17. Show that for indicator random variables IA and IB of events A and B 

Deduce that if A and B are positively dependent, then so are A C and BC, but A and 

B C are negatively dependent, as are A C and B. 

18. Random variables Xl, ... ,Xn are exchangeable if their joint distribution is the same, 

no matter what order they are presented (see Section 3.6). Show that if Xl, ... ,Xn are 

exchangeable, then. 

Var(L::Xk) = n Var(XI) + n(n -1) CoV(X1 ,X2 ) 

k=l 
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19. A box contains 5 nickels, 10 dimes, and 25 quarters. Suppose 20 draws are made at 

random without replacement from this box. Let X be the total sum obtained in these 

20 draws. Calculate: a) E(X); b) SD(X); 

c) P(X :::; $3) using the normal approximation. 

d) Can you imagine why these calculations might give results inconsistent with long­

run repetitions of the sampling experiment' For each of a) and c), say whether 

your reasoning would suggest higher or lower long-run averages. 

20. Correlation and conditioning. A random variable X assumes values Xl and X2 with 

probahilities PI and P2, where PI + P2 = 1. Given X = Xi, random variable Y has mean 

equal to /Li and SD equal to (Ji. Find formulae in terms of x,. Pi. /Li, and rr" i = 1,2. 

for the following quantities: 

a) E(X); b) E(Y); c) SD(X); d) SD(Y); e) Cov(X, Y); f) Corr(X. Y). 

Indicate how these formulae could be generalized to the case of X with n possihle 

values Xl •... ,Xn. 

21. A box contains 5 red halls and 8 blue ones. A random sample of size 3 is drawn without 

replacement. Let X be the number of red balls and let Y be the number of blue balls 

selected. Compute: a) E(X); b) E(Y): c) Var(X); d) Cov(X. Y). 

22. Suppose there were m married couples, but that d of these 2m people have died. Regard 

the d deaths as striking the 2m people at random. Let X he the number of surviving 

couples. Find: 

a) E(X); b) Var(X). 

23. llnear prediction and the correlation coefficient. For random variahles X and Y, 
the linear prediction problem for predicting Y based on knowledge of X is the problem 

of finding a linear function of X, (3X + 'Y. which minimizes the mean squaTf; of the 

prediction error 

MSE = E[Y - ((3X + 'Y)]2 

(Compare with Exercise 6.2.17 where the predictor of Y could be an arbitrary function 

of X.) This exercise derives the basic formulae for the best linear predictor according 

to this criterion. 

a) Expand out the MSE using algehra, and regard it as a quadratic function of 'Y and 

(3 with coefficients involving the numbers E(X). E(Y), E(XY). etc. 

b) Differentiate this function with respect to , to show that for fixed (3, the unique 

, which minimizes the MSE is i({3) = E(Y) - (3E(X). What is the resulting 

minimal MSE called when (J = QI 

c) Consider now the MSE as a function of (3, with, = i((3) the best, for the given 

{3. Differentiate this function with respect to (3, and show that it is minimized at 

~ = Cov(X, Y)/Var(X) where it is assumed that Var(X) > O. 

d) Deduce that the unique pair ((3,,) which minimizes the MSE is (~,i(~)). 

e) Let Y = i3x + i now denote this best linear predictor. Show that 

E(Y) = E(Y); 
, '2 

Var(Y) = (3 Var(X); E[Y(Y - Y)] = 0 
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o Deduce that the variance of Y can be decomposed into the sum of the variance 

of the best predictor Y and the minimum MSE according to the formula 

Var(Y) = Var(Y) + E[(Y - yl] 

with Var(Y) = p2 Var(Y) and E[(Y - 17)2] = (1 - p2) Var(Y) where p = 
Corr(X, Y). 

g) It is customary to express the slope ~ of the best linear predictor Y = ~X + i 
in terms of p. Show that ~ = pSD(Y)/SD(X) and that the intercept i is then 

uniquely determined by the requirement that the line y = ~x + i passes through 

the point (E(X), E(Y)). 

h) Let Y* = (Y - E(Y))/SD(Y), X* = (X - E(X))/SD(X). Show that the best 

linear predictor of Y* based on X* is just pX*. So the correlation coefficient p 
is simply the slope of the best linear predictor when the variables are expressed 

in standard units. 



6.5 

p = -.9 

Section 6.5. Bivariate Normal 449 

Bivariate Normal 
The radially symmetric bivariate normal distribution corresponding to independent 

normal variables was considered in Section 5.3. This section uses the tools of previ­

ous sections to analyze correlated normal variables by making a linear transformation 

to the simpler case of independent variables. 

FIGURE 1. Bivariate normal scatter. 

The dia!jram shows points picked at random from a bivariate 

distributon, in which the coordinates X and Y each have 

the sarre normal distribution, but are not independent. The 

two variables are positively correlated, which makes the cloud 

elliptical, sloping upward to the right and downwards to the 

left. 

y 

Clouds of data like this are very common in statistical analysis. They were first ex­

amined by the British scientist Francis Galton (1822-1911), who studied relations 

between variables like a father's height and his son's height. To display visually how 

two variables are related, a scatter diagram like Figure 1 may be used. In such a 

diagram, data pairs are represented by plotting a point at the coordinates of each 

pair. The hereditary connection between a father's height and his son's height makes 

the variables positively correlated~taller fathers tend to have taller sons, taller sons 

tend to have taller fathers. But the relation is not a rigid one, since the son's height 

is not a deterministic function of his father's height. The dependence between the 

two variables is more interesting and subtle. When variables are measured in their 

standard units, this dependence shows up in a scatter diagram as a tendency to 

form an elliptical cloud along a diagonal. The cloud has a major axis along the line 

Y = X at 45° to the axes in the case of positive correlation, and a major axis along 

the perpendicular line Y = - X in the case of negative correlation. 

FIGURE 2. Bivariate normal scatters for various correlations p . 

• ~ :?;;. ?~:;;:~;.,. 
~., . . /.. . 

p = -.5 p=o p =.5 p =.9 

The object now is to describe this kind of dependence between variables by repre­

senting correlated normal variables as linear functions of independent ones. This is 

a powerful technique which is the basis for much statistical analysis of two or more 
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variables. A basic ingredient is the correlation coefficient, denoted here hy p, often 

also by r: 

p = Corr(X, Y) = E(X·Y*) 

where X· is X in standard units, and Y· is Y in standard units. This correlation p 

is a theoretical quantity, defined by expected values or integrals with respect to a 

bivariate distribution. In practice, such correlations are usually estimated by the cor­

responding empirical correlation obtained from data, with the empirical distribution 

of a data list (Xl, YI), ... , (Xn' Yn) instead of the theoretical distribution, and averages 

instead of expectations. 

Constructing Correlated Normal Variables 

To get a pair of correlated standard normal variables X and Y, start with a pair of 

independent standard normal variables, say X and Z. Let Y be the projection of 

(X, Z) onto an axis at an angle () to the X-axis, as in the left-hand diagram: 

ZI+-----.. ZI-+----re 

() 

y 

" 
" 
" 
" s> 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

x 

By the geometry of the right -hand diagram 

Y = X cos () + Z sin () 

By rotational symmetry of the joint distribution of X and Z, the distribution of Y is 

standard normal. Thus 

E(X) = E(Y) = E(Z) = 0 

SD(X) = SD(Y) = SD(Z) = 1 

p(X, Y) = E(XY) = E[X(X cos () + Z sin(})] 

= E(X2) cos () + E(X Z) sin e 
= cos () 
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since B(X2) = 1, and B(X Z) = B(X)E(Z) = 0 by independence of X and Z. To 

summarize, X and Yare standard normal variables with correlation p = cos (). Note 

the special cases 

(}=o 
() = 7r /2 
(}=7r 

when p = 1 

when p = 0 

when p =-1 

Y=X 
Y = Z is independent of X 

Y=-X 

For each p between -1 and 1, there is an angle () = arccos p, which makes X and 

Y have correlation p. Then cos () = p, sin () = ~, and 

Y=pX+~Z 

where X and Z are independent normal (0, 1). The joint distribution of X and Y' 

so defined is the standard bivariate normal distribution with correlation p. 

Standard Bivariate Normal Distribution 
X and Y have standard bivariate normal distribution with correlation p if and 

only if 

Y=pX+~Z 

where X and Z are independent standard normal variables. 

Marginals. Both X and Y have standard normal distribution. 

Conditionals. Given X = x, Y has normal (px, 1 - p2) distribution. 

Given Y = y, X has normal (py, 1 - p2) distribution. 

Joint density. The joint density of X and Y is 

( 1 {1 2 2} f x,y) = 27r~ exp - 2(1- p2) (x - 2pxy + y ) 

Independence. For X and Y with standard bivariate normal distribution, 

X and Yare independent if and only if p = O. 

The next two pages display the geomerty of linear transformation from (X, Z) to 

(X, Y). Following these pages is a discussion of the results presented in the above 

box. 
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FIGURE 3. Geometry of the bivariate normal distribution. Properties of the standard bivariate 

normal distribution with correlation p may be understood in terms of the simplest case p = 0 by 

the geometry of the linear transformation (X, Z) f-+ (X, Y), displayed here for () = 60°, so 

p=cos()=~ J!=P2= sin() = V3 and Y=~X+ V3 Z . 
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Key to Figure 3. 

Top left panel. This shows a computer-generated scatter of 500 points picked at 

random according to the joint distribution of X and Z, plotted in the usual way with 

rectangular X and Z coordinates. This is a roughly circular cloud, due to the rota­

tional symmetry of the distribution of two independent standard normals. The circle 

is the contour of constant density for (X, Z), of radius 3 standard units, containing 

98.9% of the probability. The vertical lines represent the events X = 0, ±1, ±2, ±3. 

The dashed horizontal lines represent Z = 0, ±1, ±2, ±3. 

Top right panel. This is the same scatter in the (X, Z) plane, but with the diagonal 

lines Y = 0, ±1, ±2, ±3. The Y direction is the dotted line at angle 0 = 60° to the 

horizontal X direction. The diagonals Y = constant are at angle 0 to the vertical 

lines X = constant. 

Bottom right panel. This is the image of the top right panel after shearing and 

shrinking to represent X and Y by new rectangular axes. Each point in the top 

scatter is transformed into one in the bottom scatter. Thus the cloud becomes a 

random scatter of 500 points picked at random according to the bivariate normal 

distribution of X and Y, with correlation p = cos O. Think of the lines in the top 

right panel as a lattice of rigid rods attached by pins. Keep the vertical axis X = ° 
fixed, and shear the lattice so the diagonals become horizontal. This makes a lattice 

of squares of side 1/ sinO. Now shrink everything by a factor of sinO to get the 

bottom-right panel. 

The shearing which turns the diamonds into squares turns the circle into an ellipse, 

with major axis on the 45-degree line through the new origin. This is an ellipse 

of constant density for (X, Y). The images of the dotted lines in the old X and Y 

directions are the dotted lines Y = pX and X = pY. These are the regression lines 
discussed further in the next paragraph. 

Bottom left panel. This is the image of the top left panel by the same transformation 

from (X, Z) to (X, Y). The ellipse and the cloud of points are the same as in the 

bottom right panel. But now the lines representing X = 0, ±1, ±2, ±3 are shown, 

along with those representing Z = 0, ±1, ±2, ±3. The line Z = ° plays a particularly 

important role. This is the regression line. The equation of this line Z = ° in the 

(X, Y) plane is 

Y=pX 

where p is the correlation. Geometrically, this is the line of midpoints of vertical 

sections of the ellipse. Statistically, it is the best predictor of Y based on X. 
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The properties of the standard bivariate normal distribution stated in the box on 

page 451 all follow from the basic representation 

Y = pX + J1=P2z (1) 

in terms of independent standard normal X and Z. 

Conditionals. The formula for the distribution of Y given X = x is immediate 

from (1). Conditioning on X does not affect the distribution of Z. And given 

X = x you can treat X in (1) as the constant x, so Y is then just a linear 

transformation of the standard normal variable Z with coefficients involving p 

and x. This gives the conditional distribution ofY given X = x. The distribution 

of X given Y = y follows by symmetry, or from (1') below. 

Symmetry. The standard bivariate n<xmal distribution of (X, Y) is symmetric with 

respect to switching X and Y. This can be seen from the formula for the 

joint density, which is a symmetric function of x and y, or from the geometric 

description of X and Y. This symmetry is obscured in formula (1) however. 

You should check as an exercise that (1) has a dual 

X = pY + J1=P2z, (I') 

where Z' is a linear combination of X and Z that is independent of Y. 

Joint density. The derivation of this is an exercise: Write out the formulae for the 

marginal and conditional densities, multiply, and simplify. There is no point 

remembering this formula. Rather, take the following: 

Advice. Do not attempt to compute bivariate normal probabilities or expectations 

by integrating against the joint density. It is always simpler to rewrite the prob­

lem in terms of independent variables X and Z, using (1). This technique is 

used in all the examples below. 

Bivariate Normal Distribution 
Random variables U and V have bivariate normal distribution with parameters 

J.1u, J.1 v, (Jb, (J~, and p if and only if the standardized variables 

X = (U - J.1u ) / (Ju Y = (V - J.1v)/(Jv 

have standard bivariate normal distribution with correlation p. Then 

p = Corr(X, Y) = Corr(U, V) 

and U and V are independent if and only if p = O. 



Example 1. 

Problem 1. 

Solution. 
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Examples 

The point of the following examples is to show how any problem involving random 

variables U and V with a bivariate normal distribution can be solved by a simple 

three-step procedure: 

• Step 1. Express U and V in terms of the standardized variables X and Y. 

• Step 2. Write Y = pX + ~Z to reduce the problem to one involving 

two independent standard normal variables X and Z. 

• Step 3. Solve the reduced problem involving X and Z by exploiting indepen­

dence or rotational symmetry. 

Fathers and sons. 

Galton's student Karl Pearson carried out a study on the resemblances between 

parents and children. He measured the heights of 1078 fathers and sons, and found 

that the sons averaged one inch taller than the fathers: 

Sons: 

mean height: 5'9" 

mean height: 5'10" 

correlation: 0.5 

SD: 2" 

SD: 2" [:

athers: 

----------------------------~ 

Predict the height of the son of a father who is 6'2" tall. 

Assume that the data are approximately bivariate normal in distribution. Then the 

parameters can be estimated by the corresponding empirical measurements. 

Let X be the father's height in standard units, and Y be 

the son's height in standard units. The assumption of a y = px = 0.5J; 
bivariate normal distribution makes / 

Y=pX+~Z 

where Z is standard normal independent of X. The nat­

ural prediction for Y given X = x is 

E(YIX = x) = px 

Here the given value of X is 

x = 6'2" converted to standard units 

= (6'2" - 5'9")/2" = 2.5 standard units 

So the predicted value of Y is 

E(YIX = x) = 0.5 x 2.5 = 1.25 standard units, 

.7:= 2.5 
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Discussion. 

Problem 2. 

Solution. 

Problem 3. 

Solution. 

That is, 

predicted son's height = 5'10" + 2"y 

= 5'10" + 2" x 1.25 = 6' 0.5" 

Though the father is exceptionally tall (height 6'2"), the son is not predicted to be 

6'2", but only 6'0.5" tall. Galton called this phenomenon regression to the mean. 

What is the chance that your prediction is off by more than 1 inch? 

Since 1 inch is 0.5 times the SD of sons' heights, and we are given X = 2.5, the 

problem in standard units is to find 

P(IY - pXI > 0.51 X = 2.5). 

But since Y - pX = ~ Z is independent of X with normal (0,1 - p2) distri­

bution, where 

~ = v'0.75 ~ 0.87, 

this is the same as 

P(IY - pXI > 0.5) = P( ~IZI > 0.5) 

= P(IZI > 0.5/~) 

= P(IZI > 0.5/0.87) 

= 2[1 - <1>(0.5/0.87)] ~ 2[1 - <1>(0.57)] ~ 0.57 

So with about 57% chance, the prediction will be off by more than an inch. 

Estimate the height of a father whose son is 6'0.5" tall. 

x = py (prediction of x given y) 
From above, 6'0.5" is the mean 

height of sons of 6'2" fathers. So you 

might guess that 6'2" was the mean 

height of fathers of 6'0.5" sons. But 

this is wrong, because a given fa­

ther's height corresponds to a verti­

cal slice through the scatter, whereas 

a given son's height corresponds to 

a horizontal slice, which is some­

thing quite different. See diagrams. 

The roles of X and Y must simply be 

switched in the calculation of Prob­

lem 1. The son's height of 6'0.5" is 

1.25 in standard units. So 
x= .625 

, y = px (predicti~:m of y 
gIven x) 

y = 1.25 

estimated father's height = 0.5 x 1.25 in standard units 

= 0.625 in standard units 

= 5'9" + 0.625 x 2" = 5'10.25" 
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Problem 1. 

Solution. 
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The probability that both variables are above average. 

For the data in Example 1, what fraction of father-son pairs have both father and 

son of above average height? 

Expressed in terms of the standardized variables X and Y, the problem is to find 

P(X 2: 0, Y 2: 0). In principle, the answer can be computed as a double integral 

J ~o si ti ve quadrant f (x, y) dx dy 

where f(x, y) is the standard bivariate normal density with p = 0.5. But, as usual, it 

is easier to first express X and Y in terms of independent standard normal variables 

X and Z: 

Y = pX + v'1=P2z 

Now the problem is to find 

P(X 2: 0, Y 2: 0) = P(X 2: 0, pX + v'1=P2z 2: 0) 

=p(X2: 0,Z2: nX) 
1- p2 

z 

------------~r-----~------ --------~ x 

Z=-(p/.Jl- p2)X 

The diagram shows the (X, Z) plane, with the line Z = - pi v'1=P2 X. The shaded 

region corresponds to the event above. The slope of the line is -p/~. 
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Problem 2. 

Solution. 

Example 3. 

Problem. 

Solution. 

So for 0: as in the diagram, considered a negative angle, 

tan 0: = h 
1- p2 

-05 J3 
= VO.~5 = -1/ 3 

So 0: = -30 0
. Thus the angle at the corner of the shaded region is -0: + 900 = 1200 • 

By rotational symmetry, the chance that (X, Z) lies in the shaded region is the ratio 

of angles 1200 /3600 = 1/3. So 

P(X 2 0, Y 2 0) = 1/3 

In other words, about one-third of the father-son pairs had both father and son 

above average height. 

Suppose you have data on two variables with a bivariate normal distribution, and 

3/8 of the data is above average in both variables. Estimate p. 

Transform to standard units and use the same linear change of variable as in the 

solution of the previous problem. Now 

-

8 360 0 

so the angle of the corner at the origin is 1350 . Thus 0: in the diagram is -45 0 , and 

by the previous solution 

So p = 1/-/2. 

-p 
~ = tan 0: = tan (-45 0

) =-1 
V 1- p2 

Conditional expectation of Y given X in an interval. 

Suppose (X, Y) has standard bivariate normal density with correlation p. 

For a < b, find E(Yla < X < b). 

Given that X has a particular value x E (a, b), the expected value of Y is 

E(YIX = x) = px. 

Given just (a < X < b) the precise value of X is unknown. But by the rule of 

average conditional expectations, E(Y I a < X < b) can be found by integration 

of the conditional expectation E(Y I X = x) = px with respect to the conditional 

density of X given a < X < b. This gives 

E(Yla < X < b) = lb pxfx(xla < X < b) dx 
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Problem. 

Solution. 
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where for a < x < b 

fx(x I a < X < b) dJ.: = P(X E dx I a < X < b) 

P(X E dx, a < X < b) 

P(a < X < b) 

P(X E dx) 

Substituting this expression gives 

Midterm and {"mal. 

P(a < X < b) 
1 _lx 2 

-e 2 

v'21r dx 
Il>(b) - Il>(a) 

459 

Midterm and final scores in a large class have an approximately bivariate normal 

distribution, with parameters 

midterm scores: 

final scores: 

mean: 65 

mean: 60 

correlation: 0.75 

SD: 18 

SD: 20 

Estimate the average final score of students who were above average on the midterm. 

Let X and Y denote the midterm and final scores in standard units. The event 

"midterm score above average" is the same as the event X > O. Take a = 0 and 

b = ex) in the previous example to get 

E(YIX > 0) = ~ [1- 0] 
v 27r 0.5 

0.75 x 2 
..;?:ff ~ 0.6 

27r 

So the average final score of those who scored above average on the midterm is 0.6, 

in standard units. Thus the required score is 

60 + 20 x 0.6 = 72 
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Linear Combinations of Several Independent 

normal variables 

The standard bivariate normal distribution was defined as the joint distribution of 

a particular pair of linear combinations of independent standard normal variables 

X and Z, namely, X and pX + ~Z. While this representation seems at first 

artificial, the examples show how it is the basis of all calculations involving the more 

general bivariate normal distribution, which is obtained by allowing arbitrary means 

and variances, but insisting that the two standardized variables are standard bivariate 

normal. 

The rotational symmetry of the joint distribution of two independent standard normal 

variables Zl and Z2 implies that the joint distribution of any two linear combinations 

of Zl and Z2, say 

and 

is bivariate normal. By reducing to this case by scaling, the same conclusion is 

obtained for any two independent normal variables Zl and Z2 (not necessarily stan­

dard). It can be shown that this extends to linear combinations of any number of 

independent normal variables Zi: 

Two Linear Combinations 

of Independent Normal Variables 
Let 

v = LaiZi and W = LbiZi 

be two linear combinations of independent normal (f-li, a;) variables Zi. Then 

the joint distribution of V and W is bivariate normal. 

Granted this, the parameters of the bivariate normal distribution of V and Ware 
easily computed: 

and f-lw = L bif-li 

2 '" 2 2 av = ~aiai 

Cov(V, W) = L aibia; 
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p = Cov(V, W)/avow 

Thus the bivariate normal distribution adequately describes the dependence between 

any two linear combinations of independent normal variables. In particular, this 

discussion implies the following result: 

Independence of Linear Combinations 
Two linear combinations V = Li aiZi and W = Li biZi of independent 

normal(JLi, aT) variables Zi are independent if and only if they are uncorrelated, 

that is, if and only if Li aibiai2 = O. 

Just as the bivariate normal distribution is the joint distribution of two linear combi­

nations of independent normal variables, the multivariate normal distribution is the 

joint distribution of several linear combinations of independent normal variables. It 

can be shown that several linear combinations of independent normal variables are 

mutually independent if and only if the covariance between every pair of them is 

zero. This is a special and important property of normally distributed random vari­

ables. It makes covariance and correlation perfectly suited to the analysis of linear 

combinations of such variables. Keep in mind however, that in general uncorrelated 

random variables are not necessarily independent. 

Exercises 6.5 
1. Here is a summary of Pre-SAT and SAT scores of a large group of students. 

PSAT scores: average: 1200 SD: 100 

SAT scores: average: 1300 SD: 90 

correlation: 0.6 

Assume the data are approximately bivariate normal in distribution. 

a) Of the students who scored 1000 on the PSAT, about what percentage scored 

above average on the SAT? 

b) Of the students who scored below average on the PSAT, about what percentage 

scored above average on the SAT? 

c) About what percentage of students got at least 50 points more on the SAT than 

on the PSAT? 

2. Data from a large population indicate that the heights of mothers and daughters in this 

population follow the bivariate normal distribution with correlation 0.5. Both variables 

have mean 5 feet 4 inches, and standard deviation 2 inches. Among the daughters of 

above average height, what percent were shorter than their mothers? 
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3. Heights and weights of a large group of people follow a bivariate normal distribution, 

with correlation 0.75. Of the people in the 90th percentile of weights, about what 

percentage are above the 90th percentile of heights? 

4. Suppose X and Yare standard normal variables. Find an expression for P(X +2Y ::; 3) 
in terms of the standard normal distribution function <I>, 

a) in case X and Yare independent; 

b) in case X and Y have bivariate normal distribution with correlation 1/2. 

5. Let X and Y have bivariate normal distribution with parameters Ilx, IlY, (J"x 2, (J"y2, 

and p. Let P(X > Ilx, Y > lJ,y) = q. Find: 

a) a formula for q in terms of p; b) a formula for p in terms of q. 

6. Let X and Y be independent standard normal variables. 

a) For a constant k, find P(X > kY). 

b) If U = V3X + Y, and V = X - V3Y, find P(U > kV). 

c) Find P(U2 + V2 < 1). 

d) Find the conditional distribution of X given V = v. 

7. Let X and Y have bivariate normal distribution with parameters Il x, Il y, (J" X 2, (J"y 2, 

and p. 

a) Show that X and Yare independent if and only if they are uncorrelated. 

b) Find E(YIX = x). c) Find Var(YIX = x). 

d) Show that for constants a, b, and c, aX + bY + c has a normal distribution. Find 

its mean and variance in terms of the parameters of X and Y. 

e) Show that if Ilx = Ily = 0, then X cos () + Y sin () and -X sin () + Y cos () are 

independent normal variables, where 

Explain the geometric significance of () in terms of the axes of an ellipse of 

constant density for (X, Y). 

8. Let Xl and X2 be two independent standard normal random variables. Define two new 

random variables as follows: YI = Xl + X2 and Y2 = aX I + 2X2 . You are not given 

the constant a but it is known that Cov{YI , Y2}= O. Find 

a) the density of Y2; b) Cov{X2, Y2}. 

9. Suppose that W has normal (Il, (J"2) distribution. Given that W = w, suppose that Z 

has normal (a w + b, r2) distribution. 

a) Show the joint distribution of Wand Z is bivariate normal, and find its parameters. 

b) What is the distribution of Z? 

c) What is the conditional distribution of W given Z = z? 

10. Show that if V and W have a bivariate normal distribution then 
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a) every linear combination aV + bW has a normal distribution; 

b) every pair of linear combinations (aV + bW, cV + dW) has a bivariate normal 

distribution. 

c) Find the parameters of the distributions obtained in a) and b) in terms of the 

parameters of the joint distribution of V and W. 

11. Show that for standard bivariate normal variables X and Y with correlation p, 

E(max(X, Y)) = Jl ~ p 

12. Suppose that the magnitude of a signal received from a satellite is 

S=a+bV+W 

where V is a voltage which the satellite is measuring, a and b are constants, and W is 

a noise term. Suppose V and Ware independent and normally distributed with means 

o and variances crv 2 and crw 2 . 

a) Find Corr(S, V). 

b) Given that S = 8, what is the distribution of V? 

c) What is the best estimate of V given S = 8? 

d) If this estimate is used repeatedly for different values of S coming from a sequence 

of independent values of V and W with the given normal distributions, what is 

the long-run average absolute value of the error of estimation? 

13. Find a formula in terms of p for the ratio of the lengths of the axes of an ellipse of 

constant density in the standard bivariate normal distribution with correlation p. (Let 

the ratio be the length of the axis at +45 0 over the length of the axis at -45 0 .) 

Check your answer by measurement with a ruler in Figure 3 in the case where p = 1/2. 

[Hint: Let p = cos 8 and reason from Figure 3 that an ellipse of constant density is 

the image in the (X, Y) plane of the unit circle in the (X, Z) plane. Now consider 

the images of the points (cos8/2, sin 8/2) and (cos (8/2 + 7r/2), sin (8/2 + 7r/2)) 
in the (X, Y) plane which end up on the ±45° lines in the (X, Z) plane, and use 

trigonometric identities'] 
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Dependence: Summary 

Conditional Distributions: Let X be a discrete random variable. The conditional probability 

of an event A given X = x is 

P(AIX = x) = P(A, X = x) 
P(X = x) 

by the division rule of Section 1.4. 

For continuously distributed X, there is instead the infinitesimal conditioning formula 

P(AIX = x) = P(A,X E dx) 
P(X E dx) 

Understand P(AIX = x) as the chance of A given that X falls in a very small interval 

near x. 

If X and Yare discrete random variables, the conditional probability of Y = y given 

X = x is 

P(Y = IX = ) = P(X = x, Y = y) 
y x P(X=x) 

If X and Yare continuous random variables with joint density fx,Y, the conditional 

density of Y at y given X = x is Jy(yIX = x) where 

f ( Ix = )d = P(Y E d IX Ed) = fx,Y(x,y)dxdy = fx,y(x,y) d 
Y y x Y Y x fx(x)dx fx(x) y 

Once you have conditioned on X = x, you can treat the random variable X as the constant 

x. Conditional distributions given X = x behave exactly like ordinary distributions, with 

the constant x as a parameter. 

Conditional expectation: The conditional expectation of Y given X = x, denoted 

E(YIX = x), is defined as the expectation of Y relative to the conditional distribution of 

Y given X = x. 

The conditional expectation of Y given X, denoted E(YIX), is a random variable, whose 

value is E(YIX = x) if (X = x). Thus the random variable E(YIX) is a function of the 

random variable X, namely, f(X), where f(x) = E(YIX = x) for every x. 

Expectation is the expectation of conditional expectation: E(Y) = E[E(YIX)J. 

See boxes on p;tges 424 and 425 for important properties of conditional distributions and 

expectations, and a comparison of the discrete and continuous cases. 
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Independence: Random variables X and Yare independent if and only if for all subsets B 

in the range of Y, and all x 

P(Y E BIX = x) = P(Y E B) 

That is, the conditional distribution of Y given X = x does not depend on x. 

Equivalently, X and Yare independent if the conditional distribution of X given Y = Y 
does not depend on y. 

Covariance and correlation: Cov(X, Y) = E[lX-E(X)][Y -E(Y)J] = E(XY)-E(X)E(Y) 

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) 

, Cov(X, Y) l J 
Corr(X, Y) = SD(X)SD(Y) E -1,1 

X and Y independent ==::} Corr(X, Y) = 0 but not conversely. 

X and Y uncorrelated ¢=:} Cnrr(X, Y) = 0 

¢=:} Cov(X, Y) = 0 ¢=:} E(XY) = E(X)E(Y). 

Bivariate normal: X and Y have standard bivariate normal distribution with correlation p if 

and only if 

Y=pX+~Z, 

where X and Z are independent standard normal variables. 

Marginals. Both X and Y have standard normal distribution. 

Conditionals. 
Given X = x, Y has normal (px, 1 - p2) distribution. 

Given Y = y, X has normal (py, 1 -- p2) distribution. 

X and Y have bivariate normal distribution with parameters /-Lx, /-Ly, (J'x 2, (J'y2, and p if 

and only if the standardized variables X* = (X - /-Lx )/(J'x and y* = (Y - /-Ly)/(J'y have 

standard bivariate normal distribution with correlation p. Conditional distributions in this 

case are derived from the standardized case by a linear change of variable. All probabilities 

and expectations for bivariate normal variables are found by a linear change of variable 

to independent standard normal variables. 

Independence. X and Y with bivariate normal distribution are independent if and only 

if they are uncorrelated. 
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Review Exercises 

1. Let X and Y be independent random variables. Suppose X has Poisson distribution 

with parameter A1, and Y has Poisson distributIon with parameter A2. 

a) Given that X + Y = 100, what are the possible values of X? 

b) For each possible value k, find P(X = k I X + Y = 100). 

c) Take A1 = 1 and A2 = 99. Given X + Y = 100, estimate the chance that X is 4 

or 5 or 6. 

2. Let N denote the number of children in a randomly picked family. Suppose N has 

geometric distribution: 

P(N = n) = (1/3)(2/3r- 1 (n=1,2,3, ... ) 

and suppose each child is equally likely to be male or female. Let X be the number of 

male children and Y the number of female children, in a randomly picked family: 

a) Find the joint distribution of (X, Y). 

b) Given Y = 0, what is the most likely value of X? 

c) What is the conditional expectation of X given Y = O? 

3. A list of 2n numbers has mean JL and variance a 2 . Suppose that n numbers are picked 

at random from the list. Let An be the average of these n numbers, Bn the average of 

the other numbers. Find: a) E(An - Bn); b) 8D(An - Bn). 

4. Suppose X and Y have joint density function 

{ 
C/X3 

f(x,y) = ° 
where c is a constant. 

x>y>l 
otherwise 

a) Find c. b) Find the marginal density of X. 

c) What is the conditional distribution of Y given X = x? 

5. Suppose X and Yare random variables with joint density in the plane 

f(x, y) = ce-(x2+xy+y2) where c is a constant. a) Find c. b) Find Corr(X, Y). 

6. Let X and Y be independent exponential random variables each with mean 1. Find 

a) the joint density of X + Y and X - Y; 

b) Corr(X + Y, X - Y). 

7. Suppose that a point (X, Y) is chosen according to the uniform distribution on the 

triangle with vertices (0,0), (0, 1), (1,0). Calculate: 

a) the mean and variance of X; 

b) the conditional mean and variance of X given that Y = 1/3; 

c) the mean and variance of max(X, Y); 

d) the mean and variance of min (X, Y). 
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8. Let Y have exponential distribution with mean 0.5. Let X be such that, conditional on 

Y = y, X has exponential distribution with mean y. Find: 

(a) the joint density of (X, Y); b) E(X); c) Corr(X, Y). 

9. Let X, Y, and Z be independent uniform (0, 1) variables. Find P[(X/Y) > (Y/Z)]. 

10. Let TA, TB , and Tc be the failure times of components A, B, and C. Assume these are 

independent exponential random variables with rates a, (3, and /, respectively. 

a) What is the distribution of the time until the first failure' 

b) What is the probability that the first component to fail is component C? 

c) Given that the first component to fail is component C, what is the distribution of 

the time between the first and second failures' 

d) Write a formula for the (unconditional) c.d.f. of the time between the first and 

second failures. 

11. Insurance claims arrive at an insurance company according to a Poisson process with 

rate A. The amount of each claim has exponential distribution with rate p" independently 

of times and amounts of all other claims. Let X t denote the accumulated total of claims 

between time 0 and time t. Find simple formulae for 

a) E(Xt ); E(X'f); c) SD(Xt}; d) Corr(X" Xt} for s ::; t. 

12. An elevator has an occupancy warning of no more than 26 people and of total weight no 

more than 4000 pounds. For the population of users, suppose weights are approximately 

normal with mean 150 pounds and standard deviation 30 pounds. 

a) What is the probability that the total weight of a random sample of 26 people 

from the population exceeds 4000 pounds? 

b) Suppose next that the people are carrying things and that the weight of these for 

an individual of weight X pounds, is approximately normal with mean O.05X 

pounds and standard deviation 2 pounds. What is the probability that the total 

weight in the elevator now exceeds 4000 pounds? 

c) The dimensions of the floor of the elevator are 54 inches by 92 inches. Suppose 

the amount of floor space needed by users is normally distributed with mean p, 

square inches and standard deviation 0.1p,. Find It such that the probability 20 

people can be accommodated is 0.99. 

13. a) Let X and Y be two random variables with finite and nonzero variances. Show 

that X - Y and X + Yare uncorrelated if and only if Var(X) = Var(Y). 

b) Let X and Y have standard bivariate normal distribution with correlation 0.6. 

Find P(X - Y < 1, X + Y > 2). 

14. Heights. A population consists of 50% men and 50% women. The empirical distribution 

of heights over the population yields the following statistics: 

Average Standard deviation 

Men's heights 67 inches 3 inches 

Women's heights 63 inches 3 inches 

a) What is the average height over the whole population? 
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b) What is the standard deviation of heights over the whole population? 

c) Suppose that men's heights are approximately normally distributed, and that 

women's heights are as well. Calculate the approximate proportion of individ­

uals in the whole population with heights between 63 and 67 inches. 

d) Repeat c), assuming instead that heights are normally distributed over the whole 

population. Explain why the answers are slightly different. 

e) Suppose that a man and a woman are picked at random from this population. 

Making assumptions as in c), what is the probability that the man is taller than 

the woman? [Hint: No integration required'] 

15. Sums of normals in the positive quadrant. Let X and Y be two independent stan­

dard normal variables. 

a) Calculate P(X :::: 0, Y :::: 0, X + Y :::; 1). 

b) Find the conditional density of X + Y given X :::: 0 and Y :::: 0, and sketch its 

graph. 

c) Find, approximately, the median and the mode of this distribution. 

16. Rainfall. Suppose that the distribution of annual rainfall in a particular place, measured 

in inches, is approximately gamma with shape parameter r = 3. If the mean annual 

rainfall is 20 inches, find approximations to the following: 

a) the probability of more than 35 inches of rain in any particular year; 

b) the probability that in ten consecutive years, it never rains more than 35 inches, 

assuming different years are independent; 

c) still assuming independence of different years, the probability that the record 

rainfall over the last 20 years is exceeded in at least one of the next ten years, 

assuming the record rainfall over the last 20 years, R20 say, is known; 

d) same as c), but assuming the value of R20 is unknown. 

17. Symmetry under rotations. 

a) Suppose the joint distribution of X and Y is symmetric under rotations. Are X 

and Y necessarily independent? Are they necessarily uncorrelated? Explain by 

arguments or examples. 

b) Suppose (X, Y) is a point picked at random from the unit circle X 2 + y2 = 1. 

Calculate E(X2), E(y2), and E(XY). 

c) Suppose U is uniformly distributed on (0, 1), X = cos 2nD, Y = sin 27rU. Are X 

and Y uncorrelatedt Are X and Y independent? Explain carefully the connection 

betweeen b) and c). 

18. Maxima and minima of normal variables. 

Calculate the expected values of max(X, Y) and min (X, Y): 

a) if X and Yare independent standard normal variables; 

b) if X and Yare independent normal (j.1, (}2); 

c) if X and Yare standard bivariate normal with correlation p. 

19. Suppose you sample with replacement n times from a population of n elements. 
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a) What fraction of the n elements should you expect to see in the sample? 

b) For example, what fraction of all (5~) poker hands should you expect to see 

in (552) independent deals? 

c) Compute the variance of the fraction in a), and show that it is less than 1/ 4n. 

d) Evaluate for the example in b), and estimate the chance that your prediction in 

b) is off by more than 1 %. 

20. Craps. Find the expectated total number of times Y the pair of dice must be rolled in 

a craps game (see Exercise 3.4.8) by conditioning on the result of the first roll. 

21. I toss a coin which lands heads with probability p. Let W H be the number of tosses till 

I get a head, W H H the number of tosses till I get two heads in a row, and W H H H the 

number of tosses till I get three heads in a row. Find: 

a) E(W H); b) E(W H H) [Hint: condition on whether the first toss was heads or 

tailsl; c) E(WHHH) [Hint: condition on Wrl. 

d) Generalize to find the expected number of tosses to obtain m heads in a row. 

22. Long runs of heads. In the play Rosencrantz and Guildenstem aTe dead by Tom 

Stoppard, the results of 101 apparently fair coin tosses are recorded: 100 heads in a 

row, followed by a tail. Suppose a fair coin is tossed independently once every second. 

About how many years do you expect it would take before 100 heads in a row came 

up? How long for it to be 99% sure that such a run will have appeared? 

23. Suppose an insect lays a Poisson (.\) number of eggs. Suppose each egg hatches with 

probability p and dies with probability q, independently of each other egg. Show that 

the number of eggs that hatch and the number of eggs that die are independent Poisson 

random variables, and find their parameters. 

24. I roll a random number of dice. If the number of dice rolled has the Poisson (12) 

distribution, find (and justify your answers) 

a) the expectation of the total number of spots showing; 

b) the standard deviation of the total number of spots showing. 

25. Suppose the number of accidents in an interval of time has Poisson (.\) distribution. 

Suppose that in each accident there are k persons injured with probability Pk, indepen­

dently of all other accidents. Let Nk be the number of accidents in which k persons are 

injured. 

a) What is the joint distribution of Nl and N2? 

b) Let M be the total number of persons injured. Find formulae for E(M) and 

SD(M) in terms of Pl,P2, ... and.\. 

26. Distinguishing points in a Poisson scatter. In practical situations, if two points in 

a scatter are closer than some distance 8, it may not be possible to distinguish them. 

Suppose that this is the case, and that there is a Poisson scatter over the unit square, 

with intensity .\. Show that the probability of the event D, that all points in the scatter 

can be distinguished, is at least 1 - ~.\ 2 82 . 
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[Hint. Show that P(DIN = 2) ~ 1 - 7r02 and P(DIN = 3) ~ (1 - 7ro2)(1 - 2m52) and 

so on. Use the inequality 

(1- a)(l- /3) ~ 1 - (a + /3) (a>O, /3>0) 

repeatedly, to obtain 
1 2 

P(DIN) ~ 1 - "2N(N - 1)m5 1 

27. Inhomogeneous Poisson scatter. Let Q be a probability distribution over a set S, 

>. > O. Consider a random scatter of points over the set S, where a Poisson (>.) number 

N of points are distributed independently at random according to Q. More formally, 

for B a subset of S, let N(B) = 0 if N = 0, and 

n 

N(B) = L I(Xi E B) if (N = n), n = 1,2, ... 

i=l 

where Xl' ... ' Xn are conditionally independent with common distribution Q given 

(N = n), and N has Poisson (>.) distribution. Prove that 

for disjoint B l , . .. ,Bj , the N(Bt), ... , N(B j ) are mutually independent Poisson 

random variables with parameters >.(Bt) , ... , >.(Bj) where >.(B) = >.Q(B). 

[Hint: Start by considering the case of Bl and B2 with Bl + B2 = S, and calculate 

P(N(Bl ) = nl, N(B2) = n2) by conditioning on N = nl +n2. Argue that, in general, it 

suffices to consider a partition B l , . .. ,Bj of S, and proceed similarly. The multinomial 

coefficients n!/(ntln2!··· nj!) should appear.] 

Note. Such a collection of random variables N(B) is called a Poisson process with 
intensity measure >.(B) on S. For S the unit square and >.(B) = >. x Area(B) this is a 

construction of the Poisson scatter over the unit square considered in Section 3.5. Such 

a scatter is called homogeneous. If Q(B) is not the uniform distribution, the scatter is 

called in.':omogeneous. Note that if Q{s} > 0 for a point s E S, there may be more 

than one "hit" counted at s. In particular, if Q is a discrete measure with probabilities 

ql, ... ,qn at points Sl, ... ,Sn, then N(stJ, . .. ,N(sn) are independent Poisson random 

variables with parameters >'ql, ... , >.qn. 

Illustration. Suppose you roll a Poisson (>.) number N of dice. Then the number of 

times each of the six faces appears is an independent Poisson (>./6) random variable. 

And the number of odd faces and the number of even faces are two independent Poisson 

(>./2) random variables. But if you throw a fixed number n of dice these numbers are 

dependent, because they must add up to n. 

28. You and I both toss a fair coin N times. You get X heads and I get Y heads. 

a) If P(X = Y) is approximately 10%, then approximately how large must N be? 

b) The normal approximation says p(IX -1NI S; ~JN) ~68%. 

Given X = Y, is the conditional probability that IX - ~NI S; ~JN still about 

68%, somewhat larger than 68%, or somewhat smaller than 68%? Explain which, 

without doing detailed calculations. 

29. Variance of discrete order statistics. Let Ti be the place at which the ith good element 

appears in a random ordering of k good and N - k bad elements. From Exercise 3.6.13, 

the mean of Ti is E(Ti) = i(N + l)/(k + 1). Calculate SD(Ti) by the following steps. 
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a) Let a(k, N) = E (TdTI - 1)), 1 :s: k :s: N, Show by conditioning on whether 

the first element is good or bad that 

(k N) = (N _ k) [_2_ a(k, N - 1)] 
a, k+l+ N 

b) Deduce that 

a(k N) = 2(N + 1)(N - k) 
, (k+l)(k+2) 

c) Deduce that 

V (T) = (N + 1)(N - k)k 
ar I (k+l)2(k+2) 

d) Check the case k = 1 by calculating V ar(TI ) directly from the distribution of T I , 

e) Let Wi = Ti+1 - Ti , i = 1"", k + 1, where To = ° and Tk+1 = N + 1. Use 

the exchangeability of WI, ... , Wk+1 to show that for each i = 1, .. " k + 1 

Deduce that 

and hence that 
V (T) = i(k + 1 - i)(N + 1)(N - k) 

ar , (k + 1)2(k + 2) 

o Give an intuitive explanation of why SD(Ti) = SD(Tk+I-;), 

g) Suppose that T I , . , . , T4 are the places at which the aces appear in a well-shuffled 

deck of 52 cards, Find numerical values of E(T;) and SD(T;) for i = 1, ... ,4, 

30. Let VI, . , , , Vn be the order statistics of n independent uniform (0, 1) variables, Let 

Aall = (VI + .. , + Vn)/n, average of all the order statistics, 

Aext = (VI + Vn)/2, average of the extremes, 

Amid = V(n+I)/2, the middle value, where you can assume n is odd, 

a) Show that for large n, each of the A's is most likely very close to 1/2. 

b) For large n, one of the A's can be expected to be very much closer to 1/2 than 

the two others, Which one, and why? 

c) For n = 101 find for each of the A's a good approximation to the probability that 

it is between .49 and .51. 

31. From discrete to continuous spacings. Let U(I) < U(2) < , .. < U(n) be the order 

statistics of n independent uniform (0,1) variables UI",., Un, Let VI = U(I), V; = 
Uu) - U(i-I) for 1 :s: i :s: n, and let Vn+1 = 1 - U(n)' Imagine the unit interval is cut 

into subintervals at each of the n random points Ui for 1 :s: i :s: n, Then VI, V2, ... , Vn+ I 

are the lengths of the n + 1 subintervals so obtained, in order from left to right. This 

model for cutting an interval at random is of interest in genetics, The Vi could represent 

the relative lengths of strands obtained by random cutting of a long molecule such as 

DNA, For a positive integer N > n let U{, ... , U~ -n denote N - n more uniform (0,1) 
variables, independent of each other and of the cut points U 1, , , . , U 11' For 1 :s: i :s: n + 1 

let Ni denote the number of U; that fall in the interval (UU-l)' Uu)) of length V; (where 

U(o) = ° and U(n+l) = 1 to make the definition work for Nl and Nn+1 ), 
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a) Show that the joint distribution of N I , ... ,Nn +1 is identical to the joint distribu­

tion of the discrete spacings WI, . .. , Wn - 1 derived from a random ordering of n 
aces and N - n nonaces as in Exercise 3.6.13. That is to say, (N1 , ... , Nn+d has 

uniform distribution over the set of all (n + 1) -tuples of non-negative integers 

(nl,"" nn+l) with nl + ... + nn+1 = N - n. In particular, N I , ... , Nn+1 are 

exchangeable. 

b) Conditionally given the continuous spacings (VI, ... , Vn+l), the sequence (NI' ... , 

Nn+J) is distributed like the number of results in each of n + 1 categories in a se­

quence of N - n independent trials with probability Vi of a result in category i on 

each trial. Explain why this is so. Deduce that for large N, Ni / N is almost equal to 

Vi for each i with overwhelmingly high probability. It follows that in the limit as 

N -+ 00 for fixed n, as discussed at the end of Exercise 3.6.12, the joint distribu­

tion of the normalized discrete spacings (NdN, N 2 / N, ... ,Nn+dN) converges 

to the joint distribution of the continuous spacings VI, V2 , ... , Vn+ 1. 

(Keep in mind that the distribution of Ni depends on N, so N;/ N does not just tend 

to zero: the sum over i of the Ni/N is identically equal to 1.) Since the Ni/N are 

exchangeable for every N, it follows that the 1;' are exchangeable, something that is 

not obvious in the continuous model. 

32. Joint distribution of continuous spacings. Continuing with the same notation as in 

Exercise 31. 

a) Show that for Vi .:::: 0 with 1.'1 + ... + V n+l = V S 1 

lim P(Ni/N':::: Vi for every 1 SiS n + 1) = (1 - v)" 
Iv' --+ Xl 

by explicit evaluation of the limit, using Exercise 3.6.15 and the fact that (Nh ~ 

N k as N -+ 00 for every k = 1,2, .... This yields the corresponding probabilty 

for the continuous model: for v, .:::: 0 with VI + ... + Vn+1 = V S 1 

P(Vi .:::: v, for every 1 Si S n + 1) = (1 - v)" 

b) Show that the Vi have identical distribution with 

P(Vi .:::: v) = (1 - vr (OsvS1) 

c) Deduce that vi has beta (1, n) distribution. 

33. Maximum and minimum spacings. Continuing with the notation of the preceding 

exercises, let Vmin = mini Vi where the min is over 1 SiS n + l. 

a) Show that Vmin has the same distribution as Vd(n + 1). Deduce the mean and 

variance of Vmin from the mean and variance of the beta (L n) distribution. 

b) Let Vmax = maXi Vi, Parallel to the discrete formula of Exercise 3.6.16, show that 

for 0 S v S 1 

n+1 () 
P(Vmax ::::: v) = 2)-1)'-1 n; 1 (1 - iv)~ 

~=l 

where (1 - iv)';: equals (1 - iv)" if iv S 1, and equals 0 otherwise. 
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c) Deduce by integration of this tail probability from 0 to 1 that 

n+l () E(V, ) = '"'(_1),-1 n + 1 1 
max L..J i i(n+1) 

t=1 

It is intuitively clear, and can be verified analytically, that as the number of cuts 

n ----. 00, Vmax ----.0, which forces the distribution of Vmax to pile up around zero. 

But the rate of convergence is rather slow. 

d) Find the numerical values of E(Vmin ) and E(Vmax ) for n = 1, ... , 10. 

34. Dirichlet distribution. A sequence of random variables (Q I, ... , Qm) has DiTichlet 
distTibution with parameters h, ... , Tm) if Qi ;:::: 0, Ql + ... + Qm = 1, and 

For m = 2, (Ql, Q2) has Dirichlet distribution with parameters T and s if and only if 

Ch = 1 - Ql for Ql with beta (T, s) distribution. So the Dirichlet distribution is a mul­

tivariate extension of the beta distribution. There is a multivariate version of the result 

of Exercise 5.4.19: If y;, 1 ::; i ::; m are independent with gamma (Ti'.\) distributions, 

L = Li Y; and Qi = Yi / L, then (Ql,"" Qm) has Dirichlet distribution with pa­

rameters (TI,.'" Tm), independently of L, which has gamma (T,.\) distribution for 

'r = TI + ... + T m. Assuming this result, deduce the following properties of this Dirichlet 

distribution of (Ql, ... ,Qm): 

a) The marginal distribution of Q i is beta (T i, T - T;) . 

b) For i i- j the distribution of Qi + Qj is beta (Ti + Tj, T - Ti - Tj). Similarly for 

any finite sum of at most m - 1 different Qi. 

c) The joint distribution of the continuous spacings VI," . , Vn + J derived from n 

independent uniform (0, 1) random variables as in Exercises 31 and 32 is Dirichlet 

with parameters Ti = 1 for 1 ::; i ::; m = n + l. 

35. Dirichlet-multinomial. Suppose that XI, X 2 , ... is a sequence of independent trials 

with m possible values {1, ... , m}, with probability qi for value i on each trial. The 

parameters (ql, ... , qm) are unknown, and regarded as the values of random variables 

(Q I, ... , Q m). Suppose the prior distribution of (Ql , ... , Q m) is Dirichlet with param­

eters (TI, . .. ,Tm), as in Exercise 34. After n trials, let Ni be the number of results i, 

that is the number of times that Xj = i for 1 ::; j :s; n. So the conditional distribution of 

(N1 , . .. ,Nm) given (Ql,' .. , Qm) is multinomial with parameters nand (QI,' .. , Qm). 

a) Show that the posterior distribution of (Q I, ... , Q m) given the results (NI, ... , Nm ) 

of n trials is Dirichlet with parameters (TJ + N I , ... , Tm + N m ). 

b) Find a formula for the unconditional probability P(Ni = n, for 1 ::; i ::; m) for 

any sequence of m non-negative integers ni with nl + ... + nm = n. 

[Hint: Use the fact that the total integral of the Dirichlet joint density with param­

eters (TI + nl, ... , Tm + n m ) is 11. 

c) Deduce in particular that if Ti = 1 for 1 ::::i :::: m then the unconditional distri­

bution of (Nl' ... ,Nm ) is uniform over its range of possible values. 

d) Explain the result of part c) without integration by reference to Exercise 31. 
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Discrete 

name P(k) = P(X = k) 
and range for k E range 

mean vanance 

uniform 1 a+b (b-a+1)2-1 
--

on {a, a + L, , , ,b} b-a+1 2 12 

Bernoulli (p) 
P(l) =p: P(O) = 1- p p(l- p) 

on {a, I} 
p 

binomial (n., p) 
(npk(l - p),,-k np np(l - p) 

on {O, L ' . , , n} 

Poisson (11) ,,-11 , 1," 

on {a, L 2, ... } 
-- /1 11 

h' 

(C) (~- C) 
hypergeometric (n. N, C) k n _. k nC 

II (C) CV~C) (N-n) 
on{O ....• n} 

C~) 
-

N N 1'v N-1 

geometric (p) (1 __ p)k-Ip 1 1-p 

on {L2,:L.} 
- --

, 
P p2 

geometric (p) 
(l-p)"p 

1-p 1-p 

on {O.l, 2".} 
-- --

P p2 

negative binomial (r. p) (k+r-l)p'(l_P)" r(l - p) r(l-p) 

I 

on {a, 1,2, ... } r - 1 P p2 
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Continuous 
t uudefincd. 

density f (.r) c.d.±". F(:r) 
.\Ican Variancc name range 

for .r E range for :r E range 

1 .r ~ 0 o+iJ (Ii ~ (/)2 
uniform (a. Ii) (0. iJ) -- -- --

b~a 1i~1I. 2 12 

1 1 2 

normal (0.1) (~x.x) 
--.- r 

cp(.t) 0 1 --e 2' 

V27T 
1 --

I _1.(:r_I,)2/()"2 
cP C: !l) I 

nonna] (fl.. ( 2 ) (~:x.:x) 2 --e 2 1/ a 
I V27Ta 
I 

I 
I 

I I exponential (A) 
(0. x) A,,-A.l" 1 ~ ( AJ' I/A 

I 
1/>.2 

I 
= gamma (l. A) 

I 

I 
--l 

i 

.' 1 (AX)' 
I 

j 

ganllna (r. A) (O.x) r (r) -I >.':r'- 1 e- A., 1~e-AIL--
r / A r/A 2 I 

I k' 

I 

!-c=o 

I 
I 

for integer r 

I 

as above for A = ~. I chi-square (1/) 
(O.x) r( ¥ )-1 (~)'i -1 c· 2 

I 

211 
= gamma (¥. ~ ) I' = ¥ if II is e\"pn 

1/ 
I 

I 
I 
I 

I I - -I I ! 1 /iT 1 ~ 7f 
Ra~']('igh ! (O,x) ,ce-:z r 1 ~ r-

V"2 
--

I 

2 
I 

J 

I rr,. + 8) X,-l (1 ~ rj'-1 see Exercise cJ.6.5 
[ 

I 
beta (1',8) (0. 1) 

I 

r 

(, +'1';") ;;-+ II . 
I 

I 
for integer,. and "' 

--
\'(r)[(s) . r+s 

I I 1 1 I I 

I I I I 1 1 I 
Callch~' (~x,x) - + ~ arrtan(.l') t 

~ .. I 
I 

7f(l + :r2) 2 7f 
I 

I 

! 1 
I I 

f 

I 

arcsine 1 2 I ! 

I (0.1) 

I 

~ arcsin( If) - I -

I 

=beta (1/2,1/2) 

I 

7fvx(1 ~ :r) 7f 2 I 11 

I I I i 
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Beta 

Parameters: r > 0 and s > 0 

Range: x E [0,1] 

Density function: 

where 

B(r, s) = r1 xr-1(1 _ x)S-ldx = r(r)f(s) 
Jo r(r+s) 

is the beta function, and f(r) is the gamma function (see gamma distributions). 

Cumulative distribution function: (Exercises in Section 4.6.) No simple general formula for 

r or s not an integer. See tables of the incomplete beta function. For integers rand s 

1'+8-1 ( ) 
P(Xr,s ::; x) = L r +: -1 xi(l _ xr+ S - 1- i 

z=r 

(0::; x ::; 1) 

Mean and standard deviation: (4.6) 

r 
E(Xrs) =-

, r+s 

Special cases: 

• r = s = 1: The uniform [0, 1] distribution. 

• r = s = 1/2: The arcsine distribution. 

Sources and applications: 

• Order statistics of uniform variables (4.6). 

• Ratios of gamma variables (5.4). 

• Bayesian inference for unknown probabilities. 

Normal approximation: 

• Good for large rand s. 
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Binomial 

Parameters: 

n = number of trials (n = 1,2, ... ) 

p = probability of success on each trial (0 :s p ~ 1) 

Range: k E {O, L ... ,n} 

Probability function: (2.1) 

P(k) = P(5 = k) = G)pk(1 - p)n~k (k = 0,1, ... , n) 

where 
5 = (number of successes in n independent trials with) 

probability p of success on each trial 

= Xl + ... + Xn where Xi = indicator of success on trial i. 

Mean and standard deviation: (3.2, 3.3) 

E(5) = IL = np 5D(5) = a = VrLp(1 - p) 

Mode: (2.1) int(np+p) 

Consecutive odds ratios: (2.1) 

Special case: 0.3) 

P(k) 

P(k - 1) 

(n-k+l) p 

k I-p 
(decreasing) 
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Binomial (1. p) == Bernoulli (p), distribution of the indicator of an event A with probability 

P(A) = p. 

Normal approximation: (2.2, 2.3) 

If (J = vInP( 1 - p) is sufficiently large 

1 . (k - IL) P(k) ~;¢ -a~ 

where ¢( z) is the standard normal density function 

where <l> is the standard normal cumulative distribution function. 

Poisson approximation: (2.4) 

If P is close to zero 

P(k) ~ e~l"lLk /k! where 11 = np 
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Exponential 

Parameter: A > 0, the rate of an exponential random variable T. 

Range: t E [0,00) 

Density function: (4.2) 

P(T E dt)/dt = Ae-)"t (t ~ 0) 

Cumulative distribution function: (4.2) 

P(T -S t) = 1 - e-)"t (t ~ 0) 

Often T is interpreted as a lifetime. 

Survival function: 

P(T > t) = e-)"t (t:::: 0) 

Mean and Standard Deviation: (4.2) 

E(T) = l/A SD(T) = l/A 

Interpretation of A: 

A = P(T E dtlT > t)/dt 

is the constant hazard rate or chance per unit time of death given survival to time t. See 

Section 4.3 for a discussion of non-constant hazard rates. 

Characterizations: 

• Only distribution with constant hazard rate. 

• Only distribution with the memoryless property 

P(T > t + siT> t) = P(T > s) 

for all s, t > 0 

Sources: 

• Time until the next arrival in a Poisson process with rate A. 

• Approximation to geometric (p) distribution for small p. 

• Approximation to beta (1, s) distribution for large s. 

• Spacings and shortest spacings of uniform order statistics. 
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Gamma 

Parameters: r > 0 (shape) A > 0 (rate or inverse scale) 

Range: t E [0, CX)) 

Density function: (4.2,5.4) P(Tr,A E dt)/dt = f(r)~l Artr~le~At (t ~ 0) 
where f(r) = Jooo tr~le~tdt is the gamma function. Note: f(r) = (r - 1)! for integer r. 

Cumulative distribution function: (4.2) 

No formula for non-integer r. See tables of the incomplete gamma function. For integer l' 

where Nt,A denotes the number of points up to time t in a Poisson process with rate A, 

and has Poisson (At) distribution. 

Mean and standard deviation: (4.2) 

Special cases: 

• gamma (1, A) is exponential (A). 

• gamma (71/2,1/2) is chi-square (n), the distribution of the sum of the squares of n 
independent standard normals. 

Sources: 

• Sum of l' independent exponential (A) variables. 

• Time until the nh arrival in a Poisson process with rate A. 

• Bayesian inference for unknown Poisson rates. 

• Approximation to negative binomial (1', p) for small p. 

• Approximation to beta (1', s) for large s. 

Transformations: (Notation: X rv F means X is a random variable with distribution F.) 

Scaling: T rv gamma (1', A) {==} AT rv gamma (1',1) 

Sums: For independent Ti rv gamma (ri' A) 

Ratios: For independent Tr,A and T."A 

Li Ti rv gamma (Li ri, A) 

TrA 
T~ rv beta(r, s) independent of the sum Tr,A + T."A rv gamma (1' + 8, A) 

r,A + S,A 

Higher moments: For s > 0 E[(T. )S] = f(r + s) 
r,A r( r )A8 

Normal approximation: If l' is sufficiently large, the distribution of the standardized gamma 

variable Zr·A = [Tr,A - E(Tr,A)]/ SD(Tr,A) is approximately standard normal. 
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Geometric and Negative Binomial 

Geometric 

Parameter: p = success probability. 

Range: n E {1, 2, ... } 

DefInition: Distribution of the waiting time T to first success in independent trials with prob­

ability p of success on each trial. 

Probability function: 0.6, 3.4) 

P(n) = P(T = n) = (1 - p)n-lp (n = 1,2, ... ) 

Let F = T - 1 denote the number of failures before the first success. The distribution of 

F is the geometric distribution on {O, 1,2, ... }. 

Tail probabilities: 

P(T > n) = P(first n trials are failures) = (1 _ p)n 

Mean and Standard Deviation: (3.4) 

E(T) = l/p 

Negative Binomial 

SD(T)=~/p 

Parameters: p = success probability, r = number of successes. 

Range: n E {O, 1,2, ... } 

DefInition: Distribution of the number of failures Fr before the rth success in Bernoulli trials 

with probability p of success on each trial. 

Probability function: (3.4) 

P(Fr=n)=P(Tr=n+r)= (n+r-1)pr(1_p)n (n=O,l, ... ) 
r - 1 

where Tr is the waiting time to the rth success. The distribution of Tr = Fr + r is the 

negative binomial distribution on {r, r + 1, ... }. 

Mean and standard deviation: (3.4) 

E(Fr) = r(l- p)/p SD(Fr) = Jr(l - p)/p 

Sum of geometries: The sum of r independent geometric (p) random variables on {O, 1, 2, ... } 

has negative binomial (r. p) distribution. 



Hypergeometric 

n== sample size 

Parameters: N = total population size 

Distribution Summaries 

G = number of good elements in population 

Range: 9 E {a, l. ... , 71} 

483 

Deitnition: The hypergeometric (71, N, G) distribution is the distribution of the number 8 of 

good elements in a random sample of size 71 without replacement from a population of 

size N with G good elements and B = N - G bad ones. 

Probability function: (2.5) 

P( ) = P(8 = ) = ((n) (G)g(Bh = (~) (~) 
9 9 9 (N)n (~) 

is the chance of getting 9 good elements and b bad elements in the random sample of 

size 71. Here b = 71 - g. The random variable is 

8 = number of good elements in sample = Xl + ... + Xn 

where Xi = indicator of the event that the ith element sampled is good. These indicators 

are dependent due to sampling without replacement. But each indicator has the same 

Bernoulli(p) distribution, where 

p = GIN = P(Xi = 1) = P(ith element is good) for each i = 1, ... ,71 

Compare with the binomial (n, p) distribution of 8 for sampling with replacement. when 

the indicators are independent. 

Mean and standard deviation: (3.6, 6.4) 

E(8) = p, = np ~ -n 
SD(8) = (J" = Jnp(l - p) . --

N -1 

Note: Mean is the same as for sampling with replacement. But the SD is decreased by the 

correction factor of J(N - n)/(N - 1). 

Normal approximation: As for binomial if (J" is large enough, for (J" as above with correction 

factor. 

Poisson approximation: As for binomial if p = GIN sufficiently small but both G and N 

are large. 

Binomial approximation: Ignores the distinction between sampling with and without re­

placement. Works well if 71 « N and both G and B are large. 

Conditioned binomial: Let 8n be the number of successes in n independent trials which are 

part of a larger sequence of N independent trials. Then no matter what the probability 

of success p, provided it is the same on all trials, the conditional distribution of Sn given 

SN = G is hypergeometric (71, N, G). 
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Normal 

Standard Normal 

Range: Z E (-::xJ,::xJ) 

Standard normal density function: (2.2, 4.1) 

1 1 2 

P(Z E dz)/dz = ¢(z) = _e-'2 z (-::xJ < z < ::xJ) 
12K 

Standard normal cumulative distribution function: 

P(Z::; z) = <1>(z) = [z= ¢(x)dx 

No simpler formula -use a normal table (Appendix 5). 

<1>( -z) = 1 - <1>(z) (by symmetry and rule of complements) 

Mean: 0 Standard deviation: 1 

Other moments: 

E(ZTn) = 0, m odd (by symmetry) 

Sources: 

• Approximation to standardized sums of independent random variables (2.2, 3.3, 4.1, 

5.4). 

• Standardized normal (/1, (}2) (4.1). 

• Approximation to binomial, Poisson, negative binomial, gamma, beta. See summaries 

of these distributions for conditions under which the approximation is good. 
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Transformations: (5.3, 5.4) (Notation: X N F means X is a random variable with distri­

bution F.) Let Zl, Z2,'" be independent standard normal. 

Linear: (Z 1 + Z2) / j2 rv standard normal. 

L; a; Zi rv standard normal iff 

Quadmtic: Z2 rv gamma (1/2,1/2) 

L 2 
.0' = 1 

'" - 2 
(rotational symmetry) 

Zr + zi + ... + Z; rv gamma (n/2, 1/2) == chi-square (n) 

Ratios: ZI/Z2 rv Cauchy (0,1) 

X = /1 + aZ where Z rv normal (0,1) 

Note: All formulae follow from this linear change of variable. 

Mean: 11 Standard deviation: a 

Density function: (4.1) 

1 
P(X E dx)/dx = -¢ ((:1; - fl)/a) (-Xl < X < 'Xl) 

a 

Cumulative distribution function: 

(
X - 11) 

P(X ::; x) = Il> -a- (-Xl <.£ < oc) 

Sources: 

• Approximation to distribution of heights, weights, etc .. over human and biological 

populations. 

• Measurement errors. 

• Random fluctuations. 

Sums: (5.4) 

If Xi are independent normal (I),;, at). then Li Xi is normal (L, Ili. Li an. 

Bivariate normal (6.5) 

X and Y have standard bivariate normal distribution with correlation p if and only if 

Y = pX + JI=P2z 
where X and Z are independent standard normal variables. 
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Poisson 

Parameter: JL = mean number. 

Range: k E {O, 1,2, ... } 

Probability function: (2.4, 3.5) 

P(k) = P(NI" = k) = e-I"JLk/k! (k = 0,1, ... ) 

where Nit is the number of arrivals in a given time period in a Poisson arrival 

process, or the number of points in a given area in a Poisson random scatter, when 

the expected number is JL. 

Mean and standard deviation: (3.5) 

SD(NIl) = Vii 

Sources: 

• Poisson process. 

• Approximation to binomial as p ---+ ° with JL = np (2.4). 

• From independent exponential variables ~Vl' W2 , ... with rate l. Let 

Nit = {first n such that Wi + ... + Wn > JL} - 1 

Transformations: (3.5) 

Sums: Let Nit!' N lt2 , ... ,N'Ln be independent Poisson. Their sum has Poisson distri­

bution with parameter 2::;'=1 JLi· 

Poissonization of the binomial: (3.5) 

If SN = number of successes and FN = number of failures in N trials, where N has 

Poisson (JL) distribution, and given N the trials are independent with probability p 

of success on each trial, then SN and FN are independent with 

S N rv Poisson (JLp) p+q=l 

Notation: X rv F means X is a random variable having distribution F. Similarly for 

multinomial trials. A consequence is the following: 

Binomial distribution of Poisson terms given their sum: 

If No. and N(3 are independent Poisson variables with mean 0: and (3, then the 

conditional distribution of Ncx given No< + N(3 = n is binomial (n, 0:: (3) 
Normal approximation: Good for large JL. 
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Uniform 

Uniform distribution on a {"mite set: (1.1) 

This is the distribution of a point picked at random from a finite set 0, so that all 

points are equally likely to be picked. For A c 0, 

Special cases: 

#(A) 
P(A) = #(0) 

• Bernoulli (1/2) distribution: uniform distribution on {O, I}. 

• The number on a fair-die roll: uniform distribution on {l. 2, 3, 4, 5, 6}. 

• Uniform distribution on {I, 2, ... , n}: Let X have uniform distribution on the 

integers 1 to n. Then 

E(X) = n; 1 SD(X) = Jn 2 
- 1 

12 

Uniform distribution on an interval: (4.1) 

Parameters: a < b, endpoints of the interval. 

Range: x E (a,b) (or (a,b), or (a,b] or [a,b)--the endpoints don't matter.) 

Density function: 

P(X E dx)/dx = l/(b - a) a <::: x <::: b 

The probability of any subinterval of (a, b) is proportional to the length of the 
subinterval. 

Cumulative distribution function: 

P(X <; x) ~ { \x . a)/(b - a) 
if x < a 

ifa<:::x<:::b 
if x> b 

Mean and standard deviation: 

E(X) = (a + b)/2 SD(X)= ~ 
V~ 



488 Distribution Summaries 

Transformations: 

Linear: (4.4) 

If X has uniform (a, b) distribution, then for constants c > ° and d, the random 

variable Y = cX + d has uniform distribution on (ca + d, cb + d). 

Cumulative distribution functions: (4.5) 

Let X be a random variable with continuous c.dJ. F. Then the random variable 

F(X) has uniform (0,1) distribution. 

Inverse cumulative distribution functions: 

Let U have uniform distribution on (0,1), and let F be any cumulative distri­

bution function. Then F- 1 (U) is a random variable whose c.d.f. is F. 

This allows random numbers with any given distribution to be generated from 

uniform (0,1) random numbers. 

Order statistics: (4.6) 

The kth order statistic of n independent uniform (0,1) random variables has 

beta distribution with parameters k and n - k + 1. 

Sums: (5.4) 

The density of the sum of n independent uniform (0, 1) random variables is 

defined by polynomials of degree n - 1 on each of the intervals [0,1), [1,2), 

... ,(n-l,n). 
For n ~ 5, the distribution of the standardized sum is very well approximated 

by the standard normal distribution. 

Uniform distribution on a region in the plane (5.1) 

A random point (X, Y) has uniform distribution on a region D of the plane, where 

D has finite area, if: 

(D (X, Y) is certain to lie in D 

(iO the chance that (X, Y) falls into a subregion C of D is proportional to the area 

ofC: 

P[(X, Y) E CJ = area(C)/area(D) C c D 

If X and Yare independent random variables, each uniformly distributed on an 

interval, then (X, Y) is uniformly distributed on the rectangle (range of X) x (range 

of Y). 

Suppose (X, Y) is uniformly distributed on a region D in the plane. Then given 

X = x, Y has uniform distribution on the values of Y which are possible when 

X=X. 

Uniform distributions on regions in three or higher dimensions have similar properties, 

with volumes replacing lengths and areas. 
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Midterm Examination 1 (1 hour) 

1. Ten dice are rolled. Five dice are red and five are green. Write down numerical expressions for: 

a) The probability of the event that exactly four of the ten dice are sixes. 

b) The probability of the event that exactly two of the red dice are sixes and exactly three of the green dice 

show even numbers. 

c) The probability that there are the same number of sixes among the red dice as among the green dice. 

d) The probability that there are strictly more sixes among the red dice than among the green dice. 

2. Five cards are dealt from a standard deck of 52. Write down numerical expressions for 

a) The probability that the third card is an ace. 

b) The probability that the third card is an ace given that the last two cards are not aces. 

c) The probability that all cards are of the same suit. 

d) The probability of two or more aces. 

3. A student takes a multiple choice examination where each question has 5 possible answers. He works a 

question correctly if he knows the answer, otherwise he guesses at random. Suppose he knows the answer to 

70% of the questions. 

a) What is the probability that on a question chosen at random the student gets the correct answer? 

b) Given that the student gets the correct answer to this question chosen at random, what is the probability 

that he actually knew the answer? 

Suppose there are 20 questions on the examination. Let N be the number of questions that the student gets 

correct. 

c) Find E(N). d) Find SD(N). 

4. Let A, B, and C be events which are mutually independent, with probabilities a, b, and c. Let N be the random 

number of events which occur. 

a) What is the event (N = 2) in terms of A, Band C? 

b) What is the probability of this event in terms of a, b, and c? 

c) What is E(N) in terms of a, b, and c? 

d) What is SD(N) in terms of a, b, and c? 

5. Let X 2 and X3 be indicators of independent events with probabilities ~ and ~, respectively. 

a) Display the joint distribution table of X 2 + X3 and X 2 - X 3· 

b) Calculate E(X2 - X3). 

c) Calculate SD(X2 - X3). 
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Midterm Examination 2 (1 hour) 

1. Coin spinning. I have two coins. One shows heads with probability 1/10 when spun. The other shows heads 

with probability 1/2. Suppose you pick one of my two coins at random and spin it twice. Find: 

a) P(heads on first spin); 

b) P(heads on second spin); 

c) P(heads on both spins); 

d) the probability that the coin is the 1/2 coin given heads on both spins. 

2. True or false. A student answers a set of 100 true/false questions by answering 36 questions correctly, and 

guessing the other 64 at random. 

a) If the pass mark is 70 questions correct, what is the student's chance of passing? Give your answer as a 

decimal correct to two places. 

b) Another student also knows 36 correct answers and guesses the rest at random. What is the chance that 

just one of these two students passes? 

3. Rare white balls. A box contains 998 black and 2 white balls. Let X = the number of whites in 500 random 

draws with replacement from this box. Calculate: 

a) P(X = 1)/ P(X = 2); 

b) P(X = 1 given X = 1 or 2); 

c) repeat b) assuming draws without replacement. 

4. Reliability. A system consists of four components which work independently with probabilities 0.9, 0.8, 0.7, 

and 0.6. Let X = the number of components that work. Find: 

a) E(X); 

b) SD(X); 

c) P(X > 0); 

d) P(X = 2). 
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Final Examination 1 (3 hours) 

1 A random variable N is uniformly distributed on {I, 2, ... , 10}. Let X be the indicator of the event (N ~ 5) 

and Y the indicator of the event (N is even). 

a) Find E(X) and E(Y). 

b) Are X and Y independent? 

c) Find Cov(X, Y). 

d) Find E[(X + y)2]. 

2. A box contains 5 tickets. An unknown number of them are red, the rest are green. Suppose that to start off 

with you think there are equally likely to be 0, 1, 2, 3, 4, or 5 red tickets in the box. 

a) Three tickets are drawn from the box with replacement between draws. The tickets drawn are red, green, 

and red. Given this information, what is the chance that there are actually 3 red tickets in the box? 

b) What would your answer to (a) be if you knew the draws were made without replacement? 

3. In the World Series, two teams playa series of games, and the first team to win four games wins the series. 

Suppose that each game ends in either a win or a loss for your team, and that for each game that is played the 

chance of a win for your team is p, independently of what happens in other games. What is the probability 

that your team wins the series? 

4. Let X, Y, and Z be three independent normal (0,1) random variables. Calculate: 

a) P(IXI ~ 1, WI ~ 2, IZI ~ 3); 

b) E [(X + Y + Z)2]; 

c) P(X + Y ~ 2Z). 

5. Suppose that T is a random variable such that P(T > t) = e- t , t ~ o. 

a) Find a formula for the probability density function Ix of the random variable X = liT. 

b) What is the value of E(X)? 

6. A fair coin is tossed 100 times. The probability of getting exactly 50 heads is close to one of the following 

numbers. 
0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999 

a) Circle which number you think is closest and explain your choice. 

b) How many times do you have to toss the coin to make the probability of getting exactly as many heads 

as tails very close to one tenth of this probability of getting 50 heads in 100 tosses? 
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7. A pair of dice is rolled n times, where n is chosen so that the chance of getting at least one double six in the 

n rolls is very close to 1/2. 

a) The number of rolls n must be very close to one of the following numbers: 

6, 12, 18, 20, 25, 30, 36, 50, 72, 100. 

Circle which number you think n must be close to, and explain your choice. 

b) What, approximately, is the chance that you actually get two or more double sixes in this many rolls? 

Give your answer as a decimal. 

8. Let U1 and U2 be two independent uniform [0,1] random variables. Let 

Y = max(Ul, U2 ) 

where min(ul,u2) is the smaller and max(ul,u2) the larger of two numbers Ul and U2. Find: 

a) the probability denSity function Ix of X; 

b) the joint density function Ix,Y of (X, Y); 

c) P(X -:; 1/2[Y ~ 1/2). 

9. Suppose that on average one person in a hundred has a particular genetic defect, which can be detected only 

by a laboratory test. 

a) Suppose fifty people chosen at random are tested. What is the probability that at least one of them will 

have the defect? [Answer as a decimal.] 

b) About how many people have to be tested in order for the probability to be at least 99% that at least one 

person has the defect? 

c) If this number of people are tested, what is the expected number of individuals with the defect' 

10. Let U1 , U2 , ... , Un be independent uniform [0,1] random variables. If n is large the geometric mean Gn of 

U1 , U2 , ... , Un, defined by Gn = (U1U2 ... Un)l/n, is most likely to be very close to a certain number g. 

Explain why, and find g. 

[Hint: Use logarithms.] 
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Final Examination 2 (3 hours) 

1. Suppose one morning you pick two eggs for lunch at random from a dozen eggs in your refrigerator, thinking 

that they are all hard-boiled. You then learn that in fact four of the eggs have not been hard-boiled. 

a) What is the probability that your two lunch eggs are both hard-boiled? 

b) Given that you crack one of your lunch eggs and find it is hard-boiled, what is the probability that the 

second egg is hard boiled? 

2. A hat contains n coins, f of which are fair, and b of which are biased to land with heads with probability 2/3, 

with f +b = n. A coin is drawn at random from the hat and tossed once. It lands heads. What is the probability 

that it is a biased coin? 

3. A die has one spot painted on one face, two spots painted on each of two faces, and three spots painted on 

each of three faces. The die is rolled twice. 

a) Calculate the distribution of the sum 82 of the numbers on the two rolls. Display your answer in a table. 

b) Calculate the numerical value of E(82 ) in two different ways to check your answer to a). 

c) Calculate the standard deviation of 82 . 

4. Suppose the average family income in a particular area is $10,000. 

a) Find an upper bound for the fraction of families in the area with incomes over $50,000. 

b) Find a smaller upper bound than in a), given that the standard deviation is $8000. 

c) Do you think the normal approximation would give a good estimate for the fraction in question? 

5. A random variable X has probability density function of the form 

a) Find the constant c. 

b) Find P(X ::; a) for 0 ::; a ::; l. 

c) Calculate E(X). 

d) Calculate 8D(X). 

O::;x::;l 

otherwise. 

6. Telephone calls arrive at an exchange at an average rate of one every second. Find the probabilities of the 

following events, explaining briefly your assumptions. 

a) No calls arriving in a given five-second period. 

b) Between four and six calls arriving in the five-second period. 

c) Between 90 and 110 calls arriving in a 100-second period. (Give answer as a decimal.) 
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7. Let T be the number of times you have to roll a die before each face has appeared at least once. Let N be the 

number of different faces appearing in the first six rolls. Calculate: 

a) E(T); 

b) E(N); 

c) E(TIN = 3). 

8. Let X, Y, and Z be independent standard normal random variables. Find the probability density functions of 

each of the following random variables: 

a) X2; 

b) X 2 + y2; 

c) X + Y + Z. 

9. A floor is ruled with equally spaced parallel lines. A needle 

is such that if its two ends are placed on adjacent lines 

the angle between the needle and the lines is a, where 

o :s a :s 7r /2. Calculate the probability that the needle 

crosses at least one of the lines when tossed at random 

on the floor: 

a) for a = 45°; 

b) for a general a between 0 and 7r /2. 

10. A fair coin is tossed 2n times. Let P2n be the probability of getting the same number of heads as tails. 

a) Find constants a and b such that 

b) Show that P2n ----> 0 as n ----> 00. 

1 
P2n'" -

anb 
as n ----> 00. 

c) Why does this not contradict the law of large numbers? 



496 Examinations 

Final Examination 3 (3 hours) 

1. Suppose you try 5 times to hit the bull's eye. The first time you have a 0.2 chance of a hit, and each time you 

try your chance of hitting increases by 0.1. Let H be the number of hits in the five attempts. Assuming your 

attempts are independent, calculate the following quantities. Answers should be decimals. 

a) E(H); b) Var(H). 

2. Suppose that in a network of 3 computers, at a given time the event that the kth computer is down has overall 

probability Pk, k = 1,2,3. Calculate the probability that at this time there is at least one computer up: 

a) assuming the computers are up or down independently of each other; 

b) assuming that there is probability P of power failure, in which case all the computers are down, but given 

that there is no power failure the computers are up or down independently of each other. 

3. A fair six-sided die has: 

the 1 spot face opposite the 6 spot face; 

the 2 spot face opposite the 5 spot face; 

the 3 spot face opposite the 4 spot face. 

Suppose the die is rolled once. Let X be the number of spots showing on top, Y the number of spots showing 

on one of its side faces, say the leftmost face from a particular point of view. 

a) Display the joint probability distribution of X and Y in a suitable table. 

b) Are X and Y independent? 

c) Find Cov(X, Y). 

d) Find Var(X + Y). 

4. Suppose there are 50 married couples. After some years, 20 of these 100 people have died. Regard the 20 

deaths as striking the 100 people at random. Find numerical expressions for: 

a) the probability that a particular couple has survived; 

b) the expected number of couples surviving; 

c) the probability that two particular couples have survived; 

d) the variance of the number of couples surviving. 

5. Suppose X and Yare independent random variables, each uniformly distributed on [0,1]. Calculate: 

a) p(X2 + y2 ~ 1); 

6. Suppose a particle has velocity V which is normally distributed with mean 0 and variance (J"2. Let X = m V 2 /2 
where m > 0 is a positive constant. Find formulae in terms of m and (J" for; 

a) E(X); b) the probability density function of X; c) Var(X). 
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7. A particle counter records two types of particles, Types 1 and 2. Type 1 particles arrive at an average rate of 1 

per minute, Type 2's at an average rate of 2 per minute. Assume these are two independent Poisson processes. 

Give numerical expressions for the following probabilities: 

a) Three Type 1 particles and four of Type 2's arrive in a two-minute period; 

b) the total number of particles of either type in a two-minute period is 5; 

c) the fourth particle arrives in the first 5 minutes; 

d) the first particle to arrive is of Type 1; 

e) the second particle of Type 1 turns up before the third of Type 2. 

8. Consider the average Xn = (Xl + X 2 + ... + Xn)/n of n independent random variables, each uniformly 

distributed on [0,1]. Find n so that P(Xn < 0.51) is approximately 90%. 

9. Two statisticians are watching a sequence of independent Bernoulli trials with probability p of success on 

each trial. The first statistician estimates p by the proportion of successes in the first 100 trials. The second 

statistician estimates p by the proportion of successes in the next 300 trials. Consider the probability that the 

second estimate is closer to p than the first. 

a) Explain why this probability hardly depends at all on p, provided p is fairly close to 1/2. 

b) Assuming p is fairly close 1:0 1/2, this probability is very close to one of the following numbers: 

0, 1/10. 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, 9/10, 1. 

Which one, and why? 

10. Suppose 10 dice are shaken together and rolled. Any that turn up six are set aside. The remaining dice are 

shaken and rolled again. Any of these that turn up six are set aside. And so on, until all the dice show six. 

Let N be the number of times the dice are shaken and rolled. To illustrate, if after the first roll of 10 dice, 7 

non-sixes remain, and after the second roll of these 7 dice 2 non-sixes remain, and after the third roll of these 

2 dice no non-sixes remain, then N = 3. 

a) Describe the distribution of N. 

[Hint: Consider the number of times each die is rolled.] 

b) Let T be the total number of individual die rolls. To illustrate, T = 10 + 7 + 2 = 19 for the outcome 

described above. Describe the distribution of T. 

c) Let L be the number of dice shaken on the last roll. To illustrate, L = 2 for the outcome described above. 

Describe the distribution of L. 
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Midterm Examination I-Solutions 

1. a) c:) (1/6)4(5/6)6 

b) G) (1/6)2(5/6)3 G) (1/2)5 

c) G) 2 (5/6)10 + G) 2 (1/6)2(5/6)8 + G) 2 (1/6)4(5/6)6 + ... + G) 2 (1/6)10 

d) ~ (1 - answerto c)) 

2. a) 1/13 

3. a) 0.7+ (0.3)(0.2) = 0.76 b) 0.7 
0.76 

c) 20 x 0.76 d) )6 x ~ x ~ 
5 5 

4. a) ABCc U ABcC u AC BC 

b) ab(1- c) + a(1 - b)c + (1 - a)bc 

c) a + b + c 

d) Ja(1-a)+b(1-b)+c(1-c) 

5. a) 
X 2 +X3 

X 2 -X3 0 1 2 

-1 0 1/6 0 

0 1/3 0 1/6 

1 0 1/3 0 

1 
b) (3 

c) /r-~-. -~ -+-~-.-~ 
V 2 2 3 3 
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Midterm Examination 2-So1utions 

1. a) P(Hd = P(l/lO cOin)P(H1 11/10 coin) + P(1/2 coin)P(H1 11/2 coin) 
_11+11_3 
-"2 X lO "2 x "2-lO 

b) P(H2 ) = P(H1 ) = 130 

c) P(H1H2 ) = P(1/10 coin)P(H1 H2 11/10 coin) + P(1/2 coin)P(H1H2 11/2 coin) 

1 (1 ) 2 1 ( 1 ) 2 13 
= "2 x 10 +"2 x "2 =: 100' 

( / . IH H) _ P(1/2 cOin)P(H1H211/2coin) _ ~ X (~)2 25 
d) P 1 2 com 1 2 - P(H H ) -.ll.. 26 

1 2 100 

2. a) Let X be the number of correct answers in 64 questions; then X has binomial (n = 64, p = 1/2) 

distribution, so EX = 32, SD(X) = 4. 

(
X - 32 33.5 - 32) 

P(passing) = P(X ~ 34) = P(X ~ 33.5) = P 4 ~ 4 

~ 1 - <p(0.375) = 1 - 0.646 = 0.354 

b) This is just 2pq for p = 0.354, q = 0.646, i.e., 

2pq = 2 x 0.354 x 0.646 = 0.457 

3. a) X has binomial (n = 500,p = 2/1000) distribution, so 

P(X = 1) 

P(X = 2) 

P(X = 1) 
b) P(111 or 2) = P(X = 1) + P(X = 2) 

2 . 1 - p = ~ . 19~080 = 2 

n - 2 + 1 p 499 1~00 

P(X = l)/P(X = 2) 2 

P(X=1)/P(X=2)+13 

P(X = 1) _ (i) (~~~) _ 2 x 498!500! _ 2 x 500 _ 1000 
c) Now P(X = 2) - @ (~~~) - 499!499! - 499 - 499 

(1000/499) 1000 
Continue as before: P(X = 111 or 2) = (1000/499) + 1 1499 

4. a) X = Xl + X 2 + X3 + X 4 , where Xi is the indicator that the ith component works. 

So E(X) = E:=l P(Xi = 1) = 0.9 + 0.8 + 0.7 + 0.6 = 3.0 

b) Var(X) = E:=l Var(Xi ) = 0.9 x 0.1 + 0.8 x 0.2 + 0.7 x 0.3 + 0.6 x 0.4 = 0.7 

SD(X) = 0.8367 

c) 1 - P(X = 0) = 1 - 0.1 >< 0.2 x 0.3 x 0.4 = 0.9976 

d) 0.9 x 0.8 x 0.3 x 0.4 + 0.9 x 0.2 x 0.7 x 0.4 + 0.9 x 0.2 x 0.3 x 0.6 + 0.1 x 0.8 x 0.7 x 0.4 + 0.1 x 0.8 x 
0.3 x 0.6 + 0.1 x 0.2 x 0.7 x 0.6 = 0.2144 
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Final Examination 1-Solutions 

1. a) E(X) = E(Y) = 1/2. 

b) No. 

e) -1/20. 

d) 1.4. 

2. a) 0.36 b) 0.4 

3. 

(:)p4q3 + G)p5q2 + G)p6q + p7 = p4 + 4p4q + G)p4q2 + (~)p4q3, 

where q = 1 - p. 

4. a) 0.65 b) 3 c) 1/2 

e-1/ x 

5. a) fx(x) = -2-' x> 0, 0 otherwise. 
x 

b) E(X) = 00. 

6. a) 0.1, by normal approximation or Stirling's formula. 

b) 104 tosses. 

7. a) 25. 

b) 0.152 (Poisson approximation) 

8. a) fx(x) = 2 - 2x, 0 ~ x ~ 1, 0 otherwise. 

b) fx,Y(x, y) = 2, 0 ~ x ~ y ~ 1, 0 otherwise. 

c) 2/3 

9. a) 1_e-1/ 2 . 

b) 100 log 100. 

c) log 100. 

10. e- 1, by law of large numbers. 
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(8) (4) 56 14 
1. a) 2(12)0 = - = ~ = 0.424 (sampling without replacement) b) 7/11 

2 132 33 

4b 
2. 

4b+3f 

~b 
2 3 1 (Bayes' rule) 
3"b+ 'if 

4. a) 10,000 = 1 (Markov's inequality) 
50,000 5 

2 

b) (8,000) =...!.. (Chebychev's inequality) 
40,000 25 

c) No, because income 2 o. 

5. a) 3 b) a3 c) ~ 
4 d) No ~ 0.194 

b) 14 c) .i!Q 
3 3 

(
54 55 56) 

6. a) e- 5 (Poisson process) b) e--5 4! + 5T + 6! c) 0.68 (normal approximation) 

7. a) 1 + ~ + ~ + ... + 6 ~ 14.7 

b) 6 (1 - (~)6) 

c) 6 + Q + Q + 6 = 17 
3 2 

8. a) gamma (1/2,1/2) b) gamma (1,1/2) c) normal (0,3) 

9. a) ~ ( J2 - 1) + ~ 
2 2a 

b) -. - (1 - cos a) + 1 - -
7r S111 a 7r 

10. a) a = Ii, b = 1/2 

b) Follows from In ~ 0 as n ~ 00 

Solutions 50 1 

c) The law of large numbers says that the proportion of heads is very likely to be very close to 1/2, not 

that it is very likely to be exactly 1/2. 
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Final Examination 3-So1utions 

1. a) 0.2 + 0.3 + 0.4 + 0.5 + 0.6 = 2.0 b) 0.2 x 0.8 + 0.3 x 0.7 + 0.4 x 0.6 + 0.5 x 0.5 + 0.6 x 0.4 = 1.1 

2. a) 1 - P(all down) = 1 - PIP2P3 

b) Answer is (1 - p)(l - rlr2r3), where ri is the conditional probability that computer i is down given no 

powerfailure. But Pi = p+(l-p)ri' so ri = (Pi-p)/(l-p), and the answer is 

(1- ) [1 _ (PI - p)(p2 - P)(P3 - p)] 
P (l-p)3 

3. a) Values of X 

1 2 3 4 5 6 

1 0 1/24 1/24 1/24 1/24 0 

2 1/24 0 1/24 1/24 0 1/24 

Values of Y 3 1/24 1/24 0 0 1/24 1/24 

4 1/24 1/24 0 0 1/24 1/24 

5 1/24 0 1/24 1/24 0 1/24 

6 0 1/24 1/24 1/24 1/24 0 

b) No. 

c) Cov(X, Y) = O. 

d) Var(X + Y) = Var(X) + Var(Y) = i~ + i~ = 3: = 5.833 

4. a) 18000 x ~~ = 0.638 

b) Let Ii = indicator that couple i has survived. Then 

50 50 

E(# couples surviving) = ELli = LE(Ii) = 50 x 0.638 = 31.9 
i=1 i=1 

c) 18000 x ~~ X ~~ X ~~ = 0.4033 = E(hh) 
50 

d) Var(S50) = LVar(Ii)+2LCov(Ij,h); here 

i=1 j<k 

Var(Ii) = E(Ir) - [E(h)]2 = 0.638 - 0.6382 = 0.23085, 

Cov(Ij, h) = Cov(h, h) = E(hI2) - E(h)E(I2) = 0.4033 - 0.6382 = -0.004196, 

so Var(S50) = 50Var(h) + 50 . 49Cov(h, h) = 50· (0.23085) + 2450( -0.004196). 

5. a) p(X2 + y2 ~ 1) 

area of shaded region 

area of square 

!7T(1)2 7T 
= _4 __ = _ = 0.785 

12 4 

y 

o x 



c) tanO = ~ , so 0 = 30°, and 

area of shaded region 

area of square 

~(1) (~) 1 
---'--'--'- = - = 0.2887 

1 2V3 

p(X2 + y2 :::; 1 given y2 > 3X2 ) 

area of shaded region 

area of shaded region in (b) 

= ~'\a) = V37r = ~ = 0.91 
2V3 6 2V3 

o 
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X 

)(l+r'2=1 

6. a) V 2 has gamma (~, ~) distribution, so 

7. 

1 1 

E(V2) = + = 172 and Var(V2) = ~ = 2174 . 

2a2 (~) 

So E(X) = E (~mV2) = ~m(T2. 

b) X = ImV2. V = !2X. 
2 ' Vm ' 

dV f2( 1) 1 
dX = V;;, 2.JX = v'2mX 

1 v 2 

fv(v) = --e-~ 
~(T 

fx(x) = 2fv(v) I dv 1= 2· _l_e -~~) (_1_) = 1 e- x / ma2 

• dx ~(T v'2mx v'7rmx(T 

23 44 
a) P(3 of Type 1)P(4 of Type 2) = e- 2 ,. e-4 , 

3. 4. 

b) e-665 /5!, since the total number of particles of either type in a two-minute period has Poisson [2(1 + 2)] 

distribution. 

( 152 153) 
c) P(T4 :::; 5) = P(N5 ~ 4) = 1- P(N5 < 4) = 1- e- 15 1 + 15 + 2! + 3! . 

d) 1/3 

e) P(3rd of Type 2 after 2nd of Type 1) 

= P(3rd of Type 2 at or after 5th of either type) 

= P(O or 1 or 2 Type 2's in first 4 particles) 

= (1/3)4 + 4(1/3)3 . (2/3) + 6(1/3)2 . (2/3)2 = 1 + ~t 24 = ~~ 
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8. Xn has approximately normal (0.5, l~n) distribution. Want n so that 

- ( 0.01 ) 0.9 = P(Xn < 0.51) ~ <I> ~ 
V 1/12n 

0.01 
<===} ~ ~ 1.29 

V 1/12n 

<===} J12n ~ 1.29 <===} n ~ (1.29) 2 • ~ <===} n ~ 1387 
0.01 0.01 12 

9. a) By the normal approximation 

P (IX - I > If'; - I) = P (IX100 - pi > iY300 - pi 1 ) ~ P (IZI > ~) 
100 P 300 P ::lEi. ~)3 )3 

10 v'3.10 

where Z and Z' are independent normal (0,1). 

b) 2/3. Reason: by circular symmetry of (Z, Z'), 

the desired probability is 

arctan ()3) 

7f/2 

7f/3 2 
= -

7f /2 3 

10. a) Let Wi be the number of times die i is rolled. Then N = maXi Wi, and the Wi are independent with 

geometric (1/6) distribution, so 

P(N::; n) = P(Wi ::; n for i = 1 to 10) = P(W::; n)lO = [1- (~) n] 10 

P(N = n) = P(N ::; n) - P(N ::; n - 1). 

b) T = WI + ... + WlO , so T - 10 has negative binomial (10, 1/6) distribution 

(t-1) (1)10 (5)t-l0 
P(T = t) = --

9 6 6 

00 

c) Use P(L = I) = LP(N = k,L = I) with 

k=1 

P(N = k, L = I) = P(10 -I dice have fallen 6 by roll k - 1, I dice fall 6 on roll k) 

= (\0) [P(W ::; k - 1)]10-1 [P(W = k)]l 

~ en [1- Grr' [wtT 
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Appendix 1 
Counting 

Basic Rules 

Let #(B) denote the number of elements in a finite set B. There are three basic 

rules to help evaluate #(B), the correspondence rule, the addition rule, and the 

multiplication rule. The first of these is the basis of counting on your fingers: 

The Correspondence Rule 
If the elements of B can be put in one-to-one correspondence with the elements 

of another set C, then #(B) = #(C). 

The trick to using this rule is to find a one-to-one correspondence between a set 

you are trying to count, and some other set you already know how to count. See 

examples below. 

The Addition Rule 
If B can be split into disjoint sets B l , B 2 , ... , B n , then 
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The multiplication rule is generally less applicable, but nonetheless extremely useful. 

The number of elements of a set B is the number of different ways in which an 

element B may be chosen. In many problems it is possible to regard the choice of 

an element in B as being made by stages. For example, if B is a set of sequences, 

the choice of a sequence in B can be made by choosing the first element of the 

sequence, then the second element, and so on. The number of elements in B is 

then equal to the number of ways of making the successive choices. If there are k 

choices to be made, and at each stage j ~ k there are nj possible choices available, 

where nj does not depend on what choices were made previously, then #(B) is 

equal to the product nl n2 ... nk, by the following rule: 

The Multiplication Rule 
Suppose that k successive choices are to be made, with exactly nj choices avail­

able at each stage j ~ k, no matter what choices have been made at previ­

ous stages. Then the total number of successive choices which can be made is 

nln2··· n k· 

The same rule can be expressed in other words. For example, choices can be replaced 

by decisions or selections. Notice that exactly which choices are available at stage j 

may depend on what choices have been made earlier, provided that the number of 
these choices available, that is nj, does not. The multiplication rule can be proved by 

mathematical induction, using the addition rule. A good way to visualize the setup 

for the multiplication rule is to think in terms of a decision tree, where at each stage 

the decision is which branch of the tree to follow. Here is a decision tree representing 

k = 3 successive choices, with nl = 4 choices available at stage 1, n2 = 3 choices at 

stage 2, and n3 = 2 choices at stage 3. The number of possible successive choices 

is the total number of paths through the tree. In accordance with the multiplication 

rule, there are 4 x 3 x 2 = 24 paths. 
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Sequences, Orderings, and Combinations 

Let S be a finite set. A sequence of length k of elements of S is an ordered k-tuple 

(S1' S2,···, Sk) with Sj E S for each j. If S has n elements, the first element of the 

sequence can be chosen in n ways. However the first is chosen, the second can be 

chosen in n ways, making n x n = n 2 ways to choose the first two elements of the 

sequence. Whichever one of those n2 choices is made, there are n ways to choose 

a third element, so n 2 x n = n 3 ways to choose the first three elements. This is the 

multiplication rule in action. Continuing in this way gives the following: 

Formula for Number of Sequences 

The number of sequences of length k from a set of n elements is nk. 

Let S be the alphabet, that is, the set of 26 letters {a, b, ... , z}. Call a sequence of 

five letters, such as "aargh", a five-letter word, no matter whether it is meaningful 

or not. Define a k-letter word similarly. There are n = 26 letters in the alphabet S. 

Hence there are 

26 one-letter words, 

262 = 26 x 26 two-letter words, 

263 = 26 x 26 x 26 three-letter words, and so on. In general, there are 

26k = 26 x 26 x ... x 26 k-Ietter words. 
" I v 

k factors 

An ordering or permutation of k elements of S is a sequence of length k of elements 

of S with no duplications. That is to say, an arrangement of k distinct elements of 

S. If S has n elements, the first element in an ordering can be chosen in n ways. 

However this choice is made, the second element can be anyone of the n - 1 

remaining elements. So there are n( n - 1) ways to choose the first two elements 

in an ordering. Whichever one of these choices is made, there are n - 2 remaining 

elements from which to choose a third element for the permutation, so n( n-l) (n- 2) 
ways to choose the first three elements in an ordering. Continue in this way, choosing 

one element of the ordering at a time from among the remaining possibilities, and 

use the multiplication rule to obtain the following: 
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Example 2. 

Example 3. 

Formula for Number of Orderings 
The number of orderings of k out of n elements is 

n(n - l)(n - 2)··· (n - k + 1). 

The product of k decreasing factors n(n - l)(n - 2)··· (n - k + 1) is denoted (nh, 

a symbol which may be read "n order k". It is the number of ways of ordering k 

out of n elements. Alternative notations for (n)k, found in some other texts, are n Pk 

and P~. Compare with the larger number nk, the number of sequences of length k, 
without the restriction that there be no repetitions. 

Let S be the alphabet as in Example 1. A permutation of length k of the 26 letters 

of the alphabet is a word of length k with no repetitions of letters. For example, for 

k = 5, "aorgh" is such a permutation, but "aargh" and "gargh" are not. There are 

26 one-letter permutations, 

(26h = 26 x 25 two-letter permutations, 

(26}J = 26 x 25 x 24 three-letter permutations, and so on. 

In general, there are 

(26h = 26 x 25 x 24 x ... x (26 - k + 1) k-Ietter permutations. , , .., 
k factors 

In the birthday problem (Section 1.6), the probability that a group of k people all 

have different birthdays, assuming all possible sequences of k birthdays are equally 

likely, is 

(365h 

365k 

365 x 364 x ... x (365 - k + 1) 

365 x 365 x ... x 365 

because the denominator is the number of all possible sequences of birthdays of 

length k, while the numerator is the number of possible sequences with no dupli­

cation, that is, the number of possible permutations of k birthdays. 



Appendix 1: Counting 5 11 

Factorials 

The notation n! is used for 

(n)n=n(n-1)···2·1 

and by convention O! = 1. The symbol n! is read "n factorial". By the formula for 

the number of permutations in the special case k = n, 

the number of ways of ordering a set of n elements is n!. 

Put another way, 

n! is the number of different ways to arrange n objects in a row 

and from above 

n! 
(nh = (n - k)! 

is the number of different ways of arranging k of these n objects in a row. 

The above expression for (n)k is correct because the factor (n - k)! in the denomi­

nator cancels the last n - k factors in the numerator, leaving just 

(n)k = n x (n - 1) x ... x (n - k + 1) 

The formula works even when k = n, because of the convention that O! = 1. 

A permutation is a particular kind of sequence, namely one with no repetitions. But 

combination is just another name for "subset". A combination of k elements from a 

set of n elements is a subset consisting of k of the n elements. A combination may 

also be called an unordered sample. The number of combinations of k elements from 

a set of n elements is denoted (~), a symbol which is read "n choose k". This is 

the number of ways of choosing k out of n elements. An ordering of k of a set of n 
elements can be made by the following two-stage procedure: 

co choose a combination of k elements; 

(ij) order the combination. 
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The number of ways of making the first choice is (~). And no matter what com­

bination is chosen, the number of ways of ordering it is (k)k = kL Thus by the 

multiplication rule, 

Dividing both sides by k! yields the following basic formula: 

Formula for Number of Combinations 

(Subsets) 
The number of ways of choosing k out of n elements is 

( n) = (nh = n! = n(n-1)· .. (n-k+1) 
k k! k!(n-k)! k(k-1) ... 1 

By the convention O! = 1, (~) = 1, every set has just one subset with no elements, 

the empty set. To make the second formula in terms of (n)k work in this case, make 

the convention that (n)o = 1. 

As well as being the number of subsets of size k of a set of n elements, one-to-one 

correspondences show that (~) is: 

the number of different ways to choose k places out of n places in a row; 

the number of different ways to arrange k symbols p and n - k symbols q in 

a row. 

The numbers (~) are also called binomial coefficients, as they appear in the bino­

mial theorem 

Number of Subsets of a Set of n Elements 
The number of subsets of a set of n elements is 2n. 
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Note that the subsets include both the empty set and the whole set. A subset may be 

chosen by deciding for each of the n elements whether that element should belong 

to the subset, or not. There are n successive choices to be made, with two possible 

choices at each stage. The product rule applies once more, to show that there are 2n 

subsets in all. Since each subset may be classified according to its size, the number 

of subsets may also be expressed using the addition rule as 

The equality of this expression with 2n is the binomial theorem for x = y = 1. 

Exercises: Appendix 1 

CD Prove that 

(a) by using the formula for (~); 

(b) by exhibiting a one-to-one correspondence between subsets of size k 
and subsets of size n - k. 

(ii) Prove that 

(a) by using the formula for (~); 

(b) by breaking subsets of size k into two mutually exclusive classes, one 

class comprising all those subsets which contain a given element, and 

the other all those which don't. 

(iii) Use CO and (ii) to generate the next two rows in the following table (called 

Pascal's triangle), where (~) appears in the kth column of the nth row. 

k 

0 1 2 3 4 5 

0 1 

1 1 1 

2 1 2 1 

n 3 1 3 3 1 

4 

5 
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(iv) Check that the formula 

holds for rows n = 0 to 5 in Pascal's triangle. (If it doesn't work for n = 4 or 

5, go back and redo (Hi)!) 

(v) Prove the formula of (iv) using (ii). 

(a) using (ii); 

(b) by proving that both sides of the formula represent the number of subsets 

of a set of n elements. For the left side use the addition rule for counting 

after partitioning the collection of all subsets according to size. And for 

the right side use the product rule for counting after identifying a subset 

A C {1, 2, ... , n} with the sequence of zeros and ones which is the 

indicator of A. 

(vi) Prove that 

(vii) Find a formula for the number of sequences of O's and 1's of length n such 

that the sum of the O's and 1's in the sequence is k. [Hint: choose the places 

for the 1's.] 

(viii) a) Prove that for ko + kl + k2 = n, the number of sequences of O's, 1's, and , 
2's of length n which contain exactly ko O's, kl 1's and k2 2's is , n., 

ko·kl·k2! 
(b) Generalize your formula to find the number of sequences of the numbers 

0, 1, 2, ... , m of length n in which the number y' appears kj times. These 

numbers are called multinomial coefficients. 

(ix) Prove the binomial theorem by counting the number of terms of the form 
xkyn-k in the expansion of (x + y)n. 

ex) How many different eleven-letter words (not necessarily pronounceable or 

meaningful!) can be made from the letters in the word MISSISSIPPI? 

(xi) How many different 5-card poker hands can be dealt from a regular 52-card 

deck? 

(xii) How many of these hands contain no aces? 

(xiii) How many contain a aces, for a = 0 to 4? 

(xiv) How many contain all cards of the same suit? 
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Sums 

n 

The symbol L ai stands for the sum of the terms ai from i = 1 to n, also denoted 

i=l 

Note that the symbol i is an index or dummy variable. It can be replaced by any 

other symbol without changing the value of the sum. So 

n n 

Lai = Laj 
i=l j=1 

Sums are often made over other index sets than the first n integers. For example, 

5 

L ai = a3 + a4 + a5 
i=3 

If the range of i is clear from the context, a sum may be written simply Li ai. 
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General Properties of Sums 
All sums are assumed to be over the same range of i: 

Constants: If Xi = c for every i, then 

LXi = (number of terms) x c 

Indicators: If Xi = 0 or 1 for every i, then 

LXi = (number of i such that Xi = 1) 

Constant factors: 

Addition: 

Inequalities: If Xi :::; Yi for every i, then 

Particular Sums 

n 

1 + 2 + ... + n = L i = n(n + 1)/2 

i=l 

Provided R =I- 1, 
n 1 Rn+1 

1 +R+R2 + ... +Rn =" Ri = ----
~ 1-R 
i=O 
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Calculus 

Infinite Series 

Let a1, a2, ... be a sequence of numbers. The infinite sum 

is called an infinite series. 

The finite sum 

n 

00 

L ai = a1 + a2 + ... 
i=l 

L ai = a1 + a2 + ... + an 

i=l 

is called the nth partial sum of the a's. 
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Convergence of Infinite Series 
00 

The series L ai converges if the sequence of partial sums converges to a finite 

i=1 
n 

limit, that is, if lim '" ai exists and is finite. 
n~oo L....J 

i=1 
00 

The series L ai diverges if the sequence of partial sums does not converge to 

i=1 
n 

a finite limit, that is, if lim '" ai either does not exist or is infinite. 
n-+oo L....J 

i=1 

If a1, a2, ... are all positive, then the sequence of partial sums is increasing, and thus 

has a limit, though the limit may be +00. So the series 2:::1 ai either converges, or 

diverges to +00. 

Some Common Infinite Series 

00 1 
L ~ = +00 
n=1 

00 . 

'" i r'O first term 
Geometric series: If Irl < 1, L....J r - - -------

.. - 1 - r - 1 - common ratio 
~==to 

00 n 

Exponential series: L :! = eX (see Appendix 4) 

n=O 

Derivatives 

The function f (x) is said to be differentiable at Xo if 

I. f(xo + ~x) - f(xo) 
1m 

llx->O ~X 
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exists. In that case, the derivative of f (x) at Xo is defined as the limit 

f'(xo) = lim f(xo + Ax) - f(xo) 
c.x-+o .6.x 

If f (x) is differentiable at every Xo in its domain, then f (x) is called differentiable. 

Interpretations of the derivative 

The derivative f' (xo) may be interpreted as 

the rate of change of f(x) at xo, 

or 

the slope of the graph of f (x) at Xo. 

If Y = f(x), the derivative function f'(x) is often written as 

y 

dy 

dx 
or 

1 

d 
dxf(x) 

y = f(x) 

tangent line at Xo 
l' (xo) = slope of this line 

L-----------------------~--------------------------~x 
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Properties of Derivatives 

Constants: If f(x) = c for all x, then f'(x) = 0 for all x. 

Constant factors: (cf)'(x) = c(f'(x)) 

Addition: (f + g)'(x) = f'(x) + g'(x) 

Multiplication: (fg)'(x) = f'(x)g(x) + f(x)g'(x) 

Chain rule: 
d 

dxf(g(x)) = f'(g(x))g'(x) 

Some Common Derivatives 

d 
_xn = nxn- 1 

dx ' 
n = 1,2, ... 

d 1 
-log (x) = -, 
dx x 

x>O 

d 
_ ef3x = (3ef3 x 

dx 

d 
d() sin ((}) = cos ((}) 

d . 
d(} cos ((}) = - S10 ((}) 

d 1 
-d arcsin (x) = ~' Ixl < 1 

x 1- x 2 

d -1 
-d arccos (x) = ~' Ixl < 1 

x 1- x 2 

d ( \ 1 
-d arctan X) = --2 

X 1+x 
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Integrals 

Consider a non-negative function h(x) defined for x on the line (-00,00). For ex­

ample, h(x) might be the following curve. 

h(x) 

x 

The area under the graph of h(x) between two points a and b on the line is by 

definition the integral of h( x) from a to b: 

a 

Area (a to b) = lb h(x)dx. 

This area integral is a limit of areas obtained by approximating h(x) with step func­

tions which take a finite number of different values on a finite number of disjoint 
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intervals, as in the following diagram: 

a b 

It is shown by calculus that such area integrals exist, and that they can be evaluated 

by finding a function H which is an anti-derivative or indefinite integral of h, 

H'(x) = h(x), 
d 

dx H(x) = h(x), or J h(x)dx = H(x), 

to express the same relation with three different standard notations. Such an indefi­

nite integral H is unique apart from the addition of arbitrary constants, and 

b Ib 
Area (a to b) = 1 h(x)dx = H(b) - H(a) d~ H(x) a 

The total area under the graph of h 

Area (-00 to 00) = I: h(x)dx 

is defined as the limit of Area (a to b) as a -+ -00 and b -+ 00. 

Fundamental Theorem of Calculus 

I b 
d f Ib 

a F'(x)dx = F(b) - F(a) ~ F(x) a 
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Some Indefinite Integrals 

J Xn+1 

xndx= -­
n+1 

(n#-l, x>O) 

J ~dx = log(x) (x > 0) 

J e{3x dx = ~ e{3x 

J log (x)dx = x log (x) - x 

J sin (B)dB = - cos (B) 

J cos (B)dB = sin (B) 

J hdX = arcsin(x) 
1- x 2 

J _1_2 dx = arctan (x) 
l+x 

(x > 0) 

(Ixl < 1) 

Some Definite Integrals 

(n integer, n 2: 0) 

11 1 1 
m n mono 

x (1 - x) dx = ( )1 
o m+n+10 

The first four properties of integrals in the box below should be compared to the 

corresponding properties of sums, listed in Appendix 20 
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Properties of Integrals 
Assume a < b. 

Constants: If f(x) = c for all x, then 

lb f(x)dx = lb cdx = (b - a)c = (length of interval) x c 

Constant factors: 

lb cf(x)dx = c lb f(x)dx 

Addition: 

lb (f(x) + g(x))dx = lb f(x)dx + lb g(x)dx 

Inequalities: If f(x) ~ g(x) for all x, then 

lb f(x)dx ~ lb g(x)dx 

Splitting the range of integration: If a < b < c, 

l c 
f(x)dx = lb f(x)dx + l c 

f(x)dx 

Integration by parts: 

lb f(x)g'(x)dx = [J(x)g(x)J~ -lb 
f'(x)g(x)dx 
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Exponents and 

Logarithms 

Suppose that b > 0. For each positive integer x, a number bX , called b to the power 

x, b to the exponent x, or just b to the x, is defined by b1 = b, b2 = b.b, and so on. So 

bX is the product of x factors of b. This implies the first two rules stated in the box 

for positive integer exponents x and y. The definition of bX is extended to x = 0, 

negative integers x, and rational numbers x, by requiring these two rules to hold 

for all these values of x as well. This implies the rest of the laws stated for rational 

x and y. The definition of bX is further extended to all real x by assuming bX is a 

continuous function of x. 

Laws of Exponents 
For b, c > 0, and all real numbers x and y: 

CD bX+Y = bX bY 

(ii) bXY = (bX)Y 

(iii) bO = 1 

(jv) b-x = l/bx 

(v) bX- Y = bX /bY 

(vi) (bc)X = bXcx 
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To illustrate, for a positive integer n, b1/ n is the positive nth root of b, also denoted 

v'b. This comes from rule (iO for x = lin and Y = n. For positive rational x = min, 
(ii) gives 

Negative exponents are defined by rule (iv). The idea of multiplying together x 

factors of b does not make sense if x is not a positive integer. But the extended 

definition of exponents is very useful for algebraic manipulations with powers. 

For Y > ° and b > ° the equation y = bX is solved by a unique number x = logb(Y), 
called the logarithm of x to base b. In other words, the function Y f--t logb(Y) is the 

inverse function of x f--t bX • The laws of exponents imply the following: 

Laws of Logarithms 
For b > 0, x > 0, Y > 0, 

logb(xY ) = ylogb(x) 

logb(l) = ° 
(true also for y ::; 0) 

logb(llx) = -logb(x) 

logb(ylx) = logb(y) - logb(x) 

(change of base) 

As the graphs suggest, bX is a differentiable function of x for every b > 0. This 

involves the constant 

e = 2.71828 ... 

defined precisely by any of the formulae in the next box. While the function x ---> bX 

may be called an exponential function for any b > 0, the exponential function is 

exp (x) = eX 
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Exponentials with Base e 

Derivative: 

Tangent approximation near zero: 

eX =1+X+E(X) where E(X)/X ----t 0 as x ----t 0 

Convex inequality: 

for all x 

Series: 

Product limit: 
x 

eX = lim (1 + _)n 
n->oo n 

3 4 
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The inverse of the exponential function is the logarithm to base e, or natural loga­

rithm, 

log (x) = loge(x), x> o. 

Logarithms with Base e 

Derivative: 
d 1 
-log (x) = -
dx x 

Tangent approximation near one: 

log(1+z)=z-8(z) where 8(z)/z -+ 0 as z -+ 0 

Concave inequality: 

Series: 

log(l+z):S;z for all z 

Z2 z3 z4 
log (1 + z) = z - - + - - - + ... 

234 
for -1 < z :s; 1 
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FIGURE 2. Graphs of eX and log x. The ~)raph of log x, the inverse function of eX, is obtained 

by reflection of the graph of eX about the 45° line y = x. Just as the slope of y = eX is eO = 1 

as this curve passes through the point (0, 1), the slope of the curve y =log x is also 1 as it passes 

through the point (1,0). So 

the 45° line y = x + 1 is tangent below the curve y = eX at x = 0, 

the 45° line y = x-I is tangent above the curve y = logx at x = 1. 

This gives the tangent approximations and inequalities for exp and log. 

Y 

8 

6 

4 

2 

y= x 

y = log x 

1---9=~~--~~~~~-~I--~I---TI---TI---rI---rI--~lx 

-4 -3 234 5 6 7 8 

-4 



Appendix 5 
z 

Normal Table 
Table shows values of <1>(z) for z from 0 to 3.59 by steps of .01. Example: to find 

<1>(1.23), look in row 1.2 and column .03 to find <1>(1.2 + .03) = <1>(1.23) = .8907. 

Use <1>(z) = 1- <1>(-z) for negative z. 

II .0 .01 .02 .03 .04 .05 .06 .07 .08 .09 I 
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 

0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 

0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 

0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 

0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 

0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 

0.7 .7580 .7611 .7642 .7673 .7703 .7734 .7764 .7794 .7823 .7852 

0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 

0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 

1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 

1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 

1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 

1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319 

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 

1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 

1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 

1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 

1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 

2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 

2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 

2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 

2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 

2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 

2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 

2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 

3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 

3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 

3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 

3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 

3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 



Brief Solutions to 
Odd-Numbered Exercises 

1.1.1. a) 2/3 b) 66.67% c) 0.6667 d) 4/7 e) 57.14% D 0.5714 

1.1.3. a) 1/n2 

1.1.5. a) 2652 

1.1.7. a) 1/9 

1.1.9. 1/11, 

b) (n - 1)/n2 c) (1 - 1/n)/2 d) l/n(n - 1), l/n, 1/2 

b) 1/13 c) 1/13 d) 1/221 e) 33/221 

b) 1/4 c) 5/36 d) x 2 /36, (2x - 1)/36 e) 1 

1/6 

1.1.11. Use the definition of fair odds, substitute in the formula for the house per­

centage. 

1.2.1. The opinion of the judge. 

1.2.3. a) 2; > 1 b) Yes. In this situation, you can get back more than you bet. 

1.3.1. 4/7 of the cake 

1.3.3. n = {1, 2, ... ,500} a) {17, 9~{, 202} 

b) {17, 93, 202, 4,101,102, 39S}C c) {16, IS, 92, 94, 201, 203} 

1.3.5. a) first coin lands heads b) second coin lands tails c) first coin lands heads 

d) at least two heads e) exactly two tails f) first two coins land the same 

way 
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1.3.7. a) P(l) = P(6) = p/2 and P(2) = P(3) = P(4) = P(5) = (1 - p)/4 
b) (3 - p)/4 

1.3.9. a) 0.9 b) 1 c) 0.1 

1.3.13. Use inclusion-exclusion for two sets. 

1.3.15. Hint: Let A = Bf. 

1.4.1. a) can't be decided; the rest are true. 

1.4.3. 75% 

1.4.5. c) 17/35 

1.4.7. a) 0.3 b) 0.6 

1.4.9. PI = 0.1, P2 = 0.4, and P3 = 0.5 

1.4.11. a) l+p b) l~p 
4 4 

1.5.1. a) 7/24 b) 8/17 

1.5.3. a) 40/41 b) 1/41 

) l=E c 2 

1.5.5. a) 0.0575 b) 0.002 c) 0.9405 d) 16/115 ~ 0.139 e) yes 

1.5.7. a) 5/12 b) no c) You would be right 7/16 of the time. 

d) Respond by always guessing box 1. Your probability of correct guessing is 

1/2. 

1.6.1. 5 

1.6.3. a) 0.7692 b) 0.2308 

1.6.5. a) 1 - (364/365)n~1 b) at least 254 

1.6.7. a) P3PIQ2 + P3QlP2 + P3PIP2 

b) P4 + P(flows along top) - P4' P(flows along top) where P(flows along top) 

was calculated in a) 

1.rey.1. 6/11 

1.rey.3. False 

1.rey.5. The chance of passing when you use the first order is zh(2 - z). With the 

second order, it's hz(2 - h). 

1.reY.7. a) ;g . !~ . !~ . !; = .021 b) 1 - answer to a) 
d) 4 . 30 . 29 . 28 . 20 + lQ . 29 . 28 . 27 

50 49 48 47 50 49 48 47 

1.rey.9. a) 1/60 b) 3/5 c) 13/30 

c) 4 . 30 . 20 . 19 . 18 
50 49 48 47 
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1.rev.l1. 9l.[Bb 

1.rev.13. Hint: Write P(AIB) = l:~l P(ABiIB). 

1.rev.15. 2/3 

1.rev.17. False. 

2.1.1. a) G); b) G)(1/6)4(5/6)3 

2.1.3. a) 0.1608 b) 0.1962 c) 0.9645 d) 0.3125 e) 0.5 

2.1.5. a) (ii) 
(~~) 

b) m) 
m) c)1 - um + 5 x mn 

2.1.7. 0.1005 

2.1.9. a) 8, with probability 0.1387 b) 0.1128 c) 0.1133 

2.1.11. a) 11 b) 0.2186 

2.1.13. a) no b) 0.5 c) 0.75 d) 0.5 

2.1.15. b) Note that np = int (np) + [np - int (np)J. 

2.2.1. a) 0.7062 b) 0.1509 c) 0.0398 d) 0.0242 

2.2.3. a) the first one b) 0.1841 > 0.0256 

2.2.5. 0.3974 

2.2.7. a) City B has better accuracy. b) Both have same accuracy. c) City B has 

better accuracy. 

2.2.9. a) 0.0495 b) Increase c) 0.1093 

2.2.11. a) 0.4562 b) 0.2929 c) 0.2929 d) Increase e) Could be due to chance 

2.2.13. Sample 9604 people 

2.3.1. Hint: P(k) = R(k) . R(k - 1)··· R(l)P(O). 

2.3.3. a) Use odds ratios. b) Condition. e) Use the inequality 1 - x ::; e- x . 

2.4.1. a) Approximately Poisson(l) b) Approximately Poisson(2) c) Approxi-

mately Poisson(0.3284) 

2.4.3. a) 0.999674. b) 0.997060. 

2.4.5. 0.5945, 0.3092, 0.0804. 

2.4.7. a) 2 b) 0.2659 c) 0.2475 d) 0.2565 e) m = 250; Normal approx: 0.0266 

f) m = 2; Poisson approx: 0.2565 
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2.4.9. Use Poisson approximation: 0.9828 

2.5.1. 
C40W60) 

a) (m b) C~) (2/5)4(3/5)6 

2.5.3. 
a) (!) (~8) b) m(~8) (:)(~8) 

m) GD c) (m-(t~) 

2.5.5. n 2 537 will do. 

2.5.7. a) 0.1456 b) 0.3716 c) 0.0929 

2.5.9. a) 0.282409 b) 0.459491 

2.5.11. max{O, n - N + G} to min{n, G} 

2.5.13. 0.0028 

d) 0 

Q 2.rev.1. a) C40) (1/6)4(5/6)6 b) C40) (1/5)4( 4/5)6 c) 4t3~~! /610 d) ('~) 

2.rev.3. a) 1/6 b) 1/4 

(;~) 
2.rev.5. ('6000) 

2.rev.7. k ~ 1025 

2.rev.9. a) 0.8 b) guess 3 c) 0.4375 

2.rev.11. 0.0102 

2.rev.13. 0.99; the chance that any particular packet needs to be replaced is about 

0.0144. 

2.rev.15. a) e50) (0.4)5(0.6)15 b) 2!i!~!!8! (0.1)2(0.2)4(0.3)6(0.4)8 c) (224)(0.1)3(0.9)22 

2.rev.17. a) ~~J b) (~) x m x ~iJ c) (~) x ~~J 

2.rev.19. a) (2/3)4 b) (~)(2/3)4(1/3) + (2/3)4 

,,(n-1)/2 (n) x n-x 
2.rev.21. L...x=O x q P . 

(.4x 1/2)+(.2 x 6/8)+(.1 x 14/16) 
2.rev.23. (.2 x 1/2)+(.4 x 3/4)+(.2 x 7/8)+(.1 x 15/16) 

2.rev.25. a) p3, 3p3q, 6p3q2 b) p3 + 3p3q + 6p3q2 c) 1+3q~6q2 d) 0.375 e) no. 

2.rev.27. 0.3971 

2.rev.29. 0.0579 

2.rev.31. Hint: np 2 npq 
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2.rev.33. Hint: Think about conditional probabilities. 

2.rev.35. a) L:~:20 eOkOO ) (1/38)k(37/38)1000-k b) Use normal: 0.876 

3.1.1. a) P(X = 0) = 1/8, P(X = 1) = 3/8, P(X = 2) = 3/8, P(X = 3) = 1/8 

b) P(IX - 11 = 0) = 3/8, P(IX - 11 = 1) = 4/8, P(IX - 11 = 2) = 1/8 

3.1.3. a) All integers from 2 to 12 inclusive. b) Partial answer: P(S = 2) = 1/36, 

P(S = 3) = 2/36, P(S = 4) = 3/36, P(S = 5) = 4/36 

3.1.5. Partial answer: P(XIX2 = 1) = 1/36, P(XIX2 = 2) = 2/36, P(X1X 2 = 3) = 
2/36, P(XIX2 = 4) = 3/36, P(XIX2 = 5) = 2/36, P(X1X 2 = 6) = 4/36 

3.1.7. a) (ABCC) U (ABCC) U (ACBC) b) ab(l- c) + a(1- b)c + (1- a)bc 

3.1.9. Partial answer: P(X = 2) = 5/35, P(X = 3) = 10/35 

3.1.11. a) binomial (n + m,p) e) (~) 

3.1.13. a) 2~~2 . 2~~4 ..... 2n-;~-1) b) y'nlog4 

3.1.15. a) l/n b) (n-1)/2n c) (n-l)/2n d) (2k-1)/n2 e) [2(n+l-k)-1l/n2 

f) (k - 1)/n2 for k = 2 to n + 1; (2n - k + 1)/n2 for k = n + 2 to 2n 

3.1.17. a) P(Z = k) = (k/21)e~)(1/2)20 + (1/21) L:7=0 e2)(1/2)20 

3.1.19. a) Partial answer: P(S = 7) = Plr6 + P2r5 + P3r4 + P4r3 + P5r2 + P6rl 
d) yes 

3.1.21. yes 

3.1.23. P(X:S T) :S P(Y :S T) 

3.2.1. 401.5 

3.2.3. The expected number of sixes is 1/2, the expected number of odds is 3/2. 

3.2.5. Expect to lose about 8 cents per game. 

3.2. 7. L:~=l Pi 

3.2.9. P - 2pr + r 

3.2.11. Simple upper bound: 0.3 Actual probability: 0.271 

3.2.13. a) 35 b) 8.458 c) 5.43 d) 10/3 e) 0.9690 f) 5.0310 

3.2.15. Show that E[L(Y, b)] = (,\ + 7r) L: <b(b - y)p(y) - 7rb. 
y-

c) 10.5 
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3.2.19. a) wfi!2! [2(1/7)3(2/7)(3/7) + (1/7)2(2/7)2(3/7) + (1/7)2(2/7)(3/7)2] 

b) 2[1- (6/7)5] + 1 - (5/7)5 + 1 - (4/7)5 

3.3.1. a) E(X) = 30.42, SD(X) = 0.86 b) E(X) = 30.44, SD(X) = 0.86 

3.3.3. a) 5 b) 26 c) 1 d) 26 

3.3.5. Hint: Use the computational formula for the variance. 

3.3.7. a) no b) E(X) = I:~=I niPi , Var(X) = I:~=I niPiqi 

3.3.9. a) r(l - pd + (n - r)p2 b) r(l - pdpI + (n - r)P2(1 - P2) 

3.3.11. E(Y) = a + b (n~I), Var(Y) = b2(n2 - 1)/12 

3.3.13. a) 111112 b) 55556 c) 1300 

3.3.15. b) lOy's 

3.3.17. a) 0.05 b) 0.03 c) 0.92 

3.3.19. Approximately 1 - <I>(1.66) = 1 - 0.9515 = 0.0485 

3.3.21. a) 0.0876 b) 0.0489 

3.3.23. Approximately <I> ( -0. 77) ::::J 0.22 

3.3.27. For b), reduce to a). For c): Half the list are zeros, the rest are nines. 

3.3.29. a) Guess 4. b) (n = 1) 1/10; en = 2) 19/100; (n = 33) 0.6826; (n = 66) 

0.8414; ( .. = 132) 0.9544. c) n ;::: 220 will do. 

3.3.31. a) 9/2, V33/2 d) 2<I>(2b/V33) - 1 

3.4.1. a) (;)p5(1- p)4 b) (1 - p)6 . P c) Cnp4(1 _ p)7 . P 

d) I:~=o (~)pk(l - p)8-k . (~)pk(l _ p)5-k 

3.4.3. 12 

3.4.5. Let qi = 1- Pi. a) q!l b) (qIq2q3)n c) (qIq2q3)n-1 - (qIq2q3)n 

d) P2/(1 - qIq2q3) 

3.4.7. a) I!q b) I!q d) P = 3-2v'5 e) 2/3 

3.4.9. Expect to lose $4 per game. 

3 4 11 a) ...1!.A.'l1L b) ~ c) J..dJ!..lL d) P(N k) (q q )k-l(l q q ) 
••• l-qAqB l-qAqB l-qAqB . = = A B - A B 

for k = 1,2,3, ... 

3.4.13. a) P(Black wins) = r!!-qp b) (3 - v'5)/2 c) no d) 13 

3.4.15. a) Use Exercise 3.4.6 b) Hint: Look at the tail probabilities P(F ;::: k) 
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3 4 17 2(1_p)pk (k > 0) 
•• • (2-p)k+! -

3.4.19. Hints: a) Negative binomial b) Symmetry e) Use the result of b) 

3.4.21. a) J-L b) J-L 

3.4.23. a) p/(I- qz) b) h = ~, h = 2(~)2, h = 6(~)3 

3.5.1. 0.1428 

3.5.3. a) 0.222 b) About 44 

3.5.5. 0.39 

3.5.7. a) Poisson(3), Poisson(2), Poisson(5) b) 0.3679 

3.5.9. a) 0.0996 b) 0.8008 e) 0.3951 

3.5.11. a)e- 224 /4! b)6 e)e-334 /4! 

3.5.13. a) 2.69 x 10 l9 X 3 , 5.19 X 109x3/2 b) 7.19 x 10-6 em 

3.5.15. a) 198.01, 1.97 b) 1.79 e) 0.59 

3.5.17. a) 0.0067 b) 0.0037 

3.5.19. b) J-L, J-L2, J-L3 e) J-L, J-L2 + J-L, J-L3 + 3J-L2 + J-L 

3.5.21. e) 0.58304 d) 0.5628 e) 0.58306 

3.6.1. a) 1/13 b) 4/50 e) 4 x ~ d) 1 - (~{5~y) _ (~(5~;8) 
3.6.3. a) 8/47 b) (12 x 11 x 10 x 9 x 8)/(51 x 50 x 49 x 48 x 47) e) 1/4 

d) 1/13 e) 1/13 D 1/4 

3.6.5. a) b (b"b l t b) b (b"b l t + b(b -1) (b"b 2t - b2 (b"b l )2n 

3.6.7. a)n.~~ b) (52-n) .n. 26. 26 
52-1 52 52 

3.6.9. a) ~!~ b) 
BG(N+l) 

(G+l)2(G+2) 

3.6.11. a) P(Xl,"" xn) = 1/(;) if Xl + ... + Xn = 9 and 0 othetwise 
b) no e) yes 

3.6.13. a) Uniform on all ordered (n + I)-tuples of non-negative integers with sum 

N - n e) (N - n)wn/(N)w+1 d) E(Wi ) = (N - n)/(n + 1), 

E(Ti) = i(N + 1)/(n + 1), 9.6,10.6,21.2,31.8,42.4 e) (7~(;~n) (~,,--~I}l) 
,+1 

D P(Dn = d) = P(WI + Wn +1 = N - 2 - d). Now use e). 
E(D ) = (n-l)(N+l) - 1 

n (n+1) 
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3.6.15. c) t1 = a = tn+1; t2 = t:3 = ... = tn = 1; so t = n - 1. 

3.rev.1. a) 1-(5/6)10 b) 10/6 c) 35 d) (Fn) e) ~ (1- L~=o [(~)(1/6)k(5/6)5-k}2) 

3.rev.3. a) (2x - 1)/36 b) 2/5 for y = 1,2 and 1/5 for y = 3. 

c) 2/36 for 1 ::; y < x ::; 6 and 1/36 for y = x d) 7 

3.rev.5. a) -18.4 cents b) 2.111 c) 12.667 

3.rev.7. a) 0.1875 b) 0.5 c) 0.219 

3.rev.9. a) 5/12 b) 7/12 c) 441 d) Approximately 796 

3.rev.l1. P(X < 2) is largest, P(X > 2) is smallest. 

3.rev.15. a) Binomial(100,l/38) b) Poisson(100/38) c) Negative binomial (3,1/38) 

shifted to {3, 4, ... } d) 3 x 38 

3.rev.17. a) N /6 b) 0.3604 

3.rev.19. a) e-P/1 b) 0.6065 

3.rev.21. Negative binomial distribution on { 0,1, ... } with parameters r = 3 and p 

3.rev.23. a) 2(:~0)kk b) H / ffn tends to the Rayleigh distribution (See section 6.3). 

c) ViITi d) 17 or so. 

3.rev.25. a) Partial answer: P(Y1 + Y2 = 0) = 9/36, P(Y1 + Y2 = 1) = 12/36, 

P(Y1 + Y2 = 2) = 10/36. b) 10/3 

3.rev.27. 343.047 

3.rev.29. c) uniform on {a, 1, ... ,n} d) no, yes e) b:w 0 b:~~d 

3.rev.33. b) 2n~1' 2n-2t1+~) d) 2 n - 3 t1+ilJ 

3.rev.37. a) G) ~~j: 

3.rev.41. a) 2350 b) 70 c) 9400 d) 8700 e) 730 

4.1.1. a) 0.000399 b) 0.000242 

4.1.3. a) 6 b) 1/2 c) 7/27 d) 13/54 e) 1/2, 1/20 

4.1.5. b) 7/12 c) 1/2 d) no 

4.1.7. 0.096 

4.1.9. 0.0418 

4.1.11. a) 0.2325 b) 0.6102 c) 0.84 



Brief Solutions 54 1 

4.1.13. a) 1/16 b) n 2: 134 

4.1.15. a) (0,1/2) b) erf(x) = 2<P( V2x) - 1 c) <p(z) = (erf(z/V2) + 1)/2 

4.2.1. a) 1/32 b) 3.32 years c) 10 years d) 0.3679 

4.2.3. a) 0.6321 b) 0.3935 c) 0.8647 d) 0.99995 

4.2.5. a) 0.86 b) 0.73 c) 4 seconds 

4.2.7. -tlog(l-p) 

4.2.9. c) E(Tn) = f(n + 1). 

4.2.13. a) 5% per day 

b) (d = 10) 6065, 49; (d = 20) 3679, 48; Cd = 30) 2231, 42. 

4.2.15. a) 80 days b) 40 days c) 0.6472 

4.2.17. a) E(1:.otal) = 80 days, SD(1:.otal) = 20V2 days, P(1:.otal 2: 60) :::::; 0.744. 
b) four spares will do. 

4.3.1. a) 1 - G(b) b) G(a) - G(b) 

4.3.5. b) Mean: A-l/af (± + 1). Variance: A-2/ a {f (~+ 1) - [f (± + 1)]2} 

4.3.7. b) 9.265 c) About 1 - <P(2.456) = 0.007 

4.4.1. Exponential (A/c) 

4.4.3. Jy(y) = 2~ if 0< y < l. 

4.4.5. If 0 < y < 1 then Jy(y) = 3~; if 1 < y < 4 then Jy(y) = 6~' 

4.4.7. Apply Exercise 4.4.6 

4.4.9. One to one change of variable formula 

4.5.3. a) Y has the same distribution as X. 

b) If 0 < r < 1 then FR(r) = r2 and fR(r) = 2r. 

4.5.5. If x::; 0, then Fx(x) = ~ex; if x 2: 0, then Fx(x) = 1 - ~e-x. 

4.5.7. a) Jy(y) = 2)..ye->.y2 (y > 0) b) 0.51 c) Let Y = J-Iog(1- U)/)" 

4.6.1. a) 0.0881 b) 0.0056 c) 0.0399 
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4.6.3. a) (y - x)n b) (1 - x)n - (y - x)n c) yn - (y - x)n 
d) 1 - (1 - x)n - yn + (y - x)n e) (~)xk(1 _ y)n-k 

f) (~)xk(l-y)n-k+(k~l)xk+l(l-y)n-k-l+ k!l!(n~k-l)! xk(y_x)(I_y)n-k-l 

4.6.5. a) P(X(k) :S x) = L:~=k (7)[F(x)]i[I- F(x)]n-i 

4.rev.1. a) ne-)"t b) ne-)"t(1 - e-)..t) 

4.rev.3. Density: 3x2 if 0 < x < 1. Expectation: 3/4 

4.rev.5. a) 0.4 b) If 0 < t :S 30, then P(T > t) = 1O~002t; If 30 < t :S 70, then 

P(T> t) = 7~0(/' c) h(t) = 2/100 if 0 < t :S 30, = 1/100 if 30 < t :S 70. 
d) mean 29, SD 19.8 e) Locate the station at the midpoint of the road. 

4.rev.7. a) Q: = ~ b) E(X) = 0, Var(X) = 2/(32 c) e- f3y if y > 0 

d) 1 - (1/2)e-f3 x if x > 0; (1/2)ef3x if x < 0 

4.rev.l1. a) 1/2 

4.rev.15. 0.2518 

c) 1005 

30 

4.rev.19. a)(20-2)log 2 1O b)2010g 21O-log e 2 

4.rev.21. a) Jy(y) = 2ye- y2 (y> 0) b) exponential (1) c) 1 

4.rev.23. a) 5, 4 b) fM(m) = 0.5e-O.5(m-3) (m > 3) c) 0.3679 

4.rev.25. a) uniform (0, 1/2) b) uniform (0, 1) c) 1/4, 1/48 

4.rev.27. a) Use the fact that all the n! orderings of U1 , ... , Un are equally likely. 

4.rev.29. a) When c < ~ 

b) Expected net gain is maximized at b satisfying e-b2 / 2 = JIc. 
5.1.1. a) 7/12 b) 5/36 

5.1.3. 7/12 

5.1.5. a) 0.1 b) 0.81 

5.1.7. a) (1-x)2 b) If 0 < x < 1 then P(M :S x) = 1-(1-x)2 and fM(X) = 2(1-x) 

5.1.9. 1/4 

5.2.1. a) If 0 < Iyl < x < 1 then fx,y(x, y) = 1 

if 0 < y < 1 then Jy(y) = 1 -Iyl c) no 

5.2.3. a) 3/4 b) ~ (a; + a2 ) c) ~ (~+ b2 ) 

b) If 0 < x < 1 then fx(x) = 2x; 
d) E(X) = 2/3, E(Y) = 0 
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5.2.5. 

5.2.7. 1/8 

5.2.9. a) 2>.2e-)"(x+y) (0 < x < y), no; b) 2>.2 e-2)..x-)..z (x > 0, Z > 0), yes; 

c) X is exponential (2)') and Z is exponential (>.). 

5.2.11. a) 3/2 b) 1/2 c) 4/3 d) 00 

5.2.13. The distributions are all the same, with density 2(1 - x) for 0 < x < l. 

5.2.15. a) F(b, d) - F(a, d) - F(b, c) + F(a, c) b) F(x, y) = J~oo J~oo !(u, v)dudv 

c) !(x, y) = tx tyF(x, y) d) F(x, y) = Fx (x)Fy (y) 
e) F(x, y) = yn - (y - x)n for 0 < x < y < 1; 

!(x,y) = n(n -l)(y - x)n-2 for 0 < x < y < 1 

5.2.17. a) !(x, r) = ~ vi 2r 2 for 0:::; r :::; 1 and -r :::; x :::; r 
" r-x 

b) !(x, r) = ~r for 0:::; r :::; 1 and -r :::; x :::; r 

5.2.19. a) Aon(x) = 1/360 if -180 < x < 180 

b) Aat(Y) = 3~0 co~ (l;OY) ~ -90 ~ y < 90 
c)!(x,y) = 360· 360 cos (180 Y) If-180<x<180 and -90<y<90 
d) yes 

5.2.21. a) 0.3825, 0.765 b) 1/3 c) 0.577 d) 0.5197 ± 0.0048 

5.3.1. a) 0.1175 b) 0.1178 c) ffr d) 0.762 e) 0.58 f) 0.3521 g) 0.29 

5.3.3. a) 1 - <1>(0.5) b) 1/2 c) 5 d) v'14 

5.3.5. About 2.1 

5.3.7. a) 97.72% b) 88.49% c) 0.9795 

5.3.9. a) 0.1307 b) 0.0062 c) The answer to b) will be approximately the same. 

5.3.11. a) normal with mean 0 and variance tu2 b) ~ has Rayleigh distribution 

so Rt has expectation ufij and SD uJt (4;7r) c) 0.1353 

5.3.13. c) Try h(u) = J-2log(1- u) and k(v) = 2m) 

5.3.15. Hints: a) Example 4.4.5 b) induction c) linear change of variable 

5.3.17. a) Skew-normal approximations: 0.1377, 0.5940, 0.9196, 0.9998, l.0000 

Compare to the exact values: 0.0902, 0.5940, 0.9389, 0.9970, l.0000 

b) 0.441, 0.499. Skew-normal is better. 

5.4.1. a) 3/4 b) !X 1 +X2 (Z) = z/2 if 0:::; z ::; 1; = 1/2 if 1 ::; Z ::; 2; = (3 - z)/2 
if2:::; z:::; 3 c) FX1 +X2 (Z) = z2/4 if 0 :::; z:::; 1; = (2z-1)/4 if 1 :::; z:::; 2; 
= 1 - (3 - z)2/4 if 2:::; z :::; 3. 
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5.4.3. a) If 0: i= (3, fx+Y(z) = aai!(3(e-(3z - e-az ) 

5.4.5. a) Uniform over (10,70) b) 0.483 

b) 1 + 1 
a (3 

5.4.7. a) fxy(z) = J~oc I!I fx,Y(z, ;;)dx. b) fx-y(z) = j'CXJoo fx,Y(x, x - z)dx. 

c) fx+2Y(Z) = Loooo ~fx,y(x, z-;/)dx. 

5.4.9. fx(x) = -log (.T) 

5.4.11. uniform (0, 1) 

5.4.13. Jz(z) = ~Ae-'\'Izl 

(0 < x < 1) 

5.4.15. a) reduce to the case A = 1 by scaling. b) P(Z ~ z) = 2z/(1 + z) 
c) Jz(z) = 2/(1 + z)2 for 0 < z < 1. 

5.4.17. a) {}t2 if 0 < t < 1; J3(-t2 + 3t -~) if 1 < t < 2; {}(3 - t)2 if 2 < t < 3 

b) If t ~ 1 then the cross section is an equilateral triangle having side length 

tV2; if t = 3/2 then the cross section is a regular hexagon having side length 

1/V2. 

5 1 1 -v'2 .rev. . 4 

5.rev.3. a) 0.04 b) 0.039 c) 0.29 

5.rev.5. a) 1 - 7r /8 b) 5/12 

5.rev.7. 0.0124 

5.rev.9. a) fx+u(x) = 1/4 if 0 < x < 1; = 1/2 if 1 < x < 2; = 1/4 if 2 < x < 3. 

b) Uniform(-1/2, 1/2) 

5.rev.11. a)P(X > x) = 1 - (1/2)x for 0 < x < 1. b)Fx(x) = (1/2)x for 0 < x < 1 

and Fx(x) = 1-2~ for x > 1. c)fx(x) = 1/2 forO < x < 1 andfx(x) = 2!2 

for x> 1 

5.rev.13. a) Fx(x) = 1 - ~ arccos (x) for Ixl ~ 1 b) Y has the same distribution 

function as X. c) Fx+y(z) = 1 - ~ arccos ~ for Izl ~ V2 

1 

5.rev.15. a) 1/6 b) 0 c) 1 d) 1/2 e) 2/3 0 e-"2 g) 0.8759 h) 3/4 

i) 0.5737 

5.rev.17. a) 0.92 b) About 27.7 

5.rev.19. a) (Kl = k) = (Wk < mini#Wi); b) Pk = Ak/(Al + ... Ad); c) use the 

memoryless property of the exponential waiting times; d) the answer to g) 

must be Pk by the law of large numbers; e) AkT; 0 (Al + ... Ad)T; 
g) Ak/(Al + ... Ad). 
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5.rev.21. a)FR(r) = 1 - e-A7rr2 and fR(r) = 2A7rrcA7rr2 for r > 0 c) E(R) = 2~; 

() I ~ d) d >. I. d' . J log 2 SD R = 2';;:' V ~ mo c. V2I1r' me Ian. A7r 

5.rev.23. a) 1/8 b) 7/19 

, k-l( )m-k-l(l )n-m-l 
2 '1) n.x y-x -y 

5.rev. 5.. (k-l)!(m-k-l)!(n-m-l)! (0 < x < y < 1) 

b) beta (m - k, n - m + k + 1) c) beta (k, m - k + 1) 

5.rev.29. Let the spacing between the parallel lines be 2a. a) If 0 < x S a then 

P(X < x) = .2.. x', if x > a then P(X < x) = .2.. [a arccos'! + X - V x2 - a2] 
- 7ra - - 'ITa x 

b) If 0 < x < a then fx(x) = :a; if x 2 a then fx(x) = :a [1- JX2~a2] 

5.rev.31. a) r = J473 b) no, Xl and YI are not independent 

5.rev.33. a)r = J172 b) no, Xl and YI are not independent 

d) e- I / 2 

6.1.1. a) binomial (3,1/2) b) binomial (3 - x, 1/2) distribution shifted to {x, x + 
1, ... 3} c) Partial answer: P(X = 0, Y = 1) = 3/64, P(X = 1, Y = 1) = 
3/32, P(X = 2, Y = 1) = 0, P(X = 3, Y = 1) = o. d) P(Y = y) = 
1/64,9/64,27/64,27/64 for y = 0,1,2,3. e) Partial answer: The conditional 

distribution of X given Y = 0 is given by P(X = OIY = 0) = 1/3, P(X = 
llY = 0) = 2/3. f) For y = 0,1,2,3, guess x = 0, 1, 1 (or 2), 2 respectively. 

g) 31/64 

6.1.3. a) P(U = u) = 0,0.1,0.4,0.3,0.2 for u = 0,1,2,3,4 b) 0.1125 c) 0.075 

6.1.5. b) By the normal approximation to the binomial, 1 - <I> (8~·.~2J5) = 0.0089 

6.1.7. a) Write P(X = k) = L~=k P(X = k,N = n). b) 0.0000016 

6.1.9. Further equivalent condition: P(X = xlY = y, Z = z) = P(X = xlZ = z). 

6.2.1. a) E(YIX = x) = 41/11,38/9,33/7,26/5,17/3,6/1 for x = 1,2,3,4,5,6 

b) E(XIY = y) = 1,4/3,9/5,16/7,25/9,36/11 for y = 1,2,3,4,5,6 

6.2.3. a) E(YIX = x) = n±~±l for x = 1 to n - 1 b) E(XIY = y) = ~ for y = 2 

to n. 

6.2.5. a) FI (x)p + F2(x)(1 - p) b) E(XI)p + E(X2)(1 - p) 
c) Var(Xt)p + Var(X2)(I- p) + p(l- p)(E(Xt) - E(X2))2 

6.2.7. Condition on the value of N. 

6.2.9. a) j /2 b) j + N -r l 

6.2.11. 25/78 

6 2 13 c) (n-m) mE. (n-k) 
••• (n-l) n n 

) hi 'fh .. (h .) (N-J+I) 'fh . c i I < Z; J + - Z k-itl I > Z. 
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6.2.15. a) E(S) = nE(II) b) Var(S) = nE(II)(l - E(II)) + n(n - l)Var(II) c) As 

large as possible: II with values only 0 and 1. As small as possible: II constant. 

6.3.1. 1/3 

6.3.3. P(Y::; ylX = x) = y/(2 - x) for 0 < x < 2 and 0 < y < 2 - x 

6.3.5. a) If Ixl < 1/2 then P(Y 2: 1/21X = x) = 1i~I~II. b) One minus the 

answer in a). c) If Ixl < 1 then E(YIX = x) = (1 -lxl)/2 d) If Ixl < 1 

then Var(YIX = x) = (1-lxl)2/12 

6.3.7. a) jy(y) = 3(1- y)2 for 0 < y < 1 b) 1/9 

6.3.9. a) 2/3 b) P(Y E dpIABC) = 6p(1 - p)dp for 0 < p < 1 

6.3.11. no 

6.3.13. a) 1 - ie~.\(3 + 2,,\ + ..\2/2) 

l~e-A d;r for 0 < x < 1 
3~e-A(3+2'\+ ),22 ) -

6 3 15 b) r(r+s) (n) r(r+k)r(s+n~k) 
••• r(r)r(s) k r(r+s+n) 

b) Partial answer: P(X E dxlX < Y) 
9~e-A (9+8.\+ ~.\ 2) 

c) 6~2e A(3+2.\+!.\2) 

d) '. r+k ,', . (r+k)(s+n+k) 
mean. r+s+n' vanance. (r+s+n)2(r+s+n+1) 

6.3.17. a)Independent negative binomial (ri'p) (i = 1,2) b) negative binomial 

(r1 + r2,p) c) negative binomial (2:i ri,p) 

6.4.1. a) 0.5 b) positively dependent c) 0.2 d) 0.356 

6.4.3. less likely; more likely. 

6.4.5. Uncorrelatecl, not independent. 

6.4.7. a} Partial answer: P(X2 + X3 = 0, X 2 - X3 = 0) = 1/3, 

P(X2 + X3 = 1, X 2 - X3 = 0) = 0, P(X2 + X3 = 2, X 2 - X3 = 0) = 1/6 

b) 1/6 

c) uncorrelated 

6.4.9. a) k(n + 1)/2 

6.4.11. /173 

b) k(n2~1)(n~k) 
12(n~1) 

6.4.13. True: note that E(NANd = nP(AB) + n(n - l)P(A)P(B). 

6.4.15. d) Write NR = 2:~~1 Xi and NB = 2:7=1 lj, where Xi = 1 if the ith spin is 
red, = 0 otherwise; and lj = 1 if the jth spin is black, = 0 otherwise. 

6.4.17. Apply Exercise 6.4.16. 

6.4.19. a) 375 b) 26.25 c) 0.0021 d) higher; lower. 
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5.2.9. a) 2>..2 e--A(X+Y) (0 < x < y), no; b) 2>..2 e-2AX-AZ (x > 0, Z > 0), yes; 

c) X is exponential (2)'') and Z is exponential (>..). 

5.2.11. a) 3/2 b) 1/2 c) 4/3 d) 00 

5.2.13. The distributions are all the same, with density 2(1 - x) for 0 < x < 1. 

5.2.15. a) F(b, d) - F(a, d) - F(b, c) + F(a, c) b) F(x, y) = J~oo J~oo f(u, v)dudv 

c) f(x, y) = tx tyF(x, y) d) F(x, y) = Fx(x)Fy(y) 
e) F(x, y) = yn - (y - x)n for 0 < x < y < 1; 

f(x, y) =: n(n - 1)(y - x)n-2 for 0 < x < y < 1 

5.2.17. a) f(x, 7') = ~ ,j;- 2 for 0 :::; r :::; 1 and -r :::; x :::; r 
" r-x 

b) f(x,r) = ~r for 0:::; r:::; 1 and -r:::;:];:::; r 

5.2.19. a) iLon(x) = 1/360 if -180 < x < 180 

b) iLat(Y) = 3~0 co~ (l~OY) ~ -90 ~ y < 90 
c) f(x,y) = 360' 360 cos (180 Y) If-180<x<180 and -90<y<90 
d) yes 

5.2.21. a) 0.3825, 0.765 b) 1/3 c) 0.577 d) 0.5197 ± 0.0048 

5.3.1. a) 0.1175 b) 0.1178 c) ~ d) 0.762 e) 0.58 f) 0.3521 g) 0.29 

5.3.3. a) 1 - <1>(0.5) b) 1/2 c) 5 d) v14 

5.3.5. About 2.1 

5.3.7. a) 97.72% b) 88.49% c) 0.9795 

5.3.9. a) 0.1307 b) 0.0062 c) The answer to b) will be approximately the same. 

5.3.11. a) normal with mean 0 and variance t(J2 b)!Jt has Rayleigh distribution 

so R t has expectation (Jjti and SD (JVt (4;1r) c) 0.1353 

5.3.13. c) Try h(u) = J-210g(l- u) and k(v) = 27l'V 

5.3.15. Hints: a) Example 4.4.5 b) induction c) linear change of variable 

5.3.17. a) Skew-normal approximations: 0.1377, 0.5940, 0.9196, 0.9998, 1.0000 

Compare to the exact values: 0.0902, 0.5940, 0.9389, 0.9970, 1.0000 
b) 0.441, 0.499. Skew-normal is better. 

5.4.1. a) 3/4 b) f X l+X2 (Z) = z/2 if 0:::; Z :::; 1; = 1/2 if 1 :::; Z :::; 2; = (3 - z)/2 
if 2 :::; z :::; 3 c) FX1 +X2 (Z) = z2/4 if 0:::; z :::; 1; = (2z - 1)/4 if 1 :::; z :::; 2; 
= 1 - (3 - z)2/4 if 2:::; z :::; 3. 

b) 1 + 1 
a (3 

v?+P c) a(3 



E(YIX), definition of, 402 

G) en choose k), 81, 511, 512 

(nh (n order k), 510 

n (intersection), 19 

U (union), 19 

o (empty set), 19 

rl (outcome space), 19 

p (correlation coefficient), 450 

'" (asymptotic equivalence), 60 

A 

addition rule 

for counting, 507 

for expectation, 167 

for variances, 193, 430 

of probability, 21 

and (event language), 19 

and/or (event language), 19 

anti-derivative, 522 

arcsine distribution, 310 

arrival process, see Poisson arrival process 

arrival times 

gamma distribution of, 286 

asymptotic equivalence, 60 

average conditional expectations, 402 

Index 

average conditional probabilities, 402 

long run, 164 

averages 

B 

of independent random variables, 193 

properties of, 180 

Bayes' rule, 47-53 

for odds, 51 

for probabilities, 49 

interpretation of probabilities in, 52 

Bayesian inference, 418 

Bernoulli (p) distribution, 27 

Bernoulli (p) trials, 79, 155, 208-217, 288, 404 

definition of, 212 

bet, 6 

fair, 6 

beta, c.dJ., 330 

beta distribution, 327, 328, 478 

beta function, 327 

binomial coefficient, 512 

binomial distribution, 80-86, 479 

consecutive odds formula for, 85 

expectation of, 169 

histograms of, 84, 87, 88, 89 
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binomial distributions (continued) 

mean of, 86, 169 

mode of, 86 

normal approximation of individual probabilities, 

114 

normal approximation to, lO7 

derivation of, Ill, 115 

Poisson approximation to, 117 

probability formula for, 81 

standard deviation of, 195 

variance of, 195 

binomial expansion, 81 

binomial formula 

for sampling, 125 

binomial probability formula, 81 

for fair coin tossing, 82 

binomial theorem, 512 

birthday problem, 62 

bivariate normal distribution, 449-461 

geometry of, 452 

C 

calculus, 517-524 

fundamental theorem of, 522 

Cauchy distribution, 3lO, 383, 385 

c.dJ., 311-323 

inverse, 319-323 

standard normal, 94 

center of gravity, 162 

central limit theorem, lO7, 196, 224 

certainty, 11 

chain rule for derivatives, 520 

chance, 2 

chance odds, 6 

change of base formula for logarithms, 526 

change of variable 

density case, 302-306 

discrete case, 141 

principle, 146, 306 

Chebychev's inequality, 191 

equality in, 205 

chi-square distribution, 365, 370 

choose (n choose k), 511, 512 

coin tossing, 11 

binomial probability formula for, 82 

collector's problem, 215, 221 

combination of elements of S, 511 

number of combinations, 512 

combined outcome, 144 

commas, 153 

complement of event, 19 

complements, rule of, 21 

conditional density, 412 

conditional distribution, 150 

conditioned variable as constant, 406 

of Y given X, 150, 396, 411 

independence, 152 

conditional expectation 

average, 402 

density case, 423 

expectation of, 403 

given an event, 401 

of Y given X, 402 

properties of, 402 

conditional probabilities, 33-41 

average, 396, 402 

averaging, 40-41 

rule of average, 41 

counting formula for, 33 

general formula for, 36 

multiplication rule, 37 

vs. unconditional, 36 

conditional variance, 409 

conditioned variable as constant, 406 

conditioning, 33-41 

denSity case, 4lO-423, 425 

discrete case, 424 

expectation of a product by, 409 

infinitesimal conditioning formula, 410 

integral conditioning formula, 417 

on a variable, 396, 402, 440 

confidence interval, 101 

consecutive odds ratio, 84 

continuity correction, 99 

continuous distribution, 258-259, 334 

change of variable, 302-309 

infinitesimal probability formula, 263 

interval probability formula, 263 

controlling for a variable, 440 



convolution 

formula, 372 

of densities, 372 

correction factor, for sampling without replacement, 

241, 443 

correlated normal variables, 449 

correlation, 432 

empirical, 434 

zero, 433, 461 

correlation coefficient, 450 

linear invariance of, 446 

correlations are between -1 and 1, 4.33 

correspondence rule for counting, 507 

counting formula for P(AIB), 33 

counting, 507-514 

addition rule for, 507 

correspondence rule for, 507 

multiplication rule for, 508 

covariance, 430 

is bilinear, 446 

of indicators, 431 

zero, 430, 432 

craps, 218 

craps principle, 210 

cumulative distribution function, 311-:323 

D 

death rate, 296 

decay, radioactive, 281 

decision tree, 510 

degrees of belief, 17 

density, 260-275 

conditional, 412 

convolution formula, 372 

in the plane, 346-353 

joint, 412 

marginal, 349, 350, 412 

of X + Y, 372 
dependence 

between random variables, 392-393, 466 

positive and negative, 431 

dependent, 42 

dependent events, 431 

dependent random variables, 392-393, 466 

derivatives, 518-520 

chain rule, 520 

deviation 

mean absolute, 205 

mean squared, 185 

standard, 185 

difference rule of probability, 22 

differentiable, 519 

discrete distribution, 208, 262 

change of variable, 141 

discrete joint distribution, 348 

discrete order statistics, 407 

discrete random variable, 208-217 

expectation of, 211 

disjoint events, 19 

distinguishable, 15 

distribution, 21 

arcsine, see arcsine distribution 

Index 551 

Bernoulli (p), see Bernoulli (p) distribution 

beta, see beta distribution 

binomial (n, p), see binomial distribution 

bivariate normal, see normal distribution 

Cauchy, see Cauchy distribution 

chi-square, 365, see chi-square distribution 

conditional, 150 

continuous, 258-259, 334 

continuous joint, see joint distribution 

discrete, 208 

empirical, 29 

exponential, see exponential distribution 

gamma, see gamma distribution 

geometric, see geometric distribution 

hypergeometric, see hypergeometric distribution 

identical, 146 

joint, 153, see joint distribution 

marginal, 145, 348, 349, 396 

muitiniomial, 155 

negative binomial, see negative binomial distri-

bution 

normal, see normal distribution 

of a function of random variables, 149 

of a function of X, 141 

of a function of (X, Y), 371 

of a random variable, 140 

of ratios, 381 

of sums, see sums 
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distribution (continued) 

of sums of random variables, see sums 

of X, 140 

overall, 396 

Poisson, see Poisson distribution 

Rayleigh, see Rayleigh distribution 

same, 146 

standard normal, see normal distribution 

unconditional, 396 

uniform, see uniform distribution 

Weibull, see Weibull distribution 

distribution function 

standard normal, 531 

draws with and without replacement, 147, 148, 432 

dummy variable, 515 

E 

empirical correlation, 434 

empirical distribution, 29 

empirical law of averages, 12 

empirical odds ratio, 18 

empirical proportions 

integral approximation for, 272, 273 

empty set, 19 

equality of random variables, 146 

equally likely outcomes, 2-9 

even odds, 8 

event, 2, 19 

impossible, 19 

opposite of, 19 

partitioned, 20 

represented as subset, 19 

split, 20 

verbal description of, 19 

events 

determined by a random variable, 140 

determined by X and Y, 147 

disjoint, 19 

intersection of, 19 

mutually exclusive, 19 

overlapping, 22 

sequences of, 56-70 

union of, 19 

event language, 19 

complement of, 19 

exchangeable, 238 

exchangeable random variables, 446 

expectation, 162-184 

by conditioning, 402 

definition of, 162, 163 

from c.d.f., 324 

from survival function, 299 

multiplication rule, 177 

of a function of X, 175 

of a function of (X, Y), 348 

of a product by conditioning, 409 

of a sum, 167 

of conditional expectation, 403 

of discrete random variable, 211 

of waiting time until success, 213 

properties of, 181 

tail sum formula for, 171 

expected loss, 178 

expected value, see expectation 

exponential distribution, 279-291, 480 

and radioactive decay, 281 

and reliability, 281 

memoryless property of, 279 
minimum of independent exponentials, 317 

relation to Poisson arrival process, 283 

sums of independent exponentials, 373 

exponential function, 526 

series formula for, 527 

exponential series, 518 

exponents, 525-528 

F 

factorial, 511 

failure rate, 281, 296 

fair, 2 

fair bet, 6 

fair odds rule, 6 

false positives, 50 

finite population correction factor, 241, 443 

fluctuations, 13 

flush (poker hand), 61 

formula, tail sum, 171 

frequencies, relative, 11 

frequency interpretation of probability, 11-15 



function 

of (X, Y), 371 
of a random variable, 141 

of independent random variables, 154 

fundamental theorem of calculus, 522 

G 

gambler's rule, 60 

game, value of, 55 

gamma distribution, 285-291, 481-482 

arrival times, 286 

mean of, 286 

mode, 294 

moments, 294 

Poisson formula for c.dJ., 286 

relation to Poisson arrival process, 286 

standard deviation of, 286 

sums of independent gamma variables, 375 

tail probability, 286 

gamma function, 291 

recursion formula for, 291 

generating function 

probability, 221 

geometric dis~ribution, 58-59, 208-217, 283, 481 

memoryless property of, 219 

on {O, 1,2, ... }, 218 

sums of geometric variables, 215 

geometric progression 

sum of finite geometric progression, 516 

geometric series 

sum of, 518 

H 

half-life, 282 

hazard rate, 296-300 

histogram, 25 

honest, 2 

house percentage, 8 

hypergeometric distribution, 125, 127, 484 

mean and variance, 241 

hypergeometric formula for sampling, 125 

I 

identical distribution, 146 

implies (event language), 19 

impossible event, 19 

included event, 19 

Index 

inclusion-exclusion formula, 22, 31, 184 

indefinite integral, 524 

independence, 42-45 

of random variables, 151-156 

of several events, 67 

of several random variables, 154 

pairwise, 69 

independent events 

multiplication rule for, 42 

independent normal variables, 357-370 

linear combinations and rotations, 361 

ratio of, 383 

sums of, 363 

independent random variables, 151-156 

averages of, 193 

density case, 350 

disjoint blocks of, 154 

functions of, 154 

maximum of, 316 

minimum of, 316 

ratio of, 381 

sums of, see sums 

553 

independent trials, 155, see also Bernoulli (p) trials 

expected number of successes, 86, 169 

most likely number of successes, 86 

probability of k successes in n independent trials, 

81 

index variable, 515 

indicator function, 273 

indicator of an event, 28, 164, 181 

expectation of, 164 

indicators, 155 

expectation of, 168 

of complement, 184 

of intersection, 184 

of union, 184 

covariance of, 431 

method of, 168 

indistinguishable, 15 

inequality 

Bonferroni's, :32 

Boole's,32 

equality in, 205 
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inequality (continued) 

Chebychev's, 191 

Markov's, 174 

infinite series, 519-520 

infinite sum rule, 209 

infinitesimal conditioning formula, 410 

infinitesimal probability formula, 263, 347 

integral, 521-524 

indefinite, 522 

integral approximation for empirical proportions, 272, 

273 

integral conditioning formula, 417 

integration by parts, 524 

interpretation of probabilities, 52 

intersection of events, 19 

intersection, 153 

interval probability formula, 263 

inverse c.dJ., 319-323 

J 
joint 

distribution, 153 

probabilities, 153 

joint density, 346-353, 412 

properties, 349 

surface, 346 

joint distribution, 144, 338-387 

continuous, 338-387 

density case, 349 

discrete case, 144, 348 

of order statistics, 352, 371-383 

joint outcome, 144 

L 

Laplace's law of succession, 421 

law of averages 

empirical, 12 

law of large numbers, 101, 195 

in Poisson context, 226 

likelihood, 48 

likelihood ratio, 51 

linear change of variable, 265 

linear combinations 

of independent normal variables, 361, 460 

logarithms, 525-528 

change of base formula for, 526 

laws of, 526 

natural logarithm, 528 

long-run average, 164 

loss function, 178 

loss 

M 

expected, 178 

quadratic, 179 

squared error, 179 

MAD (mean absolute deviation), 205 

major axis of an ellipse, 449, 463 

marginal density, i149, 350, 412 

marginal distribution, 145, 348, 349, 396 

marginal probability, 145 

Markov's inequality, 174 

matching problem, 135, 244, 251 

maximum of independent random variables, 316 

mean, see also expectation 

definition of, 162, 163 

of normal curve, 93 

mean absolute deviation, 205 

mean square error, 409 

measurable set, 21 

median, 165, 179, 319 

memoryless property 

of exponential distribution, 279 

of geometric distribution, 219 

method of indicators, 273 

minimum of independent random variables, 316 

minor axis of an ellipse, 449, 463 

mixture of conditional distributions, 396 

mode, 86, 165, 178 

moments, 274 

factorial, 221 

calculation of using series, 212 

MSE (mean square error), 409 

multinomial coefficient, 514 

multinomial distribution, 155 

multiplication 

densities, 416 

multiplication rule, 37 

for n events, 56 

for counting, 510 



multiplication rule (continued) 

for expectation, 177 

for independent events, 42 

for three independent events, 6j' 

mutually exclusive events, 19 

N 

negative binomial distribution, 213, 481 

moments of, 213 

negatively dependent, 431 

normal approximation, 196, 224 

for sampling without replacement, 243 

of individual binomial probabilities, 114 

to the binomial distribution, 107 

derivation of, 111-115 

normal c.d.f., 94 

normal curve, 93 

deriva tion of, 111-115 

equation, 93 

mean and standard deviation, 93 

parameters of, 93 

normal density 

constant of integration, 358 

normal distribution, 94, 266-267, 483-484 

bivariate normal distribution, 449-461 

geometry of, 452 

constant of integration, 358 

correlated normal variables, 449, 450 

independent normal variables, 367-370 

linear combinations of independent normals, 361, 

160 

mean and variance, 267 

ratio of independent normals, 383 

rotations of independent normals, 361 

standard bivariate normal distribution, 451 

standard normal distribution, 94, 266, 267 

density, 266 

mean and variance, 266 

variance of, 359 

sums of independent normal variables, 363 

variance of, 359 

normal distribution function, 531 

normal table, 531 

not (event language), 19 

number 

of combinations, 512 

of orderings, 510 

of permutations, 510 

of sequences, 509 

Index 

of subsets of a set of n elements, 512 

of subsets, 512 

number of events that occur, 170 

o 
odds, 6 

against, 2, 6 

Bayes' rule for, 51 

chance, 6 

even, 8 

in favor, 2, 6 

payoff,6 

odds ratio 

consecutive odds ratio, 84 

empirical, 18 

posterior, 51 

prior, 51 

opinions, 17 

opposite of event, 19 

or (event language), 19 

order (n order k), 510 

order statistics, 325-3:\0, 352 

density of, 326 

discrete, 407 

of uniform random variables, 326 

ordering of elements of 5, 509 

number of orderings, 510 

outcome space, 2, 19 

outcomes 

combined, 144 

joint, 144 

equally likely, 2-9 

overall distribution, 396 

overlapping events, 22 

p 

pairwise independence, 69 

paradox, voter, 254 

parallel, components connected in, 44 

parameter, 27 

parameters of normal curve, 93 

555 



556 Index 

part, 2 

partial sum, 517 

partition of an event or set, 20, 40 

Pascal's triangle, 513 

recursion formula for, 513 

symmetry in, 82 

path, multiplying along the, 39, 66 

payoff odds, 6 

percentile, 183, 319-320 

permutation, 62 

permutation of elements of S, 509 

number of permutations, 510 

random, 153 

Poisson approximation 

for number of independent events, 227 

to the binomial distribution, 117 

Poisson arrival process, 284 

homogeneous, 228 

properties of, 289 

relation to exponential distribution, 283 

relation to gamma distribution, 286 

Poisson distribution, 121, 222, 487-488 

and law of large numbers, 226 

asymptotic normality of, 224 

normal approximation of, 224 

sums of independent Poisson variables, 226 

Poisson process, see Poisson arrival process 

Poisson random scatter, 228 

Poisson sums theorem, 226 

poker hands, 129 

positively dependent, 431 

possible outcomes, 2 

posterior odds ratio, 51 

posterior probability, 48 

prediction 

by constants, 178 

by functions, 409 

prior odds ratio, 51 

prior probability, 48 

probabilistic opinions, 17 

probabilistically equivalent, 25 

probabilities 

joint, 153 

probability, 2 

case of equally likely outcomes, 2 

conditional, see conditional probability 

density, 260-275 

distribution, 21 

frequency interpretation of, 11-15 

marginal, 145 

overall, 33, 36 

posterior, 48 

prior, 48 

rules of, 21 

subjective, 17 

subjective interpretation of, 16-17 

tail, 191 

unconditional, 33, 36 

probability generating function, 221 

projection, 148, 375 

properties 

of averages, 180 

of conditional expectation, 402 

of expectation, 181 

of joint distribution 

density case, 349 

discrete case, 348 

proportion 

as an average, 273 

definition of, 2 

rules of, 21 

Polya's urn scheme, 53, 255 

Q 

quadratic loss, 179 

quotient of independent variables, 381 

R 

radioactive decay, 281 

random 

permutation, 153 

pseudo, 28 

number generators, 28 

random sampling, 123-127 

random scatter, 228 

random variable, 139 

discrete, 208-21 7 

expectation of, 211 

events determined by, 140 

function of, 141 



indicator, 28, 155 

range of, 140 

random variables 

averages of independent, 193 

dependent, 392-393, 466 

disjoint blocks of, 154 

distribution of function of, 149 

equal, 146 

exchangeable, 446 

independent, see independent random variables 

density case, 350 

scaling and shifting of, 188 

several, 153 

sums of independent, see sums 

random walk, 197 

range of a random variable, 140 

rate 

death,296 

failure, 281, 296 

hazard, 296-300 

of decay, 282 

ratio of independent variables, 381 

Rayleigh distribution, 298, 359 

regression line, 453 

regression to the mean, 456 

relative frequencies, 11 

fluctuation of, 13 

statistical regularity of, 12 

reliability, 281 

of components, 43-45 

repeated trials, 79, 154 

replacement 

sampling with and without, 147, 148,432 

risk, 178 

rotations of independent normals, 361 

roulette, 7 

roundoff errors, 381 

rule 

addition rule for counting, 507 

addition rule for variances, 193, 430 

addition rule of probability, 21 

Bayes', see Bayes' rule 

correspondence rule for counting, 507 

difference rule of probability, 22 

infinite sum rule, 209 

multiplication rule, 37 

for n events, 56 

for counting, 508 

for independent events, 42 

Index 

for three independent events, 67 

rules 

S 

of average conditional expectations, 402 

of average conditional probabilities, 41 

of complements, 21 

of probability, 21 

of proportion, 21 

same distribution, 25, 146 

same outcome, 25 

sample, unordered, 511 

sample average, 442 

variance of, 441 

sampling, 123-127 

557 

with and without replacement, 147, 148, 432 

with replacement, 9, 123 

binomial formula for, 125 

without replacement, 9, 124, 144, 238 

correction factor for, 241, 443 

hypergeometric formula for, 125 

normal approximation for, 243 

scaling of random variables, 188, 265 

scatter diagram, 449 

sequence of elements of S, 509 

number of sequences, 509 

series 

exponential, 518 

formula for eX, 527 

geometric, 518 

infinite, 517-518 

components connected in, 43 

set, 2 

empty, 19 

sets, measures of, 20 

set language, 19 

set notation, 19 

set operations, 19 

sex of children, 15 

shapes, 24 

shifting of random variables, 188 
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shots at a target, 360 

sieve formula, 257 

simulation, 320, 421 

skew-normal curve, 104 

skewness, 198 

skewness correction, 106 

splits into cases (event language), 20 

square root law, 100, 194 

squared error loss, 179 

standard bivariate normal distribution, 451 

standard deviation, 185 

of bounded random variable, 206 

of normal curve, 93 

standard normal c.dJ., 94, 531 

standard normal integrals, 266 

standard units, 94, 190, 433 

standard units scale, 94 

standardization, 190 

statistical regularity, 12 

Stirling numbers, 221 

Stirling's Formula, 136 

subjective interpretation of probability, 16-17 

subjective probabilities, 17 

subset, 2 

subset of n, 19 

sum, 515-516 

of exponential series, 518 

of first n integers, 516 

of geometric progression, 516 

of geometric series, 518 

partial sum of infinite series, 517 

sums 

of independent random variables, 193 

distribution of, 371-381 

exponential, 373 

gamma, 375 

geometric, 215 

normal, 363 

Poisson, 226 

uniform, 377 

of random variables 

distribution of, 147 

variance of, 430 

survival function, 296-300 

symmetric about 0, 156 

symmetry, 156-161, 238 

T 

tail probability, 191 

tail sum formula, 171 

tree, decision, 510 

tree diagram, 36-40, 47-53, 66 

distribution of probability over, 39 

multiplication rule in, 39 

method of, 66 

trials, 11 

Bernoulli (p), 79, 155,288 

independent, 155 

repeated, 79, 154 

U 

unbiased, 2 

unconditional distribution, 396 

uncorrelated, 433, 461 

uniform distribution, 487-488 

and areas in the (X, Y) plane, 341 

in a square, 340-343 

in the plane, 340 

independent uniform variables, 341 

moments of, 202 

on {1,2, ... ,n}, 487 

on a finite set, 2-9, 28, 487 

on a rectangle, 340 

on a region in the plane, 488 

on an interval, 28, 264-265, 487-488 

order statistics of uniform variables, 326, 352 

over a volume, 344 

over an area, 28 

sums of independent uniform variables, 377 

union of events, 19 

universal set, 19 

unordered sample, 511 

V 

value of a game, 55 

variance, 185 

addition rule for, 193, 430 

computational formula for, 186 

conditional, 409 

of a sum of n variables, 441 



of a sum, 430 

of sample average, 441 

of standard normal distribution, 359 

Venn diagram, 19 

voter paradox, 254 

W 

waiting times, 208-217 

expected, 213 

weak law of large numbers, 195 

Weibull distribution, 301, 310 

moments of, 301 

relation to exponential distribution, 310 

relation to uniform distribution, 310 

whole, 2 

z 
z scale, 94 
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