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Preface to the First Edition

Across all sciences, a quantitative analysis of data is necessary to assess the

significance of experiments, observations, and calculations. This book was written

over a period of 10 years, as I developed an introductory graduate course on

statistics and data analysis at the University of Alabama in Huntsville. My goal

was to put together the material that a student needs for the analysis and statistical

interpretation of data, including an extensive set of applications and problems that

illustrate the practice of statistical data analysis.

The literature offers a variety of books on statistical methods and probability

theory. Some are primarily on the mathematical foundations of statistics, some

are purely on the theory of probability, and others focus on advanced statistical

methods for specific sciences. This textbook contains the foundations of probability,

statistics, and data analysis methods that are applicable to a variety of fields—

from astronomy to biology, business sciences, chemistry, engineering, physics, and

more—with equal emphasis on mathematics and applications. The book is therefore

not specific to a given discipline, nor does it attempt to describe every possible

statistical method. Instead, it focuses on the fundamental methods that are used

across the sciences and that are at the basis of more specific techniques that can

be found in more specialized textbooks or research articles.

This textbook covers probability theory and random variables, maximum-

likelihood methods for single variables and two-variable datasets, and more complex

topics of data fitting, estimation of parameters, and confidence intervals. Among the

topics that have recently become mainstream, Monte Carlo Markov chains occupy

a special role. The last chapter of the book provides a comprehensive overview of

Markov chains and Monte Carlo Markov chains, from theory to implementation.

I believe that a description of the mathematical properties of statistical tests is

necessary to understand their applicability. This book therefore contains mathemat-

ical derivations that I considered particularly useful for a thorough understanding of

the subject; the book refers the reader to other sources in case of mathematics that

goes beyond that of basic calculus. The reader who is not familiar with calculus may

skip those derivations and continue with the applications.
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viii Preface to the First Edition

Nonetheless, statistics is necessarily slanted toward applications. To highlight

the relevance of the statistical methods described, I have reported original data

from four fundamental scientific experiments from the past two centuries: J.J.

Thomson’s experiment that led to the discovery of the electron, G. Mendel’s data

on plant characteristics that led to the law of independent assortment of species,

E. Hubble’s observation of nebulae that uncovered the expansion of the universe,

and K. Pearson’s collection of biometric characteristics in the UK in the early

twentieth century. These experiments are used throughout the book to illustrate how

statistical methods are applied to actual data and are used in several end-of-chapter

problems. The reader will therefore have an opportunity to see statistics in action

on these classic experiments and several additional examples.

The material presented in this book is aimed at upper-level undergraduate

students or beginning graduate students. The reader is expected to be familiar

with basic calculus, and no prior knowledge of statistics or probability is assumed.

Professional scientists and researchers will find it a useful reference for fundamental

methods such as maximum-likelihood fit, error propagation formulas, goodness of

fit and model comparison, Monte Carlo methods such as the jackknife and bootstrap,

Monte Carlo Markov chains, Kolmogorov-Smirnov tests, and more. All subjects

are complemented by an extensive set of numerical tables that make the book

completely self-contained.

The material presented in this book can be comfortably covered in a one-semester

course and has several problems at the end of each chapter that are suitable as

homework assignments or exam questions. Problems are both of theoretical and

numerical nature, so that emphasis is equally placed on conceptual and practical

understanding of the subject. Several datasets, including those in the four “classic

experiments,” are used across several chapters, and the students can therefore use

them in applications of increasing difficulty.

Huntsville, AL, USA Massimiliano Bonamente



Preface to the Second Edition

The second edition of Statistics and Analysis of Scientific Data was motivated by

the overall goal to provide a textbook that is mathematically rigorous and easy to

read and use as a reference at the same time. Basically, it is a book for both the

student who wants to learn in detail the mathematical underpinnings of statistics

and the reader who wants to just find the practical description on how to apply a

given statistical method or use the book as a reference.

To this end, first I decided that a more clear demarcation between theoretical and

practical topics would improve the readability of the book. As a result, several pages

(i.e., mathematical derivations) are now clearly marked throughout the book with a

vertical line, to indicate material that is primarily aimed to those readers who seek

a more thorough mathematical understanding. Those parts are not required to learn

how to apply the statistical methods presented in the book. For the reader who uses

this book as a reference, this makes it easy to skip such sections and go directly

to the main results. At the end of each chapter, I also provide a summary of key

concepts, intended for a quick look-up of the results of each chapter.

Secondly, certain existing material needed substantial re-organization and expan-

sion. The second edition is now comprised of 16 chapters, versus ten of the first

edition. A few chapters (Chap. 6 on mean, median, and averages, Chap. 9 on multi-

variable regression, and Chap. 11 on systematic errors and intrinsic scatter) contain

material that is substantially new. In particular, the topic of multi-variable regression

was introduced because of its use in many fields such as business and economics,

where it is common to apply the regression method to many independent variables.

Other chapters originate from re-arranging existing material more effectively. Some

of the numerical tables in both the main body and the appendix have been expanded

and re-arranged, so that the reader will find it even easier to use them for a variety

of applications and as a reference.

The second edition also contains a new classic experiment, that of the measure-

ment of iris characteristics by R.A. Fisher and E. Anderson. These new data are used

to illustrate primarily the method of regression with many independent variables.

The textbook now features a total of five classic experiments (including G. Mendel’s

data on the independent assortment of species, J.J. Thomson’s data on the discovery

ix



x Preface to the Second Edition

of the electron, K. Pearson’s collection of data of biometric characteristics, and

E. Hubble’s measurements of the expansion of the universe). These data and their

analysis provide a unique way to learn the statistical methods presented in the book

and a resource for the student and the teacher alike. Many of the end-of-chapter

problems are based on these experimental data.

Finally, the new edition contains corrections to a number of typos that had

inadvertently entered the manuscript. I am very much in debt to many of my students

at the University of Alabama in Huntsville for pointing out these typos to me over the

past few years, in particular, to Zachary Robinson, who has patiently gone through

much of the text to find typographical errors.

Huntsville, AL, USA Massimiliano Bonamente
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Chapter 1

Theory of Probability

Abstract The theory of probability is the mathematical framework for the study

of the probability of occurrence of events. The first step is to establish a method

to assign the probability of an event, for example, the probability that a coin lands

heads up after a toss. The frequentist—or empirical—approach and the subjective—

or Bayesian— approach are two methods that can be used to calculate probabilities.

The fact that there is more than one method available for this purpose should not

be viewed as a limitation of the theory, but rather as the fact that for certain parts

of the theory of probability, and even more so for statistics, there is an element

of subjectivity that enters the analysis and the interpretation of the results. It is

therefore the task of the statistician to keep track of any assumptions made in the

analysis, and to account for them in the interpretation of the results. Once a method

for assigning probabilities is established, the Kolmogorov axioms are introduced

as the “rules” required to manipulate probabilities. Fundamental results known as

Bayes’ theorem and the theorem of total probability are used to define and interpret

the concepts of statistical independence and of conditional probability, which play

a central role in much of the material presented in this book.

1.1 Experiments, Events, and the Sample Space

Every experiment has a number of possible outcomes. For example, the experiment

consisting of the roll of a die can have six possible outcomes, according to the

number that shows after the die lands. The sample space ˝ is defined as the set of

all possible outcomes of the experiment, in this case˝ D f1; 2; 3; 4; 5; 6g. An event

A is a subset of ˝ , A � ˝ , and it represents a number of possible outcomes for the

experiment. For example, the event “even number” is represented by A D f2; 4; 6g,
and the event “odd number” as B D f1; 3; 5g. For each experiment, two events

always exist: the sample space itself, ˝ , comprising all possible outcomes, and

A D ;, called the impossible event, or the event that contains no possible outcome.
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2 1 Theory of Probability

Events are conveniently studied using set theory, and the following definitions

are very common in theory of probability:

• The complementary A of an event A is the set of all possible outcomes except

those in A. For example, the complementary of the event “odd number” is the

event “even number.”

• Given two events A and B, the union C D A [ B is the event comprising all

outcomes of A and those of B. In the roll of a die, the union of odd and even

numbers is the sample space itself, consisting of all possible outcomes.

• The intersection of two events C D A \ B is the event comprising all outcomes

of A that are also outcomes of B. When A \ B D ;, the events are said to be

mutually exclusive. The union and intersection can be naturally extended to more

than two events.

• A number of events Ai are said to be a partition of the sample space if they are

mutually exclusive, and if their union is the sample space itself, [Ai D ˝ .

• When all outcomes in A are comprised in B, we will say that A � B or B � A.

1.2 Probability of Events

The probability P of an event describes the odds of occurrence of an event in a

single trial of the experiment. The probability is a number between 0 and 1, where

P D 0 corresponds to an impossible event, and P D 1 to a certain event. Therefore

the operation of “probability” can be thought of as a function that transforms each

possible event into a real number between 0 and 1.

1.2.1 The Kolmogorov Axioms

The first step to determine the probability of the events associated with a given

experiment is to establish a number of basic rules that capture the meaning of

probability. The probability of an event is required to satisfy the three axioms

defined by Kolmogorov [26]:

1. The probability of an event A is a non-negative number, P.A/ � 0;

2. The probability of all possible outcomes, or sample space, is normalized to the

value of unity, P.˝/ D 1;

3. If A � ˝ and B � ˝ are mutually exclusive events, then

P.A [ B/ D P.A/C P.B/ (1.1)

Figure 1.1 illustrates this property using set diagrams. For events that are not

mutually exclusive, this property does not apply. The probability of the union is
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ΩΩ

BB

A A

Fig. 1.1 The probability of the event P.A [ B/ is the sum of the two individual probabilities, only

if the two events are mutually exclusive. This property enables the interpretation of probability as

the “area” of a given event within the sample space

represented by the area of A [ B, and the outcomes that overlap both events are

not double-counted.

These axioms should be regarded as the basic “ground rules” of probability, but

they provide no unique specification on how event probabilities should be assigned.

Two major avenues are available for the assignment of probabilities. One is based on

the repetition of the experiments a large number of times under the same conditions,

and goes under the name of the frequentist or classical method. The other is based

on a more theoretical knowledge of the experiment, but without the experimental

requirement, and is referred to as the Bayesian approach.

1.2.2 Frequentist or Classical Method

Consider performing an experiment for a number N � 1 of times, under the same

experimental conditions, and measuring the occurrence of the event A as the number

N.A/. The probability of event A is given by

P.A/ D lim
N!1

N.A/

N
I (1.2)

that is, the probability is the relative frequency of occurrence of a given event from

many repetitions of the same experiment. The obvious limitation of this definition

is the need to perform the experiment an infinite number of times, which is not only

time consuming, but also requires the experiment to be repeatable in the first place,

which may or may not be possible.

The limitation of this method is evident by considering a coin toss: no matter the

number of tosses, the occurrence of heads up will never be exactly 50 %, which is

what one would expect based on a knowledge of the experiment at hand.
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1.2.3 Bayesian or Empirical Method

Another method to assign probabilities is to use the knowledge of the experiment

and the event, and the probability one assigns represents the degree of belief that the

event will occur in a given try of the experiment. This method implies an element

of subjectivity, which will become more evident in Bayes’ theorem (see Sect. 1.7).

The Bayesian probability is assigned based on a quantitative understanding of

the nature of the experiment, and in accord with the Kolmogorov axioms. It is

sometimes referred to as empirical probability, in recognition of the fact that

sometimes the probability of an event is assigned based upon a practical knowledge

of the experiment, although without the classical requirement of repeating the

experiment for a large number of times. This method is named after the Rev. Thomas

Bayes, who pioneered the development of the theory of probability [3].

Example 1.1 (Coin Toss Experiment) In the coin toss experiment, the determi-

nation of the empirical probability for events “heads up” or “tails up” relies on

the knowledge that the coin is unbiased, and that therefore it must be true that

P.tails/ D P.heads/. This empirical statement signifies the use of the Bayesian

method to determine probabilities. With this information, we can then simply use

the Kolmogorov axioms to state that P.tails/C P.heads/ D 1, and therefore obtain

the intuitive result that P.tails/ D P.heads/ D 1=2. }

1.3 Fundamental Properties of Probability

The following properties are useful to improve our ability to assign and manipulate

event probabilities. They are somewhat intuitive, but it is instructive to derive them

formally from the Kolmogorov axioms.

1. The probability of the null event is zero, P.;/ D 0.

Proof Start with the mutually exclusive events ; and ˝ . Since their union is ˝ ,

it follows from the Third Axiom that P.˝/ D P.˝/C P.;/. From the Second

Axiom we know that P.˝/ D 1, from this it follows that P.;/ D 0. ut
The following property is a generalization of the one described above:

2. The probability of the complementary event A satisfies the property

P.A/ D 1 � P.A/: (1.3)

Proof By definition, it is true that A [ A D ˝ , and that A, A are mutually

exclusive. Using the Second and Third axiom, P.A [ A/ D P.A/ C P.A/ D 1,

from which it follows that P.A/ D 1 � P.A/. ut
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3. The probability of the union of two events satisfies the general property that

P.A [ B/ D P.A/C P.B/� P.A \ B/: (1.4)

This property generalizes the Third Kolmogorov axiom, and can be interpreted as

the fact that outcomes in the overlap region of the two events should be counted

only once, as illustrated in Fig. 1.1.

Proof First, realize that the event A [ B can be written as the union of three

mutually exclusive sets, A [ B D .A \ B/ [ .B \ A/ [ .A \ B/, see Fig. 1.1.

Therefore, using the Third axiom, P.A[B/ D P.A\B/CP.B\A/CP.A\B/.

Then, notice that for any event A and B, it is true that A D .A\ B/[ .A\ B/,

since {B;B} is a partition of˝ . This implies that P.A/ D P.A\B/CP.A\B/ due

to the fact that the two sets are again mutually exclusive, and likewise for event B.

It thus follows that P.A[B/ D P.A/�P.A\B/CP.B/�P.B\A/CP.A\B/D
P.A/C P.B/ � P.A\ B/. ut

Example 1.2 An experiment consists of drawing a number between 1 and 100 at

random. Calculate the probability of the event: “drawing either a number greater

than 50, or an odd number, at each try.”

The sample space for this experiment is the set of numbers i D 1; : : : ; 100, and

the probability of drawing number i is P.Ai/ D 1=100, since we expect that each

number will have the same probability of being drawn at each try. Ai is the event

that consists of drawing number i. If we call B the event consisting of all numbers

greater than 50, and C the event with all odd numbers, it is clear that P.B/ D 0:5,

and likewise P.C/ D 0:5. The event A\B contains all odd numbers greater than 50,

and therefore P.A\ B/ D 0:25. Using (1.4), we find that the probability of drawing

either a number greater than 50, or an odd number, is 0.75. This can be confirmed

by a direct count of the possible outcomes. }

1.4 Statistical Independence

Statistical independence among events means that the occurrence of one event has

no influence on the occurrence of other events. Consider, for example, rolling two

dice, one after the other: the outcome of one die is independent of the other, and

the two tosses are said to be statistically independent. On the other hand, consider

the following pair of events: the first is the roll of die 1, and the second is the roll

of die 1 and die 2, so that for the second event we are interested in the sum of the

two tosses. It is clear that the outcome of the second event—e.g., the sum of both

dice—depends on the first toss, and the two events are not independent.

Two events A and B are said to be statistically independent if and only if

P.A\ B/ D P.A/ � P.B/: (1.5)
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At this point, it is not obvious that the concept of statistical independence is

embodied by (1.5). A few examples will illustrate the meaning of this definition,

which will be explored further in the following section on conditional probability.

Example 1.3 Determine the probability of obtaining two 3 when rolling two dice.

This event can be decomposed in two events: A D {die 1 shows 3 and die 2 shows

any number} and B D {die 2 shows 3 and die 1 shows any number}.

It is natural to assume that P.A/ D 1=6, P.B/ D 1=6 and state that the two events

A and B are independent by nature, since each event involves a different die, which

has no knowledge of the other one. The event we are interested in is C D A\B and

the definition of probability of two statistically independent events leads to P.C/ D
P.A\ B/ D P.A/ � P.B/ D 1=36. This result can be confirmed by the fact that there

is only one combination out of 36 that gives rise to two consecutive 3. }
The example above highlights the importance of a proper, and sometimes

extended, definition of an event. The more careful the description of the event and of

the experiment that it is drawn from, the easier it is to make probabilistic calculation

and the assessment of statistical independence.

Example 1.4 Consider the events A D {die 1 shows 3 and die 2 shows any number}

and B D {the sum of the two dice is 9}. Determine whether they are statistically

independent.

In this case, we will calculate the probability of the two events, and then check

whether they obey (1.5) or not. This calculation will illustrate that the two events

are not statistically independent.

Event A has a probability P.A/ D 1=6; in order to calculate the probability

of event B, we realize that a sum of 9 is given by the following combinations of

outcomes of the two rolls: (3,6), (4,5), (5,4) and (6,3). Therefore, P.B/ D 1=9.

The event A \ B is the situation in which both event A and B occur, which

corresponds to the single combination (3,6); therefore, P.A \ B/ D 1=36. Since

P.A/ � P.B/ D 1=6 � 1=9 D 1=54 ¤ P.A \ B/ D 1=36, we conclude that the

two events are not statistically independent. This conclusion means that one event

influences the other, since a 3 in the first toss has certainly an influence on the

possibility of both tosses having a total of 9. }
There are two important necessary (but not sufficient) conditions for statistical

independence between two events. These properties can help identify whether two

events are independent.

1. If A \ B D ;, A and B cannot be independent, unless one is the empty set. This

property states that there must be some overlap between the two events, or else it

is not possible for the events to be independent.

Proof For A and B to be independent, it must be true that P.A\B/ D P.A/ �P.B/,
which is zero by hypothesis. This can be true only if P.A/ D 0 or P.B/ D 0,

which in turn means A D ; or B D ; as a consequence of the Kolmogorov

axioms. ut
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2. If A � B, then A and B cannot be independent, unless B is the entire sample

space. This property states that the overlap between two events cannot be such

that one event is included in the other, in order for statistical independence to be

possible.

Proof In order for A and B to be independent, it must be that P.A \ B/ D P.A/ �
P.B/ D P.A/, given that A � B. This can only be true if B D ˝ , since P.˝/ D 1.

ut
Example 1.5 Consider the above Example 1.3 of the roll of two dice; each event

was formulated in terms of the outcome of both rolls, to show that there was in fact

overlap between two events that are independent of one another. }
Example 1.6 Consider the following two events: A D {die 1 shows 3 and die 2

shows any number} and B D {die 1 shows 3 or 2 and die 2 shows any number}. It

is clear that A � B, P.A/ D 1=6 and P.B/ D 1=3. The event A \ B is identical to

A and P.A \ B/ D 1=6. Therefore P.A \ B/ ¤ P.A/ � P.B/ and the two events

are not statistically independent. This result can be easily explained by the fact

that the occurrence of A implies the occurrence of B, which is a strong statement

of dependence between the two events. The dependence between the two events

can also be expressed with the fact that the non-occurrence of B implies the non-

occurrence of A. }

1.5 Conditional Probability

The conditional probability describes the probability of occurrence of an event A

given that another event B has occurred and it is indicated as P.A=B/. The symbol

“/” indicates the statement given that or knowing that. It states that the event after the

symbol is known to have occurred. When two or more events are not independent,

the probability of a given event will in general depend on the occurrence of another

event. For example, if one is interested in obtaining a 12 in two consecutive rolls of

a die, the probability of such event does rely on the fact that the first roll was (or

was not) a 6.

The following relationship defines the conditional probability:

P.A\ B/ D P.A=B/ � P.B/ D P.B=A/ � P.A/I (1.6)

Equation (1.6) can be equivalently expressed as

P.A=B/ D

8

<

:

P.A \ B/

P.B/
if P.B/ ¤ 0

0 if P.B/ D 0:
(1.7)
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A justification for this definition is that the occurrence of B means that the

probability of occurrence of A is that of A \ B. The denominator of the conditional

probability is P.B/ because B is the set of all possible outcomes that are known to

have happened. The situation is also depicted in the right-hand side panel of Fig. 1.1:

knowing that B has occurred, leaves the probability of occurrence of A to the

occurrence of the intersection A\B, out of all outcomes in B. It follows directly from

(1.6) that if A and B are statistically independent, then the conditional probability is

P.A=B/ D P.A/, i.e., the occurrence of B has no influence on the occurrence of A.

This observation further justifies the definition of statistical independence according

to (1.5).

Example 1.7 Calculate the probability of obtaining 8 as the sum of two rolls of a

die, given that the first roll was a 3.

Call event A the sum of 8 in two separate rolls of a die and event B the event

that the first roll is a 3. Event A is given by the probability of having tosses (2,6),

(3,5), (4,4), (5,3), (6,2). Since each such combination has a probability of 1/36,

P.A/ D 5=36. The probability of event B is P.B/ D 1=6. Also, the probability of

A \ B is the probability that the first roll is a 3 and the sum is 8, which can clearly

occur only if a sequence of (3,5) takes place, with probability P.A \ B/ D 1=36.

According to the definition of conditional probability, P.A=B/ D P.A \
B/=P.B/ D 6=36 D 1=6, and in fact only combination (5,3)—of the six available

with 3 as the outcome of the second toss—gives rise to a sum of 8. The occurrence

of 3 in the first roll has therefore increased the probability of A from P.A/ D 5=36 to

P.A=B/ D 1=6, since not any outcome of the first roll would be equally conducive

to a sum of 8 in two rolls. }

1.6 A Classic Experiment: Mendel’s Law of Heredity

and the Independent Assortment of Species

The experiments performed in the nineteenth century by Gregor Mendel in

the monastery of Brno led to the discovery that certain properties of plants,

such as seed shape and color, are determined by a pair of genes. This pair of

genes, or genotype, is formed by the inheritance of one gene from each of the

parent plants.

Mendel began by crossing two pure lines of pea plants which differed in

one single characteristic. The first generation of hybrids displayed only one

of the two characteristics, called the dominant character. For example, the

first-generation plants all had round seed, although they were bred from a

population of pure round seed plants and one with wrinkled seed. When the

first-generation was allowed to self-fertilize itself, Mendel observed the data

shown in Table 1.1 [31].

(continued)
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Table 1.1 Data from G. Mendel’s experiment

Character No. of dominant No. of recessive Fract. of dominant

Round vs. wrinkled seed 5474 1850 0.747

Yellow vs. green seed 6022 2001 0.751

Violet-red vs. white flower 705 224 0.759

Inflated vs. constricted pod 882 299 0.747

Green vs. yellow unripe pod 428 152 0.738

Axial vs. terminal flower 651 207 0.759

Long vs. short stem 787 277 0.740

Table 1.2 Data from G. Mendel’s experiment for plants with two different characters

Yellow seed Green seed

Round seed 315 108

Wrinkled seed 101 32

In addition, Mendel performed experiments in which two pure lines that

differed by two characteristics were crossed. In particular, a line with yellow

and round seed was crossed with one that had green and wrinkled seeds.

As in the previous case, the first-generation plants had a 100 % occurrence

of the dominant characteristics, while the second-generation was distributed

according to the data in Table 1.2.

One of the key results of these experiments goes under the name of Law

of independent assortment, stating that a daughter plant inherits one gene

from each parent plant independently of the other parent. If we denote the

genotype of the dominant parent as DD (a pair of dominant genes) and that

of the recessive parent as RR, then the data accumulated by Mendel support

the hypothesis that the first-generation plants will have the genotype DR

(the order of genes in the genome is irrelevant) and the second generation

plants will have the following four genotypes: DD, DR, RD and RR, in

equal proportions. Since the first three genomes will display the dominant

characteristic, the ratio of appearance of the dominant characteristic is

expected to be 0.75. The data appear to support in full this hypothesis.

In probabilistic terms, one expects that each second-generation plant has

P.D/ D 0:5 of drawing a dominant first gene from each parent and P.R/ D
0:5 of drawing a recessive gene from each parent. Therefore, according to the

(continued)



10 1 Theory of Probability

hypothesis of independence in the inheritance of genes, we have

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

P.DD/ D P.D/ � P.D/ D 0:25
P.DR/ D P.D/ � P.R/ D 0:25
P.RD/ D P.R/ � P.D/ D 0:25
P.RR/ D P.R/ � P.R/ D 0:25:

(1.8)

When plants differing by two characteristics are crossed, as in the case

of the data in Table 1.2, then each of the four events in (1.8) is indepen-

dently mixed between the two characters. Therefore, there is a total of 16

possibilities, which give rise to 4 possible combinations of the two characters.

For example, a display of both recessive characters will have a probability

of 1=16 D 0:0625. The data seemingly support this hypothesis with a

measurement of a fraction of 0.0576.

1.7 The Total Probability Theorem and Bayes’ Theorem

In this section we describe two theorems that are of great importance in a number of

practical situations. They make use of a partition of the sample space ˝ , consisting

of n events Ai that satisfy the following two properties:

Ai \ Aj D ;; 8i ¤ j

n
[

iD1
Ai D ˝:

(1.9)

For example, the outcomes 1, 2, 3, 4, 5 and 6 for the roll of a die partition the sample

space into a number of events that cover all possible outcomes, without any overlap

among each other.

Theorem 1.1 (Total Probability Theorem) Given an event B and a set of events

Ai with the properties (1.9),

P.B/ D
n
X

iD1
P.B \ Ai/ D

n
X

iD1
P.B=Ai/ � P.Ai/: (1.10)

Proof The first equation is immediately verified given that the B \ Ai are mutually

exclusive events such that B D [i.B \ Ai/. The second equation derives from the

application of the definition of conditional probability. ut
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The total probability theorem is useful when the probability of an event B cannot

be easily calculated and it is easier to calculate the conditional probability B=Ai

given a suitable set of conditions Ai. The example at the end of Sect. 1.7 illustrates

one such situation.

Theorem 1.2 (Bayes’ Theorem) Given an event B and a set of events Ai with

properties (1.9),

P.Ai=B/ D P.B=Ai/P.Ai/

P.B/
D P.B=Ai/P.Ai/

n
X

iD1
P.B \ Ai/

(1.11)

Proof The proof is an immediate consequence of the definition of conditional

probability, (1.6), and of the Total Probability theorem, (1.10). ut
Bayes’ theorem is often written in a simpler form by taking into account two

events only, Ai D A and B:

P.A=B/ D P.B=A/P.A/

P.B/
(1.12)

In this form, Bayes’ theorem is just a statement of how the order of conditioning

between two events can be inverted.

Equation (1.12) plays a central role in probability and statistics. What is

especially important is the interpretation that each term assumes within the context

of a specific experiment. Consider B as the data collected in a given experiment—

these data can be considered as an event, containing the outcome of the experiment.

The event A is a model that is used to describe the data. The model can be considered

as an ideal outcome of the experiment, therefore both A and B are events associated

with the same experiment. Following this interpretation, the quantities involved in

Bayes’ theorem can be interpreted as in the following:

• P.B=A/ is the probability, or likelihood, of the data given the specified model,

and indicated as L . The likelihood represents the probability of making the

measurement B given that the model A is a correct description of the experiment.

• P.A/ is the probability of the model A, without any knowledge of the data. This

term is interpreted as a prior probability, or the degree belief that the model

is true before the measurements are made. Prior probabilities should be based

upon quantitative knowledge of the experiment, but can also reflect the subjective

belief of the analyst. This step in the interpretation of Bayes’ theorem explicitly

introduces an element of subjectivity that is characteristic of Bayesian statistics.

• P.B/ is the probability of collecting the dataset B. In practice, this probability acts

as a normalization constant and its numerical value is typically of no practical

consequence.

• Finally, P.A=B/ is the probability of the model after the data have been collected.

This is referred to as the posterior probability of the model. The posterior
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probability is the ultimate goal of a statistical analysis, since it describes the

probability of the model based on the collection of data. According to the value

of the posterior probability, a model can be accepted or discarded.

This interpretation of Bayes’ theorem is the foundation of Bayesian statistics.

Models of an experiment are usually described in terms of a number of parameters.

One of the most common problems of statistical data analysis is to estimate what

values for the parameters are permitted by the data collected from the experiment.

Bayes’ theorem provides a way to update the prior knowledge on the model

parameters given the measurements, leading to posterior estimates of parameters.

One key feature of Bayesian statistics is that the calculation of probabilities are

based on a prior probability, which may rely on a subjective interpretation of what

is known about the experiment before any measurements are made. Therefore, great

attention must be paid to the assignment of prior probabilities and the effect of priors

on the final results of the analysis.

Example 1.8 Consider a box in which there are red and blue balls, for a total of

N D 10 balls. What is known a priori is just the total number of balls in the

box. Of the first 3 balls drawn from the box, 2 are red and 1 is blue (drawing is

done with re-placement of balls after drawing). We want to use Bayes’ theorem

to make inferences on the number of red balls (i) present in the box, i.e., we seek

P.Ai=B/, the probability of having i red balls in the box, given that we performed

the measurement B D {Two red balls were drawn in the first three trials}.

Initially, we may assume that P.Ai/ D 1=11, meaning that there is an equal

probability of having 0, 1, : : : or 10 red balls in the box (for a total of 11 possibilities)

before we make any measurements. Although this is a subjective statement, a

uniform distribution is normally the logical assumption in the absence of other

information. We can use basic combinatorial mathematics to determine that the

likelihood of drawing D D 2 red balls out of T D 3 trials, given that there are i

red balls (also called event Ai):

P.B=Ai/ D
 

T

D

!

pDqT�D: (1.13)

In this equation p is the probability of drawing one of the red balls in a given drawing

assuming that there are i red balls, p D i=N, and q is the probability of drawing one

of the blue balls, q D 1� p D .N � i/=N. The distribution in (1.13) is known as the

binomial distribution and it will be derived and explained in more detail in Sect. 3.1.

The likelihood P.B=Ai/ can therefore be rewritten as

P.B=Ai/ D
 

3

2

!

�

i

N

�2 �
N � i

N

�

(1.14)

The probability P.B/ is the probability of drawing D D 2 red balls out of T D 3
trial, for all possible values of the true number of red balls, i D 0; : : : ; 10. This



1.7 The Total Probability Theorem and Bayes’ Theorem 13

probability can be calculated from the Total Probability theorem,

P.B/ D
N
X

iD0
P.B=Ai/ � P.Ai/ (1.15)

We can now put all the pieces together and determine the posterior probability of

having i red balls, P.Ai=B/, using Bayes’ theorem, P.Ai=B/ D P.B=Ai/P.Ai/=P.B/.

The equation above is clearly a function of i, the true number of red balls.

Consider the case of i D 0, i.e., what is the posterior probability of having no

red balls in the box. Since

P.B=A0/ D
 

3

2

!

�

0

N

�2 �
N � 0

N

�

D 0;

it follows that P.Ao=B/ D 0, i.e., it is impossible that there are no red balls. This is

obvious, since two times a red ball was in fact drawn, meaning that there is at least

one red ball in the box. Other posterior probabilities can be calculated in a similar

way. }

Summary of Key Concepts for this Chapter

� Event: A set of possible outcomes of an experiment.

� Sample space: All possible outcomes of an experiment.

� Probability of an Event: A number between 0 and 1 that follows the

Kolmogorov axioms.

� Frequentist or Classical approach: A method to determine the probability

of an event based on many repetitions of the experiment.

� Bayesian or Empirical approach: A method to determine probabilities that

uses prior knowledge of the experiment.

� Statistical independence: Two events are statistically independent when

the occurrence of one has no influence on the occurrence of the other, P.A\
B/ D P.A/P.B/.

� Conditional probability: Probability of occurrence of an event given that

another event is known to have occurred, P.A=B/ D P.A \ B/=P.B/.

� Total Probability theorem: A relationship among probabilities of events

that form a partition of the sample space, P.B/ D
P

P.B=Ai/P.Ai/.

� Bayes’ theorem: A relationship among conditional probabilities that

enables the change in the order of conditioning of the events, P.A=B/ D
P.B=A/P.A/=P.B/.
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Problems

1.1 Describe the sample space of the experiment consisting of flipping four coins

simultaneously. Assign the probability to the event consisting of “two heads up and

two tails up.” In this experiment it is irrelevant to know which specific coin shows

heads up or tails up.

1.2 An experiment consists of rolling two dice simultaneously and independently

of one another. Find the probability of the event consisting of having either an odd

number in the first roll or a total of 9 in both rolls.

1.3 In the roll of a die, find the probability of the event consisting of having either

an even number or a number greater than 4.

1.4 An experiment consists of rolling two dice simultaneously and independently

of one another. Show that the two events, “the sum of the two rolls is 8” and “the

first roll shows 5” are not statistically independent.

1.5 An experiment consists of rolling two dice simultaneously and independently

of one another. Show that the two events, “first roll is even” and “second roll is

even” are statistically independent.

1.6 A box contains 5 balls, of which 3 are red and 2 are blue. Calculate (a) the

probability of drawing two consecutive red balls and (b) the probability of drawing

two consecutive red balls, given that the first draw is known to be a red ball. Assume

that after each draw the ball is replaced in the box.

1.7 A box contains 10 balls that can be either red or blue. Of the first three draws,

done with replacement, two result in the draw of a red ball. Calculate the ratio of the

probability that there are 2 or just 1 red ball in the box and the ratio of probability

that there are 5 or 1 red balls.

1.8 In the game of baseball a player at bat either reaches base or is retired. Consider

three baseball players: player A was at bat 200 times and reached base 0.310 of

times; player B was at bat 250 times, with an on-base percentage of 0.296; player

C was at bat 300 times, with an on-base percentage 0.260. Find (a) the probability

that when either player A, B, or C were at bat, he reached base, (b) the probability

that, given that a player reached base, it was A, B, or C.

1.9 An experiment consists of rolling two dice simultaneously and independently

of one another. Calculate (a) the probability of the first roll being a 1, given that the

sum of both rolls was 5, (b) the probability of the sum being 5, given that the first

roll was a 1 and (c) the probability of the first roll being a 1 and the sum being 5.

Finally, (d) verify your results with Bayes’ theorem.
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1.10 Four coins labeled 1 through 4 are tossed simultaneously and independently of

one another. Calculate (a) the probability of having an ordered combination heads-

tails-heads-tails in the four coins, (b) the probability of having the same ordered

combination given that any two coins are known to have landed heads-up and (c)

the probability of having two coins land heads up given that the sequence heads-

tails-heads-tails has occurred.



Chapter 2

Random Variables and Their Distributions

Abstract The purpose of performing experiments and collecting data is to gain

information on certain quantities of interest called random variables. The exact

value of these quantities cannot be known with absolute precision, but rather we can

constrain the variable to a given range of values, narrower or wider according to the

nature of the variable itself and the type of experiment performed. Random variables

are described by a distribution function, which is the theoretical expectation for the

outcome of experiments aimed to measure it. Other measures of the random variable

are the mean, variance, and higher-order moments.

2.1 Random Variables

A random variable is a quantity of interest whose true value is unknown. To gain

information on a random variable we design and conduct experiments. It is inherent

to any experiment that the random variable of interest will never be known exactly.

Instead, the variable will be characterized by a probability distribution function,

which determines what is the probability that a given value of the random variable

occurs. Repeating the measurement typically increases the knowledge we gain of the

distribution of the variable. This is the reason for wanting to measure the quantity

as many times as possible.

As an example of random variable, consider the gravitational constant G. Despite

the label of “constant”, we only know it to have a range of possible values in the

approximate interval G D 6:67428 ˙ 0:00067 (in the standard S.I. units). This

means that we don’t know the true value of G, but we estimate the range of possible

values by means of experiments. The random nature of virtually all quantities lies

primarily in the fact that no quantity is known exactly to us without performing an

experiment and that any experiment is never perfect because of practical or even

theoretical limitations. Among the practical reasons are, for example, limitations in

the precision of the measuring apparatus. Theoretical reasons depend on the nature

of the variable. For example, the measurement of the position and velocity of a

subatomic particle is limited by the Heisenberg uncertainty principle, which forbids

an exact knowledge even in the presence of a perfect measuring apparatus.

The general method for gaining information on a random variable X starts with

set of measurements xi, ensuring that measurements are performed under the same
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Fig. 2.1 Example of data

collected to measure a

random variable X. The 500

measurements were binned

according to their value to

construct the sample

distribution. The shape of the

distribution depends on the

nature of the experiment and

of the number of

measurements

experimental conditions. Throughout the book we will reserve uppercase letters for

the name of the variable itself and lowercase letters for the actual measurements.

From these measurements, one obtains a histogram corresponding to the frequency

of occurrence of all values of X (Fig. 2.1). The measurements xi form the sample

distribution of the quantity, which describes the empirical distribution of values

collected in the experiment. On the other hand, random variables are typically

expected to have a theoretical distribution, e.g., Gaussian, Poisson, etc., known

as the parent distribution. The parent distribution represents the belief that there

is an ideal description of a random variable and its form depends on the nature

of the variable itself and the method of measurement. The sample distribution is

expected to become the parent distribution if an infinite number of measurements

are performed, in such a way that the randomness associated with a small number

of measurements is eliminated.

Example 2.1 In Sect. 3.3 we will show that a discrete variable (e.g., one that can

only take integer values) that describes a counting experiment follows a Poisson

function,

P.n/ D �n

nŠ
e��

in which � is the mean value of the random variable (for short, its true-yet-unknown

value) and n is the actual value measured for the variable. P.n/ indicates the

probability of measuring the value n, given that the true value is �. Consider the

experiment of counting the number of photons reaching Earth from a given star;

due to a number of factors, the count may not always be the same every time the

experiment is performed, and if only one experiment is performed, one would obtain

a sample distribution that has a single “bar” at the location of the measured value

and this sample distribution would not match well a Poisson function. After a small

number of measurements, the distribution may appear similar to that in Fig. 2.1
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and the distribution will then become smoother and closer to the parent distribution

as the number of measurements increases. Repeating the experiment therefore will

help in the effort to estimate as precisely as possible the parameter� that determines

the Poisson distribution. }

2.2 Probability Distribution Functions

It is convenient to describe random variables with an analytic function that

determines the probability of the random variable to have a given value. Discrete

random variables are described by a probability mass function f .xi/ , where f .xi/

represents the probability of the variable to have an exact value of xi. Continuous

variables are described by a probability distribution function f .x/, such that f .x/dx is

the probability of the variable to have values in the interval Œx; xCdx�. For simplicity

we will refer to both types of distributions as probability distribution functions

throughout the book.

Probability distribution functions have the following properties:

1. They are normalized to 1. For continuous variables this means

Z C1

�1
f .x/dx D 1: (2.1)

For variables that are defined in a subset of the real numbers, e.g., only values

x � 0 or in a finite interval, f .x/ is set to zero outside the domain of definition of

the function. For discrete variables, hereafter the integrals are replaced by a sum

over all values that the function of integration can have.

2. The probability distribution can never be negative, f .x/ � 0. This is a

consequence of the Kolmogorov axiom that requires a probability to be non-

negative.

3. The function F.x/, called the (cumulative) distribution function,

F.x/ D
Z x

�1
f .�/d�; (2.2)

represents the probability that the variable has any value less or equal than x.

F.x/ is a non-decreasing function of x that starts at zero and has its highest value

of one.

Example 2.2 The exponential random variable follows the probability distribution

function defined by

f .x/ D �e��x; x � 0; (2.3)
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Fig. 2.2 The distribution function f .x/ (solid line) and the cumulative distribution function F.x/

(dashed line) for an exponential variable with � D 0:5

where� is an adjustable parameter that must be positive. The probability distribution

function is therefore f .x/ D 0 for negative values of the variable. The cumulative

distribution function is given by

F.x/ D 1� e��x: (2.4)

In Fig. 2.2 are drawn the probability distribution function f .x/ and the cumulative

distribution function F.x/ for an exponential variable with � D 0:5. }

2.3 Moments of a Distribution Function

The probability distribution function f .x/ provides a complete description of the

random variable. It is convenient to find a few quantities that describe the salient

features of the distribution. The moment of order n, �n, is defined as

�n D EŒXn� �
Z

f .x/xndx: (2.5)

The moment �n is also represented as EŒXn�, the expectation of the function Xn. It

is possible to demonstrate, although mathematically beyond the scope of this book,

that the knowledge of moments of all orders is sufficient to determine uniquely

the distribution function [42]. This is an important fact, since it shifts the problem

of determining the distribution function to that of determining at least some of its

moments. Moreover, a number of distribution functions only have a few non-zero

moments, and this renders the task even more manageable.
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The moments or expectations of a distribution are theoretical quantities that can

be calculated from the probability distribution f .x/. They are parent quantities that

we wish to estimate via measurements. In the following we describe the two main

expectations, the mean and the variance, and the sample quantities that approximate

them, the sample mean and the sample variance. Chapter 5 describes a method to

justify the estimates of parent quantities via sample quantities.

2.3.1 The Mean and the Sample Mean

The moment of the first order is also known as the mean or expectation of the

random variable,

� D EŒX� D
Z C1

�1
xf .x/dx: (2.6)

The expectation is a linear operation and therefore satisfies the property that, e.g.,

EŒaX C bY� D aEŒX�C bEŒY�; (2.7)

where a and b are constants. This is a convenient property to keep in mind when

evaluating expectations of complex functions of a random variable X.

To estimate the mean of a random variable, consider N measurements xi and

define the sample mean as

x D 1

N

N
X

iD1
xi: (2.8)

To illustrate that the sample mean x defined by (2.8) is equivalent to the mean

�, consider a discrete variable, for which

EŒX� D
M
X

jD1
f .xj/xj; (2.9)

where f .xj/ is the probability distribution function and we have assumed that

the variable can only have M possible values. According to the classical

interpretation of the probability, the distribution function is given by

f .xj/ D lim
N!1

N.xj/

N
;
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in which N.xj/ is the number of occurrence of the value xj. Since ˙N.xj/xj is

the value obtained in N measurements, it is equivalent to ˙xi. Therefore the

sample mean will be identical to the parent mean in the limit of an infinite

number of measurements,

lim
N!1

x D lim
N!1

1

N

N
X

iD1
xi D lim

N!1
1

N

M
X

jD1
N.xj/xj D

M
X

jD1
f .xj/xj D EŒX�:

A proof that the sample mean provides an unbiased estimate of the mean

will be given in Chap. 5 for Gaussian and Poisson variables.

The sample mean is therefore a representative value of the random variable that

estimates the parent mean using a finite number of measurements. Other measures of

a random variable include the mode, defined as the value of maximum probability,

and the median, defined as the value that separates the lower 50 % and the upper

50 % of the distribution function. For distributions that are symmetric with respect to

the peak value, as is the case for the Gaussian distribution defined below in Sect. 3.2,

the peak value coincides with the mean, median, and mode. A more detailed analysis

of the various measures of the “average” value of a variable is described in Chap. 6.

2.3.2 The Variance and the Sample Variance

The variance is the expectation of the square of the deviation of X from its mean:

Var.X/ D EŒ.X � �/2� D
Z C1

�1
.x � �/2f .x/dx D �2: (2.10)

The square root of the variance is referred to as the standard deviation or

standard error � and it is a common measure of the average difference of a given

measurement xi from the mean of the random variable. Notice that from the point of

view of physical dimensions of the moments defined by (2.5), moments of the n-th

order have the dimensions of the random variable to the n-th power. For example,

if X is measured in meters, the variance is measured in meters square (m2), thus the

need to use the square root of the variance as a measure of the standard deviation of

the variable from its mean.

The main reason for defining the average difference of a measurement from

its mean in terms of a moment of the second order is that the expectation of the

deviation X � � is always zero, as can be immediately seen using the linearity

property of the expectation. The deviation of a random variable is therefore not of

common use in statistics, since its expectation is null.
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The sample variance is defined as

s2 D 1

N � 1

N
X

iD1
.xi � x/2 (2.11)

and a proof that this quantity is an unbiased estimate of the parent variance will

be provided in Chap. 5. The presence of a factor of N � 1, and not just N, in the

denominator of the sample variance, is caused by the fact that the sample variance

requires also an estimate of the sample mean, since the exact value of the parent

mean is unknown. This result will be explained further in Sect. 5.1.2.

Using the linear property of the expectation, it is straightforward to show that the

following property applies:

Var.X/ D EŒX2� � �2: (2.12)

This relationship is very convenient to calculate the variance from the moments of

the first and second order. The deviation and the variance are moments calculated

with respect to the mean, also referred to as central moments.

Another useful property of the variance, which follows from the fact that the

variance is a moment of the second order, is

Var.aX/ D a2Var.X/ (2.13)

where a is a constant.

2.4 A Classic Experiment: J.J. Thomson’s Discovery

of the Electron

A set of experiments by J.J. Thomson in the late nineteenth century were

aimed at the measurement of the ratio between the mass and charge of a

new lightweight particle, which was later named electron. The experiment

was truly groundbreaking not just for the method used, but also because it

revolutionized our understanding of physics and natural sciences by proving

that the new particle was considerably lighter than the previously known

charge carrier, the proton.

The experiment described in this book was reported by Thomson in [39].

It consists of measuring the deflection of negatively charged cathode rays by

a magnetic field H in a tube. Thomson wanted to measure the mass m of the

charged particles that constituted these cathode rays. The experiment is based

on the measurement of the following quantities: W is the kinetic energy of the

(continued)
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particles, Q D Ne is the amount of electricity carried by the particles (N is the

number of particles and e the charge of each particle) and I D HR, where R

is the radius of curvature of the path of these rays in a magnetic field H. The

measurements performed by Thomson were used to infer the ratio m=e and

the speed v of the new lightweight particle according to

v D 2W

QI
I

m

e
D I2Q

2W
:

(2.14)

For the purpose of the data analysis of this experiment, it is only necessary

to know that W=Q and I are the primary quantities being measured, and

inferences on the secondary quantities of interest are based on (2.14). For the

proton, the mass-to-charge ratio was known to be approximately1�10�4 g per

electromagnetic (EMU) charge unit, where the EMU charge unit is equivalent

to 10�10 electrostatic charge units, or ESU (a more common unit of measure

for charge). In Thomson’s units, the accepted value of the mass to charge ratio

of the electron is now 5:7� 10�8. Some of the experimental data collected by

Thomson are reported in Tables 2.1 and 2.2, in which “gas” refers to the gas

used in the tubes he used for the experiment.

Some of Thomson’s conclusions are reported here:

(a) “It will be seen from these tables that the value of m=e is independent of

the nature of the gas”;

(b) “the values of m=e were, however, the same in the two tubes.”;

(c) “for the first tube, the mean for air is 0:40�10�7, for hydrogen 0:42�10�7

and for carbonic acid 0:4 � 10�7”;

(d) “for the second tube, the mean for air is 0:52�10�7, for hydrogen 0:50�
10�7 and for carbonic acid 0:54 � 10�7”.

Using the equations for sample mean and variance explained in Sect. 2.3,

we are already in a position to measure the sample means and variances in air

as m=e1 D 0:42 and s21 D 0:005 for Tube 1, x2 D 0:52 and s22 D 0:003 for

Tube 2. These statistics can be reported as a measurement of 0:42˙ 0:07 for

Tube 1 and 0:52˙ 0:06 for Tube 2. To make more quantitative statements on

the statistical agreement between the two measurements, we need to know

what is the probability distribution function of the sample mean. The test

to determine whether the two measurements are consistent with each other

will be explained in Sect. 7.5. For now, we simply point out that the fact that

the range of the two measurements overlap, is an indication of the statistical

agreement of the two measurements.

(continued)
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Note: The three measurements marked with a star appear to have value of

v or m=e that are inconsistent with the formulas to calculate them from W=Q

and I. They may be typographical errors in the original publication. The first

appears to be a typo in W=Q (6�1012 should be 6�1011), the corrected value

is assumed throughout this book. The second has an inconsistent value for v

(should be 6:5�109, not 7:5�109), the third has inconsistent values for both v

and m=e, but no correction was applied in these cases to the data in the tables.

Table 2.1 Data from Thomson’s measurements of Tube 1

Gas W=Q I m=e v

Tube 1

Air . . . . . 4:6 � 1011 230 0:57� 10�7 4� 109

Air . . . . . 1:8 � 1012 350 0:34� 10�7 1� 1010

Air . . . . . 6:1 � 1011 230 0:43� 10�7 5:4 � 109

Air . . . . . 2:5 � 1012 400 0:32� 10�7 1:2 � 1010

Air . . . . . 5:5 � 1011 230 0:48� 10�7 4:8� 109

Air . . . . . 1� 1012 285 0:4� 10�7 7� 109

Air . . . . . 1� 1012 285 0:4� 10�7 7� 109

Hydrogen? . 6� 1012 205 0:35� 10�7 6� 109

Hydrogen . . 2:1 � 1012 460 0:5� 10�7 9:2 � 109

Carbonic acid? 8:4 � 1011 260 0:4� 10�7 7:5 � 109

Carbonic acid 1:47 � 1012 340 0:4� 10�7 8:5 � 109

Carbonic acid 3:0 � 1012 480 0:39� 10�7 1:3 � 1010

See Note for meaning of ?

Table 2.2 Data from Thomson’s measurements of Tube 2

Gas W=Q I m=e v

Tube 2

Air . . . . 2:8� 1011 175 0:53� 10�7 3:3 � 109

Air? . . . . 2:8� 1011 175 0:47� 10�7 4:1� 109

Air . . . . 3:5� 1011 181 0:47� 10�7 3:8 � 109

Hydrogen . 2:8� 1011 175 0:53� 10�7 3:3 � 109

Air . . . . 2:5� 1011 160 0:51� 10�7 3:1 � 109

Carbonic acid 2:0� 1011 148 0:54� 10�7 2:5� 109

Air . . . . 1:8� 1011 151 0:63� 10�7 2:3� 109

Hydrogen . 2:8� 1011 175 0:53� 10�7 3:3 � 109

Hydrogen . 4:4� 1011 201 0:46� 10�7 4:4� 109

Air . . . . 2:5� 1011 176 0:61� 10�7 2:8� 109

Air . . . . 4:2� 1011 200 0:48� 10�7 4:1� 109

See Note for meaning of ?
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2.5 Covariance and Correlation Between Random Variables

It is common to measure more than one random variable in a given experiment. The

variables are often related to one another and it is therefore necessary to define a

measure of how one variable affects the measurement of the others. Consider the

case in which we wish to measure both the length of one side of a square and the

area; it is clear that the two quantities are related in a way that the change of one

quantity affects the other in the same manner, i.e., a positive change of the length

of the side results in a positive change of the area. In this case, the length and the

area will be said to have a positive correlation. In this section we introduce the

mathematical definition of the degree of correlation between variables.

2.5.1 Joint Distribution and Moments of Two Random

Variables

When two (or more) variables are measured at the same time via a given experiment,

we are interested in knowing what is the probability of a given pair of measure-

ments for the two variables. This information is provided by the joint probability

distribution function, indicated as h.x; y/, with the meaning that h.x; y/dxdy is the

probability that the two variables X and Y are in a two-dimensional interval of size

dxdy around the value .x; y/. This two-dimensional function can be determined

experimentally via its sample distribution, in the same way as one-dimensional

distributions.

It is usually convenient to describe one variable at a time, even if the experiment

features more than just one variable. In this case, the expectation of each variable

(for example, X) is defined as

EŒX� D
Z C1

�1

Z C1

�1
xh.x; y/dxdy D �x (2.15)

and the variance is similarly defined as

EŒ.X � �x/
2� D

Z C1

�1

Z C1

�1
.x � �x/

2h.x; y/dxdy D �2x : (2.16)

These equations recognize the fact that the other variable, in this case Y, is indeed

part of the experiment, but is considered uninteresting for the calculation at hand.

Therefore the uninteresting variable is integrated over, weighted by its probability

distribution function.
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The covariance of two random variables is defined as

Cov.X;Y/ � EŒ.X � �x/.Y � �y/� D
Z C1

�1

Z C1

�1
.x � �x/.y � �y/h.x; y/dxdy D �2xy:

(2.17)

The covariance is the expectation of the product of the deviations of the two

variables. Unlike the deviation of a single variable, whose expectation is always

zero, this quantity will be positive if, on average, a positive deviation of X is

accompanied by a positive deviation of Y, or if two negative deviations are likely

to occur simultaneously, so that the integrand is a positive quantity. If, on the other

hand, the two variables tend to have deviations of opposite sign, the covariance will

be negative. The covariance, like the mean and variance, is a parent quantity that

can be calculated from the theoretical distribution of the random variables.

The sample covariance for a collection of N pairs of measurements is calcu-

lated as

s2xy D
1

N � 1

N
X

iD1
.xi � x/.yi � y/; (2.18)

using a similar equation to the sample variance.

The correlation coefficient � is simply a normalized version of the covariance,

�.X;Y/ D Cov.X;Y/

�x�y

: (2.19)

The correlation coefficient is a number between �1 and C1. When the correlation

is zero, the two variables are said to be uncorrelated. The fact that the correlation

coefficient is normalized to within the values ˙1 derives from (2.10) and the

properties of the joint distribution function.

The sample correlation coefficient is naturally defined as

r D
s2xy

sxsy

(2.20)

in which s2x and s2y are the sample variances of the two variables.

The covariance between two random variables is very important in evaluating the

variance in the sum (or any other function) of two random variables, as explained in

detail in Chap. 4. The following examples illustrate the calculation of the covariance

and the sample covariance.
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Example 2.3 (Variance of Sum of Variables) Consider the random variables X, Y

and the sum Z D X C Y: the variance is given by

Var.Z/ D
Z Z

.xC y � .�x C �y//
2h.x; y/dxdy D

Var.X/C Var.Y/C 2Cov.X;Y/

which can also be written in the compact form �2z D �2x C �2y C 2�2xy. This shows

that variances add linearly only if the two random variables are uncorrelated. Failure

to check for correlation will result in errors in the calculation of the variance of the

sum of two random variables. }
Example 2.4 Consider the measurement of the following pairs of variables: (0, 2),

(2, 5), (1, 4), (�3, �1). We can calculate the sample covariance by means of the

following equation:

s2xy D
1

3

4
X

iD1
.xi � x/.yi � y/ D 17

3

where x D 0 and y D 2:5. Also, the individual variances are calculated as

s2x D
1

3

4
X

iD1
.xi � x/2 D 14

3

s2y D
1

3

X

.yi � y/2 D 21

3

which results in the sample correlation coefficient between the two random vari-

ables of

r D 17p
14 � 21

D 0:99:

This is in fact an example of nearly perfect correlation between the two variables.

In fact, positive deviations of one variable from the sample mean are accompanied

by positive deviations of the other by nearly the same amount. }

2.5.2 Statistical Independence of Random Variables

The independence between events was described and quantified in Chap. 1, where

it was shown that two events are independent only when the probability of their

intersection is the product of the individual probabilities. The concept is extended

here to random variables by defining two random variables as independent if and
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only if the joint probability distribution function can be factored in the following

form:

h.x; y/ D f .x/ � g.y/; (2.21)

where f .x/ and g.y/ are the probability distribution functions of the two random

variables. When two variables are independent, the individual probability distribu-

tion function of each variable is obtained via marginalization of the joint distribution

with respect to the other variable, e.g.,

f .x/ D
Z C1

�1
h.x; y/dy: (2.22)

It is important to remark that independence between random variables and

uncorrelation are not equivalent properties. Independence, which is a property of

the distribution functions, is a much stronger property than uncorrelation, which is

based on a statement that involves only moments. It can be proven that independence

implies uncorrelation, but not vice versa.

Proof The fact that independence implies uncorrelation is shown by calculat-

ing the covariance of two independent random variables of joint distribution

function h.x; y/. The covariance is

�2xy D
Z C1

�1

Z C1

�1
.x � �x/.y � �y/h.x; y/dxdy D

Z C1

�1
.x � �x/f .x/dx

Z C1

�1
.y � �y/g.y/dy D 0;

since each integral vanishes as the expectation of the deviation of a random

variable. ut
As a counter-example of the fact that dependent variables can have non-

zero correlation factor, consider the case of a random variable X with a

distribution f .x/ that is symmetric around the origin, and another variable

Y D X2. They cannot be independent since they are functionally related, but

it will be shown that their covariance is zero. Symmetry about zero implies

�x D 0. The mean of Y is EŒY� D EŒX2� D �2x since the mean of X is null.

From this, the covariance is given by

Cov.X;Y/ D EŒX.Y � �2X/� D EŒX3 � X�2x � D EŒX3� D 0

due to the symmetry of f .x/. Therefore the two variables X and X2 are

uncorrelated, yet they are not independent.

Example 2.5 (Photon Counting Experiment) A photon-counting experiment con-

sists of measuring the total number of photons in a given time interval and the
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number of background events detected by the receiver in the same time interval.

The experiment is repeated six times, by measuring simultaneously the total number

of counts T as .10; 13; 11; 8; 10; 14/ and the number of background counts B as

.2; 3; 2; 1; 1; 3/. We want to estimate the mean number of source photons and its

standard error.

The random variable we seek to measure is S D T�B and the mean and variance

of this random variable can be easily shown to be

�S D �T � �B

�2S D �2T C �2B � 2�2TB

(the derivation is similar to that of Example 2.3). From the data, we measure the

sample means and variances as T D 11:0, B D 2:0, s2T D 4:8, s2B D 0:8 and the

sample covariance as s2TB D C1:6.

Notice that the correlation coefficient between T and S, as estimated via the

measurements, is then given by corr.T;B/ D 1:6=
p
4:8 � 0:8 D 0:92, indicating a

strong degree of correlation between the two measurements. The measurements can

be summarized as

�S D 11:0 � 2:0 D 9:0

�2S D 4:8C 0:8� 2 � 1:6 D 2:4

and be reported as S D 9:00 ˙ 1:55 counts (per time interval). Notice that if the

correlation between the two measurements had been neglected, then one would

(erroneously) report S D 9:00˙ 2:37, e.g., the standard deviation would be largely

overestimated. The correlation between total counts and background counts in this

example has a significant impact in the calculation of the variance of S and needs to

be taken into account. }

2.6 A Classic Experiment: Pearson’s Collection of Data

on Biometric Characteristics

In 1903 K. Pearson published the analysis of a collection of biometric data on

more than 1000 families in the United Kingdom, with the goal of establishing

how certain characters, such as height, are correlated and inherited [33].

Prof. Pearson is also the inventor of the �2 test and a central figure in the

development of the modern science of statistics.

Pearson asked a number of families, composed of at least the father,

mother, and one son or daughter, to perform measurements of height, span of

arms and length of left forearm. This collection of data resulted in a number

(continued)
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of tables, including some for which Pearson provides the distribution of two

measurements at a time. One such table is that reporting the mother’s height

versus the father’s height, Table 2.3.

The data reported in Table 2.3 represent the joint probability distribution of

the two physical characters, binned in one-inch intervals. When a non-integer

count is reported (e.g., a value of 0:25, 0:5 or 0:75), we interpret it as meaning

that the original measurement fell exactly at the boundary between two cells,

although Pearson does not provide an explanation for non-integer values.

For every column and row it is also reported the sum of all counts. The

bottom row in the table is therefore the distribution of the father’s height,

irrespective of the mother’s height, likewise the rightmost column is the

distribution of the mother’s height, regardless of the father’s height. The

process of obtaining a one-dimensional distribution from a multi-dimensional

illustrates the marginalization over certain variables that are not of interest.

In the case of the bottom column, the marginalization of the distribution was

done over the mother’s height, to obtain the distribution of father’s height.

From Table 2.3 it is not possible to determine whether there is a correlation

between father’s and mother’s heights. In fact, according to (2.18), we would

need all 1079 pairs of height measurements originally collected by Pearson

to calculate the covariance. Since Pearson did not report these raw (i.e,

unprocessed) data, we cannot calculate either the covariance or the correlation

coefficient. The measurements reported by Pearson are in a format that goes

under the name of contingency table, consisting of a table with measurements

that are binned into suitable two-dimensional intervals.

Summary of Key Concepts for this Chapter

� Random variable: A quantity that is not known exactly and is described

by a probability distribution function f .x/.

� Moments of a distribution: Expectations for the random variable or

functions of the random variable, such as the mean � D EŒX� and the

variance �2 D EŒ.X � �/2�.
� Sample mean and sample variance: Quantities calculated from the mea-

surements that are intended to approximate the corresponding parent

quantities (mean and variance).

� Joint distribution function: The distribution of probabilities for a pair of

variables.

� Covariance: A measure of the tendency of two variables to follow one

another, Cov.X;Y/ D EŒ.X � �X/.Y � �Y/�.

� Correlation coefficient: A normalized version of the covariance that takes

values between -1 (perfect anti-correlation) and +1 (perfect correlation).

� Statistically independent variables: Two variables whose joint probability

distribution function can be factored as h.x; y/ D f .x/g.y/.
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Problems

2.1 Consider the exponential distribution

f .x/ D �e��x

where � � 0 and x � 0. Show that the distribution is properly normalized, and

calculate the mean, variance and cumulative distribution F.x/.

2.2 Consider the sample mean as a random variable defined by

x D 1

N

N
X

iD1
xi (2.23)

where xi are identical independent random variables with mean � and variance �2.

Show that the variance of x is equal to �2=N.

2.3 J.J. Thomson’s experiment aimed at the measurement of the ratio between the

mass and charge of the electron is presented on page 23. Using the datasets for Tube

1 and Tube 2 separately, calculate the mean and variance of the random variables

W=Q and I, and the covariance and correlation coefficient between W=Q and I.

2.4 Using J.J. Thomson’s experiment (page 23), verify the statement that “It will

be seen from these tables that the value of m=e is independent of the nature of

the gas” used in the experiment. You may do so by calculating the mean and

standard deviation for the measurements in each gas (air, hydrogen, and carbonic

acid) and testing whether the three measurements agree with each other within their

standard deviations.

2.5 Calculate the sample covariance and correlation coefficient for the following

set of data: .0; 2/; .2; 5/; .1; 4/; .3; 1/.

2.6 Prove that the following relationship holds,

Var.X/ D EŒX2� � �2

where � is the mean of the random variable X.



Chapter 3

Three Fundamental Distributions: Binomial,

Gaussian, and Poisson

Abstract There are three distributions that play a fundamental role in statistics. The

binomial distribution describes the number of positive outcomes in binary experi-

ments, and it is the “mother” distribution from which the other two distributions

can be obtained. The Gaussian distribution can be considered as a special case of

the binomial, when the number of tries is sufficiently large. For this reason, the

Gaussian distribution applies to a large number of variables, and it is referred to as

the normal distribution. The Poisson distribution applies to counting experiments,

and it can be obtained as the limit of the binomial distribution when the probability

of success is small.

3.1 The Binomial Distribution

Many experiments can be considered as binary, meaning that they can only have

two possible outcomes which we can interpret as success or failure. Even complex

experiments with a larger number of possible outcomes can be described as binary,

when one is simply interested about the occurrence of a specific event A, or its non-

occurrence, A. It is therefore of fundamental importance in statistics to determine

the properties of binary experiments, and the distribution of the number of successes

when the experiment is repeated for a number of times under the same experimental

conditions.

3.1.1 Derivation of the Binomial Distribution

Consider a binary experiment characterized by a probability of success p a therefore

a probability of failure q D 1�p. The probabilities p and q are determined according

to the theory of probability and are assumed to be known for the experiment being

considered. We seek the probability of having n successes in N tries, regardless of

the order in which the successes take place. For example, consider tossing four

coins, and being interested in any two of these coins showing heads up, as an

indication of success of the toss. To obtain this probability, we start by counting
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how many possible outcomes for the experiments are possible, and break down the

derivation into three parts:

• Probability of a specific sequence of n successes out of N tries. Assume that

successive experiments are independent, e.g., one tosses the same coin many

times, each time independently of each other. The probability of having n

successes and therefore N�n failures occurring in a specific sequence, is given by

P.specific sequence of n successes/ D pn � qN�n: (3.1)

This result can be seen by using the property of independence among the N

events, of which the n successes carry a probability p, and the .N � n/ failures a

probability q.

Example 3.1 Considering the case of four coin tosses, the probability of a given

sequence, for example “heads-tails-tails-heads,” is .1=2/ � .1=2/ � .1=2/ � .1=2/ D
.1=2/4, since p D q D 1=2. Successive tosses are assumed to be independent. }

• Number of ordered sequences. We start by counting how many ordered sequences

exist that have n successes out of N tries. If there are no successes (n D 0), then

there is only one possible sequence with N failures. If n > 0, each of the N tries

can yield the “first” success, and therefore there are N possibilities for what try

is the first success. Continuing on to the “second” success, there are only N � 1
possibilities left for what trial will be the second success, and so on. This leads to

the following number of sequences containing n time-ordered successes, that is,

sequences for which we keep track of the order in which the successes occurred:

Perm.n;N/ D N � .N � 1/ � .N � nC 1/ D NŠ

.N � n/Š
: (3.2)

This is called the number of permutations of n successes out of N tries. This

method of counting sequences can also be imagined as the placement of each

success in a “success box”: the first place in this box can be filled in N different

ways, the second in (N � 1) ways corresponding to the remaining tries, and so

on.

Example 3.2 Consider the case of n D 2 successes out of N D 4 trials.

According to (3.2), the number of permutations is 4Š=2Š D 12. We list explicitly

all 12 ordered sequences that give rise to 2 successes out of 4 tries in Table 3.1.

Symbol H1 denotes the “first success,” and H2 the “second success.” Consider,

for example, lines 5 and 8: both represent the same situation in which the coin 2

and 3 showed heads up, or success, and they are not really different sequences,

but the separate entries in this table are the result of our method of counting

time-ordered sequences. }
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Table 3.1 Permutations (ordered sequences) of 2 successes out of 4 tries

Number of try Number of try

Sequence 1 2 3 4 Sequence 1 2 3 4

1 H1 H2 – – 7 H2 – H1 –

2 H1 – H2 – 8 – H2 H1 –

3 H1 – – H2 9 – – H1 H2

4 H2 H1 – – 10 H2 – – H1

5 – H1 H2 – 11 – H2 – H1

6 – H1 – H2 12 – – H2 H1

In reality, we are not interested in the time order in which the n successes

occur, since it is of no consequence whether the first or the Nth, or any other, try

is the “first” success. We must therefore correct for this artifact in the following.

• Number of sequences of n successes out of N tries (regardless of order). As it

is clear from the previous example, the number of permutations is not quite

the number we seek, since it is of no consequence which success happened

first. According to (3.2), there are nŠ ways of ordering n successes among

themselves, or Perm.n; n/ D nŠ. Since all nŠ permutations give rise to the

same practical situation of n successes, we need to divide the number of (time-

ordered) permutations by nŠ in order to avoid double-counting of permutations

with successes in the same trial number. It is therefore clear that, regardless of

time order, the number of combinations of n successes out of N trials is

C.n;N/ D Perm.n;N/

nŠ
D NŠ

.N � n/ŠnŠ
�
 

N

n

!

: (3.3)

The number of combinations is the number we seek, i.e., the number of possible

sequences of n successes in N tries.

Example 3.3 Continue to consider the case of 2 successes out of 4 trials. There are

2Š D 2 ways to order the 2 successes among themselves (either one or the other

is the first success). Therefore the number of combinations of 2 successes out of

4 trials is 6, and not 12. As indicated above, in fact, each sequence had its “twin”

sequence listed separately, and (3.3) correctly counts only different sequences. }
According to the results obtained above, what remains to be done is to use the

probability of each sequence (3.1) and multiply it by the number of combinations in

(3.3) to obtain the overall probability of having n successes in N trials:

P.n/ D
 

N

n

!

pnqN�n n D 0; : : : ;N: (3.4)
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This distribution is known as the binomial distribution and it describes the probabil-

ity of n successes in N tries of a binary experiment. It is a discrete distribution that

is defined for non-negative values n � N. The factor in (3.3) is in fact the binomial

coefficient and it derives its name from its use in the binomial expansion

.pC q/N D
N
X

nD0

 

N

n

!

pnqN�n: (3.5)

3.1.2 Moments of the Binomial Distribution

The moment of mth order for a discrete random variable X of distribution P.n/ is

given by

EŒXm� D nm D
N
X

nD0
nmP.n/: (3.6)

We can show that the mean and the second moment of the binomial distribution

are given by

(

n D pN

n2 D n2 C pqN:
(3.7)

Proof Start with the mean,

n D
N
X

nD0
P.n/n D

N
X

nD0

 

N

n

!

npnqN�n D
N
X

nD0

 

N

n

!

�

p
@

@p

�

pnqN�nI

in which we have introduced a linear operator p
@

@p
that can be conveniently

applied to the entire sum,

n D p
@

@p

"

N
X

nD0

 

N

n

!

pnqN�n

#

D p
@

@p
.pC q/N D pN.pC q/N�1 D pN:
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The derivation for the moment n2 is similar:

n2 D
N
X

nD0
P.n/n2 D

N
X

nD0

 

N

n

!

n2pnqN�n D
N
X

nD0

 

N

n

!

�

p
@

@p

�2

qN�n

D
�

p
@

@p

�2

.pC q/N D p
@

@p

�

pN.pC q/N�1� D

p
�

N.pC q/N�1 C pN.N � 1/.pC q/N�2� D

pN C p2N.N � 1/ D pN C .pN/2 � p2N D

n2 C p.1� p/N D n2 C pqN:

ut
It follows that the variance of the binomial distribution is given by

�2 D EŒ.X � n/2� D pqN: (3.8)

Equations (3.7) and (3.8) describe the most important features of the binomial

distribution, shown in Fig. 3.1 for the case of N D 10. The mean is naturally given

by the product of the number of tries N and the probability of success p in each of

the tries. The standard deviation � measures the root mean square of the deviation

and it is the measurement of the width of the distribution.

Example 3.4 (Probability of Overbooking) An airline knows that 5 % of the

persons making reservations will not show up at the gate. On a given flight that

Fig. 3.1 Binomial distribution with p D q D 0:5 and N D 10. The dotted lines around the mean

mark the ˙� range
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can seat 50 people, 52 tickets have been sold. Calculate the probability that there

will be a seat available for every passenger that will arrive at the gate.

This is a binary experiment in which p D 0:95 is the probability that a passenger

will show. For that specific flight, N D 52 passenger have the choice of showing

(or not). The probability that there is a seat available for each passenger is therefore

given by P D 1 � PN.52/C PN.51/, which is calculated as

P D 1 �
 

52

52

!

p52 � 1 �
 

52

51

!

p51 � q D 1 � .0:95/52 � 52 � .0:95/51 � 0:05 D 0:741:

Therefore the airline is willing to take a 25.9 % chance of having an overbooked

flight. }

3.2 The Gaussian Distribution

The Gaussian distribution, often referred to as the normal distribution, can be

considered as a special case of the binomial distribution in the case of a large number

N of experiments performed. In this section we derive the Gaussian distribution from

the binomial distribution and describe the salient features of the distribution.

3.2.1 Derivation of the Gaussian Distribution

from the Binomial Distribution

The binomial distribution of (3.4) acquires a simpler form when N is large. An

alternative analytic expression to the binomial distribution is a great advantage,

given the numerical difficulties associated with the evaluation of the factorial

of large numbers. As was evident from Fig. 3.1, the binomial distribution has a

maximum at value n D Np. In the following we prove that the binomial distribution

can be approximated as

P.n/ ' 1p
2�Npq

e
� .n�Np/2

2NPq (3.9)

in the case in which N � 1, and for values of the variable that are close to the peak

of the distribution.
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Proof Expand the logarithm of the binomial probability as a Taylor series in

the neighborhood of the peak value Qn,

ln P.n/ D ln P.Qn/C
1
X

kD1

Bk

kŠ

nk

where
n D n � Qn is the deviation from the peak value and

Bk D
@ ln P.n/k

@kn

ˇ

ˇ

ˇ

ˇ

nDQn

is the coefficient of the Taylor series expansion. Since, by assumption, Qn is

a point of maximum, the first coefficient is null, @ ln P.n/=@njnDQn D 0. We

neglect terms of order O.
n3/ in the expansion, and the approximation results

in

ln P.n/ ' ln P.Qn/C 1

2
B2
n2;

where B2 is negative, since n D Qn is a point of maximum. It follows that

P.n/ ' P.Qn/e� jB2j
n2

2 :

Neglecting higher-order terms in 
n means that the approximation will be

particularly accurate in regions where 
n is small, i.e., near the peak of the

distribution. Away from the peak, the approximation will not hold with the

same precision.

In the following we show that the unknown terms can be calculated as

8

ˆ

<

ˆ

:

B2 D �
1

Npq

P.Qn/ D 1p
2�Npq

:

First, we calculate the value of jB2j. Start with

ln P.n/ D ln

�

NŠ

nŠ.N � n/Š
pnqN�n

�

D

ln NŠ� ln nŠ � ln.N � n/ŠC n ln pC .N � n/ ln q:

At this point we need to start treating n as a continuous variable. This

approximation is acceptable when Np � 1, so that values n of the random
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variable near the peak of the distribution are large numbers. In this case, we

can approximate the derivative of the logarithm with a difference,

@ ln nŠ

@n
D .ln.nC 1/Š� ln nŠ/=1 D ln.nC 1/ ' ln n:

From this it follows that the first derivative of the probability function, as

expected, is zero at the peak value,

@ ln P.n/

@n

ˇ

ˇ

ˇ

ˇ

nDQn
D � ln nC ln.N � n/C ln p � ln qjnDQn

D ln

�

N � n

n

p

q

�

D 0

so that the familiar result of Qn D p �N is obtained. This leads to the calculation

of the second derivative,

B2 D
@2 ln P.n/

@n2

ˇ

ˇ

ˇ

ˇ

nDQn
D @

@n
ln

�

N � n

n

p

q

�
ˇ

ˇ

ˇ

ˇ

nDQn

D @

@n
.ln.N � n/ � ln n/

ˇ

ˇ

ˇ

ˇ

nDQn
D � 1

N � n
� 1

n

ˇ

ˇ

ˇ

ˇ

nDQn

D �1Qn �
1

N � Qn D �
1

Np
� 1

N.1 � p/
D �pC q

Npq
D � 1

Npq
:

Finally, the normalization constant P.Qn/ can be calculated making use of

the integral

Z 1

�1
e�ax2dx D

p

�=a:

Enforcing the normalization condition of the probability distribution function,

Z 1

�1
P.Qn/e� jB2j
n2

2 d
n D P.Qn/
s

2�

jB2j
D 1

we find that P.Qn/ D 1=
p
2�Npq. We are therefore now in a position to obtain

an approximation to the binomial distribution, valid when n� 1:

P.n/ D 1p
2�Npq

e
� .n�Np/2

2NPq :

ut



3.2 The Gaussian Distribution 43

Using the fact that the mean of the distribution is � D Np, and that the variance

is �2 D Npq, the approximation takes the form

P.n/ D 1p
2��2

e
� .n��/2

2�2 (3.10)

which is the standard form of the Gaussian distribution, in which n is a continuous

variable. Equation (3.10) read as P.n/ being the probability of occurrence of the

value n for a given random variable of mean � and variance �2. The Gaussian

distribution has the familiar “bell” shape, as shown in Fig. 3.2. When n becomes

a continuous variable, which we will call x, we talk about the probability of

occurrence of the variable in a given range x; x C dx. The Gaussian probability

distribution function is thus written as

f .x/dx D 1p
2��2

e
� .x��/2

2�2 dx: (3.11)

A Gaussian of mean � and variance �2 is often referred to as N.�; �/. The standard

Gaussian is one with zero mean and unit variance, indicated by N.0; 1/.

Fig. 3.2 Gaussian distribution with � D 50 and �2 D 12:5, corresponding to a binomial

distribution of p D q D 0:5, and N D 100. The Gaussian distribution is symmetrical around

the mean and therefore the mean, mode, and median coincide. The dotted lines around the mean

mark the ˙� range
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3.2.2 Moments and Properties of the Gaussian Distribution

The parameters � and �2 are, respectively, the mean and variance of the Gaussian

distribution. These results follow from the derivation of the Gaussian distribution

from the binomial, and can be confirmed by direct calculation of expectations from

(3.11). Central moments of odd order are zero, since the Gaussian is symmetric with

respect to the mean.

Given its wide use in statistics, it is important to quantify the “effective width”

of the Gaussian distribution around its mean. The half width at half maximum,

or HWHM, is defined as the range of x between the peak and the point where

P.x/ D 0:5P.�/. It can be easily shown that the HWHM has a size of approximately

1.18� , meaning that the half-maximum point is just past one standard deviation of

the mean. By the same token, the full-width at half maximum, or FWHM, is defined

as the range between the two points where P.x/ D 0:5P.�/. It is twice the HWHM,

or 2.35� in size. Tables of the Gaussian distribution are provided in Appendix A.1.

The range between the points x D �˙ � is a common measure of the effective

range of the random variable. The probability of a Gaussian variable to be in the

range from ��� to �C� is calculated as the integral of the probability distribution

function between those limits. In general, we define the integral

A.z/ D
Z �Cz�

��z�

f .x/dx D 1p
2�

Z z

�z

e
� x2

2 dx (3.12)

where f .x/ is the Gaussian distribution; this integral is related to the error function,

erf z D 1p
�

Z z

�z

e�x2dx: (3.13)

The function A.z/ is tabulated in Appendix A.1 The probability of the variable to

be within one � of the mean is A.1/ D 0:683, or 68.3 %. The range of x between

� � � and � C � therefore corresponds to a 68.3 % interval of probability, and it

is referred to as the 1� interval. The correspondence between the 1� interval and

the 68.3 % confidence interval applies strictly only to the Gaussian distribution, for

which the value of � is defined via the distribution function. It is common practice,

however, to calculate to the 68.3 % interval (sometimes shortened to 68 %) even for

those random variables that do not strictly follow a Gaussian distribution, and refer

to it as the 1� interval. The probability associated with characteristic intervals of a

Gaussian variable is also reported in Table 3.2.

The cumulative distribution of a Gaussian random variable N.0; 1/ is defined by

the following integral:

B.z/ D
Z z

�1

1p
2�

e
� x2

2 dxI (3.14)
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Table 3.2 Probability

associated with characteristic

intervals of a Gaussian

distribution

Interval Integrated probability

�� �; �C � (1� interval) 0.6827, or 68.27 %

�� 2�; �C 2� (2� interval) 0.9545, or 95.45 %

�� 3�; �C 3� (3� interval) 0.9973, or 99.73 %

�� 4�; �C 4� (4� interval) 0.9999, or 99.99 %

the integral can be calculated as B.z/ D 1=2CA.z/=2 for z > 0 and it is tabulated in

Table A.3. For z < 0, the table can be used to calculate the cumulative distribution

as B.z/ D 1 � B.�z/.

3.2.3 How to Generate a Gaussian Distribution

from a Standard Normal

All Gaussian distributions can be obtained from the standard N.0; 1/ via a simple

change of variable. If X is a random variable distributed like N.�; �/, and Z a

standard Gaussian N.0; 1/, then the relationship between Z and X is given by

Z D X � �
�

: (3.15)

The variable Z is also referred to as the z-score associated with the variable X. This

equation means that if we can generate samples from a standard normal, we can also

have samples from any other Gaussian distribution. If we call z a sample from Z,

then

x D � � zC � (3.16)

will be a sample drawn from X, according to the equation above. Many program-

ming languages have a built-in function to generate samples from a standard normal,

and this simple process can be used to generate samples from any other Gaussian. A

more general procedure to generate a given distribution from a uniform distribution

will be presented in Sect. 4.8.

3.3 The Poisson Distribution

The Poisson distribution describes the probability of occurrence of events in count-

ing experiments, i.e., when the possible outcome is an integer number describing

how many counts have been recorded. The distribution is therefore discrete and can

be derived as a limiting case of the binomial distribution.
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3.3.1 Derivation of the Poisson Distribution

The binomial distribution has another useful approximation in the case in which

p� 1, or when the probability of success is small. In this case, the number of

positive outcomes is much smaller than the number of tries, n� N, and the factorial

function can be approximated as

NŠ D N.N � 1/ � � � .N � nC 1/ � .N � n/Š ' Nn.N � n/Š:

We are also interested in finding an approximation for the qN�n term that appears

in the binomial. For this we set

ln qN�n D ln.1 � p/N�n D .N � n/ ln.1 � p/ ' �p.N � n/ ' �pN;

and therefore we obtain the approximation

qN�n ' e�pN :

These two approximations can be used into (3.4) to give

P.n/ ' Nn.N � n/Š

nŠ.N � n/Š
pne�pN D .pN/n

nŠ
e�pN : (3.17)

Since pN is the mean of the distribution, we can rewrite our approximation as

P.n/ D �n

nŠ
e��; (3.18)

known as the Poisson distribution. This function describes the probability of

obtaining n positive outcomes, or counts, when the expected number of outcomes is

�. It can be immediately seen that the distribution is properly normalized, since

1
X

nD0

�n

nŠ
D e�:

A fundamental feature of this distribution is that it is described by only one

parameter, the mean �, as opposed to the Gaussian distribution that had two

parameters. This clearly does not mean that the Poisson distribution has no

variance—in that case, it would not be a random variable!—but that the variance

can be written as function of the mean, as will be shown in the following.
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3.3.2 Properties and Interpretation of the Poisson Distribution

The approximations used in the derivation of (3.18) caused the loss of any reference

to the initial binomial experiment, and only the mean � D Np is present. Using

the definition of mean and variance, it is easy to prove that the mean is indeed �,

and that the variance is also equal to the mean, Var.n/ D �2 D �. The fact that the

mean equals the variance can be seen using the values for the binomial,� D Np and

�2 D Npq; since p � 1, q ' 1, and � ' �2. As a result, the Poisson distribution

has only one parameter.

The Poisson distribution can be interpreted as the probability of occurrence of n

events in the case of an experiment that detects individual counts, when the mean of

the counts is �. This makes the Poisson distribution the primary statistical tool for

all experiments that can be expressed in terms of the counting of a specific variable

associated with the experiment. Typical examples are the counting of photons or the

counting of plants with a given characteristic, etc. When an experiment can be cast

in terms of a counting experiment, even without a specific reference to an underlying

binary experiment, then the Poisson distribution will apply. All reference to the total

number of possible events (N) and the probability of occurrence of each event (p)

was lost because of the approximation used throughout, i.e., p << 1, and only the

mean � remains to describe the primary property of the counting experiment, which

is the mean or expectation for the number of counts.

As can be seen in Fig. 3.3, the Poisson distribution is not symmetric with respect

of the mean, and the distribution becomes more symmetric for larger values of

the mean. As for all discrete distributions, it is only meaningful to calculate the

probability at a specific point or for a set of points, and not for an interval of points

as in the case of continuous distributions. Moreover, the mean of the distribution

itself can be a non-integer number, and still the outcome of the experiment described

by the Poisson distribution can only take integer values.

Example 3.5 Consider an astronomical source known to produce photons, which

are usually detected by a given detector in the amount of � D 2:5 in a given time

interval. The probability of detecting n D 4 photons in a given time interval is

therefore

P.4/ D 2:54

4Š
e�2:5 D 0:134

The reason for such apparently large probability of obtaining a measurement that

differs from the expected mean is simply due to the statistical nature of the detection

process. }
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Fig. 3.3 Poisson distribution with � D 2, corresponding to a binomial distribution with p D 0:2

and N D 10. The dotted lines represent the mean, the �� � and �C � points

3.3.3 The Poisson Distribution and the Poisson Process

A more formal justification for the interpretation of the Poisson distribution as the

distribution of counting experiments comes from the Poisson process. Although

a complete treatment of this subject is beyond the scope of this book, a short

description of stochastic processes will serve to strengthen the interpretation of

(3.18), which is one of the foundations of statistics. More details on stochastic

processes can be found, for example, in the textbook by Ross [38].

A stochastic counting process fN.t/; t > 0g is a sequence of random variables

N.t/, in which t indicates time, and N.t/ is a random variable that indicates

the number of events occurred up to time t. The stochastic process can be

thought of as repeating the experiment of “counting the occurrence of a given

event” at various times t; N.t/ is the result of the experiment. The Poisson

process with rate � is a particular type of stochastic process, with the following

properties:

1. N.0/ D 0, meaning that at time 0 there are no counts detected.

2. The process has independent increments, meaning that N.t C s/ � N.s/ is

independent of N.t/; this is understood with the events occurring after time

t not being influenced by those occurring prior to it.
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3. The process has stationary increments, i.e., the distribution of the number

of events in an interval of time s depends only on the length of the time

interval itself.

4. P.N.h/ D 1/ D �h C o.h/ in which o.h/ is a function with the property

that

lim
h!0

o.h/

h
D 0:

5. P.N.h/ � 2/ D o.h/. The latter two properties mean that the probability of

obtaining one count depends on the finite value �, while it is unlikely that

two or more events occur in a short time interval.

It can be shown that under these hypotheses, the number of events N.t/

recorded in any interval of length t is Poisson distributed,

PfN.tC s/ � N.s/ D ng D .�t/n

nŠ
e��t (3.19)

This shows that the Poisson distribution is to be interpreted as the distribution

of occurrence of n events during a time interval t, under the hypothesis that

the rate of occurrence of events is �. This interpretation is identical to the

one provided above, given that � D �t is the mean of the counts in that time

interval.

3.3.4 An Example on Likelihood and Posterior Probability

of a Poisson Variable

The estimation of parameters of a random variable, such as the mean of the Poisson

distribution, will be treated in full detail in Chap. 5. Here we present a simple

application that consists of using available measurements to calculate the likelihood

and to make inferences on the unknown value of the parent mean � of a Poisson

variable. The following examples illustrate how a single measurement n of a Poisson

variable can be used to constrain the true mean �, and that care must be exercised

in not confusing the likelihood of a measurement with the posterior probability. We

assume for simplicity that the mean is an integer, although in general it may be any

real number.

Within the Bayesian framework, a counting experiment can be written in terms

of a dataset B, consisting of the measurement n of the variable, and events Ai,

representing the fact that the parent mean is � D i. It follows that the likelihood

can be written as

P.B=Ai/ D
in

nŠ
e�i:
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Example 3.6 (Calculation of Data Likelihood) A counting experiment results in

a detection of n D 4 units, and one wants to make a statement as to what is the

probability of such measurement. Using the Poisson distribution, the probability of

detecting 4 counts if, for example, � D 0, 1, or 2, is given by the likelihood

P.B=A012/ D
2
X

�D0

�4

4Š
e�� D 0C 1

4Š

1

e
C 24

4Š

1

e2
D 0:015C 0:091 D 0:106;

or 10.6 %; this is a likelihood of the data with models that assume a specific value

for the mean. Notice that if the true value of the mean is zero, there is absolutely

no probability of detecting any counts. One can thus conclude that there is slightly

more than a 10 % chance of detecting 4 counts, given that the source truly emits 2

or fewer counts. This is not, however, a statement of possible values of the parent

mean �. }
According to Bayes’ theorem, the posterior distributions are

P.Ai=B/ D P.B=Ai/P.Ai/

P.B/

where P.B=Ai/ is the likelihood, corresponding to each of the three terms in the

sum of the example above. In the following example, we determine posterior

probabilities.

Example 3.7 (Posterior Probability of the Poisson Mean) We want to calculate

the probability of the true mean being less or equal than 2, P.A012=B/, and start

by calculating the likelihoods required to evaluate P.B/. We make an initial and

somewhat arbitrary assumption that the mean should be � � 10, so that only

11 likelihoods must be evaluated. This assumption is dictated simply by practical

considerations, and can also be stated in terms of assuming a subjective prior

knowledge that the mean is somehow known not to exceed 10. We calculate

P.B/ '
10
X

iD0

i4

4Š
e�i � P.Ai/ D 0:979 � P.Ai/

Also, assuming uniform priors, we have P.Ai/ D 1=11 and that

P.A012=B/ D
P.Ai/ �

P2
iD0

i4

4Š
e�i

P.Ai/ � 0:979
D 1

0:979

2
X

iD0

i4

4Š
e�i D 0:108:

}
The examples presented in this section illustrate the conceptual difference between

the likelihood calculation and the estimate of the posterior, though the two calcula-

tions yielded similar numerical values.
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3.4 Comparison of Binomial, Gaussian, and Poisson

Distributions

In this section we provide numerical calculations that compare the binomial

and Gaussian functions, and also discuss under what circumstances the Poisson

distribution can be approximated by a Gaussian of same mean and variance. In fact

practical computations with the Poisson distribution are often hampered by the need

to calculate the factorial of large numbers. In Sect. 3.2 we derived the Gaussian

distribution from the binomial function, using the approximation that Np � 1. In

fact we assumed that the function has values n � 1 and, since the mean of the

binomial is � D Np, the value Np sets the order of magnitude for the values of the

random variable that have non-negligible probability. In the left panel of Fig. 3.4 we

show the binomial distribution with parameters p D q D 0:5, showing that for Np D
5 the approximation is already at the level of 1 % near the peak of the distribution.

The main limitation of the Poisson distribution (3.18) is the presence of the

factorial function, which becomes very rapidly a large number as function of the

integer n (for example, 20Š D 2:423 � 1018), and it may lead to overflow problems

in numerical codes. For large values of n, one can use the Stirling approximation to

the factorial function, which retains only the first term of the following expansion:

nŠ D
p
2�n � nne�n

�

1C 1

12n
C : : :

�

: (3.20)

Using this approximation for values of n � 10, the right panel of Fig. 3.4 shows two

Poisson distributions with mean of, respectively, 3 and 20, and the corresponding

Gaussian distributions with the same mean and of variance equal to the mean, as is

the case for the Poisson distribution. The difference between the Gaussian and the

Fig. 3.4 (Left) Binomial distributions with p D q D 0:5 and, respectively, N D 2 and N D 10 as

points connected by dashed line. Matching Gaussian distributions with same mean � D Np and

variance �2 D Npq (solid lines). (Right) Gaussian distribution with � D �2 D 3 and � D �2 D
20 (solid lines) and Poisson distributions with same mean as points connected by a dotted line
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Poisson distributions for a mean of � D 20 is at the percent level near the peak of

the distribution. The Poisson distribution retains its characteristic asymmetry and a

heavier tail at large values, and therefore deviations between the two function are

larger away from the mean where, however, the absolute value of the probability

becomes negligible. It can also be shown that for the value of x D �, the two

distributions have the same value, when the Stirling approximation is used for the

factorial function. A rule of thumb used by many is that for x � 20 the Gaussian

approximation to the Poisson distribution is acceptable.

The approximation of a Poisson distribution with a Gaussian distribution is of

great practical importance. Consider a counting experiment in which N counts are

measured. The parent distribution of the random variable of interest is Poisson

distributed and it is reasonable to assume that the best estimate of its mean is � D N

(but see Sect. 5.5.1 for a Bayesian approach that gives a slightly different answer).

For values of N > 20 or so, the standard deviation of the parent Poisson distribution

is therefore � D
p

N. The measurement can be reported at N ˙
p

N, where the

range of N ˙
p

N corresponds to the �˙ 1� interval for a Gaussian variable.

Summary of Key Concepts for this Chapter

� Binomial distribution: It describes the probability of occurrence of n

successes in N tries of a binary event,

P.n/ D
 

N

n

!

pnqN�n

(mean pN and variance pqN).

� Gaussian distribution: It is an approximation of the binomial distribution

when N is large,

f .x/dx D 1p
2��2

e
� .x��/2

2�2 dx

(mean � and variance �2).

� Poisson distribution: It is an approximation of the binomial distribution

when p� 1 that describes the probability of counting experiments,

P.n/ D �n

nŠ
e��

(mean and variance have a value of �).
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Problems

3.1 Consider the Gaussian distribution

f .x/ D 1p
2��2

e
� .x��/2

2�2 :

Calculate the mean and variance and show that all odd moments EŒ.X � �/n� of

order n �3 are zero.

3.2 Assume that scores from an I.Q. test follow a Gaussian distribution, and that the

scores are standardized in such a way that the mean is � D 100, and the standard

deviation is � D 15.

(a) Calculate the probability that an I.Q. score is greater or equal than 145.

(b) Calculate the probability that the mean I.Q. score of a sample of 100 persons,

chosen at random, is equal or larger than 105.

3.3 A coin is tossed ten times. Find

(a) The probability of obtaining 5 heads up and 5 tails up;

(b) The probability of having the first 5 tosses show heads up, and the final 5 tosses

show tails up;

(c) The probability to have at least 7 heads up.

3.4 In a given course, it is known that 7:3% of students fail.

(a) What is the expected number of failures in a class of 32 students?

(b) What is the probability that 5 or more students fail?

3.5 The frequency of twins in European population is about 12 in every 1000

maternities. Calculate the probability that there are no twins in 200 births, using

(a) the binomial distribution, and (b) the Poisson distribution.

3.6 Given the distribution of a Poisson variable N,

P.n/ D �n

nŠ
e��

show that the mean is given by � and that the variance is also given by �.

3.7 Consider Mendel’s experiment of Table 1.1 at page 9 and refer to the “Long vs.

short stem” data.

(a) Determine the parent distribution for the number of dominants.

(b) Calculate the uncertainty in the measurement of the number of plants that

display the dominant character.

(c) Determine the difference between the number of measured plants with the

dominant character and the expected number, in units of the standard deviation,

to show that this number has an absolute value of less than one.
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3.8 For Mendel’s experimental data in Table 1.1 at page 9, consider the overall

fraction of plants that display the dominant character, for all seven experiments

combined.

(a) Determine the parent distribution of the overall fraction X of plants with

dominant character and its expected value.

(b) Determine the sample mean of the fraction X;

(c) Using the parent variance of X, determine the value

z D x � EŒX�

�

which is the standardized difference between the measurement and the mean.

Assuming that the binomial distribution can be approximated by a Gaussian of

same mean and variance, calculate the probability of having a value of z equal

or smaller (in absolute value) to the measured value.



Chapter 4

Functions of Random Variables and Error

Propagation

Abstract Sometimes experiments do not directly measure the quantity of interest,

but rather associated variables that can be related to the one of interest by an analytic

function. It is therefore necessary to establish how we can infer properties of the

interesting variable based on properties of the variables that have been measured

directly. This chapter explains how to determine the probability distribution function

of a variable that is function of other variables of known distribution, and how to

measure its mean and variance, the latter usually referred to as error propagation

formulas. We also establish two fundamental results of the theory of probability, the

central limit theorem and the law of large numbers.

4.1 Linear Combination of Random Variables

Experimental variables are often related by a simple linear relationship. The linear

combination of N random variables Xi is a variable Y defined by

Y D
N
X

iD1
aiXi (4.1)

where ai are constant coefficients. A typical example of a variable that is a linear

combination of two variables is the signal detected by an instrument, which can be

thought of as the sum of the intrinsic signal from the source plus the background.

The distributions of the background and the source signals will influence the

properties of the total signal detected, and it is therefore important to understand

the statistical properties of this relationship in order to characterize the signal from

the source.

4.1.1 General Mean and Variance Formulas

The expectation or mean of the linear combination is EŒY� D
PN

iD1 aiEŒXi� or

�y D
N
X

iD1
ai�i; (4.2)
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where �i is the mean of Xi. This property follows from the linearity of the

expectation operator, and it is equivalent to a weighted mean in which the weights

are given by the coefficients ai.

In the case of the variance, the situation is more complex:

VarŒY� D E

2

4

 

N
X

iD1
aiXi �

N
X

iD1
ai�i

!2
3

5 D
N
X

iD1
a2i E

h

.Xi � �i/
2
i

C 2
N
X

iD1

N
X

jDiC1
aiajEŒ.Xi � �i/.Xj � �j/�

D
N
X

iD1
a2i Var.Xi/C 2

N
X

iD1

N
X

jDiC1
aiajCov.Xi;Xj/:

The result can be summarized in a more compact relationship,

�2y D
N
X

iD1
a2i �

2
i C 2

N
X

iD1

N
X

jDiC1
aiaj�

2
ij : (4.3)

Equation (4.3) shows that variances add only for variables that are mutually

uncorrelated, or �2ij D 0, but not in general. The following example illustrates the

importance of a non-zero covariance between two variables, and its effect on the

variance of the sum.

Example 4.1 (Variance of Anti-correlated Variables) Consider the case of the

measurement of two random variables X and Y that are completely anti-correlated,

Corr.X;Y/ D �1, with mean and variance�x D 1,�y D 1, �2x D 0:5 and �2y D 0:5.

The mean of Z D X C Y is � D 1 C 1 D 2 and the variance is �2 D �2x C
�2y �2Cov.X;Y/ D .�x��y/

2 D 0; this means that in this extreme case of complete

anticorrelation the sum of the two random variables is actually not a random variable

any more. If the covariance term had been neglected in (4.3), we would have made

the error of inferring a variance of 1 for the sum. }

4.1.2 Uncorrelated Variables and the 1=
p

N Factor

For two or more uncorrelated variables the variances add linearly, according to (4.3).

Uncorrelated variables are common in statistics. For example, consider repeating the

same experiment a number N of times independently, and each time measurements

of a random variable Xi is made. After N experiments, one obtains N measurements

from identically distributed random variables (since they resulted from the same

type of experiment). The variables are independent, and therefore uncorrelated, if
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the experiments were performed in such a way that the outcome of one specific

experiment did not affect the outcome of another.

With N uncorrelated variables Xi all of equal mean � and variance �2, one is

often interested in calculating the relative uncertainty in the variable

Y D 1

N

N
X

iD1
Xi (4.4)

which describes the sample mean of N measurements. The relative uncertainty is

described by the ratio of the standard deviation and the mean,

�y

�y

D 1

N

p
�2 C � � � C �2

�
D 1p

N
� �
�

(4.5)

where we used the property that VarŒaX� D a2VarŒX� and the fact that both means

and variances add linearly. The result shows that the N measurements reduced the

relative error in the random variable by a factor of 1=
p

N, as compared with a single

measurement. This observation is a key factor in statistics, and it is the reason why

one needs to repeat the same experiment many times in order to reduce the relative

statistical error. Equation (4.5) can be recast to show that the variance in the sample

mean is given by

�2Y D
�2

N
(4.6)

where � is the sample variance, or variance associated with one measurement. The

interpretation is simple: one expects much less variance between two measurements

of the sample mean, than between two individual measurements of the variable,

since the statistical fluctuations of individual measurements average down with

increasing sample size.

Another important observation is that, in the case of completely correlated

variables, then additional measurements introduces no advantages, i.e., the relative

error does not decrease with the number of measurements. This can be shown with

the aid of (4.3), and is illustrated in the following example.

Example 4.2 (Variance of Correlated Variables) Consider the two measurements in

Example 4.1, but now with a correlation of 1. In this case, the covariance of the sum

is �2 D �2x C �2y C 2Cov.X;Y/ D .�x C �y/
2, and therefore the relative error in the

sum is

�

�
D .�x C �y/

�x C �y
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which is the same as the relative error of each measurement. Notice that the same

conclusion applies to the average of the two measurements, since the sum and the

average differ only by a constant factor of 1=2. }

4.2 The Moment Generating Function

The mean and the variance provide only partial information on the random variable,

and a full description would require the knowledge of all moments. The moment

generating function is a convenient mathematical tool to determine the distribution

function of random variables and its moments. It is also useful to prove the central

limit theorem, one of the key results of statistics, since it establishes the Gaussian

distribution as the normal distribution when a random variable is the sum of a large

number of measurements.

The moment generating function of a random variable X is defined as

M.t/ D EŒetX�; (4.7)

and it has the property that all moments can be derived from it, provided they exist

and are finite. Assuming a continuous random variable of probability distribution

function f .x/, the moment generating function can be written as

M.t/ D
Z C1

�1
etxf .x/dx D

Z C1

�1

�

1C tx

1
C .tx/2

2Š
C : : :

�

f .x/dx D 1C t�1 C
t2

2Š
�2 C : : :

and therefore all moments can be obtained as partial derivatives,

�r D
@rM.t/

@tr

ˇ

ˇ

ˇ

ˇ

tD0
: (4.8)

The most important property of the moment generating function is that there

is a one-to-one correspondence between the moment generating function and the

probability distribution function, i.e., the moment generating function is a sufficient

description of the random variable. Some distributions do not have a moment

generating function, since some of their moments may be infinite, so in principle

this method cannot be used for all distributions.
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4.2.1 Properties of the Moment Generating Function

A full treatment of mathematical properties of the moment generating function can

be found in textbooks on theory of probability, such as [38]. Two properties of the

moment generating function will be useful in the determination of the distribution

function of random variables:

• If Y D aC bX, where a, b are constants, the moment generating function of Y is

My.t/ D eatMx.bt/: (4.9)

Proof This relationship can be proved by the use of the expectation

operator, according to the definition of the moment generating function:

EŒetY � D EŒet.aCbX/� D EŒeatebtX� D eatMx.bt/:

ut
• If X and Y are independent random variables, with Mx.t/ and My.t/ as moment

generating functions, then the moment generating function of Z D X C Y is

Mz.t/ D Mx.t/My.t/: (4.10)

Proof The relationship is derived immediately by

EŒetZ � D EŒet.XCY/� D Mx.t/My.t/:

ut

4.2.2 The Moment Generating Function of the Gaussian

and Poisson Distribution

Important cases to study are the Gaussian distribution of mean � and variance �2

and the Poisson distribution of mean �.

• The moment generating function of the Gaussian is given by

M.t/ D e
�tC 1

2
�2t2
: (4.11)
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Proof Start with

M.t/ D 1p
2��2

Z C1

�1
etxe

� .x��/2
2�2 dx:

The exponent can be written as

tx � 1
2

x2 C �2 � 2x�

�2
D 2�2tx � x2 � �2 C 2x�

2�2

D � .x � � � �
2t/2

2�2
C 2��2t

2�2
C �2t

2�2
�2t:

It follows that

M.t/ D 1p
2��2

Z C1

�1
e�te

�2t2

2 e
� .x����2t/2

2�2 dx

D 1p
2��2

e�te
�2t2

2

p
2��2 D e

�tC
�2t2

2 :

ut
• The moment generating function of the Poisson distribution is given by

M.t/ D e��e�et

: (4.12)

Proof The moment generating function is obtained by

M.t/ D EŒetN � D
1
X

nD0
ent�

n

nŠ
e�� D e��

1
X

nD0

.�et/n

nŠ
D e��e�et

:

ut
Example 4.3 (Sum of Poisson Variables) The moment generating function can be

used to show that the sum of two independent Poisson random variables of mean �

and� is a Poisson random variable with mean �C�. In fact that mean of the Poisson

appears at the exponent of the moment generating function, and property (4.10),

can be used to prove this result. The fact that the mean of two independent Poisson

distributions will add is not surprising, given that the Poisson distribution relates to

the counting of discrete events. }
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4.3 The Central Limit Theorem

The Central Limit Theorem is one of statistic’s most important results, establishing

that a variable obtained as the sum of a large number of independent variables has a

Gaussian distribution. This result can be stated as:

Theorem 4.1 (Central Limit Theorem) The sum of a large number of indepen-

dent random variables is approximately distributed as a Gaussian. The mean of

the distribution is the sum of the means of the variables and the variance of the

distribution is the sum of the variances of the variables. This result holds regardless

of the distribution of each individual variable.

Proof Consider the variable Y as the sum of N variables Xi of mean �i and

variance �2i ,

Y D
N
X

iD1
Xi; (4.13)

with Mi.t/ the moment generating function of the random variable .Xi � �i/.

Since the random variables are independent, and independence is a stronger

statement than uncorrelation, it follows that the mean of Y is � D
P

�i, and

that variances likewise add linearly, �2 D
P

�2i . We want to calculate the

moment generating function of the variable Z defined by

Z D Y � �
�
D 1

�

N
X

iD1
.Xi � �i/:

The variable Z has a mean of zero and unit variance. We want to show that

Z can be approximated by a standard Gaussian. Using the properties of the

moment generating function, the moment generating function of Z is

M.t/ D
N
Y

iD1
Mi.t=�/:

The moment generating function of each variable .Xi � �i/=� is

Mi.t=�/ D 1C �.xi��i/

t

�
C �2i

2

� t

�

�2

C �i;3

3Š

� t

�

�3

C : : :

where �xi��i
D 0 is the mean of Xi � �i. The quantities �2i and �i;3 are,

respectively, the central moments of the second and third order of Xi.
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If a large number of random variables are used, N � 1, then �2 is large, as

it is the sum of variances of the random variables, and we can ignore terms of

order ��3. We therefore make the approximation

ln M.t/ D
X

ln Mi

� t

�

�

D

X

ln

�

1C �2i
2

� t

�

�2
�

'
X �2i

2

� t

�

�2

D 1

2
t2:

This results in the approximation of the moment generating function of

.y � �/=� as

) M.t/ ' e
t2

2 ;

which shows that Z is approximately distributed as a standard Gaussian

distribution, according to (4.11). Given that the random variable of interest

Y is obtained by a change of variable Z D .Y � �/=� , we also know that

�y D � and Var.Y/ D Var.�Z/ D �2Var.Z/ D �2, therefore Y is distributed

as a Gaussian with mean � and variance �2. ut

The central limit theorem establishes that the Gaussian distribution is the limiting

distribution approached by the sum of random variables, no matter their original

shapes, when the number of variables is large. A particularly illustrative example

is the one presented in the following, in which we perform the sum of a number

of uniform distributions. Although the uniform distribution does not display the

Gaussian-like feature of a centrally peaked distribution, with the increasing number

of variables being summed, the sum rapidly approaches a Gaussian distribution.

Example 4.4 (Sum of Uniform Random Variables) We show that the sum of N

independent uniform random variables between 0 and 1 tend to a Gaussian with

mean N=2, given that each variable has a mean of 1=2. The calculation that the sum

of N uniform distribution tends to the Gaussian can be done by first calculating the

moment generating function of the uniform distribution, then using the properties

of the moment generating function.

We can show that the uniform distribution in the range Œ0; 1� has �i D 1=2, �2i D
1=12, and a moment generating function

Mi.t/ D
.et � 1/

t
I

the sum of N independent such variables therefore has � D N=2 and �2 D N=12.

To prove that the sum is asymptotically distributed like a Gaussian with this mean

and variance, we must show that

lim
N!1

M.t/ D e
N
2

tC t2

2
N
12
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Proof Using the property of the moment generating function of independent

variables, we write

M.t/ D Mi.t/
N D

�

1

t
.et � 1/

�N

D
�

1C tC t2=2ŠC t3=3Š : : : : � 1
t

�N

'
�

1C t

2
C t2

6
C : : :

�N

:

Neglect terms of order O.t3/ and higher, and work with logarithms:

ln.M.t/N/ ' N ln

�

1C t

2
C t2

6

�

Use the Taylor series expansion ln.1C x/ ' .x � x2=2C : : :/, to obtain

ln.Mi.t// ' N

 

t

2
C t2

6
� 1
2

�

t

2
C t2

6

�2
!

D

N.t=2C t2=6� t2=8C O.t3// ' N.t=2C t2=24/

in which we continued neglecting terms of order O.t3/. The equation above

shows that the moment generating function can be approximated as

M.t/ ' e
N

�

t
2

C t2

24

�

(4.14)

which is in fact the moment generating function of a Gaussian with mean N=2

and variance N=12. ut

In Figure 4.1 we show the simulations of, respectively, 1000 and 100,000 samples

drawn from N D 100 uniform and independent variables between 0 and 1. The

sample distributions approximate well the limiting Gaussian with � D N=2,

� D
p

N=12. The approximation is improved when a larger number of samples

are drawn, also illustrating the fact that the sample distribution approximates the

parent distribution in the limit of a large number of samples collected. }

Example 4.5 (Sum of Two Uniform Distributions) An analytic way to develop a

practical sense of how the sum of non-Gaussian distributions progressively develops

the peaked Gaussian shape can be illustrated with the sum of just two uniform

distributions. We start with a uniform distribution in the range of �1 to 1, which

can be shown to have

M.t/ D 1=.2t/.et � e�t/:
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Fig. 4.1 Sample distribution functions of the sum of N D 100 independent uniform variables

between 0 and 1, constructed from 1000 simulated measurements (grey histograms) and 100,000

measurements (histogram plot with black outline). The solid curve is the N.�; �/ Gaussian, with

� D N=2, � D p
N=12, the limiting distribution according to the Central Limit Theorem

The sum of two such variables will have a triangular distribution, given by the

analytical form

f .x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2
C x

4
if �2 � x � 0

1

2
� x

4
if 0 � x � 2:

This is an intuitive result that can be proven by showing that the moment generating

function of the triangular distribution is equal to M.t/2 (see Problem 4.3). The

calculation follows from the definition of the moment generating function for a

variable of known distribution function. The triangular distribution is the first step

in the development of a peaked, Gaussian-like distribution. }

4.4 The Distribution of Functions of Random Variables

The general case of a variable that is a more complex function of other variables can

be studied analytically when certain conditions are met. In this book we present

the method of change of variables which can be conveniently applied to one-

dimensional transformations and a method based on the cumulative distribution

function which can be used for multi-dimensional transformations. Additional

information on this subject can be found, e.g., in the textbook by Ross [38].
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4.4.1 The Method of Change of Variables

A simple method for obtaining the probability distribution function of the dependent

variable Y D Y.X/ is by using the method of change of variables, which applies only

if the function Y.x/ is strictly increasing. In this case the probability distribution of

g.y/ of the dependent variable is related to the distribution f .x/ of the independent

variable via

g.y/ D f .x/
dx

dy
(4.15)

In the case of a decreasing function, the same method can be applied but the term

dx=dy must be replaced with the absolute value, jdx=dyj.
Example 4.6 Consider a variable X distributed as a uniform distribution between 0

and 1, and the variable Y D X2. The method automatically provides the information

that the variable Y is distributed as

g.y/ D 1

2

1
p

y

with 0 � y � 1. You can prove that the distribution is properly normalized in this

domain. }
The method can be naturally extended to the joint distribution of several random

variables. The multi-variable version of (4.15) is

g.u; v/ D h.x; y/ jJj (4.16)

in which

J D
�

d.x; y/

d.u; v/

�

D

0

B

@

dx

du

dx

dv
dy

du

dy

dv

1

C

A

is the Jacobian of the transformation, in this case a 2 by 2 matrix, h.x; y/ is the

joint probability distribution of the independent variables X;Y, and U;V are the

new random variables related to the original ones by a transformation U D u.X;Y/

and V D v.X;Y/.
Example 4.7 (Transformation of Cartesian to Polar Coordinates) Consider two

random variables X,Y distributed as standard Gaussians, and independent of one

another. The joint probability distribution function is

h.x; y/ D 1

2�
e

� x2Cy2

2 :
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Consider a transformation of variables from Cartesian coordinates x; y to polar

coordinates r; � , described by

(

x D r � cos.�/

y D r � sin.�/

The Jacobian of the transformation is

J D
�

cos� �rsin�

sin� rcos�

�

and its determinant is jJj D r. Notice that to apply the method described by (4.16)

one only needs to know the inverse transformation of .x; y/ as function of .r; �/. It

follows that the distribution of .r; �/ is given by

g.r; �/ D 1

2�
re

� r2

2

for r � 0, 0 � � � 2� . The distribution re
� r2

2 is called the Rayleigh distribution,

and 1=2� can be interpreted as a uniform distribution for the angle � between 0

and � . One important conclusion is that, since g.r; �/ can be factored out into two

functions that contain separately the two variables r and � , the two new variables

are also independent. }

4.4.2 A Method for Multi-dimensional Functions

We will consider the case in which the variable Z is a function of two random

variables X and Y, since this is a case of common use in statistics, e.g., X C Y,

or X=Y. We illustrate the methodology with the case of the function Z D X C Y,

when the two variables are independent. The calculation starts with the cumulative

distribution function of the random variable of interest,

FZ.a/ D P.Z � a/ D
Z Z

xCy�a

f .x/g.y/dxdy

in which f .x/ and g.y/ are, respectively, the probability distribution functions of

X and Y, and the limits of integration must be chosen so that the sum of the two

variables is less or equal than a. The portion of parameter space such that xC y � a

includes all values x � a � y, for any given value of y, or

FZ.a/ D
Z C1

�1
dy

Z a�y

1
f .x/g.y/dx D

Z C1

�1
g.y/dyFx.a � y/
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where Fx is the cumulative distribution for the variable X. It is often more convenient

to express the relationship in terms of the probability distribution function, which is

related to the cumulative distribution function via a derivative,

fZ.a/ D
d

da
FZ.a/ D

Z 1

�1
f .a � y/g.y/dy: (4.17)

This relationship is called the convolution of the distributions f .x/ and g.y/.

Example 4.8 (Sum of Two Independent Uniform Variables) Calculate the probabil-

ity distribution function of the sum of two independent uniform random variables

between �1 andC1.

The probability distribution function of a uniform variable between �1 and C1
is f .x/ D 1=2, defined for �1 � x � 1. The convolution gives the following integral

fZ.a/ D
Z C1

�1

1

2
f .a � y/dy:

The distribution function of the sum Z can have values �2 � a � 2, and the

convolution must be divided into two integrals, since f .a�y/ is only defined between

�1 andC1. We obtain

fZ.a/ D
1

4
�
(

R aC1
�1 dy if �2 � a � 0
R 1

a�1 dy if 0 � a � 2:

This results in

fZ.a/ D
1

4
�
(

.aC 2/ if �2 � a � 0

.2 � a/ if 0 � a � 2

which is the expected triangular distribution between �2 andC2. }

Another useful application is for the case of Z D X=Y, where X and Y are

again independent variables. We begin with the cumulative distribution,

FZ.z/ D P.Z < z/ D P.X=Y < z/ D P.X < zY/:

For a given value y of the random variable Y, this probability equals FX.zy/;

since Y has a probability fY.y/dy to be in the range between y and yC dy, we

obtain

FZ.z/ D
Z

FX.zy/fY.y/dy:
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Following the same method as for the derivation of the distribution of X C Y,

we must take the derivative of FZ.z/ with respect to z to obtain:

fZ.z/ D
Z

fX.zy/yfY.y/dy: (4.18)

This is the integral than must be solved to obtain the distribution of X=Y.

4.5 The Law of Large Numbers

Consider N random variables Xi that are identically distributed, and � is their

common mean. The Strong Law of Large Numbers states that, under suitable

conditions on the variance of the random variables, the sum of the N variables tends

to the mean �, which is a deterministic number and not a random variable. This

result can be stated as

lim
n!1

X1 C : : :C XN

N
D �; (4.19)

and it is, together with the Central Limit Theorem, one of the most important results

of the theory of probability, and of great importance for statistics. Equation (4.19)

is a very strong statement because it shows that, asymptotically, the sum of random

variables becomes a constant equal to the sample mean of the N variables, or N

measurements. Although no indication is given towards establishing how large N

should be in order to achieve this goal, it is nonetheless an important result that will

be used in determining the asymptotic behavior of random variables. Additional

mathematical properties of this law can be found in books of theory of probability,

such as [38] or [26].

Instead of providing a formal proof of this law, we want to focus on an important

consequence. Given a function y.x/, we would like to estimate its expected value

EŒy.X/� from the N measurements of the variables Xi. According to the law of large

numbers, we can say that

lim
n!1

y.X1/C : : :C y.XN/

N
D EŒy.X/�: (4.20)

Equation (4.20) states that a large number of measurements of the variables Xi can

be used to measure the expectation of EŒy.X/�, entirely bypassing the probability

distribution function of the function y.X/. This property is used in the following

section.
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4.6 The Mean of Functions of Random Variables

For a function of random variables it is often necessary or convenient to develop

methods to estimate the mean and the variance without having full knowledge of its

probability distribution function.

For functions of a single variable Y D y.X/

EŒy.X/� D
Z

y.x/f .x/dx (4.21)

where f .x/ is the distribution function of X. This is in fact a very intuitive result,

stating that the distribution function of X is weighted by the function of interest, and

it makes it straightforward to compute expectation values of variables without first

having to calculate their full distribution. According to the law of large numbers,

this expectation can be estimated from N measurements xi as per (4.20),

y.x/ D y.x1/C : : :C y.xn/

N
: (4.22)

An important point is that the mean of the function is not equal to the function of the

mean, y.x/ ¤ y.x/, as will be illustrated in the following example. Equation (4.22)

says that we must have access to the individual measurements of the variable X, if

we want to make inferences on the mean of a function of X. If, for example, we only

had the mean x, we cannot measure u.x/. This point is relevant when one has limited

access to the data, e.g., when the experimenter does not report all information on the

measurements performed.

Example 4.9 (Mean of Square of a Uniform Variable) Consider the case of a

uniform variable U in the range 0–1, with mean 1=2. If we want to evaluate the

parent mean of X D U2, we calculate

� D
Z 1

0

u2du D 1=3:

It is important to see that the mean of U2 is not just the square of the mean of U,

and therefore the means do not transform following the same analytic expression as

the random variables. You can convince yourself of this fact by assuming to draw

five “fair” samples from a uniform distribution, 0:1; 0:3; 0:5; 0:7 and 0:9—they can

be considered as a dataset of measurements. Clearly their mean is 1=2, but the mean

of their squares is 1=3 and not 1=4, in agreement with the theoretical calculation of the

parent mean. }
Another example where the mean of the function does not equal to the function

of the mean is reported in Problem 4.5, in which you can show that using the means

of I and W=Q do not give the mean of m=e for the Thomson experiment to measure

the mass to charge ratio of the electron. The problem provides a multi-dimensional
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extension to (4.22), since the variable m=e is a function of two variables that have

been measured in pairs.

4.7 The Variance of Functions of Random Variables

and Error Propagation Formulas

A random variable Z that is a function of other variables can have its variance

estimated directly if the measurements of the independent variables are available,

similar to the case of the estimation of the mean. Considering, for example, the

case of a function Z D z.U/ that depends on just one variable, for which we have

N measurements u1, . . . , uN available. With the mean estimated from (4.22), the

variance can accordingly be estimated as

s2u D
.z.u1/ � z/2 C : : :C .z.uN/� z/2

N � 1 ; (4.23)

as one would normally do, treating the numbers z.u1/, . . . , z.uN/ as samples from

the dependent variable. This method can naturally be extended to more than one

variable, as illustrated in the following example. When the measurements of the

independent variables are available, this method is the straightforward way to

estimate the variance of the function of random variables.

Example 4.10 Using the Thomson experiment described on page 23, consider the

data collected for Tube 1, consisting of 11 measurements of W=Q and I, from which

the variable of interest v is calculated as

v D 2W=Q

I

From the reported data, one obtains 11 measurements of v, from which the mean

and standard deviation can be immediately calculated as v D 7:9 � 109, and sv D
2:8 � 109. }

There are a number of instances in which one does not have access to the original

measurements of the independent variable or variables, required for an accurate

estimate of the variance according to (4.23). In this care, an approximate method

to estimate the variance must be used instead. This method takes the name of

error propagation. Consider a random variable Z that is a function of a number

of variables, Z D z.U;V; : : :/. A method to approximate the variance of Z in terms

of the variance of the independent variables U, V , etc. starts by expanding Z in a
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Taylor series about the means of the independent variables, to obtain

z.u; v; : : :/ D z.�u; �v; : : :/C .u � �u/
@z

@u

ˇ

ˇ

ˇ

ˇ

�u

C .v � �v/
@z

@v

ˇ

ˇ

ˇ

ˇ

�v

C : : :C O.u � �u/
2 C O.v � �v/2 C : : :

Neglecting terms of the second order, the expectation of Z would be given

by EŒZ� D z.�u; �v; : : :/, i.e., the mean of X would be approximated as �X D
z.�u; �v; : : :/. This is true only if the function is linear, and we have shown in

Sect. 4.6 that this approximation may not be sufficiently accurate in the case of

nonlinear functions such as U2. This approximation for the mean is used to estimate

the variance of Z, for which we retain only terms of first order in the Taylor

expansion:

EŒ.Z � EŒZ�/2� ' E

2

4

 

.u � �u/
@z

@u

ˇ

ˇ

ˇ

ˇ

�u

C .v � �v/
@z

@v

ˇ

ˇ

ˇ

ˇ

�v

C : : :
!2
3

5

' E

2

4

 

.u � �u/
@z

@u

ˇ

ˇ

ˇ

ˇ

�u

!2  

.v � �v/
@z

@v

ˇ

ˇ

ˇ

ˇ

�v

!2

C 2.u� �u/
@z

@u

ˇ

ˇ

ˇ

ˇ

�u

� .v � �v/
@z

@v

ˇ

ˇ

ˇ

ˇ

�v

C : : :

3

5 :

This formula can be rewritten as

�2X ' �2u
@f

@u

ˇ

ˇ

ˇ

ˇ

2

�u

C �2v
@f

@v

ˇ

ˇ

ˇ

ˇ

2

�v

C 2 � �2uv
@f

@u

ˇ

ˇ

ˇ

ˇ

�u

@f

@v

ˇ

ˇ

ˇ

ˇ

�v

C : : : (4.24)

which is usually referred to as the error propagation formula, and can be used

for any number of independent variables. This result makes it possible to estimate

the variance of a function of variable, knowing simply the variance of each of the

independent variables and their covariances. The formula is especially useful for all

cases in which the measured variables are independent, and all that is known is their

mean and standard deviation (but not the individual measurements used to determine

the mean and variance). This method must be considered as an approximation when

there is only incomplete information about the measurements. Neglecting terms of

the second order in the Taylor expansion can in fact lead to large errors, especially

when the function has strong nonlinearities. In the following we provide a few

specific formulas for functions that are of common use.
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4.7.1 Sum of a Constant

Consider the case in which a constant a is added to the variable U,

Z D U C a

where a is a deterministic constant which can have either sign. It is clear that

@z=@a D 0, @z=@u D 1, and therefore the addition of a constant has no effect on

the uncertainty of X,

�2z D �2u : (4.25)

The addition or subtraction of a constant only changes the mean of the variable

by the same amount, but leaves its standard deviation unchanged.

4.7.2 Weighted Sum of Two Variables

The variance of the weighted sum of two variables,

Z D aU C bV

where a, b are constants of either sign, can be calculated using @z=@u D a,

@z=@v D b. We obtain

�2z D a2�2u C b2�2v C 2ab�2uv: (4.26)

The special case in which the two variables U, V are uncorrelated leads to the

weighted sum of the variances.

Example 4.11 Consider a decaying radioactive source which is found to emit N1 D
50 counts and N2 D 35 counts in two time intervals of same duration, during which

B D 20 background counts are recorded. This is an idealized situation in which we

have directly available the measurement of the background counts. In the majority

of real-life experiments one simply measures the sum of signal plus background,

and in those cases additional considerations must be used. We want to calculate the

background subtracted source counts in the two time intervals and estimate their

signal-to-noise ratio, defined as S=N D �=� . The inverse of the signal-to-noise

ratio is the relative error of the variable.

Each random variable N1, N2, and B obeys the Poisson distribution, since it comes

from a counting process. Therefore, we can estimate the following parent means and
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variances from the sample measurements,

8

ˆ

ˆ

<

ˆ

ˆ

:

�1 D 50 �1 D
p
50 D 7:1

�2 D 35 �2 D
p
35 D 5:9

�B D 20 �B D
p
20 D 4:5

Since the source counts are given by S1 D N1 � B and S2 D N2 � B, we can now

use the approximate variance formulas assuming that the variables are uncorrelated,

�S1 D
p
50C 20 D 8:4 and �S2 D

p
35C 20 D 7:4. The two measurements

of the source counts would be reported as S1 D 30 ˙ 8:4 and S2 D 15 ˙ 7:4,

from which the signal-to-noise ratios are given, respectively, as �S1=�S1 D 3:6 and

�S2=�S2 D 2:0. }

4.7.3 Product and Division of Two Random Variables

Consider the product of two random variables U, V , optionally also with a constant

factor a of either sign,

Z D aUV: (4.27)

The partial derivatives are @z=@u D av, @z=@v D au, leading to the approximate

variance of

�2z D a2v2�2u C a2u2�2v C 2auv�2uv:

This can be rewritten as

�2z

z2
D �2u

u2
C �2v
v2
C 2�

2
uv

uv
: (4.28)

Similarly, the division between two random variables,

Z D a
U

V
; (4.29)

leads to

�2z

z2
D �2u

u2
C �2v
v2
� 2�

2
uv

uv
: (4.30)
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Notice the equations for product and division differ by just one sign, meaning

that a positive covariance between the variables leads to a reduction in the standard

deviation for the division, and an increase in the standard deviation for the product.

Example 4.12 Using the Thomson experiment of page 23, consider the data for

Tube 1, and assume that the only number available are the mean and standard

deviation of W=Q and I. From these two numbers we want to estimate the mean and

variance of v. The measurement of the two variables are W=Q D 13:3˙ 8:5� 1011
and I D 312:9 ˙ 93:4, from which the mean of v would have to be estimated as

v D 8:5 � 109—compare with the value of 7:9 � 109 obtained from the individual

measurements.

The estimate of the variance requires also a knowledge of the covariance between

the two variables W=Q and I. In the absence of any information, we will assume that

the two variables are uncorrelated, and use the error propagation formula to obtain

�v ' 2 �
13:3 � 1011
312:9

�
 

�

8:5

13:3

�2

C
�

93:4

312:9

�2
!1=2

D 6 � 109;

which is a factor of 2 larger than estimated directly from the data (see Exam-

ple 4.10). Part of the discrepancy is to be attributed to the neglect of the covariance

between the measurement, which can be found to be positive, and therefore

would reduce the variance of v according to (4.30). Using this approximate

method, we would estimate the measurement as v D 8:5 ˙ 6 � 109, instead of

7:9˙ 2:8 � 109. }

4.7.4 Power of a Random Variable

A random variable may be raised to a constant power, and optionally multiplied by

a constant,

Z D aUb (4.31)

where a and b are constants of either sign. In this case, @z=@u D abub�1 and the

error propagation results in

�z

z
D jbj�u

u
: (4.32)

This results states that the relative error in Z is b times the relative error in U.
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4.7.5 Exponential of a Random Variable

Consider the function

Z D aebU; (4.33)

where a and b are constants of either sign. The partial derivative is @z=@u D abebu,

and we obtain

�z

z
D jbj�u: (4.34)

4.7.6 Logarithm of a Random Variable

For the function

Z D a ln.bU/; (4.35)

where a is a constant of either sign, and b > 0. The partial derivative is @z=@u D
a=U, leading to

�z D jaj
�u

u
: (4.36)

A similar result applies for a base-10 logarithm,

Z D a log.bU/; (4.37)

where a is a constant of either sign, and b > 0. The partial derivative is @z=@u D
a=.U ln.10//, leading to

�z D jaj
�u

u ln.10/
: (4.38)

Similar error propagation formulas can be obtained for virtually any analytic

function for which derivatives can be calculated. Some common formulas are

reported for convenience in Table 4.1, where the terms z, u, and v refer to the random

variables evaluated at their estimated mean value.

Example 4.13 With reference to Example 4.11, we want to give a quantitative

answer to the following question: what is the probability that during the second

time interval the radioactive source was actually detected? In principle a fluctuation

of the number of background counts could give rise to all detected counts.
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Table 4.1 Common error propagation formulas

Function Error propagation formula Notes

Z D U C a �2z D �2u a is a constant

Z D aU C bV �2z D a2�2u C b2�2b C 2ab�2uv a, b are constants

Z D aUV
�2z

z2
D �2u

u2
C �2v
v2

C 2
�2uv

uv
a is a constant

Z D a
U

V

�2z

z2
D �2u

u2
C �2v
v2

� 2
�2uv
uv

a is a constant

Z D aUb
� z

z
D b

�u

u
a, b are constants

Z D aebU
� z

z
D jbj�u a, b are constants

Z D a ln.bU/ �z D jaj� u

u
a, b are constants, b > 0

Z D a log.bU/ �z D jaj � u

u ln.10/
a, b are constants, b > 0

A solution to this question can be provided by stating the problem in a Bayesian

way:

P(detection)D P(S2 > 0/data)

where the phrase “data” refers also to the available measurement of the background

where S2 D N2 � B is the number of source counts. This could be elaborated by

stating that the data were used to estimate a mean of 15 and a standard deviation

of 7.4 for S2, and therefore we want to calculate the probability to exceed zero for

such random variable. We can use the Central Limit Theorem to say that the sum

of two random variables—each approximately distributed as a Gaussian since the

number of counts is sufficiently large—is Gaussian, and the probability of a positive

detection of the radioactive source therefore becomes equivalent to the probabil-

ity of a Gaussian-distributed variable to have values larger than approximately

� � 2� . According to Table A.3, this probability is approximately 97.7 %. We can

therefore conclude that source were detected in the second time period with such

confidence. }

4.8 The Quantile Function and Simulation of Random

Variables

In data analysis one often needs to simulate a random variable, that is, drawing

random samples from a parent distribution. The simplest such case is the generation

of a random number between two limits, which is equivalent to drawing samples

from a uniform distribution. In particular, several Monte Carlo methods including

the Markov chain Monte Carlo method discussed in Chap. 16 will require random
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variables with different distributions. Most computer languages and programs do

have available a uniform distribution, and thus it is useful to learn how to simulate

any distribution based on the availability of a simulator for a uniform variable.

Given a variable X with a distribution f .x/ and a cumulative distribution function

F.x/, we start by defining the quantile function F�1.p/ as

F�1.p/ D minfx"R; p � F.x/g (4.39)

with the meaning that x is the minimum value of the variable at which the cumulative

distribution function reaches the value 0 � p � 1. The word “minimum” in the

definition of the quantile function is necessary to account for those distributions that

have steps—or discontinuities—in their cumulative distribution, but in the more

common case of a strictly increasing cumulative distribution, the quantile function

is simply defined by the relationship p D F.x/. This equation can be solved for x, to

obtain the quantile function x D F�1.p/.

Example 4.14 (Quantile Function of a Uniform Distribution) For a uniform vari-

able in the range 0–1, the quantile function has a particularly simple form. In fact,

F.x/ D x, and the quantile function defined by the equation p D F.x/ yields x D p,

and therefore

x D F�1.p/ D p: (4.40)

Therefore the analytical form of both the cumulative distribution and the quantile

function is identical for the uniform variable in 0–1, meaning that, e.g., the value

0.75 of the random variable is the p D 0:75, or 75 % quantile of the distribution. }
The basic property of the quantile function can be stated mathematically as

p � F.x/, x � F�1.p/ (4.41)

meaning that the value of F�1.p/ is the value x at which the probability of having

X � x is p.

Example 4.15 (Quantile Function of an Exponential Distribution) Consider a ran-

dom variable distributed like an exponential,

f .x/ D �e��x;

with x � 0. Its cumulative distribution function is

F.x/ D 1� e��x:

The quantile function is obtained from,

p D F.x/ D 1 � e��x;
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Fig. 4.2 Distribution function f .x/, cumulative distribution F.x/, and quantile function F�1.p/ of

an exponential variable with � D 1=2

leading to x D ln.1� p/=.��/, and therefore the quantile function is

x D F�1.p/ D ln.1 � p/

�� :

Figure 4.2 shows the cumulative distribution and the quantile function for the

exponential distribution. }

4.8.1 General Method to Simulate a Variable

The method to simulate a random variable is summarized in the following equation,

X D F�1.U/; (4.42)

which states that any random variable X can be expressed in terms of the uniform

variable U between 0 and 1, F is the cumulative distribution of the variable X,

and F�1 is the quantile function. If a closed analytic form for F is available for

that distribution, this equation results in a simple method to simulate the random

variable.

Proof We have already seen that for the uniform variable the quantile

function is F�1.U/ D U, i.e., it is the uniform random variable itself. The

proof therefore simply consists of showing that, assuming (4.42), then the

cumulative distribution of X is indeed F.X/, or P.X � x/ D F.x/. This can be

shown by writing

P.X � x/ D P.F�1.U/ � x/ D P.U � F.x// D F.x/;
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in which the second equality follows from the definition of the quantile

function, and the last equality follows from the fact that P.U � u/ D u,

for u a number between 0 and 1, for a uniform variable. ut

Example 4.16 (Simulation of an Exponential Variable) Consider a random variable

distributed like an exponential, f .x/ D �e��x, x � 0. Given the calculations

developed in the example above, the exponential variable can be simulated as

X D ln.1 �U/

�� :

Notice that, although this relationship is between random variables, its practical

use is to draw random samples u from U, and a random sample x from X is obtained

by simply using the equation

x D ln.1 � u/

�� :

Therefore, for a large sample of values u, the above equation returns a random

sample of values for the exponential variable X. }
Example 4.17 (Simulation of the Square of Uniform Variable) It can be proven

that the simulation of the square of a uniform random variable Y D U2 is indeed

achieved by squaring samples from a uniform distribution, a very intuitive result.

In fact, we start with the distribution of Y as g.y/ D 1=2 y�1=2. Since its

cumulative distribution is given by G.y/ D py, the quantile function is defined

by p D py, or y D p2 and therefore the quantile function for U2 is

y D G�1.p/ D p2:

This result, according to (4.42), defines U2, or the square of a uniform distribution,

as the function that needs to be simulated to draw fair samples from Y. }

4.8.2 Simulation of a Gaussian Variable

This method of simulation of random variables relies on the knowledge of F.x/ and

the fact that such a function is analytic and invertible. In the case of the Gaussian

distribution, the cumulative distribution function is a special function,

F.x/ D 1

2�

Z x

�1
e

� x2

2 dx

which cannot be inverted analytically. Therefore, this method cannot be applied.

This complication must be overcome, given the importance of Gaussian distribution
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in probability and statistics. Fortunately, a relatively simple method is available

that permits the simulation of two Gaussian distributions from two uniform random

variables.

In Sect. 4.4 we showed that the transformation from Cartesian to polar coordi-

nates results in two random variables R; � that are distributed, respectively, like a

Rayleigh and a uniform distribution:

8

ˆ

<

ˆ

:

h.r/ D re
� r2

2 r � 0
i.�/ D 1

2�
0 � � � 2�:

(4.43)

Since these two distributions have an analytic form for their cumulative distribu-

tions, R and � can be easily simulated. We can then use the transformation given

by (4.7) to simulate a pair of independent standard Gaussians. We start with the

Rayleigh distribution, for which the cumulative distribution function is

H.r/ D 1 � e
� r2

2 :

The quantile function is given by

p D 1 � e
� r2

2 ;

and from this we obtain

r D
p

�2 ln.1 � p/ D H�1.p/

and therefore R D
p

�2 ln.1 � U/ simulates a Rayleigh distribution, given the

uniform variable U. For the uniform variable �, it is clear that the cumulative

distribution is given by

I.�/ D
(

�=.2�/ 0 � � � 2�
0 otherwiseI

the quantile function is � D 2�p D I�1.p/, and therefore � D 2�V simulates a

uniform distribution between 0 and 2� , with V the uniform distribution between 0

and 1.

Therefore, with the use of two uniform distributions U, V , we can use R and �

to simulate a Rayleigh and a uniform angular distribution

(

R D
p

�2 ln.1� U/

� D 2�V:
(4.44)
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Then, using the Cartesian-Polar coordinate transformation, we arrive at the formulas

needed to simulate a pair of Gaussians X and Y:

(

X D R cos.�/ D
p

�2 ln.1 � U/ � cos.2�V/

Y D R sin.�/ D
p

�2 ln.1 �U/ � sin.2�V/
(4.45)

Equations (4.45) can be easily implemented by having available two simultaneous

and independent uniform variables between 0 and 1.

Summary of Key Concepts for this Chapter

� Linear combination of variables: The formulas for the mean and variance

of the linear combination of variables are
(

� D
P

ai�i

�2 D
PN

iD1 a2i �
2
i C 2

PN
iD1

PN
jDiC1 aiaj�

2
ij

� Variance of uncorrelated variables: When variables are uncorrelated

the variances add linearly. The variance of the mean of N independent

measurements is �2Y D �2=N.

� Moment generating function: It is a mathematical function that enables the

calculation of moments of a distribution, M.t/ D EŒetX�.

� Central Limit theorem: The sum of a large number of independent

variables is distributed like a Gaussian of mean equal to the sum of the

means and variance equal to the sum of the variances.

� Method of change of variables: A method to obtain the distribution

function of a variable Y that is a function of another variable X, g.y/ D
f .x/dx=dy.

� Law of Large Numbers: The sum of a large number of random variables

with mean � tends to a constant number equal to �.

� Error propagation formula: It is an approximation for the variance of

a function of random variables. For a function x D f .u; v/ of two

uncorrelated variables U and V , the variance of X is given by

�2x D �2u
@f

@u

ˇ

ˇ

ˇ

ˇ

2

C �2v
@f

@v

ˇ

ˇ

ˇ

ˇ

2

� Quantile function: It is the function x D F�1.p/ used to find the value x of

a variable that corresponds to a given quantile p.

� Simulation of a Gaussian: Two Gaussians can be obtained from two

uniform random variables U;V via

(

X D
p

�2 ln.1 �U/ cos.2�V/

Y D
p

�2 ln.1 �U/ sin.2�V/
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Problems

4.1 Consider the data from Thomson’s experiment of Tube 1, from page 23.

(a) Calculate the mean and standard deviation of the measurements of v.

(b) Use the results from Problem 2.3, in which the mean and standard deviation of

W=Q and I were calculated, to calculate the approximate values of mean and

standard deviation of v using the relevant error propagation formula, assuming

no correlation between the two measurements.

This problem illustrates that the error propagation formulas may give different

results than direct measurement of the mean and variance of a variable, when the

individual measurements are available.

4.2 Calculate the mean, variance, and moment generating function M.t/ for a

uniform random variable in the range 0–1.

4.3 Consider two uniform independent random variables X, Y in the range �1
to 1.

(a) Determine the distribution function, mean and variance, and the moment

generating function of the variables.

(b) We speculate that the sum of the two random variables is distributed like a

“triangular” distribution between the range �2 to 2, with distribution function

f .x/ D

8

ˆ

<

ˆ

:

1

2
C x

4
if �2 � x � 0

1

2
� x

4
if 0 � x � 2

Using the moment generation function, prove that the variable Z D X C Y is

distributed like the triangular distribution above.

4.4 Using a computer language of your choice, simulate the sum of N D 100

uniform variables in the range 0–1, and show that the sampling distribution of the

sum of the variables is approximately described by a Gaussian distribution with

mean equal to the mean of the N uniform variables and variance equal to the sum of

the variances. Use 1,000 and 100,000 samples for each variable.

4.5 Consider the J.J. Thomson experiment of page 23.

(a) Calculate the sample mean and the standard deviation of m=e for Tube 1.

(b) Calculate the approximate mean and standard deviation of m=e from the mean

and standard deviation of W=Q and I, according to the equation

m

e
D I2

2

Q

W
I

Assume that W=Q and I are uncorrelated.
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4.6 Use the data provided in Example 4.11. Calculate the probability of a positive

detection of source counts S in the first time period (where there are N1 D 50

total counts and B D 20 background counts), and the probability that the source

emitted �10 source counts. You will need to assume that the measured variable can

be approximated by a Gaussian distribution.

4.7 Consider the data in the Thomson experiment for Tube 1 and the fact that the

variables W=Q and I are related to the variable v via the relationship

v D 2W

QI
:

Calculate the sample mean and variance of v from the direct measurements of this

variable, and then using the measurements of W=Q and I and the error propagation

formulas. By comparison of the two estimates of the variance, determine if there is

a positive or negative correlation between W=Q and I.

4.8 Provide a general expression for the error propagation formula when three

independent random variables are present, to generalize (4.24) that is valid for two

variables.



Chapter 5

Maximum Likelihood and Other Methods

to Estimate Variables

Abstract In this chapter we study the problem of estimating parameters of the

distribution function of a random variable when N observations of the variable

are available. We discuss methods that establish what sample quantities must be

calculated to estimate the corresponding parent quantities. This establishes a firm

theoretical framework that justifies the definition of the sample variance as an

unbiased estimator of the parent variance, and the sample mean as an estimator

of the parent mean. One of these methods, the maximum likelihood method, will

later be used in more complex applications that involve the fit of two-dimensional

data and the estimation of fit parameters. The concepts introduced in this chapter

constitute the core of the statistical techniques for the analysis of scientific data.

5.1 The Maximum Likelihood Method for Gaussian

Variables

Consider a random variable X distributed like a Gaussian. The probability of making

a measurement between xi and xi C dx is given by

f .xi/dx D 1p
2��2

e
� .xi��/2

2�2 dx:

This probability describes the likelihood of collecting the data point xi given that

the distribution has a fixed value of � and � . Assume now that N measurements of

the random variable have been made. The goal is to estimate the most likely values

of the true—yet unknown—values of � and � , the two parameters that determine

the distribution of the random variable. The method of analysis that follows this

principle is called the maximum likelihood method. The method is based on the

postulate that the values of the unknown parameters are those that yield a maximum

probability of observing the measured data. Assuming that the measurements are

made independently of one another, the quantity

P D
N
Y

iD1
P.xi/ D

N
Y

iD1

1p
2��2

e
�
.xi � �/2
2�2 (5.1)
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is the probability of making N independent measurements in intervals of unit length

around the values xi, which can be viewed as the probability of measuring the dataset

composed of the given N measurements.

The method of maximum likelihood consists therefore of finding the parameters

of the distribution that maximize the probability in (5.1). This is simply achieved

by finding the point at which the first derivative of the probability P with respect to

the relevant parameter of interest vanishes, to find the extremum of the function. It

can be easily proven that the second derivative with respect to the two parameters is

negative at the point of extremum, and therefore this is a point of maximum for the

likelihood function.

5.1.1 Estimate of the Mean

To find the maximum-likelihood estimate of the mean of the Gaussian distribution

we proceed with the calculation of the first derivative of ln P, instead of P, with

respect to the mean �. Given that the logarithm is a monotonic function of the

argument, maximization of ln P is equivalent to that of P, and the logarithm has the

advantage of ease of computation. We obtain

@

@�

N
X

iD1

.xi � �/2
2�2

D 0:

The solution is the maximum-likelihood estimator of the mean, which we define as

�ML, and is given by

�ML D
1

N

N
X

iD1
xi D x: (5.2)

This result was to be expected: the maximum likelihood method shows that the

“best” estimate of the mean is simply the sample average of the measurements.

The quantity �ML is a quantity that, despite the Greek letter normally reserved

for parent quantities, is a function of the measurements. Although it appears obvious

that the sample average is the correct estimator of the true mean, it is necessary to

prove this statement by calculating its expectation. It is clear that the expectation of

the sample average is in fact

EŒNx� D 1

N
EŒx1 C : : :C xN � D �;

This calculation is used to conclude that the sample mean is an unbiased estimator

of the true mean.
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5.1.2 Estimate of the Variance

Following the same method used to estimate the mean, we can also take the first

derivative of ln P with respect to �2, to obtain

@

@�2

�

N ln
1p
2��2

�

C @

@�2

�

X

�1
2

.xi � �/2
�2

�

D 0

from which we obtain

N

�

� 1
2

1

�2

�

C
X

�1
2
.xi � �/2

�

� 1

�4

�

D 0

and finally the result that the maximum likelihood estimator of the variance is

�2ML D
1

N

N
X

iD1
.xi � �/2: (5.3)

It is necessary to notice that in the maximum likelihood estimate of the variance

we have implicitly assumed that the mean � was known, while in reality we can

only estimate it as the sample mean, from the same data used also to estimate the

variance. To account for the fact that � is not known, we replace it with x in (5.3),

and call

s2ML D
1

N

N
X

iD1
.xi � x/2 (5.4)

the maximum likelihood sample variance estimator, which differs from the sample

variance defined in (2.11) by a factor of .N � 1/=N. The fact that x replaced � in its

definition leads to the following expectation:

EŒs2ML� D
N � 1

N
�2ML: (5.5)

Proof Calculation of the expectation is obtained as

EŒs2ML� D EŒ
1

N

X

.xi � Nx/2� D
1

N
EŒ
X

.xi � �C � � Nx/2�

D 1

N
EŒ
X

.xi � �/2 C
X

.�� Nx/2 C 2.�� Nx/
X

.xi � �/�
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The term EŒ
P

.� � Nx/2� is the variance of the sample mean, which we

know from Sect. 4.1 to be equal to �2=N. The last term in the equation is
P

.xi � �/ D N.Nx � �/, therefore:

EŒs2ML� D
1

N

�

EŒ
X

.xi � �/2�C NEŒ.� � Nx/2�C 2NEŒ.� � Nx/.Nx � �/�
�

D 1

N
.N�2 C N�2=N � 2NEŒ.� � Nx/2�/

leading to the result that

EŒs2ML� D
1

N




N�2 C N�2=N � 2N�2=N
�

D N � 1
N

�2:

In this proof we used the notation �2 D �2ML ut

This result is at first somewhat surprising, since there is an extra factor .N�1/=N

that makes EŒs2ML� different from the maximum likelihood estimator of �2. This

is actually due to the fact that, in estimating the variance, the mean needed to be

estimated as well and was not known beforehand. The unbiased estimator of the

variance is therefore

s2 D s2ML �
N

N � 1 D
1

N � 1

N
X

iD1
.xi � x/2 (5.6)

for which we have shown that EŒs2� D �2. This is the reason for the definition of

the sample variance according to (5.6), and not (5.4).

It is important to pay attention to the fact that (5.6) defines a statistic for which we

could also find, in addition to its expectation, also its variance, similar to what was

done for the sample mean. In Chap. 7 we will study how to determine the probability

distribution function of certain statistics of common use, including the distribution

of the sample variance s2.

Example 5.1 We have already made use of the sample mean and the sample

variance as estimators for the parent quantities in the analysis of the data from

Thomson’s experiment (page 23). The estimates we obtained are unbiased if the

assumptions of the maximum likelihood method are satisfied, namely that I and

W=Q are Gaussian distributed. }

5.1.3 Estimate of Mean for Non-uniform Uncertainties

In the previous sections we assumed a set of measurements xi of the same random

variable, i.e., the parent mean � and variance �2 were the same. It is often the case
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with real datasets that observations are made from variables with the same mean,

but with different variance. This could be the case when certain measurements are

more precise than others, and therefore they feature the same mean (since they are

drawn from the same process), but the standard error varies with the precision of the

instrument, or because some measurements were performed for a longer period of

time. In this case, each measurement xi is assigned a different standard deviation �i,

which represents the precision with which that measurement was made.

Example 5.2 A detector is used to measure the rate of arrival of a certain species of

particles. One measurement consists of 100 counts in 10 s, another of 180 particles

in 20 s, and one of 33 particles in 3 s. The measured count rates would be reported

as, respectively, 10.0, 9.0, and 11.0 counts per second. Given that this is a counting

experiment, the Poisson distribution applies to each of the measurements. Moreover,

since the number of counts is sufficiently large, it is reasonable to approximate the

Poisson distribution with a Gaussian, with variance equal to the mean. Therefore

the variance of the counts is 100, 180, and 33, and the variance of the count rate

can be calculated by the property that VarŒX=t� D VarŒX�=t2, where t is the known

time of each measurement. It follows that the standard deviation � of the count

rates is, respectively, 1.0, 0.67, and 1.91 for the three measurements. The three

measurements would be reported as 10:0˙ 1:0, 9:0˙ 0:67, and 11:0˙ 1:91, with

the last measurement being clearly of lower precision because of the shorter period

of observation. }
Our goal is therefore now focused on the maximum likelihood estimate of the

parent mean �, which is the same for all measurements. This is achieved by using

(5.1) in which the parent mean of each measurement is �, and the parent variance

of each measurement is �2i . Following the same procedure as in the case of equal

standard deviations for each measurement, we start with the probability P of making

the N measurements,

P D
N
Y

iD1
P.xi/ D

N
Y

iD1

1
q

2��2i

e
� .xi��/2

2�2i : (5.7)

Setting the derivative of ln P with respect to �—the common mean to all

measurements—equal to zero, we obtain that the maximum likelihood estimates is

�ML D
PN

iD1.xi=�
2
i /

PN
iD1.1=�

2
i /

(5.8)

This is the weighted mean of the measurements, where the weights are the inverse

of the variance of each measurement, 1=�2i .
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The variance in this weighted sample mean can be calculated using the expecta-

tion of the weighted mean, by assuming that the �2i are constant numbers:

Var.�ML/ D
1

�

PN
iD1.1=�

2
i /
�2
�

N
X

iD1

Var.xi/

�4i
D

PN
iD1.1=�

2
i /

�

PN
iD1.1=�

2
i /
�2
;

which results in

�2� D
1

PN
iD1.1=�

2
i /
: (5.9)

The variance of the weighted mean on (5.9) becomes the usual �2=N if all variances

�2i are identical.

Example 5.3 Continuing Example 5.2 of the count rate of particle arrivals, we use

(5.8) and (5.9) to calculate a weighted mean and standard deviation of 9.44 and

0.53. Since the interest is just in the overall mean of the rate, the more direct means

to obtain this number is by counting a total of 313 counts in 33 s, for an overall

measurement of the count rate of 9:48 ˙ 0:54, which is virtually identical to that

obtained using the weighted mean and its variance. }
It is common, as in the example above, to assume that the parent variance �2i is

equal to the value estimated from the measurements themselves. This approximation

is necessary, unless the actual precision of the measurement is known beforehand

by some other means, for example because the apparatus used for the experiment

has been calibrated by prior measurements.

5.2 The Maximum Likelihood Method for Other

Distributions

The method of maximum likelihood can also be applied when the measurements do

not follow a Gaussian distribution.

A typical case is that of N measurements ni, i D 1; : : : ;N, from a Poisson

variable N of parameter �, applicable to all situations in which the measurements are

derived from a counting experiment. In this case, the maximum likelihood method

can be used to estimate �, which is the mean of the random variable, and the only

parameter of the Poisson distribution.

The Poisson distribution is discrete in nature and the probability of making N

independent measurements is simply given by

P D
N
Y

iD1

�ni

niŠ
e��:
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It is convenient to work with logarithms,

ln P D
N
X

iD1
ln e�� C

N
X

iD1
ln
1

niŠ
C

N
X

iD1
ln�ni D A � N�C ln�

N
X

iD1
ni

in which A is a term that doesn’t depend on �. The condition that the probability

must be maximum requires @P=@� D 0. This condition results in

1

�

N
X

iD1
xi � N D 0;

and therefore we obtain that the maximum likelihood estimator of the � parameter

of the Poisson distribution is

�ML D
1

N

N
X

iD1
ni:

This result was to be expected, since � is the mean of the Poisson distribution, and

the linear average of N measurements is an unbiased estimate of the mean of a

random variable, according to the Law of Large Numbers.

The maximum likelihood method can in general be used for any type of

distribution, although often the calculations can be mathematically challenging if

the distribution is not a Gaussian.

5.3 Method of Moments

The method of moments takes a more practical approach to the estimate of the

parameters of a distribution function. Consider a random variable X for which we

have N measurements and whose probability distribution function f(x) depends on

M unknown parameters, for example �1 D � and �2 D �2 for a Gaussian (M D 2),

or �1 D � for an exponential (M D 1), etc. The idea is to develop a method that

yields as many equations as there are free parameters and solve for the parameters

of the distribution. The method starts with the determination of arbitrary functions

aj.x/; j D 1; : : :M, that make the distribution function integrable:

EŒaj.X/� D
Z 1

�1
aj.x/f .x/dx D gj.�/ (5.10)

where gj.�/ is an analytic function of the parameters of the distribution. Although

we have assumed that the random variable is continuous, the method can also be

applied to discrete distributions. According to the law of large numbers, the left-
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hand side of (5.10) can be approximated by the sample mean of the function of the

N measurements, and therefore we obtain a linear system of M equations:

1

N
.aj.x1/C : : :C aj.xN// D gj.�/ (5.11)

which can be solved for the parameters � as function of the N measurements xi.

As an illustration of the method, consider the case in which the parent distribution

is a Gaussian of parameters �, �2. First, we need to decide which functions a1.x/

and a2.x/ to choose. A simple and logical choice is to use a1.x/ D x and a2.x/ D x2;

this choice is what gives the name of “moments,” since the right-hand side of (5.10)

will be, respectively, the first and second order moment. Therefore we obtain the

two equations

8

ˆ

ˆ

<

ˆ

ˆ

:

EŒa1.X/� D
1

N
.X1 C : : :C XN/ D �

EŒa2.X/� D
1

N
.X21 C : : :C X2N/ D �2 C �2:

(5.12)

The estimator for mean and variance are therefore

8

ˆ

ˆ

<

ˆ

ˆ

:

�MM D
1

N
.X1 C : : :C XN/

�2MM D
1

N
.X21 C : : :C X2N/ �

�

1

N
.X1 C : : :C XN/

�2

D 1

N

P

.xi � �MM/
2

(5.13)

which, in this case, are identical to the estimates obtained from the likelihood

method. This method is often easier computationally than the method of maximum

likelihood, since it does not require the maximization of a function, but just a careful

choice of the integrating functions aj.x/. Also, notice that in this application we

did not make explicit use of the assumption that the distribution is a Gaussian,

since the same results will apply to any distribution function with mean � and

variance �2. Equation (5.13) can therefore be used in a variety of situations in which

the distribution function has parameters that are related to the mean and variance,

even if they are not identical to them, as in the case of the Gaussian. The method

of moments therefore returns unbiased estimates for the mean and variance of every

distribution in the case of a large number of measurements.

Example 5.4 Consider the five measurements presented in Example 4.9: 0.1, 0.3,

0.5, 0.7, and 0.9, and assume that they are known to be drawn from a uniform

distribution between 0 and a. The method of moments can be used to estimate the

parameter a of the distribution from the measurements. The probability distribution

function is f .x/ D 1=a between 0 and a, and null otherwise. Using the integrating

function a1.x/ D x, the method of moments proceeds with the calculation of the
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first moment of the distribution,

EŒX� D
Z a

0

xf .x/dx D a

2

Therefore, using (5.12), we can estimate the only parameter a of the distribution

function as

a D 2 � 1

N

N
X

iD1
xi

where N D 5, for the result of a D 1. The result confirms that the five measurements

are compatible with a parent mean of 1=2. }

5.4 Quantiles and Confidence Intervals

The parameters of the distribution function can be used to determine the range

of values that include a given probability, for example, 68.3 %, or 90 %, or 99 %,

etc. This range, called confidence interval, can be conveniently described by the

cumulative distribution function F.x/.

Define the ˛-quantile x˛, where ˛ is a number between 0 and 1, as the value of

the variable such that x � x˛ with probability ˛:

˛ quantile x˛ W P.x � x˛ D ˛/ or F.x˛/ D ˛: (5.14)

For example, consider the cumulative distribution shown in Fig. 5.1 (right panel):

the ˛ D 0:05 quantile is the number of the variable x where the lower horizontal

dashed line intersects the cumulative distribution F.x/, x˛ ' 0:2, and the ˇ D 0:95
quantile is the number of the variable x where the upper dashed line intersects F.x/,

xˇ ' 6. Therefore the range x˛ to xˇ , or 0.2–6, corresponds to the .ˇ � ˛/ D 90%

confidence interval, i.e., there is 90 % probability that a measurement of the variable

falls in that range. These confidence intervals are called central because they are

centered at the mean (or median) of the distribution, and are the most commonly

used type of confidence intervals.

Confidence intervals can be constructed at any confidence level desired, depend-

ing on applications and on the value of probability that the analyzer wishes to

include in that interval. It is common to use 68 % confidence intervals because

this is the probability between ˙� of the mean for a Gaussian variable (see

Sect. 5.4.1). Normally a confidence interval or limit at a significance lower than

68 % is not considered interesting, since there is a significant probability that the

random variable will be outside of this range.

One-sided confidence intervals that extends down to �1, or to the lowest value

allowed for that random variable, is called an upper limit, and intervals that extend
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Fig. 5.1 (Left) Distribution function of an exponential variable with central 68 and 90 % confi-

dence interval marked by, respectively, dot-dashed and dotted lines. (Right) The confidence interval

are obtained as the intersection of dot-dashed and dotted lines with the cumulative distribution

(solid line)

to C1, or to the highest allowed value, is called a lower limit. A lower limit

describes a situation in which a large number is detected, for example counts from

a Poisson experiment, and we want to describe how small the value of the variable

can be, and still be consistent with the data. An upper limit is used for a situation

in which a small number is detected, to describe how high can the variable be and

still be consistent with the data. Lower and upper limits depend on the value of the

probability that we want to use; for example, using a value for ˛ that is closer to 0

results in a lower limit that progressively becomes �lo D �1 (or lowest allowed

value), which is not a very interesting statement. If ˇ is progressively closer to 1,

the upper limit will tend to �up D1.

5.4.1 Confidence Intervals for a Gaussian Variable

When the variable is described by a Gaussian distribution function we can use

integral tables (Table A.2) to determine confidence intervals that enclose a given

probability. It is usually meaningful to have central confidence intervals, i.e.,

intervals centered at the mean of the distribution and extending by equal amounts on

either side of the mean. For central confidence intervals, the relationship between

the probability p enclosed by a given interval (say p D 0:9 or 90 % confidence

interval) and the size 
x D 2.z � �/ of the interval is given by

p D
Z �Cz�

��z�

f .x/dx; (5.15)
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where f .x/ is a Gaussian of mean � and variance �2. The number z represents the

number of standard deviations allowed by the interval in each direction (positive

and negative relative to the mean). The most common central confidence intervals

for a Gaussian distribution are reported in Table 5.1. For example, for a mean �

and variance �2 and the interval from � � � to � C � is a 68.3 % confidence

interval, the interval from � � 1:65� to � C 1:65� is a 90 % confidence interval.

In principle, one could have confidence intervals that are not centered on the mean

of the distribution—such intervals would still be valid confidence intervals. It can

be shown that central confidence intervals are the smallest possible, for a given

confidence level.

Example 5.5 Using the data for the J.J. Thomson experiment on the measurement

of the electron’s mass-to-charge ratio, we can calculate the 90 % confidence interval

on m=e for Tube 1 and Tube 2. For Tube 1, we estimated the mean as �1 D 0:42

and the standard error as �1 D 0:07, and for Tube 2 �2 D 0:53 and � D 0:08.

Since the random variable is assumed to be Gaussian, the 90 % confidence interval

corresponds to the range between � � 1:65� and � C 1:65� ; therefore for the

Thomson measurements of Tube 1 and Tube 2, the 90 % central confidence intervals

are, respectively, 0.30–0.54 and 0.40–0.66. }
Upper and lower limits can be easily calculated using the estimates of � and

� for a Gaussian variable. They are obtained numerically from the following

relationships,

p D
Z �up

�1
f .x/dx D F.�up/ upper limit �up

p D
Z 1

�lo

f .x/dx D 1 � F.�lo/ lower limit �lo

(5.16)

making use of Tables A.2 and A.3. The quantites F.�up/ and F.�lo/ are the values

of the cumulative distribution of the Gaussian, showing that �up is the p-quantile

and �lo is the .1 � p/-quantile of the distribution. Useful upper and lower limits

for the Gaussian distribution are reported in Table 5.2.Upper limits are typically of

interest when the measurements result in a low value of the mean of the variable.

In this case we usually want to know how high the variable can be and still be

Table 5.1 Common confidence intervals for a Gaussian distribution

Interval Range Enclosed probability (%)

50 % confidence interval �� 0:68�; �C 0:68� 50

1-� interval �� �; �C � 68:3

90 % confidence interval �� 1:65�; �C 1:65� 90

2-� interval �� 2�; �C 2� 95:5

3-� interval �� 3�; �C 3� 99:7
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Table 5.2 Common upper and lower limits for a Gaussian distribution

Enclosed Enclosed

Upper limit Range probability (%) Lower limit Range probability (%)

50 % confidence � � 50 50 % confidence � � 50

90 % confidence � �C 1:28� 90 90 % confidence � �� 1:28� 90

95 % confidence � �C 1:65� 95 95 % confidence � �� 1:65� 95

99 % confidence � �C 2:33� 99 99 % confidence � �� 2:33� 99

1-� � �C � 84.1 1-� � �� � 84.1

2-� � �C 2� 97.7 2-� � �� 2� 97.7

3-� � �C 3� 99.9 3-� � �� 3� 99.9

consistent with the measurement, at a given confidence level. For example, in the

case of the measurement of Tube 1 for the Thomson experiment, the variable m=e

was measured to be 0:42 ˙ 0:07. In this case, it is interesting to ask the question

of how high can m=e be and still be consistent with the measurement at a given

confidence level.

Example 5.6 Using the data for the J.J. Thomson experiment on the measurement

of the electron’s mass-to-charge ratio, we can calculate the 90 % upper limits to m=e

for Tube 1 and Tube 2. For Tube 1, we estimated the mean as �1 D 0:42 and the

standard error as �1 D 0:07, and for Tube 2 �2 D 0:53 and � D 0:08.

To determine the upper limit m=eUL;90 of the ratio, we calculate the probability

of occurrence of m=e � m=eUL;90:

P.m=e � m=eUL;90/ D 0:90

Since the random variable is assumed to be Gaussian, the value x ' � C 1:28�
corresponds to the 90 percentile of the distribution (see Table 5.2). The two 90 %

upper limits are, respectively, 0.51 and 0.63. }
A common application of upper limits is when an experiment has failed to

detect the variable of interest. In this case we have a non-detection and we want

to place upper limits based on the measurements made. This problem is addressed

by considering the parent distribution of the variable that we did not detect, for

example a Gaussian of zero mean and given variance. We determine the upper limit

as the value of the variable that exceeds the mean by 1, 2 or 3 � , corresponding

to the probability levels shown in Table 5.2. A 3-� upper limit, for example, is the

value of the variable that has only a 0.1 % chance of being observed based on the

parent distribution for the non-detection, and therefore we are 99.9 % confident that

the true value of the variable is lower than this upper limit.

Example 5.7 (Gaussian Upper Limit to the Non-detection of a Source) A measure-

ment of n D 8 counts in a given time interval is made in the presence of a source

of unknown intensity. The instrument used for the measurement has a background

level with a mean of 9:8˙0:4 counts, as estimated from an independent experiment
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of long duration. Given that the measurement is below the expected background

level, it is evident that there is no positive detection of the source. The hypothesis

that the source has zero emission can be described by a distribution function with

a mean of approximately 9.8 counts and, since this is a counting experiment, the

probability distribution of counts should be Poisson. We are willing to approximate

the distribution with a Gaussian of same mean, and variance equal to the mean, or

� ' 3:1, to describe the distribution of counts one expects from an experiment of

the given duration as the one that yielded n D 8 counts.

A 99 % upper limit to the number of counts that can be recorded by this

instrument, in the given time interval, can be calculated according to Table 5.2 as

�C 2:33� D 9:8C 2:33 � 3:1 ' 17:

This means that we are 99 % confident that the true value of the source plus

background counts is less than 17. A complementary way to interpret this number

is that the experimenter can be 99 % sure that the measurement cannot be due to

just the background if there is a detection of �17 total counts. A conservative

analyst might also want to include the possibility that the Gaussian distribution

has a slightly higher mean, since the level of the background is not known exactly,

and conservatively assume that perhaps 18 counts are required to establish that the

source does have a positive level of emission. After subtraction of the assumed

background level, we can conclude that the 99 % upper limit to the source’s true

emission level in the time interval is 8.2 counts. This example was adapted from the

analysis of an astronomical source that resulted in a non-detection [4]. }

5.4.2 Confidence Intervals for the Mean of a Poisson Variable

The Poisson distribution does not have the simple analytical properties of the

Gaussian distribution. For this distribution it is convenient to follow a different

method to determine its confidence intervals.

Consider the case of a single measurement of a Poisson variable of unknown

mean � for which nobs was recorded. We want to make inferences on the parent

mean based on this information. Also, we assume that the measurement includes

a uniform and known background �B. The measurement is therefore drawn from a

random variable

X D NS C NB (5.17)

in which NB D �B is assumed to be a constant, i.e., the background is known exactly

(this generalization can be bypassed by simply setting �B D 0). The probability
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distribution function of X (the total source plus background counts) is

f .n/ D .�C �B/
n

nŠ
e�.�C�B/; (5.18)

where n is an integer number describing possible values of X. Equation (5.18) is true

even if the background is not known exactly, since the sum of two Poisson variables

is also a Poisson variable with mean equal to the sum of the means. It is evident that,

given the only measurement available, the estimate of the source mean is

O� D nobs � �B:

This estimate is the starting point to determine a confidence interval for the parent

mean. We define the lower limit �lo as the value of the source mean that results in

the observation of n � nobs with a probability ˛:

˛ D
1
X

nDnobs

.�lo C �B/
n

nŠ
e�.�loC�B/ D 1 �

nobs�1
X

nD0

.�lo C �B/
n

nŠ
e�.�loC�B/: (5.19)

The mean �lo corresponds to the situation shown in the left panel of Fig. 5.2:

assuming that the actual mean is as low as �lo, there is only a small probability

˛ (say 5 %) to make a measurement above or equal to what was actually measured.

Thus, we can say that there is only a very small chance (˛) that the actual mean

could have been as low (or lower) than �lo. The quantity �lo is the lower limit with

confidence .1 � ˛/, i.e., we are .1� ˛/, say 95 %, confident that the mean is higher

than this value.

Fig. 5.2 This illustration of the upper and lower limits to the measurement of a Poisson mean

assumes a measurement of nobs D 3. On the left, the lower limit to the parent mean is such that

there is a probability of ˛ to measure nobs or higher (hatched area); on the right, the upper limit

leaves a probability of .1� ˇ/ that a measurement is nobs or lower
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By the same logic we also define �up as the parent value of the source mean that

results in the observation of n � nobs with a probability .1 � ˇ/, or

1 � ˇ D
nobs
X

nD0

.�up C �B/
n

nŠ
e�.�upC�B/: (5.20)

This is illustrated in the right panel of Fig. 5.2, where the number .1�ˇ/ is intended

as a small number, of same magnitude as ˛. Assuming that the mean is as high as

�up, there is a small probability of 1�ˇ to make a measurement equal or lower than

the actual measurement. Therefore we say that there is only a small probability that

the true mean could be as high or higher than �up. The number �up is the upper limit

with confidence ˇ, that is, we are ˇ (say 95 %) confident that the mean is lower than

this value.

If we combine the two limits, the probability that the true mean is above �up or

below �lo is just .1�ˇ/C˛, say 10 %, and therefore the interval �lo to �up includes

a probability of

P.�lo � � � �up/ D 1 � .1 � ˇ/ � ˛ D ˇ � ˛;

i.e., this is a .ˇ � ˛/, say 90 %, confidence interval.

The upper and lower limits defined by (5.19) and (5.20) can be approximated

analytically using a relationship that relates the Poisson sum with an analytic

distribution function:

nobs�1
X

xD0

e���x

xŠ
D 1 � P�2.�

2; �/ (5.21)

where P�2.�
2; �/ is the cumulative distribution of the �2 probability distribu-

tion function defined in Sect. 7.2, with parameters �2 D 2� and � D 2nobs,

P�2.�
2; �/ D

Z �2

�1
f�2.x; �/dx:

The approximation is due to Gehrels [16], and makes use of mathematical relation-

ships that can be found in the handbook of Abramowitz and Stegun [1]. The result

is that the upper and lower limits can be simply approximated once we specify

the number of counts nobs and the probability level of the upper or lower limit.

The probability level is described by the number S, which is the equivalent number

of Gaussian � that corresponds to the confidence level chosen (for example, 84 %
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confidence interval corresponds to S D 1, etc. see Table 5.3)

8

ˆ

ˆ

<

ˆ

ˆ

:

�up D nobs C
S2 C 3
4
C S

r

nobs C
3

4

�lo D nobs

�

1� 1

9nobs

� S

3
p

nobs

�3

:

(5.22)

The S parameter is also a quantile of a standard Gaussian distribution, enclosing a

probability as illustrated in Table 5.3.

Proof Use of (5.21) into (5.19) and (5.20) gives a relationship between the

function P�2 and the probability levels ˛ and ˇ,

(

P�2.2�lo; 2nobs/ D ˛
P�2.2�up; 2nobs C 2/ D ˇ:

(5.23)

We use the simplest approximation for the function P�2 described in [16], one

that is guaranteed to give limits that are accurate within 10 % of the true values.

The approximation makes use of the following definitions: for any probability

a � 1, ya is the a-quantile of a standard normal distribution, or G.ya/ D a,

G.ya/ D
1p
2�

Z ya

�1
e�t2=2dt:

If P�2.�
2
a; �/ D a, then the simplest approximation between �2a and ya given

by Gehrels [16] is

�2a '
1

2

�

ya C
p
2� � 1

�2

: (5.24)

Consider the upper limit in (5.23). We can solve for �up by using (5.24) with

2�up D �2a, � D 2nobs C 2 and S D ya, since ya is the a-quantile of a standard

Table 5.3 Poisson parameters S and corresponding probabilities

Upper or lower limit Range Probability (%) Poisson S parameter

90 % confidence � �C 1:28� 90 1:28

95 % confidence � �C 1:65� 95 1:65

99 % confidence � �C 2:33� 99 2:33

1-� � �C � 84.1 1:0

2-� � �C 2� 97.7 2:0

3-� � �C 3� 99.9 3:0
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normal distribution, thus equivalent to S. It follows that

2�up D
1

2

�

SC
p

4nobs C 3
�2

and from this the top part of (5.22) after a simple algebraic manipulation.

A similar result applies for the lower limit. ut

Equation (5.22) is tabulated in Tables A.5 and A.6 for several interesting values

of nobs and S. A few cases of common use are also shown in Table 5.4.

Example 5.8 (Poisson Upper Limit to Non-detection with No Background) An

interesting situation that can be solved analytically is that corresponding to the

situation in which there was a complete non-detection of a source, nobs D 0.

Naturally, it is not meaningful to look for a lower limit to the Poisson mean, but it is

quite interesting to solve (5.20) in search for an upper limit with a given confidence

ˇ. In this case of n D 0 the equation simplifies to

1 � ˇ D e�.�upC�B/ ) �up D ��B � lnˇ:

For ˇ D 0:84 and zero background (�B D 0) this corresponds to an upper limit of

�up D � ln 0:16 D 1:83. This example can also be used to test the accuracy of the

approximation given by (5.22). Using nobs D 0, we obtain

�up D
1

4
.1C

p
3/2 D 1:87

which is in fact just 2 % higher than the exact result. An example of upper limits in

the presence of a non-zero background is presented in Problem 5.8. }

Table 5.4 Selected Upper and Lower limits for a Poisson variable using the Gehrels approxima-

tion (see Tables A.5 and A.6 for a complete list of values)

Poisson parameter S or confidence level

S D 1 S D 2 S D 3

nobs (1-� , or 84.1 %) (2-� , or 97.7 %) (3-� , or 99.9 %)

Upper limit

0 1:87 3:48 5:60

1 3:32 5:40 7:97

� � �
Lower limit

� � �
9 6:06 4:04 2:52

10 6:90 4:71 3:04

� � �
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5.5 Bayesian Methods for the Poisson Mean

The Bayesian method consists of determining the posterior probability P.�=obs/,

having calculated the likelihood as

P.nobs=�/ D
.�C �B/

nobs

nobsŠ
e�.�C�B/: (5.25)

We use Bayes’ theorem,

P.�=obs/ D P.nobs=�/�.�/
R1
0

P.nobs=�0/�.�0/; d�0 (5.26)

in which we needed to introduce a prior probability distribution �.�/ in order to

calculate the posterior probability. The use of a prior distribution is what constitutes

the Bayesian approach. The simplest assumption is that of a uniform prior, �.�/ D
C, over an arbitrarily large range of � � 0, but other choices are possible according

to the information available on the Poisson mean prior to the measurements. In this

section we derive the Bayesian expectation of the Poisson mean and upper and lower

limits and describe the differences with the classical method.

5.5.1 Bayesian Expectation of the Poisson Mean

The posterior distribution of the Poisson mean � (5.26) can be used to calculate the

Bayesian expectation for the mean can be calculated as the integral of (5.26) over

the entire range allowed to the mean,

EŒ�=obs� D
R1
0 P.�=obs/�d�
R1
0

P.�=obs/d�
: (5.27)

The answer will in general depend on the choice of the prior distribution �.�/.

Assuming a constant prior, the expectation becomes

EŒ�=obs� D
Z 1

0

e���nobsC1

nŠ
d� D nobs C 1; (5.28)

where we made use of the integral

Z 1

0

e���nd� D nŠ
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The interesting result is therefore that a measurement of nobs counts implies a

Bayesian expectation of EŒ�� D nobs C 1, i.e., one count more than the observation.

Therefore even a non-detection results in an expectation for the mean of the parent

distribution of 1, and not 0. This somewhat surprising result can be understood by

considering the fact that even a parent mean of 1 results in a likelihood of 1=e (i.e., a

relatively large number) of obtaining zero counts as a result of a random fluctuations.

Moreover, the Poisson distribution is skewed, with a heavier tail at large values of

�. This calculation is due to Emslie [12].

5.5.2 Bayesian Upper and Lower Limits for a Poisson Variable

Using a uniform prior, we use the Bayesian approach (5.26) to calculate the upper

limit to the source mean with confidence ˇ (say, 95 %). This is obtained by

integrating (5.26) from the lower limit of 0 to the upper limit �up,

ˇ D
R �up

0 P.nobs=�/d�
R1
0

P.nobs=�/d�
D
R �up

0 .�C �B/
nobse�.�C�B/d�

R1
0
.�C �B/nobs e�.�C�B/d�

(5.29)

Similarly, the lower limit can be estimated according to

˛ D
R �lo

0
P.nobs=�/d�S

R1
0

P.nobs=�/d�
D
R �lo

0
.�C �B/

nobs e�.�C�B/d�
R1
0
.�C �B/nobse�.�C�B/d�

(5.30)

where ˛ is a small probability, say 5 %. Since nobs is always an integer, these

integrals can be evaluated analytically.

The difference between the classical upper limits described by (5.19) and (5.20)

and the Bayesian limits of (5.29) and (5.30) is summarized by the different variable

of integration (or summation) in the relevant equations. For the classical limits we

use the Poisson probability to make nobs measurements for a true mean of �. We then

estimate the upper or lower limits as the values of the mean that gives a probability

of, respectively, 1�ˇ and ˛, to observe n � nobs events. In this case, the probability

is evaluated as a sum over the number of counts, for a fixed value of the parent mean.

In the case of the Bayesian limits, on the other hand, we first calculate the

posterior distribution of �, and then require that the range between 0 and the limits

�up and �lo includes, respectively, a 1�ˇ and ˛ probability, evaluated as an integral

over the mean for a fixed value of the detected counts. In general, the two methods

will give different results.

Example 5.9 (Bayesian Upper Limit to a Non-detection) The case of non-detection,

nobs D 0, is especially simple and interesting, since the background drops out of the

equation, resulting in ˇ D 1 � e��up, which gives

�up D � ln.1 � ˇ/ (case of nobs D 0, Bayesian upper limit) (5.31)



104 5 Maximum Likelihood and Other Methods to Estimate Variables

The Bayesian upper limit is therefore equal to the classical limit, when there is no

background. When there is background, the two estimate will differ.1 }

Summary of Key Concepts for this Chapter

� Maximum Likelihood (ML) method: A method to estimate parameters of a

distribution under the assumption that the best-fit parameters maximize the

likelihood of the measurements.

� ML estimates of mean and variance: For a Gaussian variable, the unbiased

ML estimates are

8

<

:

�ML D x

s2 D 1

N � 1
P

.xi � x/2

� Estimates of mean with non-uniform uncertainties: They are given by

8

ˆ

ˆ

<

ˆ

ˆ

:

�ML D
P

xi=�
2
i

P

1=�2i

�2� D
1

P

1=�2i

� Confidence intervals: Range of the variable that contains a given proba-

bility of occurrence (e.g., ˙1� range contains 68 % of probability for a

Gaussian variable).

� Upper and lower limits: An upper (lower) limit is the value below (above)

which there is a given probability (e.g., 90 %) to observe the variable.

Problems

5.1 Using the definition of weighted sample mean as in (5.8), derive its variance

and show that it is given by (5.9).

5.2 Using the data from Mendel’s experiment (Table 1.1), calculate the standard

deviation in the measurement of each of the seven fractions of dominants, and the

weighted mean and standard deviation of the seven fractions.

Compare your result from a direct calculation of the overall fraction of domi-

nants, obtained by grouping all dominants from the seven experiments together.

1Additional considerations on the measurements of the mean of a Poisson variable, and the case of

upper and lower limits, can be found in [10].
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5.3 The Mendel experiment of Table 1.1 can be described as n number n of

measurements of ni, the number of plants that display the dominant character, out

of a total of Ni plants. The experiment is described by a binomial distribution with

probability p D 0:75 for the plant to display the dominant character.

Using the properties of the binomial distribution, show analytically that the

weighted average of the measurements of the fraction fi D ni=Ni is equal to the

value calculated directly as

� D
Pn

iD1 ni
Pn

iD1 Ni

5.4 Consider a decaying radioactive source observed in a time interval of duration

T D 15 s; N is the number of total counts, and B is the number of background counts

(assumed to be measured independently of the total counts):

(

N D 19 counts

B D 14 counts
:

The goal is to determine the probability of detection of source counts S D N �B

in the time interval T.

(a) Calculate this probability directly via:

Prob(detection)D Prob(S > 0/data)

in which S is treated as a random variable, with Gaussian distribution of mean

and variance calculated according to the error propagation formulas. Justify why

the Gaussian approximation may be appropriate for the variable S.

(b) Use the same method as in (a), but assuming that the background B is known

without error (e.g., as if it was observed for such along time interval that its

error becomes negligible).

(c) Assume that the background is a variable with mean of 14 counts in a 15 s

interval, and that it can be observed for an interval of time T � 15 s. Find what

interval of time T makes the error �B15 of the background over a time interval

of 15-s have a value �B15=B15 D 0:01, e.g., negligible.

5.5 For the Thomson experiment of Table 2.1 (tube 1) and Table 2.2 (tube 2),

calculate:

(a) The 90 % central confidence intervals for the variable v;

(b) The 90 % upper and lower limits, assuming that the variable is Gaussian.

5.6 Consider a Poisson variable X of mean �.

(a) We want to set 90 % confidence upper limits to the value of the parent mean

�, assuming that one measurement of the variable yielded the result of N D 1.

Following the classical approach, find the equation that determines the exact
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90 % upper limit to the mean �up. Recall that the classical 90 % confidence

upper limit is defined as the value of the Poisson mean that yields a P.X �
N/ D ˇ, where 1 � ˇ D 0:9.

(b) Using the Bayesian approach, which consists of defining the 1�ˇ D 0:9 upper

limit via

ˇ D
R �up

0 P.nobs=�/d�
R1
0 P.nobs=�/d�

(5.32)

where nobs D N; find the equation that determines the 90 % upper limit to the

mean �up.

5.7 The data provided in Table 2.3 from Pearson’s experiment on biometric data

describes the cumulative distribution function of heights from a sample of 1,079

couples. Calculate the 2� upper limit to the fraction of couples in which both mother

and father are taller than 68 in.

5.8 Use the data presented in Example 5.7, in which there is a non-detection of a

source in the presence of a background of �B ' 9:8. Determine the Poisson upper

limit to the source count at the 99 % confidence level and compare this upper limit

with that obtained in the case of a zero background level.



Chapter 6

Mean, Median, and Average Values of Variables

Abstract The data analyst often faces the question of what is the “best” value to

report from N measurements of a random variable. In this chapter we investigate

the use of the linear average, the weighted average, the median and a logarithmic

average that may be applicable when the variable has a log-normal distribution.

The latter may be useful when a variable has errors that are proportional to their

measurements, avoiding the inherent bias arising in the weighted average from

measurements with small values and small errors. We also introduce a relative-error

weighted average that can be used as an approximation for the logarithmic mean for

log-normal distributions.

6.1 Linear and Weighted Average

In the previous chapter (see Sect. 5.1.3) we have shown that the weighted mean is

the most likely value of the mean of the random variable. Therefore, the weighted

mean is a commonly accepted quantity to report as the best estimate for the value

of a measured quantity. If the measurements have the same standard deviation, then

the weighted mean becomes the linear average; in general, the linear and weighted

means differ unless all measurement errors are identical.

The difference between linear average and weighted mean can be illustrated

with an example. Consider the N D 25 measurements shown in Table 6.1,

which reports the measurement of the energy of certain astronomical sources

made at a given radius [5]. This dataset is illustrative of the general situation

of the measurement of a quantity (in this example, the ratio between the two

measurements) in the presence of different measurement error. The weighted mean

is 0:90˙ 0:02, while the linear average is 1.01 (see Problem 6.1). The difference is

clearly due to the presence of a few measurements with a low value of the ratio that

carry higher weight because of the small measurement error (for example, source

15).

Which of the two values is more representative? This question can be addressed

by making the following observations. The measurement error reported in the table

reflects the presence of such sources of uncertainty as Poisson fluctuations in the

detection of photons from the celestial sources. The same type of uncertainty would

also apply to other experiments, in particular those based on the counting of events.
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Table 6.1 Dataset with measurement of energy for N D 25 different sources and their ratio

Energy

Source Radius Method #1 Method #2 Ratio

1 221:1˙11:0
12:3 8:30˙0:76

0:88 9:67˙1:14
1:12 0:86˙0:08

0:07

2 268:5˙22:1
20:7 4:92˙0:77

0:70 4:19˙0:82
0:70 1:17˙0:16

0:15

3 138:4˙12:7
11:9 3:03˙0:53

0:49 2:61˙0:59
0:49 1:16˙0:20

0:18

4 714:3˙23:5
34:5 49:61˙3:15

3:19 60:62˙4:84
6:13 0:82˙0:06

0:05

5 182:3˙18:5
15:1 2:75˙0:49

0:43 3:30˙0:81
0:61 0:83˙0:14

0:14

6 72:1˙5:5
5:7 1:01˙0:23

0:20 0:86˙0:14
0:13 1:17˙0:24

0:21

7 120:3˙8:6
7:5 5:04˙0:66

0:57 3:80˙0:72
0:57 1:33˙0:16

0:15

8 196:2˙15:1
15:5 5:18˙0:73

0:70 6:00˙1:17
1:11 0:86˙0:14

0:11

9 265:7˙8:7
8:6 12:17˙1:22

1:17 10:56˙0:93
0:95 1:14˙0:13

0:10

10 200:0˙9:6
10:7 7:74˙0:57

0:58 6:26˙0:78
0:83 1:24˙0:14

0:11

11 78:8˙5:6
5:1 1:08˙0:16

0:15 0:73˙0:11
0:10 1:49˙0:26

0:24

12 454:4˙20:3
20:3 17:10˙2:64

2:03 23:12˙2:36
2:32 0:75˙0:07

0:06

13 109:4˙8:3
8:3 3:31˙0:34

0:34 3:06˙0:54
0:52 1:09˙0:18

0:15

14 156:5˙11:5
10:2 2:36˙0:61

0:58 2:31˙0:36
0:31 1:02˙0:26

0:23

15 218:0˙6:6
5:9 14:02˙0:75

0:75 21:59˙1:82
1:82 0:65˙0:04

0:04

16 370:7˙7:6
8:0 31:41˙1:56

1:56 29:67˙1:56
1:57 1:06˙0:06

0:06

17 189:1˙16:4
15:4 2:15˙0:45

0:39 2:52˙0:57
0:51 0:86˙0:22

0:18

18 150:5˙4:2
4:6 3:39˙0:57

0:50 4:75˙0:44
0:46 0:72˙0:11

0:11

19 326:7˙12:1
9:9 15:73˙1:43

1:30 18:03˙1:54
1:26 0:87˙0:06

0:06

20 189:1˙9:9
9:1 5:04˙0:65

0:55 4:61˙0:61
0:50 1:09˙0:12

0:12

21 147:7˙8:0
11:1 2:53˙0:29

0:30 2:76˙0:37
0:48 0:93˙0:12

0:10

22 504:6˙12:5
11:2 44:97˙2:99

2:74 43:93˙3:08
2:59 1:02˙0:05

0:05

23 170:5˙8:6
8:1 3:89˙0:30

0:29 3:93˙0:49
0:42 0:98˙0:10

0:09

24 297:6˙13:1
13:6 10:78˙1:04

1:02 10:48˙1:34
1:22 1:04˙0:10

0:11

25 256:2˙13:4
14:4 7:27˙0:81

0:77 7:37˙0:97
0:95 0:99˙0:09

0:09

This type of uncertainty is usually referred to as statistical error. Many experiments

and measurements are also subject to other sources of uncertainty that may not be

explicitly reported in the dataset. For example, the measurement of events recorded

by a detector is affected by the calibration of the detector, and a systematic offset

in the calibration would affect the numbers recorded. In the case of the data of

Table 6.1, the uncertainty due to the calibration of the detector is likely to affect by

the same amount of all measurements, regardless of the precision indicated by the

statistical error. This type of uncertainty is typically referred to as systematic error,

and the inclusion of such additional source of uncertainty would modify the value

of the weighted mean. As an example of this effect, if we add an error of ˙0:1 to

all values of the ratio of Table 6.1, the weighted mean becomes 0:95 ˙ 0:04 (see

Problem 6.2). It is clear that the addition of a constant error for each measurement

causes a de-weighting of datapoints with small statistical errors, and in the limit of

a large systematic error the weighted mean becomes the linear average. Therefore,
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the linear average can be used when the data analyst wants to weigh equally all

datapoints, regardless of the precision indicated by the statistical errors. Systematic

errors are discussed in more detail in Chap. 11.

6.2 The Median

Another quantity that can be calculated from the N measurements is the median,

defined in Sect. 2.3.1 as the value of the variable that is greater than 50 % of

the measurements, and also lower than 50 % of the measurements. In the case of

the measurement of the ratios in Table 6.1, this is simply obtained by ordering

the 25 measurements in ascending order, and using the 13th measurement as an

approximation for the median. The value obtained in this case is 1.02, quite close

to the value of the linear average, since both statistics do not take into account the

measurement errors.

One useful feature of the median is that it is not very sensitive to “outliers” in the

distribution. For example, if one of the measurements was erroneously reported as

0:07˙ 0:01 (instead of 0:72˙ 0:11, such as source 18 in the Table), both linear and

weighted averages would be affected by the error, but the median would not. The

median may therefore be an appropriate value to report in cases where the analyst

suspects the presence of outliers in the dataset.

6.3 The Logarithmic Average and Fractional

or Multiplicative Errors

The quantity “Ratio” in Table 6.1 can be used to illustrate a type of variables that

may require a special attention when calculating their averages. Consider a variable

whose errors are proportional to their measured values. In this case, a weighted

average will be skewed towards lower values because of the smaller errors in those

measurements. The question we want address is whether it is appropriate to use

a weighted average of these measurements or whether one should use a different

approach.

To illustrate this situation, let’s use two measurements such as x1 D 1:2˙ 0:24
and x2 D 0:80˙ 0:16. Both measurements have a relative error of 20 %, the linear

average is 1.00 and the weighted average is 0.923. The base-10 logarithm of these

measurements are log x1 D 0:0792 and log x2 D �0:0969, with the same error. In

fact, using the error propagation method (Sect. 4.7.6), the error in the logarithm is

proportional to the fractional error according to

�log x D
�x

x

1

ln 10
: (6.1)
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For our measurements, this equation gives a value of �log x D 0:087 for both

measurements. The weighted average of these logarithms is therefore the linear

average log x D �0:0088, leading to an average of x D 0:980. This value is much

closer to the linear average of 1.00 than to the weighted average.

Errors that are exactly proportional to the measurement, or

�x D x�r (6.2)

may be called fractional or multiplicative errors. The quantity �r is the relative error

and it remains constant for purely multiplicative errors. In most cases, including that

of Table 6.1, the relative error �x=x varies among the measurements, and therefore

(6.2) applies only as an approximation. In the following we investigate when it is in

fact advisable to use the logarithm of measurements, instead of the measurements

themselves, to obtain a more accurate determination of the mean of a variable that

has multiplicative errors.

6.3.1 The Weighted Logarithmic Average

The maximum likelihood method applied to the logarithm of measurements of a

variable X can be used to estimate the mean and the error of log X. The weighted

logarithmic average of N measurements xi is defined as

log x D

PN
iD1

log xi

�2log xi

PN
iD1

1

�2log xi

(6.3)

where �2log xi
is the variance of the logarithm of the measurements, which can be

obtained from (6.1). The uncertainty in the weighted logarithmic average is given

by

�2log x D
1

PN
iD1

1

�2log xi

: (6.4)

The use of this logarithmic average is justified when the variable X has a log-

normal distribution, i.e., when log X has a Gaussian distribution, rather than the

variable X itself. An example of a log-normal variable is illustrated in Fig. 6.1.

In this case, the maximum likelihood method estimator of the mean of log X is

the logarithmic mean of (6.3). Clearly, a variable can only be log-normal when

the variable has positive values, such as the ratio of two positive quantities. The
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Fig. 6.1 Log-normal distribution with mean � D 0 and standard deviation � D 0:3 (black line)

and linear plot of the same distribution (red line). A heavier right-hand tail in the linear plot may

be indicative of a log-normal distribution

determination of the log-normal shape can be made if one has available random

samples from its distribution.

In the limit of measurements with the same fractional error and small deviations

from the mean �, the weighted logarithmic average is equivalent to the linear

average.

Proof This can be shown by proving that

log x D log x

where x is the ordinary linear average. Notice that log x in (6.3) is a base-10

logarithm. In this proof we make use the base-e logarithm (ln x), the two are

related by

log x D ln x= ln 10:

Consider N measurements xi in the neighborhood of the mean� of the random

variable, xi D �C
xi. A Taylor series expansion yields

ln xi D ln�.1C 
xi

�
/ D ln�C 
xi

�
� .
xi=�/

2

2
C : : :
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If the deviation is 
xi � �, one can neglect terms of the second order and

higher. The average of the logarithms of the N measurements can thus be

approximated as

log x D 1

N

N
X

iD1
log xi '

1

ln 10

 

ln�C 1

N

N
X

iD1


xi

�

!

:

On the other hand, the logarithm of the mean x is

log x D log
1

N

N
X

iD1
xi D log

 

1

N

N
X

iD1
�.1C 
xi

�
/

!

:

This leads to

log x D 1

ln 10

 

ln�C ln

 

1C 1

N

N
X

iD1


xi

�

!!

'

1

ln 10

 

ln�C 1

N

N
X

iD1


xi

�

!

D log x

where we retained only the first-order term in the Taylor series expansion of

the logarithm since
P


xi=�� N. ut

As discussed earlier in this section, the logarithmic average is an appropriate

quantity for log-normal distributed variables. The results of this section show

that this average is closer to the linear average of the measurements than the

standard weighted average, when measurement errors are positively correlated to

the measurements themselves.

Example 6.1 The data of Table 6.1 can be used to calculate the logarithmic average

of the column “Ratio” according to (6.3) and (6.4) as log x D �0:023 ˙ 0:018.

These quantities can be converted easily to linear quantities taking into account the

error propagation formula �log x D �=.x ln 10/, to obtain a value of 0:95˙ 0:04.

Notice how the logarithmic mean has a value that is somewhat between that of

the linear average x D 1:01 and the traditional weighted average of 0:90˙ 0:02. It

should not be surprising that the logarithmic mean is not exactly equal to the linear

average. In fact, the measurements of Table 6.1 have different relative errors. Only

in the case of identical relative errors for all measurements we expect that the two

averages have the same value. }
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6.3.2 The Relative-Error Weighted Average

Although transforming measurements to their logarithms is a simple procedure,

we also want to investigate another type of average that deals directly with the

measurements without the need to calculate their logarithms.

We introduce the relative-error weighted average as

xRE D
PN

iD1 xi=.�i=xi/
2

PN
iD1 1=.�i=xi/2

: (6.5)

The only difference with the weighted mean defined in Sect. 5.1.3 is the use of

the extra factor of xi in the error term, so that �i=xi is the relative error of each

measurement.

The reason to introduce this new average is that, for log-normal variables, this

relative-error weighted mean is equivalent to the logarithmic mean of (6.3). This can

be proven by showing that ln x D ln xRE.

Proof Start with the logarithm of the relative-error weighted average,

ln xRE D ln

 

PN
iD1 xi=.�i=xi/

2

PN
iD1 1=.�i=xi/2

!

D ln

 
PN

iD1 xi=�
2
log xi

PN
iD1 1=�

2
log xi

!

:

From this, expand the measurement term xi D �C
xi, where � is the parent

mean of the variable X,

ln

 

�C
PN

iD1
xi=�
2
log xi

PN
iD1 1=�

2
log xi

!

D ln�C ln

 

1C
PN

iD1
xi=.��
2
log xi

/
PN

iD1 1=�
2
log xi

!

:

If 
xi � �, then

ln xRE D ln�C
PN

iD1
xi=.��
2
log xi

/
PN

iD1 1=�
2
log xi

leading to

log xRE D log�C 1

ln 10

PN
iD1
xi=.��

2
log xi

/
PN

iD1 1=�
2
log xi

:

The logarithmic average can also be expanded making use of

N
X

iD1

log xi

�2log xi

D
N
X

iD1

log�C log.1C
xi/=�

�2log xi

'
N
X

iD1

 

log�

�2log xi

C 
xi=�

�2log xi
ln 10

!

:
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This leads to

log x D log�C 1

ln 10

PN
iD1
xi=.��

2
log xi

/
PN

iD1 1=�
2
log xi

D log xRE:

ut
The use of the relative-error weighted average should be viewed as an ad hoc method

to obtain an average value that is consistent with the logarithmic average, especially

in the limit measurements with equal relative errors. The statistical uncertainty in

this error-weighted average can be simply assigned as the error in the traditional

weighted average (5.8). In fact, the statistical error should be determined by the

“physical” uncertainties in the measurements, as is the case for the variance in (5.8).

It would be tempting to use the inverse of the denominator of (6.5) as the variance;

however, the result would be biased by our somewhat arbitrary choice of weighing

the measurements by the relative errors, instead of the error themselves.

Example 6.2 Continuing with the values of “Ratio” in Table 6.1, the error-weighted

average is calculated as xRE D 0:96. The error in the traditional weighted average

was 0.02, therefore we may report the result as 0:96˙ 0:02. Comparison with the

values of 0:95 ˙ 0:04 for the logarithmic average shows the general agreement

between these two values.

}
Summary of Key Concepts for this Chapter

� Linear average: The mean x of N measurements.

� Median: The 50 % quantile, or the number below and above which there

are 50 % of the variable’s values.

� Logarithmic average: In some cases (e.g., when errors are proportional to

the measured values) it is meaningful to calulate the weighted average of

the logarithm of the variable,

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

log x D
P

log xi=�
2
logxi

P

1=�2logxi

�2log x D
1

�2logxi

where �logxi
D �i=.xi ln 2/.

� Relative-error weighted average: An approximation of the logarithmic

average that does not require logarithms,

xRE D
P

xi=.�i=xi/
2

P

1=.�i=xi/2
:
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Problems

6.1 Calculate the linear average and the weighted mean of the quantity “Ratio” in

Table 6.1.

6.2 Consider the 25 measurements of “Ratio” in Table 6.1. Assume that an

additional uncertainty of ˙0.1 is to be added linearly to the statistical error of

each measurement reported in the table. Show that the addition of this source of

uncertainty results in a weighted mean of 0:95˙ 0:04.

6.3 Given two measurements x1 and x2 with values in the neighborhood of 1.0,

show that the logarithm of the average of the measurements is approximately equal

to the average of the logarithms of the measurements.

6.4 Given two measurements x1 and x2 with values in the neighborhood of a

positive number A, show that the logarithm of the average of the measurements

is approximately equal to the average of the logarithms of the measurements.

6.5 For the data in Table 6.1, calculate the linear average, weighted average

and median of each quantity (Radius, Energy Method 1, Energy Method 2 and

Ratio). You may assume that the error of each measurements is the average of the

asymmetric errors of each measurement reported in the table.

6.6 Table 6.1 contains the measurement of the thermal energy of certain sources

using two independent methods labeled as method #1 and method #2. For each

source, the measurement is made at a given radius, which varies from source

to source. The error bars indicate the 68 %, or 1� , confidence intervals; the fact

that most are asymmetric indicate that the measurements do not follow exactly a

Gaussian distribution. Calculate the weighted mean of the ratios between the two

measurements and its standard deviation, assuming that the errors are Gaussian and

equal to the average of the asymmetric errors, as it is often done in this type of

situation.



Chapter 7

Hypothesis Testing and Statistics

Abstract Every quantity that is estimated from the data, such as the mean or

the variance of a Gaussian variable, is subject to statistical fluctuations of the

measurements. For this reason they are referred to as a statistics. If a different

sample of measurements is collected, statistical fluctuations will certainly give rise

to a different set of measurements, even if the experiments are performed under the

same conditions. The use of different data samples to measure the same statistic

results in the determination of the sampling distribution of the statistic, to describe

what is the expected range of values for that quantity. In this chapter we derive the

distribution of a few fundamental statistics that play a central role in data analysis,

such as the �2 statistic. The distribution of each statistic can be used for a variety of

tests, including the acceptance or rejection of the fit to a model.

7.1 Statistics and Hypothesis Testing

In this book we have already studied several quantities that are estimated from the

data, such as the sample mean and the sample variance. These quantities are subject

to random statistical fluctuations that occur during the measurement and collection

process and they are often referred to as random variables or statistics. For example,

a familiar statistic is the sample mean of a variable X. Under the hypothesis that the

variable X follows a Gaussian distribution of mean � and variance �2, the sample

mean of N measurements is Gaussian-distributed with mean � and variance equal

to �2=N (see Sect. 4.1.2). This means that different samples of size N will in general

give rise to different sample means and that ones expects a variance of order �2=N

among the various samples. This knowledge lets us establish whether a given sample

mean is consistent with this theoretical expectation.

Hypothesis testing is the process that establishes whether the measurement

of a given statistic, such as the sample mean, is consistent with its theoretical

distribution. Before describing this process in detail, we illustrate with the following

example the type of statistical statement that can be made from a given measurement

and the knowledge of its parent distribution.

Example 7.1 Consider the case of the measurement of the ratio m=e from Tube 1

of Thomson’s experiment, and arbitrarily assume (this assumption will be relaxed
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in more realistic applications) that the parent mean is known to be equal to � D
0:475, and that the parent variance is � D 0:075. We want to make quantitative

statements regarding the possibility that the measurements are drawn from the

parent distribution.

For example, we can make the following statements concerning the measurement

m=e D 0:42: since m=e D � � 0:73� , there is a probability of 24 % that a

measurement of 0.42 or lower is recorded. This statement addresses the fact that,

despite the measurement fell short of the parent mean, there is still a significant

(24 %) chance that any given measurement will be that low, or even lower. We can

also make this statement: the measurement is within the 1 � � central confidence

interval, which encompasses 68 % of the probability. This statement looks at the

distance of the measurement from the mean, regardless of its sign.

Before we can say: the measurement is consistent with the parent distribution,

we need to quantify the meaning of the word consistent. }
The process of hypothesis testing requires a considerable amount of care in the

definition the hypothesis to test and in drawing conclusions. The method can be

divided into the following four steps.

1. Begin with the definition of a hypothesis to test. For the measurements of a

variable X, a possible hypothesis is that the measurements are consistent with

a parent mean of � D 0 and a variance of �2 D 1. For a fit of a dataset to a linear

model (Chap. 8) we may want to test whether the linear model is a constant, i.e.,

whether the parent value of the slope coefficient is b D 0. This initial step in

the process identifies a so-called null hypothesis that we want to test with the

available data.

2. The next step is to determine the statistic to use for the null hypothesis. In the

example of the measurements of a variable X, the statistic we can calculate from

the data is the sample mean. For the fit to the linear model, we will learn that the

�2min is the statistic to use for a Gaussian dataset. The choice of statistic means that

we are in a position to use the theoretical distribution function for that statistic to

tell whether the actual measurements are consistent with its expected distribution,

according to the null hypothesis.

3. Next we need to determine a probability or confidence level for the agreement

between the statistic and its expected distribution under the null hypothesis. This

level of confidence p, say p D 0:9 or 90 %, defines a range of values for the

statistics that are consistent with its expected distribution. We will refer to this

range as the acceptable region for the statistic. For example, a standard Gaussian

of zero mean and unit variance has 90 % of its values in the range from �1:65
to C1:65. For a confidence level of p D 0:9, the analyst would require that the

measurement must fall within this range. The choice of probability p is somewhat

arbitrary: some analysts may choose 90 %, some may require 99.99 %, some may

even be satisfied with 68 %, which is the probability associated with ˙1� for

a Gaussian distribution. Values of the statistics outside of the acceptable range

define the rejection region. For the standard Gaussian, the rejection region at

p D 0:9 consists of values � 1:65 and values � �1:65, i.e., the rejection region
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is two-sided, as obtained from

PfjSj � Sg D 1 �
Z S

�S

f .s/ds D 1 � p (7.1)

where f .s/ is the probability distribution of the statistic (in this example the

standard Gaussian) and S is the critical value of the statistic at the level of

confidence p. For two-sided rejection regions such as this, where large values

of the absolute value of the statistic S are not acceptable, the null hypothesis can

be summarized as

H0 D {The statistic has values jSj � S}

Here we have assumed that the acceptable region is centered at 0, but other

choices are also possible.

In other cases of interest, such as for the �2 distribution, the rejection region

is one-sided. The critical value at confidence level p for the statistic can be found

from

PfS � Sg D
Z 1

s

f .s/ds D 1 � p (7.2)

where f .s/ is the probability distribution function of the statistic S. For one-sided

rejection regions where large values of the statistic are not acceptable the null

hypothesis can now be summarized as

H0 D {The statistic has values S � S}:

Clearly p and NS are related: the larger the value of the probability p, the larger the

value of NS, according to (7.1) and (7.2). Larger values of p, such as p D 0:9999,

increase the size of the acceptable region and reduce the size of the rejection

region.

In principle, other choices for the acceptable and rejection regions are

possible, such as multiple intervals or intervals that are not centered at zero. The

corresponding critical value(s) of the statistic can be calculated using expression

similar to the two reported above. The majority of cases for the rejection region

are, however, either a one-sided interval extending to infinity or a two-sided

region centered at zero.

4. Finally we are in a position to make a quantitative and definitive statement

regarding the null hypothesis. Since we have partitioned the range of the statistic

into an acceptable region and a rejection region, only two cases are possible:

• Case 1: The measured value of the statistic S falls into the rejection region.

This means that the distribution function of the statistic of interest, under the

null hypothesis, does not allow the measured value at the confidence level p.
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In this case the null hypothesis must be rejected at the stated confidence level

p. The rejection of the null hypothesis means that the data should be tested for

alternative hypotheses and the procedure can be repeated.

• Case 2: The measured value of the statistic S is within the acceptable region.

This means that there is a reasonable probability that the measured value of the

statistic is consistent with the null hypothesis. In that case the null hypothesis

cannot be rejected, i.e., the null hypothesis could be true. In this case one can

state that the null hypothesis or the underlying model is consistent with the

data. Sometimes this situation can be referred to as the null hypothesis being

acceptable. This is, however, not the same as stating that the null hypothesis

is the correct hypothesis and that the null hypothesis is accepted. In fact, there

could be other hypotheses that could be acceptable and one cannot be certain

that the null hypothesis tested represents the parent model for the data.

Example 7.2 Consider N D 5 independent measurements of a random variable

X, namely xi D .10; 12; 15; 11; 13/. We would like to test the hypothesis that

the measurements are drawn from a Gaussian random variable with � D 13 and

�2 D 2/.

Next we need to determine the test statistic that we want to use. Since there are

N independent measurements of the same variable, we can consider the sum of all

measurements as the statistic of interest,

Y D
5
X

iD1
Xi;

which is distributed like a Gaussian N.N � �;N � �2/ D N.65; 10/. We could have

chosen the average of the measurements instead. It can be proven that the results of

the hypothesis testing are equivalent for the two statistics.

The next step requires the choice of a confidence level for our hypothesis.

Assume that we are comfortable with a value of p D 95 % level. This means that

the rejection region includes values that are˙1:96� (or˙ 6.2 units) away from the

parent mean of � D 65, as shown by the cross-hatched are in Fig. 7.1.

Next, we calculate the value of the statistic as Y D 61, and realize that the

measured value does not fall within the region of rejection. We conclude that the

data are consistent with the hypothesis that the measurements are drawn from the

parent Gaussian at the 95 % probability level (or 1:96� level).

Assume next that another analyst is satisfied with a p D 68% probability, instead

of 95 %. This means that the region of rejection will be ˙1:0� D 1:0 �
p
10 D 3:2

away from the mean. In this case, the rejection region becomes the hatched area in

Fig. 7.1, and the measured value of the test statistic Y falls in the rejection region. In

this case, we conclude that the hypothesis must be rejected at the 68 % probability

level (or at the 1� level). }
The example above illustrates the importance of the choice of the confidence

level p—the same null hypothesis can be acceptable or must be rejected depending
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Fig. 7.1 Rejection regions at p D 0:95 and p D 0:68 confidence level for the test of the Gaussian

origin of measurements xi D .10; 12; 15; 11; 13/. The null hypothesis is that the sum of the

measurements are drawn from a random variable Y � N.� D 65; �2 D 10/

on its value. To avoid this ambiguity, some analysts prefer to take a post-facto

approach to the choice of p. In this example, the measured value of the sample mean

corresponds to an absolute value of the deviation of 1:26� from the parent mean.

Such deviation corresponds to a probability of approximately 79 % to exceed the

parent mean. It is therefore possible to report this result with the statement that the

data are consistent with the parent model at the 79 % confidence level. In general,

for a two-dimensional rejection region, the measurement Sdata corresponds to a level

of confidence p via

PfS � jSdatajg D 1 �
Z Sdata

�Sdata

f .s/ds D 1 � p; (7.3)

where f .s/ is the probability distribution of the test statistic under the null hypothesis

(an equivalent expression applies to a one-sided rejection region). This equation can

be used to make the statement that the measurement of Sdata is consistent with the

model at the p confidence level.

It is necessary to discuss further the meaning of the word “acceptable” with

regard to the null hypothesis. The fact that the measurements were within 1-� of

a given mean does not imply that the parent distribution of the null hypothesis is the

correct one; in fact, there could be other parent distributions that are equally well

“acceptable.” Therefore, any null hypothesis can only be conclusively disproved (if

the measurements were beyond, say, 3- or 5-� of the parent mean, depending on the

choice of probability p), but never conclusively proven to be the correct one, since

this would imply exhausting and discarding all possible alternative hypotheses. The

process of hypothesis testing is therefore slanted towards trying to disprove the null

hypothesis, possibly in favor of alternative hypotheses. The rejection of the null
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hypothesis is the only outcome of the hypothesis testing process that is conclusive,

in that it requires to discard the hypothesis.

7.2 The �2 Distribution

Consider N random variables Xi, each distributed like a Gaussian with mean �i,

variance �2i , and independent of one other. For each variable Xi, the associated z-

score

Zi D
Xi � �i

�i

is a standard Gaussian of zero mean and unit variance. We are interested in finding

the distribution function of the random variable given by the sum of the square of

all the deviations,

Z D
N
X

iD1
Z2i : (7.4)

This quantity will be called a �2-distributed variable.

The reason for our interest in this distribution will become apparent from the

use of the maximum likelihood method in fitting two-dimensional data (Chap. 8). In

fact, the sum of the squares of the deviations of the measurements from their mean,

�2 D
N
X

iD1

�

xi � �i

�i

�2

;

represents a measure of how well the measurements follow the expected values �i.

7.2.1 The Probability Distribution Function

The theoretical distribution of Z is obtained by making use of the Gaussian

distribution for its components. To derive the distribution function of Z, we

first prove that the moment generating function of the square of each Gaussian

Zi is given by

MZ2i
.t/ D

r

1

1 � 2t
: (7.5)
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This result enables the comparison with the moment generating function of

another distribution and the determination of the distribution function of Z.

Proof The moment generating function of the square of a standard Gaussian

Zi is given by

MZ2i
.t/ D EŒeZ2i t� D

Z C1

�1
ex2t 1p

2�
e

� x2

2 dx D 1p
2�

Z C1

�1
e

�x2
�

1
2

�t

�

dx

We use the fact that
R C1

�1 e�y2dy D p� ; thus, change variable y2 D
x2.1=2� t/, and use 2xdx.1=2� t/ D 2ydy:

dx D y

x

dy

.1=2� t/
D
p

1=2� t

1=2� t
dy D dy

p

1=2� t
:

This results in the following moment generating function for Y2:

MZ2i
.t/ D

Z C1

�1

e�y2

p
�

dy
p

2.1=2� t/
D
r

1

1 � 2t
: (7.6)

ut
We make use of the property that MxCy.t/ D Mx.t/ �My.t/ for independent

variables (4.10). Since the variables Xi are independent of one another, so are

the variables Z2i . Therefore, the moment generating function of Z is given by

MZ.t/ D
�

MZ2i
.t/
�N

D
 

r

1

1 � 2t

!N=2

:

To connect this result with the distribution function for Z, we need to introduce

the gamma distribution:

f .r; ˛/ D
˛.˛x/r�1e�˛x

� .r/
(7.7)

where ˛, r are positive numbers, and x � 0. Its name derives from the

following relationship with the Gamma function:

� .r/ D
Z 1

0

e�xxr�1dx: (7.8)
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For integer arguments, � .n/ D .n � 1/Š It can be shown that the mean of

the gamma distribution is � D r=˛, and the variance is �2 D r=˛2. From

property (7.8), it is also clear that the gamma distribution in (7.7) is properly

normalized.

Next, we show that the moment generating function of a gamma distribu-

tion is a generalization of the moment generating function of the square of a

standard normal distribution,

Mg.t/ D
1

�

1 � t

˛

�r : (7.9)

Proof The moment generating function of a gamma distribution is calculated

as

Mg.t/ D EŒetG� D
Z 1

0

etzf .r; ˛/dz D
Z 1

0

˛r

� .r/
zr�1e�z.˛�t/dz

D ˛r

� .r/

Z 1

0

.˛ � t/.˛ � t/r�1zr�1e�z.˛�t/dz:

The change of variable x D z.˛ � t/, dx D dz.˛ � t/ enables us to use the

normalization property of the gamma distribution,

Mg.t/ D
˛r

.˛ � t/r

Z 1

0

xr�1

� .r/
e�xdx D ˛r

.˛ � t/r
D 1
�

1 � t

˛

�r : (7.10)

ut
The results shown in (7.5) and (7.9) prove that the moment generating functions

for the Z and gamma distributions are related to one another. This relationship can be

used to conclude that the random variable Z is distributed like a gamma distribution

with parameters r D N=2 and ˛ D 1=2. The random variable Z is usually referred

to as a �2 variable with N degrees of freedom, and has a probability distribution

function

f�2.z;N/ D fZ.z/ D
�

1

2

�N=2
1

� .N=2/
e�z=2z

N=2�1: (7.11)

An example of �2 distribution is shown in Fig. 7.2. The distribution is unimodal,

although not symmetric with respect to the mean.



7.2 The �2 Distribution 125

Fig. 7.2 The Z statistic is a �2 distribution with 5 degrees of freedom. The hatched area is the

68 % rejection region, and the cross-hatched area the 95 % region

7.2.2 Moments and Other Properties

Since the mean and variance of a gamma distribution with parameters r, ˛, are

� D r

˛
and �2 D r

˛2
, the �2 distribution has the following moments:

(

� D N

�2 D 2N:
(7.12)

This result shows that the expectation of a �2 variable is equal to the number of

degrees of freedom. It is common to use the reduced �2 square variable defined by

�2red D
�2

N
: (7.13)

The mean or expectation of the reduced �2 and the variance are therefore given by

8

<

:

� D 1
�2 D 2

N
:

(reduced �2) (7.14)

As a result, the ratio between the standard deviation and the mean for the reduced

�2, a measure of the spread of the distribution, decreases with the number of degrees
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of freedom,

�

�
D
r

2

N
:

As the numbers of degrees of freedom increase, the values of the reduced �2 are

more closely distributed around 1.

As derived earlier, the moment generating function of the �2 distribution

M�2.t/ D EŒetZ � D 1

.1 � 2t/N=2
: (7.15)

This form of the moment generating function highlights the property that, if two

independent �2 distributions have, respectively, N and M degrees of freedom, then

the sum of the two variables will also be a �2 variable, and it will have NCM degrees

of freedom. In fact, the generating function of the sum of independent variables is

the product of the two functions, and the exponents in (7.15) will add.

7.2.3 Hypothesis Testing

The null hypothesis for a �2 distribution is that all measurements are consistent

with the parent Gaussians. Under this hypothesis, we have derived the probability

distribution function f�2.z;N/, where N is the number of degrees of freedom of the

distribution. If the N measurements are consistent with their parent distributions,

one expects a value of approximately �2 ' N, i.e., each of the N measurements

contributes approximately a value of one to the �2. Large values of �2 clearly

indicate that some of the measurements are not consistent with the parent Gaussian,

i.e., some of the measurements xi differ by several standard deviations from the

expected mean, either in defect or in excess. Likewise, values of �2 � N are

also not expected. Consider, for example, the extreme case of N measurements all

identical to the parent mean, resulting in �2 D 0. Statistical fluctuations of the

random variables make it extremely unlikely that all N measurements match the

mean. Clearly such an extreme case of perfect agreement between the data and the

parent model is suspicious and the data should be checked for possible errors in the

collection or analysis.

Despite the fact that very small value of �2 is unlikely, it is customary to test for

the agreement between a measurement of �2 and its theoretical distribution using a

one-sided rejection region consisting of values of �2 exceeding a critical value. This

means that the acceptable region is for values of �2 that are between zero and the

critical value. Critical values of the �2 distribution for a confidence level p can be
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calculated via

P.Z � �2crit/ D
Z 1

�2crit

f�2.z; n/dz D 1 � p (7.16)

and are tabulated in Table A.7.

Example 7.3 Assume the N D 5measurements of a variable X, .10; 12; 15; 11; 13/,

presented in Example 7.2. We want to test the hypothesis that these were inde-

pendent measurements of a Gaussian variable X of mean � D 13 and variance

�2 D 2. Under this assumption, we could use the �2 statistic to try and falsify the

null hypothesis that the data are drawn from the given Gaussian. The procedure for

a quantitative answer to this hypothesis is that of deciding a level of probability p,

then to calculate the value of the statistic,

�2 D 1=2 � ..10� 13/2C .12� 13/2C .15� 13/2C .11� 13/2C .13� 13/2/ D 9:

In Fig. 7.2 we show the rejection regions for a probability p D 0:95 and p D
0:68, which are determined according to the tabulation of the integral of the �2

distribution with N D 5 degrees of freedom: �2crit D 6:1 marks the beginning of

the 70 % rejection region, and �2crit D 11:1 that of the 95 % rejection region. The

hypothesis is therefore rejected at the 68 % probability level, but cannot be rejected

at the 95 % confidence level.

Moreover, we calculate from Table A.7

P.�2 � 9/ D
Z 1

9

f�2.z; 5/dz ' 0:10:

We therefore conclude that there is a 10 % probability of observing such value of �2,

or higher, under the hypothesis that the measurements were made from a Gaussian

distribution of such mean and variance (see Fig. 7.2). Notice that the results obtained

using the �2 distribution are similar to those obtained with the test that made use of

the sum of the five measurements. }

7.3 The Sampling Distribution of the Variance

The distribution function of the sample variance, or sampling distribution of the

variance, is useful to compare a given measurement of the sample variance s2 with

the parent variance �2. We consider N measurements of X that are distributed like

a Gaussian of mean �, variance �2 and independent of each other. The variable S2

defined by

S2 D .N � 1/s2 D
N
X

iD1
.Xi � NX/2 (7.17)
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is proportional to the sample variance s2. We seek a distribution function for S2=�2

that enables a comparison of the measured sample variance with the parent variance

�2.

In determining the sampling distribution of the variance we do not want to

assume that the mean of the parent Gaussian is known, as we did in the previous

section for the determination of the �2 distribution. This is important, since in a

typical experiment we do not know a priori the parent mean of the distribution, but

we can easily calculate the sample mean. One complication in the use of (7.17)

is therefore that NX is itself a random variable, and not an exactly known quantity.

This fact must be taken into account when calculating the expectation of S2. A

measurement of S2 is equal to

S2 D
N
X

iD1
.xi � �C �� Nx/2 D

N
X

iD1
.xi � �/2 � N.� � Nx/2: (7.18)

Dividing both terms by �2, we obtain the following result:

PN
iD1.xi � �/2

�2
D S2

�2
C .Nx � �/2

�2=N
: (7.19)

According to the result in Sect. 7.2, the left-hand side term is distributed like a

�2 variable with N degrees of freedom, since the parent mean � and variance �2

appear in the sum of squares. For the same reason, the second term in the right-

hand side is also distributed like a �2 variable with 1 degree of freedom, since we

have already determined that the sample mean X is distributed like a Gaussian with

mean � and with variance �2=N. Although it may not be apparent at first sight, it

can be proven that the two terms on the right-hand side are two independent random

variables. If we can establish the independence between these two variables, then it

must be true that the first variable in the right-hand side, S2=�2, is also distributed

like a �2 distribution with N � 1 degrees of freedom. This follows from the fact that

the sum of two independent �2 variables is also a �2 variable featuring the sum of

the degrees of freedom of the two variables, as shown in Sect. 7.2.

Proof The proof of the independence between S2=�2 and
. NX��/2
�2�

, and the fact

that both are distributed like �2 distributions with, respectively, N � 1 and 1

degrees of freedom, can be obtained by making a suitable change of variables

from the original N standard normal variables that appear in the left-hand side

of (7.19),

Zi D
Xi � �
�

;
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to a new set of N variables Yi. The desired transformation is one that has the

property

Z21 C : : :C Z2N D Y21 C : : :C Y2N :

This is called an orthonormal (linear) transformation, and in matrix form it

can be expressed by a transformation matrix A, of dimensions N � N, such

that a row vector z D .Z1; : : : ;ZN/ is transformed into another vector y

by way of the product y D z A. For such a transformation, the dot product

between two vectors is expressed as yyT D z AATzT . Since for an orthonormal

transformation the relationship AAT D I holds, where I is the N � N identity

matrix, then the dot product remains constant upon this transformation. An

orthonormal transformation, expressed in extended form as

8

ˆ

ˆ

<

ˆ

ˆ

:

Y1 D a1Z1 C : : :C aNZN

Y2 D b1Z1 C : : :C bNZN

: : :

is obtained when, for each row vector,
P

a2i D 1; and, for any pair of row

vectors,
P

aibi D 0, so that the Yi’s are independent of one another.

Any such orthonormal transformation, when applied to N independent

variables that are standard Gaussians, Zi � N.0; 1/, as is the case in this

application, is such that the transformed variables Yi are also independent

standard Gaussians. In fact, the joint probability distribution function of the

Zi’s can be written as

f .z/ D 1

.2�/N=2
e

� z21C:::Cz2N
2 I

and, since the transformed variables have the same dot product, z21C: : :Cz2N D
y21 C : : : C y2N , the N variables Yi have the same joint distribution function,

proving that they are also independent standard Gaussians.

We want to use these general properties of orthonormal transformations to

find a transformation that will enable a proof of the independence between

S2=�2 and .X � �/2=�2�. The first variable is defined by the following linear

combination,

Y1 D
Z1p

N
C : : :C ZNp

N
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in such a way that the following relationships hold:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

Y21 D
. NX � �/2
�2=N

N
P

iD1
Z2i D

1

�2

N
P

iD1
.Xi � �/2; or

N
P

iD1
Z2i D Y21 C

N
P

iD2
Y2i :

The other N � 1 variables Y2; : : : ;YN can be chosen arbitrarily, provided they

satisfy the requirements of orthonormality. Since
N
P

iD1
Z2i �Y21 D S2=�2, we can

conclude that

S2

�2
D

N
X

iD2
Y2i

proving that S2=�2 is distributed like a �2 distribution with N � 1 degrees of

freedom, as the sum of squares on N� 1 independent standard Gaussians, and

that S2=�2 is independent of the sampling distribution of the mean, Y21 , since

the variables Yi are independent of each other. This proof is due to Bulmer [7],

who used a derivation done earlier by Helmert [20]. ut

We are therefore able to conclude that the ratio S2=�2 is distributed like a �2

variable with N � 1 degrees of freedom,

S2

�2
� �2.N � 1/: (7.20)

The difference between the �2 distribution (7.11) and the distribution of the

sample variance (7.20) is that in the latter case the mean of the parent distribution is

not assumed to be known, but it is calculated from the data. This is in fact the more

common situation, and therefore when N measurements are obtained, the quantity

S2

�2
D

N
X

iD1

�

xi � Nx
�

�2

is distributed like a �2 distribution with just N � 1 degrees of freedom, not N. This

reduction in the number of degrees of freedom can be expressed by saying that one

degree of freedom is being used to estimate the mean.
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Example 7.4 Assume N D 10 measurements of a given quantity (10, 12, 15, 11,

13, 16, 12, 10, 18, 13). We want to answer the following question: Are these

measurements consistent with being drawn from the same Gaussian random variable

with �2 D 2? If the measurements are in fact derived from the same variable, then

the probability of measuring the actual value of s2 for the sample variance will be

consistent with its theoretical distribution that was just derived in (7.20).

The value of the sample variance is obtained by Nx D 13 as S2 D 62. Therefore,

the measurement s2=�2 D 62=2 D 36 must be compared with the �2 distribution

with N � 1 D 9 degrees of freedom. The measurement is equivalent to a reduced �2

value of 4, which is inconsistent with a �2 distribution with 9 degrees of freedom

at more than the 99 % confidence level. We therefore conclude that the hypothesis

must be rejected with this confidence level.

It is necessary to point out that, in this calculation, we assumed that the parent

variance was known. In the following section we will provide another test that can be

used to compare two measurements of the variance that does not require knowledge

of the parent variance. That is in fact the more common experimental situation and

it requires a detailed study. }

7.4 The F Statistic

The distribution of the sample variance discussed above in Sect. 7.3 shows that if

the actual variance � is not known, then it is impossible to make a quantitative

comparison of the sample variance with the parent distribution. Alternatively, one

can compare two different measurements of the variance, and ask the associated

question of whether the ratio between the two measurements is reasonable. In this

case the parent variance �2 drop out of the equation and the parent variance is not

required to compare two measurements of the sample variance.

For this purpose, consider two independent random variables Z1 and Z2, respec-

tively, distributed like a �2 distribution with f1 and f2 degrees of freedom. We define

the random variable F as

F D Z1=f1

Z2=f2
: (7.21)

The variable F is equivalent to the ratio of two reduced �2, and therefore is expected

to have values close to unity.
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7.4.1 The Probability Distribution Function

We show that the probability distribution function of the random variable F is

given by

fF.z/ D
�

�

f1 C f2

2

�

�

�

f1

2

�

�

�

f2

2

�

�

f1

f2

�

f1
2 z

f1
2

�1

�

1C z
f1

f2

�

f1Cf2
2

: (7.22)

Proof The proof makes use of the methods described in Sects. 4.4.1 and 4.4.2.

First we derive the distribution functions of the numerator and denominator of

(7.21), and then we calculate the distribution function for the ratio of two

variables with known distribution.

Given that Z1 � �2. f1/ and Z2 � �2. f2/, the distribution functions of

X0 D Z1=f1 and Y 0 D Z2=f2 are found using change of variables; for X0,

fX0.x0/ D f .z/
dz

dx0 D f .z/f1;

where f .z/ is the distribution of Z1. This results in

fX0.x0/ D zf1=2�1e�z=2

� . f1=2/2f1=2
f1 D

.x0f1/f1=2�1e�.x0f1/=2

� . f1=2/2f1=2
f1I

same transformation applies to Y 0. Now we can use (4.18),

fF.z/ D
Z 1

0

fX0.z�/�fY0.�/d�

D
Z 1

0

.z�f1/
f1=2�1e�.z�f1/=2

� . f1=2/2f1=2
f1�
.�f2/

f2=2�1e�.�f2/=2

� . f2=2/2f2=2
d�

D f1f2z
f1=2�1f f1=2�1

1 f
f2=2�1
2

� . f1=2/2. f1Cf2/=2� . f2=2/

Z 1

0

� f1=2�1Cf2=2�1C1e�1=2�.zf1Cf2/d�

D zf1=2�1f f1=2
1 f

f2=2
2

� . f1=2/� . f2=2/2. f1Cf2/=2

Z 1

0

�. f1Cf2/=2�1e�1=2�.zf1Cf2/d�
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After another change of variables, t D �.zf1 C f2/=2, dt D d�.zf1 C f2/=2,

the integral becomes

Z 1

0

�

2t

zf1 C f2

�. f1Cf2/=2�1
e�t dt
�

zf1 C f2

2

�

D 2. f1Cf2/=2

.zf1 C f2/1C. f1Cf2/=2�1

Z 1

0

t. f1Cf2/=2�1e�tdt

D 2. f1Cf2/=2

.zf1 C f2/. f1Cf2/=2
�

�

f1 C f2

2

�

:

Therefore the distribution of Z is given by

fF.z/ D
zf1=2�1f f1=2

1 f
f2=2
2

� . f1=2/� . f2=2/2. f1Cf2/=2

2. f1Cf2/=2�

�

f1 C f2

2

�

.zf1 C f2/. f1Cf2/=2

D
f

f1=2
1 f

f2=2
2 �

�

f1 C f2

2

�

� . f1=2/� . f2=2/

zf1=2�1

.1C z
f1

f2
/. f1Cf2/=2f

. f1Cf2/=2
2

D
�

f1

f2

�f1=2 �

�

f1 C f2

2

�

�

�

f1

2

�

�

�

f2

2

�

zf1=2�1
�

1C z
f1

f2

�. f1Cf2/=2
:

ut
The distribution of F is known as the F distribution. It is named after Fisher [13],

who was the first to study it.

7.4.2 Moments and Other Properties

The mean and higher-order moments of the F distribution can be calculated by

making use of the Beta function,

B.x; y/ D
Z 1

0

f x�1

.1C t/xCy
dt D � .x/� .y/

� .xC y/
; (7.23)
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to find that

8

ˆ

ˆ

<

ˆ

ˆ

:

� D f2

f2 � 2
. f2 > 2/

�2 D 2f 22 . f1 C f2 � 2/
f1. f2 � 2/2. f2 � 4/

. f2 > 4/

(7.24)

The mean is approximately 1, provided that f2 is not too small.

It is possible to find an approximation to the F distribution when either f1 or f2 is

a large number:

8

ˆ

<

ˆ

:

lim
f2!1

fF.z; f1; f2/ D f�2.x; f1/ where x D f1z

lim
f1!1

fF.z; f1; f2/ D f�2.x; f2/ where x D f2=z:
(7.25)

The approximation, discussed, for example, in [1], is very convenient, since it

overcomes the problems with the evaluation of the Gamma function for large

numbers.

7.4.3 Hypothesis Testing

The F statistic is a ratio

F D �21=f1

�22=f2
(7.26)

between two independent �2 measurements of, respectively, f1 and f2 degrees of

freedom. A typical application of the F test is the comparison of two �2 statistics

from independent datasets using the parent Gaussians as models for the data. The

null hypothesis is that both sets of measurements follow the respective Gaussian

distribution. In this case, the measured ratio F will follow the F distribution.

This implies that the measured value of F should not be too large under the null

hypothesis that both measurements follow the parent models.

It is customary to do hypothesis testing of an F distribution using a one-sided

rejection region above a critical value. The critical value at confidence level p is

calculated via

P.F > Fcrit/ D
Z 1

Fcrit

fF.z/dz D 1 � p: (7.27)

Critical values are tabulated in Table A.8 for the case of fixed f1 D 1, and Tables A.9,

A.10, A.11, A.12, A.13, A.14, and A.15 for various values of p, and as function of

f1 and f2. The values of Fcrit calculated from (7.27) indicate how high a value of the
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F statistic can be, and still be consistent with the hypothesis that the two quantities

at the numerator and denominator are �2-distributed variables.

The approximations for the F distribution in (7.25) can be used to calculate

critical values when one of the degrees of freedom is very large. For example, the

critical value of F at 90 % confidence, p D 0:90, for f1 D 100 and f2 ! 1 (e.g.,

Table A.13) is calculated from Table A.7 as F = 1.185. Note that Table A.7 reports

the value of the reduced �2, or z in the notation of the top equation in (7.25).

Example 7.5 Consider the data set composed of the ten measurements

.10; 12; 15; 11; 13; 16; 12; 10; 18; 13/.

We assume that the measurements follow a Gaussian distribution of mean of

� D 13 and variance �2. The goal is to compare the calculation of the �2 of the

first five measurements with the last five to address whether both subsets are equally

likely to be described by the same Gaussian.

We obtain �21 D 18=�2 and �22 D 44=�2, respectively, for the first and the

second set of five measurements. Both variables, under the null hypothesis that the

measurements follow the reference Gaussian, are distributed like �2 with 5 degrees

of freedom (since both mean and variance are assumed to be known). We therefore

can calculate an F statistic of F D 44=18 D 2:44. For simplicity, we have placed

the initial five measurements at the denominator.

In the process of calculating the F statistic, the variances �2 cancel, and therefore

the null hypothesis is that of a mean of � D 13 and same variance for both sets,

regardless of its value. In Fig. 7.3 we plot the F distribution for f1 D 5 and f2 D 5

Fig. 7.3 Solid curve is the F distribution with �1 D 5, �2 D 5 degrees of freedom; the hatched

area is the 75 % rejection region, and the cross-hatched area is the 90 % rejection region. For

comparison, the F distribution with �1 D 4, �2 D 4 degrees of freedom is shown as the dashed

line, and the two rejection regions are outlined in green and red, respectively. The rejection region

for the F distribution with �1 D 4, �2 D 4 degrees of freedom is shifted to higher values, relative

to that with �1 D 5, �2 D 5 degrees of freedom, because of its heavier tail
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as the solid line, and its 75 and 90 % rejection regions, marked, respectively, by

the critical values F D 1:89 and 3.45, as hatched and cross-hatched areas. The

measurements are therefore consistent with the null hypothesis at the 90 % level,

but the null hypothesis must be discarded at the 75 % confidence level. Clearly the

first set of five numbers follows the parent Gaussian more closely than the second

set. Yet, there is a reasonable chance (� 10%) that both sets follow the Gaussian.

If the parent variance was given, say �2 D 4, we could have tested both subsets

independently for the hypothesis that they follow a Gaussian of mean � D 13 and

variance �2 D 4 using the �2 distribution. The two measurements are �21 D 4:5 and

�22 D 11 for 5 degrees of freedom. Assuming a confidence level of p D 0:9, the

critical value of the �2 distribution is �2crit D 9:2. At this confidence level, we would

reject the null hypothesis for the second measurement. }
The ratio between two measurements of the sample variance follows the F

distribution. For two independent sets of, respectively, N and M measurements, the

sample variances s21 and s22 are related to the parent variances �21 and �22 of the

Gaussian models via

F D Z1=f1

Z2=f2
D

S21

�21 f1

S22

�22 f2

; (7.28)

where

(

S21 D .N � 1/s21 D
PN

iD1.xi � x/2

S22 D .M � 1/s22 D
PM

jD1.yj � y/2:
(7.29)

The quantities Z1 D S21=�
2
1 and Z2 D S22=�

2
2 are �2-distributed variables with,

respectively, f1 D N � 1 and f2 D M � 1 degrees of freedom. The statistic F can be

used to test whether both measurements of the variance are equally likely to have

come from the respective models.

The interesting case is clearly when the two variances are equal, �21 D �22 , so that

the value of the variance drops out of the equation and the F statistic becomes

F D S21=f1

S22=f2
(�21 D �22 ): (7.30)

In this case, the null hypothesis becomes that the two samples are Gaussian

distributed, regardless of values for the mean and the variance. The statistic therefore

measure if the variances or variability of the data in the two measurements are

consistent with one another or if one measurement has a sample variance that is

significantly larger than the other. If the value of F exceeds the critical value, then

the null hypothesis must be rejected and the conclusion is that the measurement with

the largest value of Z=f , which is placed at the numerator, is not as likely to have
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come from the parent model as the other set. This type of analysis will have specific

applications to model fitting in Chap. 13.

Example 7.6 Using the same data as in the previous example, we can calculate the

sample variance using the sample mean for each of the two 5-measurement sets. We

calculate a sample mean of x1 D 12:2 and x2 D 13:8, for a value of S21 D 14:8 and

S22 D 40:8, for a ratio of F D 2:76. Given that the sample mean was estimated from

the data, the null hypothesis is that both sets are drawn from the same Gaussian

distribution, without specification of the value of either variance or mean, and each

measurement of S2=�2 is distributed now like a �2 variable with just 4 degrees of

freedom (and not 5). The value of the F statistic must therefore be compared with

an F distribution with f1 D 4 and f2 D 4 degrees of freedom, reported in Fig. 7.3

as a dashed line. The 75 and 90 % rejection regions, marked, respectively, by the

critical values F D 2:06 and 4.1, are outlined in green and red, respectively. The

measurements are therefore consistent at the 90 % confidence level, but not at the

75 % level.

We conclude that there is at least a 10 % probability that the two measurements

of the variance are consistent with one another. At the p D 0:9 level we therefore

cannot reject the null hypothesis. }

7.5 The Sampling Distribution of the Mean

and the Student’s t Distribution

In many experimental situations we want to compare the sample mean obtained

from the data to a parent mean based on theoretical considerations. Other times

we want to compare two sample means to one another. The question we answer

in this section is how the sample mean is expected to vary when estimated from

independent samples of size N.

7.5.1 Comparison of Sample Mean with Parent Mean

For measurements of a Gaussian variable of mean � and variance �2, the sample

mean Nx is distributed as a Gaussian of mean� and variance �2=N. Therefore, if both

the mean and the variance of the parent distribution are known, the sample mean NX
is such that

NX � �
�=
p

N
� N.0; 1/:
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A simple comparison between the z-score of the sample mean to the N.0; 1/

Gaussian therefore addresses the consistency between the measurement and the

model.

Example 7.7 Continue with the example of the five measurements of a random

variable .10; 12; 15; 11; 13/, assumed to be distributed like a Gaussian of � D 13

and �2 D 2. Assuming knowledge of the parent mean and variance, the z-score of

the sample mean is

Nx � �
��
D 12:2 � 13

p

2=5
D �1:27:

According to Table A.2, there is a probability of about 20 % to exceed the absolute

value of this measurement according to the parent distribution N.0; 1/. Therefore

the null hypothesis that the measurements are distributed like a Gaussian of � D 13
and �2 D 2 cannot be rejected at the 90 % confidence level. Notice that this is the

same probability as obtained by using the sum of the five measurements, instead

of the average. This was to be expected, since the mean differs from the sum by a

constant value, and therefore the two statistics are equivalent. }
A more common situation is when the mean� of the parent distribution is known

but the parent variance is unknown. In those cases the parent variance can only be

estimated from the data themselves via the sample variance s2 and one needs to

allow for such uncertainty when estimating the distribution of the sample mean.

This additional uncertainty leads to a deviation of the distribution function from the

simple Gaussian shape. We therefore seek to find the distribution of

T D Nx � �
s=
p

n
(7.31)

in which we define the sample variance in such a way that it is an unbiased estimator

of the parent variance,

s2 D 1

N � 1
X

.xi � Nx/2 D
S2

N � 1:

The variable T can be written as

T D Nx � �
s=
p

N
D
� Nx � �
�=
p

N

�

=.s=�/ D
� Nx � �
�=
p

N

�

=

�

S2

.N � 1/�2
�1=2

; (7.32)
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in which S2 is the sum of the squares of the deviations from the sample mean. As

shown in previous sections,

8

ˆ

ˆ

<

ˆ

ˆ

:

Nx � �
�=
p

n
� N.0; 1/

S2

�2
� �2.N � 1/:

We therefore need to determine the distribution function of the ratio of these two

variables. We will show that a random variable T defined by the ratio

T D X
p

Z=f
; (7.33)

in which X � N.0; 1/ and Z � �2. f / (a �2 distribution with f degrees of freedom)

is said to be distributed like a t distribution with f degrees of freedom:

fT.t/ D
1p
f�

� .. f C 1/=2/
� . f=2/

�
�

1C t2

f

��
f C 1
2

: (7.34)

Proof The proof of (7.34) follows the same method as that of the F distribu-

tion. First, we can derive the distribution function of Y D
p

Z=f using the

usual method of change of variables,

g.y/ D h.z/
dz

dy
D h.z/2

p

fZ

where

h.z/ D zf=2�1e�z=2

2f=2� . f=2/
:

Therefore the distribution of Y is given by substituting z D fy2 into the first

equation,

g.y/ D f . f �1/=2yf �1e�fy2=2
p

f

2f=2�1� . f=2/
: (7.35)

The distribution function of the numerator of (7.33) is simply

f.x/ D
1p
2�

e�x2=2;
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and therefore the distribution of T is given by applying (4.18),

fT.t/ D
Z 1

0

1p
2�

e�.ty/2=2y
f . f �1/=2yf �1e�fy2=2

p
f

2f=2�1� . f=2/
dy: (7.36)

The integral can be shown to be equal to (7.34) following a few steps of

integration as in the case of the F distribution. ut

This distribution is symmetric and has a mean of zero, and it goes under the name

of Student’s t distribution. This distribution was studied first by Gosset in 1908 [18],

who published a paper on the subject under the pseudonym of “Student.”

The random variable T defined in (7.31) therefore is distributed like a t variable

with N � 1 degrees of freedom. It is important to notice the difference between

the sample distribution of the mean in the case in which the variance is known,

which is N.0; 1/, and the t distribution. In particular, the latter depends on the

number of measurements, while the former does not. One expects that, in the

limit of a large number of measurements, the t distribution tends to the standard

normal (see Problem 7.10). The t distribution has in fact broader wings than the

standard Gaussian, and in the limit of an infinite number of degrees of freedom,

the two distributions are identical; an example of the comparison between the

two distributions is shown in Fig. 7.4. The t distribution has heavier tails than the

Gaussian distribution, indicative of the additional uncertainty associated with the

fact that the variance is estimated from the data and not known a priori.

Fig. 7.4 Student’s t

distribution with f D 4

degrees of freedom. The

dashed curve is the N.0; 1/

Gaussian, to which the

t-distribution tends for a large

number of degrees of

freedom. The hatched area is

the 68 % rejection region

(compare to the ˙1� region

for the N.0; 1/ distribution)

and the cross-hatched area is

the 95 % region (compare to

˙1:95� for the N.0; 1/

distribution)
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7.5.1.1 Hypothesis Testing

Hypothesis testing with the t distribution typically uses a two-sided rejection region.

After obtaining a measurement of the t variable from a given dataset, we are usually

interested in knowing how far the measurement can be from the expected mean of 0

and still be consistent with the parent distribution. The critical value for a confidence

level p is calculated via

P.jtj � Tcrit/ D
Z Tcrit

�Tcrit

fT.t/dt D p (7.37)

and it is a function of the number of degrees of freedom for the t distribution.

Tables A.16, A.17, A.18, A.19, A.20, A.21, and A.22 report the value of p as

function of the critical value Tcrit for selected degrees of freedom, and Table A.23

compares the t distribution with the standard Gaussian.

Example 7.8 Assume now that the five measurements .10; 12; 15; 11; 13/ are dis-

tributed like a Gaussian of � D 13, but without reference to a parent variance. In

this case we consider the t statistic and start by calculating the sample variance:

s2 D 1

4

X

.xi � Nx/2 D 3:7:

With this we can now calculate the t statistic,

t D Nx � �
s=
p
5
D 12:2 � 13
1:92=

p
5
D �0:93:

This value of t corresponds to a probability of approximately �40 % to exceed

the absolute value of this measurement, using the t distribution with 4 degrees of

freedom of Table A.23. It is clear that the estimation of the variance from the data

has added a source of uncertainty in the comparison of the measurement with the

parent distribution. }

7.5.2 Comparison of Two Sample Means and Hypothesis

Testing

The same distribution function is also applicable to the comparison between two

sample means x1 and x2, derived from samples of size N1 and N2, respectively. In
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this case, we define the following statistic:

T D x1 � x2

s
p

1=N1 C 1=N2
: (7.38)

where

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

S2 D S21 C S22

s2 D S2

N1 C N2 � 2
S21 D

N1
P

iD1
.xi � x1/

S22 D
N2
P

jD1
.xj � x2/:

We show that this statistic is distributed like a T distribution with f D N1 C N2 � 2
degrees of freedom, and therefore we can use the same distribution also for testing

the agreement between two sample means.

Proof Under the hypothesis that all measurements are drawn from the same

parent distribution, X � N.�; �/, we know that

8

ˆ

ˆ

<

ˆ

ˆ

:

x1 � �
�=
p

N1
� N.0; 1/

x2 � �
�=
p

N2
� N.0; 1/

and, from (7.20)

8

ˆ

<

ˆ

:

S21

�2
� �2.N1 � 1/

S22

�2
� �2.N2 � 1/

:

First, we find the distribution function for the variable .x1 � �/=� � .x2 �
�/=� . Assuming that the measurements are independent, then the variable is

a Gaussian with zero mean, with variances added in quadrature, therefore

X D
�

x1 � �
�
� x2 � �

�

�

=

s

1

N1
C 1

N2
� N.0; 1/:
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Next, since independent �2 variables are also distributed like a �2 distribu-

tion with a number of degrees of freedom equal to the sum of the individual

degrees of freedom,

Z D S21

�2
C S22

�2
� �2.N1 C N2 � 2/:

We also know the distribution of
p

Z=f from (7.35), with f D N1 C N2 � 2
the number of degrees of freedom for both datasets combined. As a result, the

variable T can be written as

T D X
p

Z=f
(7.39)

in a form that is identical to the T function for comparison of sample mean

with the parent mean, and therefore we can conclude that the random variable

defined in (7.38) is in fact a T variable with f D N1 C N2 � 2 degrees of

freedom. ut
Example 7.9 Using the ten measurements .10; 12; 15; 11; 13; 16; 12; 10; 18; 13/,

we have already calculated the sample mean of the first and second half of the

measurements as x1 D 12:2 and x2 D 13:8, and the sample variances as S21 D 14:8
and S22 D 40:8. This results in a measurement of the t distribution for the comparison

between two means of

t D x1 � x2
q

s21 C s22

p

1=N1 C 1=N2

D �0:97: (7.40)

This number is to be compared with a t distribution with 8 degrees of freedom,

and we conclude that the measurement is consistent, at any reasonable level of

confidence, with the parent distribution. In this case, we are making a statement

regarding the fact that the two sets of measurements may have the same mean, but

without committing to a specific value. }
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Summary of Key Concepts for this Chapter

� Hypothesis Testing: A four-step process that consists of (1) defining a

null hypothesis to test, (2) determine the relevant statistic (e.g., �2), (3)

a confidence level (e.g., 90 %), and (4) whether the null hypothesis is

discarded or not.

� �2 distribution: The theoretical distribution of the sum of the squares of

independent z-scores,

�2 D
X

�

xi � �i

�i

�2

:

(mean N and variance 2N).

� Sampling distribution of variance: Distribution of sample variance s2 D
S2=.N � 1/,

S2=�2 � �2.N � 1/

� F Statistic: Distribution of the ratio of independent �2 variables

F D �21=f1

�22=f2

(mean f2=. f2 � 2/ for f2 > 2) also used to test for additional model

components.

� Student’s t distribution: Distribution for the variable

T D x � �
s=
p

n
;

useful to compare the sample mean to the parent mean when the variance

is estimated from the data.

Problems

7.1 Five students score 70, 75, 65, 70, and 65 on a test. Determine whether the

scores are compatible with the following hypotheses:

(a) The mean is � D 75;

(b) the mean is � D 75 and the standard deviation is � D 5.

Test both hypotheses at the 95 % or 68 % confidence levels, assuming that the

scores are Gaussian distributed.
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7.2 Prove that the mean and variance of the F distribution are given by the following

relationships,

8

ˆ

ˆ

<

ˆ

ˆ

:

� D f2

f2 � 2
�2 D 2f 22 . f1 C f2 � 2/

f1. f2 � 2/2. f2 � 4/
;

where f1 and f2 are the degrees of freedom of the variables at the numerator and

denominator, respectively.

7.3 Using the same data as Problem (7.1), test whether the sample variance is

consistent with a parent variance of �2 D 25, at the 95 % level.

7.4 Using the J.J. Thomson experiment data of page 23, measure the ratio of

the sample variances of the m=e measurements in Air for Tube 1 and Tube 2.

Determine if the null hypothesis that the two measurements are drawn from the

same distribution can be rejected at the 90 % confidence level. State all assumptions

required to use the F distribution.

7.5 Consider a dataset .10; 12; 15; 11; 13; 16; 12; 10; 18; 13/, and calculate the ratio

of the sample variance of the first two measurements with that of the last eight. In

particular, determine at what confidence level for the null hypothesis both subsets

are consistent with the same variance.

7.6 Six measurements of the length of a wooden block gave the following

measurements: 20.3, 20.4, 19.8, 20.4, 19.9, and 20.7 cm.

(a) Estimate the mean and the standard error of the length of the block;

(b) Assume that the block is known to be of length � D 20 cm. Establish if the

measurements are consistent with the known length of the block, at the 90 %

probability level.

7.7 Consider Mendel’s experimental data in Table 1.1 shown at page 9.

(a) Consider the data that pertain to the case of “Long vs. short stem.” Write

an expression for the probability of making that measurement, assuming

Mendel’s hypothesis of independent assortment. You do not need to evaluate

the expression.

(b) Using the distribution function that pertains to that measurement, determine the

mean and variance of the parent distribution. Using the Gaussian approximation

for this distribution, determine if the null hypothesis that the measurement is

drawn from the parent distribution is compatible with the data at the 68 %

confidence level.
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7.8 Consider Mendel’s experimental data in Table 1.1 shown at page 9. Considering

all seven measurements, calculate the probability that the mean fraction of dominant

characters agrees with the expectation of 0.75. For this purpose, you may use the t

statistic.

7.9 Starting with (7.36), complete the derivation of (7.34).

7.10 Show that the t distribution,

fT.t/ D
1p
f�

� .. f C 1/=2/
� . f=2/

�
�

1C t2

f

�� 1
2
. f C1/

becomes a standard Gaussian in the limit of large f . You can make use of the

asymptotic expansion of the Gamma function (A.17).



Chapter 8

Maximum Likelihood Methods for Two-Variable

Datasets

Abstract One of the most common tasks in the analysis of scientific data is

to establish a relationship between two quantities. Many experiments feature the

measurement of a quantity of interest as function of another control quantity that

is varied as the experiment is performed. In this chapter we use the maximum

likelihood method to determine whether a certain relationship between the two

quantities is consistent with the available measurements and the best-fit parameters

of the relationship. The method has a simple analytic solution for a linear function

but can also be applied to more complex analytic functions.

8.1 Measurement of Pairs of Variables

A general problem in data analysis is to establish a relationship y D y.x/ between

two random variables X and Y for which we have available a set of N measurements

.xi; yi/. The random variable X is considered to be the independent variable and

it will be treated as having uncertainties that are much smaller than those in the

dependent variable, i.e., �x � �y. This may not always be the case and there are

some instances in which both errors need to be considered. The case of datasets

with errors in both variables is presented in Chap. 12.

The starting point of the analysis of a two-dimensional dataset is an analytic

form for y.x/, e.g., y.x/ D a C bx. The function f .x/ has a given number of

adjustable parameters ak, k D 1; : : : ;m that are to be constrained according to the

measurements. When the independent variable X is assumed to be known exactly,

then the two-variable data set can be described as a sequence of random variables

Y.Xi/. For these variables we typically have a measurement of the standard error

such that the two-variable data are of the form

.xi; yi ˙ �i/ i D 1; : : : ;N:

An example of this situation may be a dataset in which the size of an object is

measured at different time intervals. In this example the time of measurement

ti is the independent variable, assumed to be known exactly, and ri ˙ �i is the

measurement of the size at that time interval. Although we call y.xi/ D ri ˙ �i a
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“measurement,” it really may itself be obtained from a number of measurements

from which one infers the mean and the variance of that random variable, as

described in the earlier chapters. It is therefore reasonable to expect that the

measurement provides also an estimate of the standard error.

Before describing the mathematical properties of the method used to estimate the

best-fit parameters we need to understand the framework for the analysis. Consider

as an example the case of a linear function between X and Y illustrated in Fig. 8.1.

The main assumption of the method is that the function y D y.x/ is the correct

description of the relationship between the two variables. This means that each

random variable y.xi/ is a Gaussian with the following parameters:

�

�i D y.xi/ the parent mean is determined by y.x/

�2i variance is estimated from the data.
(8.1)

Notice how this framework is somewhat of a hybrid: the parent mean is determined

by the parent model y.x/ while the variance is estimated from the data. It should

not be viewed as a surprise that the model y D y.x/ typically cannot determine by

itself the variance of the variable. In fact, we know that the variance depends on the

quality of the measurements made and therefore it is reasonable to expect that �i

is estimated from the data themselves. In Sect. 8.2 we will use the assumption that

Y has a Gaussian distribution, but this need not be the only possibility. In fact, in

Sect. 8.8 we will show how data can be fit in alternative cases, such as when the

variable has a Poisson distribution.

Fig. 8.1 In the fit of two-variable data to a linear function, measurements of the dependent variable

Y are made for few selected points of the variable X (in this example x1 D 1; x2 D 3; x3 D 5 and

x4 D 7). Each datapoint is marked by the circle with error bars. The independent variable X is

assumed to be known exactly and the size of the error bar determines the value of the variance

of y.xi)
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8.2 Maximum Likelihood Method for Gaussian Data

In many cases the variables Y.Xi/ have a Gaussian distribution, as illustrated in

Fig. 8.1. The data are represented by points with an error bar and the model for each

data point is a Gaussian centered at the value of the parent model y.xi/. The model

y.x/ can be any function and, as described in the previous section, the standard

deviation �i is estimated from the data themselves.

The goal of fitting data to a model is twofold: to determine whether the model

y.x/ is an accurate representation of the data and, at the same time, to determine

what values of the adjustable parameters are compatible with the data. The two

goals are necessarily addressed together. The starting point is the calculation of the

likelihood L of the data with the model as

L D P.data/model/ D
N
Y

iD1

1
q

2��2i

e

�
.yi � y.xi//

2

2�2i D

0

B

@

N
Y

iD1

1
q

2��2i

1

C

A
e

�
PN

iD1

.yi � y.xi//
2

2�2i (8.2)

In the previous equation we have assumed that the measurements yi ˙ �i are inde-

pendent of one other, so that the Gaussian probabilities can be simply multiplied.

Independence between measurements is a critical assumption in the use of the

maximum likelihood method.

The core of the maximum likelihood method is the requirement that the unknown

parameters ak of the model y D y.x/ are those that maximize the likelihood of the

data. This is the same logic used in the estimate of parameters for a single variable

presented in Chap. 5. The method of maximum likelihood results in the condition

that the following function has to be minimized:

�2 D
N
X

iD1

�

yi � y.xi/

�i

�2

(8.3)

In fact, the factor in (8.2) containing the product of the sample variances is constant

with respect to the adjustable parameters and maximization of the likelihood is

obtained by minimization of the exponential term.

Equation (8.3) defines the goodness of fit statistic �2min, which bears its name

from the fact that it is distributed like a �2 variable. The number of degrees of

freedom associated with this variable depends on the number of free parameters

of the model y.x/, as will be explained in detail in Chap. 10. The simplest case

is that of a model that has no free parameters. In that case, we know already that
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the minimum �2 has exactly N degrees of freedom. Given the form of (8.3), the

maximum likelihood method, when applied to Gaussian distribution, is also known

as the least squares method.

8.3 Least-Squares Fit to a Straight Line,

or Linear Regression

When the fitting function is

y.x/ D aC bx (8.4)

the problem of minimizing the �2 defined in (8.3) can be solved analytically. The

conditions of minimum �2 are written as partial derivatives with respect to the two

unknown parameters:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

@

@a
�2 D �2

P 1

�2i
.yi � a � bxi/ D 0

@

@b
�2 D �2

P xi

�2i
.yi � a � bxi/ D 0

(8.5)

)

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

P yi

�2i
D a

P 1

�2i
C b

P xi

�2i

P xiyi

�2i
D a

P xi

�2i
C b

P x2i

�2i

(8.6)

which is a system of two equations in two unknowns. The solution is

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

a D 1
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ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P yi

�2i

P xi

�2i
P xiyi

�2i

P x2i

�2i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

I

b D 1




ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

P 1

�2i

P yi

�2i
P xi

�2i

P xiyi

�2i

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

(8.7)

where


 D
X 1

�2i

X x2i

�2i
�
X xi

�2i

X xi

�2i
: (8.8)
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Equation (8.7) provides the solution for the best-fit parameters of the linear model.

The determination of the parameters of the linear model is known as linear

regression.

When all errors are identical, �i D � , it is easy to show that the best-fit

parameters estimated by the least-squares method are equivalent to

8

<

:

b D Cov.X;Y/

Var.X/

a D E.Y/ � bE.X/

(8.9)

[see Problem (8.9)]. This means that, in the absence of correlation between the

two variables, the best-fit slope will be zero and the value of a is simply the linear

average of the measurements.

8.4 Multiple Linear Regression

The method outlined above in Sect. 8.3 can be generalized to a fitting function of

the form

y.x/ D
m
X

kD1
akfk.x/: (8.10)

Equation (8.10) describes a function that is linear in the m parameters. In this

case one speaks of multiple linear regression, or simply multiple regression. The

functions fk.x/ can have any analytical form. The linear regression described in the

previous section has only two such function, f1.x/ D 1 and f2.x/ D x. A common

case is when the functions are polynomials,

fk.x/ D xk: (8.11)

The important feature to notice is that the functions fk.x/ do not depend on the

parameters ak.

We want to find an analytic solution to the minimization of the �2 with the

fitting function in the form of (8.10). As we have seen, this includes the simple

linear regression as a special case. In the process of �2 minimization we will also

determine the variance and the covariances on the fitted parameters ak, since no

fitting is complete without an estimate of the errors and of the correlation between

the coefficients. As a special case we will therefore also find the variances and

covariance between the fit parameters a and b for the linear regression.
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8.4.1 Best-Fit Parameters for Multiple Regression

Minimization of �2 with respect to the m parameters ak is obtaining by taking partial

derivatives over the m unknown parameters ak.

This yields the following m equations:

@

@al

N
X

iD1

�

.yi �
Pm

kD1 akfk.xi//
2

�2i

�

D 0

or

�2
N
X

iD1

�

yi �
Pm

kD1 akfk.xi/

�2i

�

fl.xi/ D 0:

These equations can be written as

N
X

iD1

fl.xi/

�2i

 

yi �
m
X

kD1
akfk.xi/

!

D 0 (8.12)

leading to

N
X

iD1

fl.xi/yi

�2i
D

m
X

kD1
ak

N
X

iD1

fk.xi/fl.xi/

�2i
l D 1; : : : ;m: (8.13)

Equation (8.13) are m coupled equations in the parameters ak, which can be

solved using matrix algebra, as described below. Notice that the term fl.xi/ is

the lth model component (thus the index l is not summed over), and the index

i runs from 1 to N, where N is the number of data points.

The best-fit parameters are therefore obtained by defining the row vectors ˇ and

a and the m � m symmetric matrix A as

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ˇ D .ˇ1; : : : ; ˇm/ in which ˇk D
N
P

iD1
fk.xi/yi=�

2
i

a D .a1; : : : ; am/ (model parameters)

Alk D
N
P

iD1

fl.xi/fk.xi/

�2i
(l; k component of the m�m matrix A)
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With these definitions, (8.13) can be rewritten in matrix form as

ˇ D aA; (8.14)

and therefore the task of estimating the best-fit parameters is that of inverting the

matrix A, which can be done numerically. The m best-fit parameters ak are placed

in a row vector a (of dimensions 1 � m) and are given by

a D ˇA�1: (8.15)

The 1�m row vector ˇ and the m�m matrix A can be calculated from the data and

the fit functions fk.x/.

8.4.2 Parameter Errors and Covariances for Multiple

Regression

To calculate errors in the best-fit parameters, we treat parameters ak as functions of

the measurements, ak D ak.yi/. Therefore we can use the error propagation method

to calculate variances and covariances between parameters as:

8

ˆ

ˆ

<

ˆ

ˆ

:

�2ak
D

N
P

iD1

�

@ak

@yi

�2

�2i

�2al aj
D

N
P

iD1

@al

@yi

@aj

@yi

�2i :

(8.16)

We have used the fact that the error in each measurement yi is given by �i and that

the measurements are independent.

We show that the variance �2al aj
is given by the l; j term of the inverse of the

matrix A, which we define as the error matrix

" D A�1: (8.17)

The error matrix " is a symmetric matrix, of which the diagonal terms contain the

variances of the fitted parameters and the off-diagonal terms contain the covariances.

Proof Use the matrix equation a D ˇ" to write

al D
m
X

kD1
ˇk"kl D

m
X

kD1
"kl

N
X

iD1

yifk.xi/

�2i
) @al

@yi

D
m
X

kD1
"kl

fk.xi/

�2i
:
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The equation above can be used into (8.16) to show that

�2al aj
D

N
X

iD1

2

4�2i

m
X

kD1

�

"jk

fk.xi/

�2i

�

�
m
X

pD1

�

"lp

fp.xi/

�2i

�

3

5

in which the indices k and p indicate the m model parameters, and the index i

is used for the sum over the N measurements.

) �2al aj
D

m
X

kD1
"jk

m
X

pD1
"lp

n
X

iD1

fk.xi/fp.xi/

�2i
D

m
X

kD1
"jk

m
X

pD1
"lpApk:

Now recall that A is the inverse of ", and therefore the expression above can

be simplified to

�2al aj
D
X

k

"jk1kl D "jl: (8.18)

ut

8.4.3 Errors and Covariance for Linear Regression

The results of Sect. 8.4.2 apply also to the case of linear regression as a special

case. We therefore use these results to estimate the errors in the linear regression

parameters a and b and their covariance. In this case, the functions fl.xi/ are given,

respectively, by f1.x/ D 1 and f2.x/ D x and therefore the matrix A is a 2 � 2
symmetric matrix with the following elements:

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

A11 D
N
P

iD1
1=�2i

A12 D A21 D
N
P

iD1
xi=�

2
i

A22 D
N
P

iD1
x2i =�

2
i :

(8.19)

The inverse matrix A �1 D " is given by

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

"11 D A22=


"12 D "21 D �A12=


"22 D A11=


(8.20)
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in which 
 is the determinant of A. Using (8.14) we calculate ˇ:

8

ˆ

<

ˆ

:

ˇ1 D
P

yi=�
2
i

ˇ2 D
P

yixi=�
2
i

(8.21)

and thus proceed to calculating the best-fit parameters and their errors. The best-fit

parameters, already found in Sect. 8.3, are given by

.a; b/ D .ˇ1; ˇ2/
�

"11 "12
"21 "22

�

which give the same results as previously found in (8.7). We are now in a position

to estimate the errors in the best-fit parameters:
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1=�2i
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1
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iD1
xi=�

2
i :

(8.22)

The importance of (8.22) is that the errors in the parameters a and b and their

covariance can be computed analytically from the N measurements. This simple

solution make the linear regression very simple to implement.

8.5 Special Cases: Identical Errors or No Errors Available

It is common to have a dataset where all measurements have the same error. When

all errors in the dependent variable are identical (�i D �) (8.7) and (8.22) for the

linear regression are simplified to
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(8.23)
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and

8
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�2ab D �
1
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N
P

iD1
xi:

(8.24)

The important feature is that the best-fit parameters are independent of the value �

of the error.

For dataset that do not have errors available it is often reasonable to assume that

all datapoints have the same error and calculate the best-fit parameters without the

need to specify the value of � . The variances, which depend on the error, cannot

however be estimated. The absence of errors therefore limits the applicability of

the linear regression method. It is in general not possible to reconstruct the errors

�i a posteriori. In fact, the errors are the result of the experimental procedure that

led to the measurement of the variables. A typical example is the case in which

each of the variables y.xi/ was measured via repeated experiments which led to

the measurement of y.xi/ as the mean of the measurements and its error as the

square root of the sample variance. In the absence of the “raw” data that permit

the calculation of the sample variance, it is simply not possible to determine the

error in �i.

Another possibility to use a dataset that does not report the errors in the

measurements is based on the assumption that the fitting function y D f .x/ is the

correct description for the data. Under this assumption, one can estimate the errors,

assumed to be identical for all variables in the dataset, via a model sample variance

defined as

�2 D 1

N �m

N
X

iD1
.yi � Oyi/

2 (8.25)

where Oyi is the value of the fitting function f .xi/ evaluated with the best-fit

parameters, which must be first obtained by a fit assuming identical errors. The

underlying assumption behind the use of (8.25) is to treat each measurement yi as

drawn from a parent distribution f .xi/, i D 1; : : :N, e.g., assuming that the model

is the correct description for the data. In the case of a linear regression, m D 2,

since two parameters (a and b) are estimated from the data. It will become clear

in Sect. 10.1 that this procedure comes at the expenses of the ability to determine

whether the dataset is in fact well fit by the function y D f .x/, since that is the

working assumption.

In the case of no errors reported, it may not be clear which variable is to be

treated as independent. We have shown in (8.9) that, when no errors are reported,
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the best-fit parameters can be written as

8

<

:

b D Cov.X;Y/

Var.X/

a D E.Y/ � bE.X/:

This equation clearly shows that the best-fit linear regression model is dependent on

the choice of which between x and y is considered the independent variable. In fact,

if y is regarded as the independent variable, and the data fit to the model

x D a0 C b0y (8.26)

the least-squares method gives the best-fit slope of

b0 D Cov.X;Y/

Var.Y/
:

When the model is rewritten in the usual form

y D aX=Y C bX=Yx

in which the notation X/Y means “X given Y,” the best-fit model parameters are

8

<

:

bX=Y D �
1

b0 D
Var.Y/

Cov.X;Y/

aX=Y D E.Y/ � bX=YE.X/

and therefore the two linear models assuming x or y as independent variable will

be different from one another. It is up to the data analyst to determine which of

the two variables is to be considered as independent when there is a dataset of

.xi; yi/measurements with no errors reported in either variable. Normally the issue is

resolved by knowing how the experiment was performed, e.g., which variable had to

be assumed or calculated first in order to calculate or measure the second. Additional

considerations for the fit of two-variable datasets are presented in Chap. 12.

8.6 A Classic Experiment: Edwin Hubble’s Discovery

of the Expansion of the Universe

In the early twentieth century astronomers were debating whether “nebulae,”

now known to be external galaxies, were in fact part of our own Galaxy, and

there was no notion of the Big Bang and the expansion of the universe. Edwin

Hubble pioneered the revolution via a seemingly simple observation that a

(continued)
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number of “nebulae” moved away from the Earth with a velocity v that is

proportional to their distance d, known as Hubble’s law

v D H0d: (8.27)

The quantity H0 is the Hubble constant, typically measured in the units of

km s�1 Mpc�1, where Mpc indicates a distance of 106 parsec. The data used

by Hubble [21] is summarized in Table 8.1.

The quantity m is the apparent magnitude, related to the distance via the

following relationship,

log d D m �M C 5
5

(8.28)

where M D �13:8 is the absolute magnitude, also measured by Hubble as

part of the same experiment, and considered as a constant for the purpose of

this dataset, and d is measured in parsecs.

The first part of the experiment consisted in fitting the .v;m/ dataset to a

relationship that is linear in log v,

log v D aC b � m (8.29)

where a and b are the adjustable parameters of the linear regression. Instead

of performing the linear regression described in Sects. 8.3 and 8.4.3, Hubble

reported two different fit results, one in which he determined also the error

in a,

log v D .0:202˙ 0:007/ � mC 0:472 (8.30)

and one in which he fixed a D 0:2, and determined the error in b:

log v D 0:2 � mC 0:507˙ 0:012: (8.31)

Using (8.31) into (8.28), Hubble determined the following relationship

between velocity and distance,

log
v

d
D 0:2M � 0:493 D �3:253 (8.32)

and this results in the measurement of his name-sake constant, H0 D v=d D
10�3:253 D 558 � 10�6 km s�1 pc�1, or 558 km s�1 Mpc�1.

(continued)
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Table 8.1 Data from E. Hubble’s measurements

Name of nebula Mean velocity km s�1 Number of velocities Mean m

Virgo 890 7 12:5

Pegasus 3810 5 15:5

Pisces 4630 4 15:4

Cancer 4820 2 16:0

Perseus 5230 4 16:4

Coma 7500 3 17:0

Ursa Major 11;800 1 18:0

Leo 19;600 1 19:0

(No name) 2350 16 13:8

(No name) 630 21 11:6

Fig. 8.2 Best-fit linear

regression model for the data

in Table 8.1

Example 8.1 The data from Hubble’s experiment are a typical example of a dataset

in which no errors were reported. A linear fit can be initially performed by assuming

equal errors, and the best-fit line is reported in red in Fig. 8.2. Using (8.25), the

common errors in the dependent variables logv.xi/ are found to be � D 0:06, the

best-fit parameters of the models are a D 0:55 ˙ 0:13, b D 0:197 ˙ 0:0085, and

the covariance is �2ab D �1:12 � 10�3, for a correlation coefficient of �0.99. The

uncertainties and the covariance are measured using the method of (8.23). The best-

fit line is shown in Fig. 8.2 as a solid line. }
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8.7 Maximum Likelihood Method for Non-linear Functions

The method described in Sect. 8.4 assumes that the model is linear in the fitting

parameters ak. This requirement is, however, not necessary to apply the maximum

likelihood criterion. We can assume that the relationship y D f .x/ has any analytic

form and still apply the maximum likelihood criterion for the N measurements [see

(8.3)]. The best-fit parameters are still those that minimize the �2 statistic. In fact, all

considerations leading to (8.3) do not require a specific form for the fitting function

y D f .x/. The assumption that must still be satisfied is that each variable yi is

Gaussian distributed, in order to obtain the likelihood in the form of (8.2).

The only complication for nonlinear functions is that an analytic solution for

the best-fit values and the errors is in general no longer available. This is often not

a real limitation, since numerical methods to minimize the �2 are available. The

most straightforward way to achieve a minimization of the �2 as function of all

parameters is to construct an m dimensional grid of all possible parameter values,

evaluate the �2 at each point, and then find the global minimum. The parameter

values corresponding to this minimum can be regarded as the best estimate of the

model parameters. The direct grid-search method becomes rapidly unfeasible as the

number of free parameters increases. In fact, the full grid consists of nm points,

where n is the number of discrete points into which each parameter is investigated.

One typically wants a large number of n, so that parameter space is investigated with

the necessary resolution, and the time to evaluate the entire space depends on how

efficiently a calculation of the likelihood can be obtained. Among the methods that

can be used to bypass the calculation of the entire grid, one of the most efficient and

popular is the Markov chain Monte Carlo technique, which is discussed in detail in

Chap. 16.

To find the uncertainties in the parameters using the grid search method requires

a knowledge of the expected variation of the �2 around the minimum. This problem

will be explained in the next chapter. The Markov chain Monte Carlo also technique

provides estimates of the parameter errors and their covariance.

8.8 Linear Regression with Poisson Data

The two main assumptions made so far in the maximum likelihood method are

that the random variables y.xi/ are Gaussian and the variance of these variables are

estimated from the data as the measured variance �2i . In the following we discuss

how the maximum likelihood method can be applied to data without making the

assumption of a Gaussian distribution. One case of great practical interest is when

variables have Poisson distribution, which is the case in many counting experiments.

For simplicity we focus on the case of linear regression, although all considerations

can be extended to any type of fitting function.

When y.xi/ is assumed to be Poisson distributed, the dataset takes the form of

.xi; yi/, in which the values yi are intended as integers resulting from a counting
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experiment. In this case, the value y.xi/ D aC bxi is considered as the parent mean

for a given choice of parameters a and b,

�i D y.xi/ D aC bxi: (8.33)

The likelihood is calculated using the Poisson distribution and, under the

hypothesis of independent measurements, it is

L D
N
Y

iD1

y.xi/
yi e�y.xi/

yiŠ
: (8.34)

Once we remove the Gaussian assumption, there is no �2 function to minimize, but

the whole likelihood must be taken into account. It is convenient to minimize the

logarithm of the likelihood,

ln L D
N
X

iD1
yi ln y.xi/ �

N
X

iD1
y.xi/C A (8.35)

where A D �
P

ln yiŠ does not depend on the model parameters but only on the

fixed values of the datapoints. Minimization of the logarithm of the likelihood is

equivalent to a minimization of the likelihood, since the logarithm is a monotonic

function of its argument. The principle of maximum likelihood requires that

8

ˆ

<

ˆ

:

@

@a
ln L D 0

@

@b
ln L D 0

)

8

ˆ

<

ˆ

:

N D
P yi

aC bxi

P

xi D
P xiyi

aC bxi

:
(8.36)

The fact that the minimization was done with respect to ln L instead of �2 is

a significant difference relative to the case of Gaussian data. For Poisson data we

define the fit statistic C as

C D �2 ln L C B; (8.37)

where B is a constant term. This is called the Cash statistic, after a paper by Cash in

1979 [9]. This statistic will be discussed in detail in Sect. 10.2 and it will be shown

to have the property of being distributed like a �2 distribution with N � m degrees

of freedom in the limit of large N. This result is extremely important, as it allows

to proceed with the Poisson fitting in exactly the same way as in the more common

Gaussian case in order to determine the goodness of fit.

There are many cases in which a Poisson dataset can be approximated with a

Gaussian dataset, and therefore use �2 as fit statistic. When the number of counts

in each measurement yi is approximately larger than 10 or so (see Sect. 3.4), the

Poisson distribution is accurately described by a Gaussian of same mean and
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variance. When the number of counts is lower, one method to turn a Poisson dataset

into a Gaussian one is to bin the data into fewer variables of larger count rates. There

are, however, many situations in which such binning is not desirable, especially

when the dependent variable y has particular behaviors for certain values of the

independent variable x. In those cases, binning of the data smears those features,

which we would like to retain in the datasets. In those cases, the best option is to

use the Poisson fitting method described in this section, and use C as the fit statistic

instead.

Example 8.2 Consider a set of N D 4 measurements (3,5,4,2) to be fit to a constant

model, y D a. In this case, (8.36) become

a D 1

N

N
X

iD1
yi

which means that the maximum likelihood estimator of a constant model, for a

Poisson dataset, is the average of the measurements. The maximum likelihood best-

fit parameter is therefore a D 3:5. }

Summary of Key Concepts for this Chapter

� ML fit to two-dimensional data: A method to find best-fit parameters of

a model fit to x; y data assuming that one variable (typically x) is the

independent variable.

� Linear regression: ML fit to a linear model, best-fit parameters when all

errors are identical are

8

<

:

b D Cov.X;Y/

Var.X/

a D EŒY� � bEŒX�

(assuming x as independent variable).

� Multiple linear regression: An extension of the linear regression to models

of the type

y D
X

akfk.x/:

� Model sample variance: When errors in the dependent variable (y) are not

known, they can be estimated via the model sample variance

�2 D 1

N �m

X

.yi � Oyi/
2

where m is the number of model parameters.
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Problems

8.1 Consider the data from Hubble’s experiment in Table 8.1.

(a) Determine the best-fit values of the fit to a linear model for .m; log v/ assuming

that the dependent variables have a common value for the error.

(b) Using the best-fit model determined above, estimate the error from the data and

the best-fit model, and then estimate the errors in the parameters a and b, and

the correlation coefficient between a and b.

(c) Calculate the minimum �2 of the linear fit, using the common error as estimated

in part (a).

8.2 Consider the following two-dimensional data, in which X is the independent

variable, and Y is the dependent variable assumed to be derived from a photon-

counting experiment:

xi yi

0:0 25

1:0 36

2:0 47

3:0 64

4:0 81

(a) Determine the errors associated with the dependent variables Yi.

(b) Find the best-fit parameters a, b of the linear regression curve

y.x/ D aC bxI

also compute the errors in the best-fit parameters and the correlation coefficient

between them;

(c) Calculate the minimum �2 of the fit, and the corresponding probability to

exceed this value.

8.3 Consider the following Gaussian dataset in which the dependent variables are

assumed to have the same unknown standard deviation � ,

xi yi

0:0 0:0

1:0 1:5

2:0 1:5

3:0 2:5

4:0 4:5

5:0 5:0
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The data are to be fit to a linear model.

(a) Using the maximum likelihood method, find the analytic relationships between
P

xi,
P

yi,
P

xiyi,
P

x2i , and the model parameters a and b.

(b) Show that the best-fit values of the model parameters are a D 0 and b D 1.

8.4 In the case of a maximum likelihood fit to a 2-dimensional dataset with

equal errors in the dependent variable, show that the conditions for having best-fit

parameters a D 0 and b D 1 are

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

N
P

iD1
yi D

N
P

iD1
xi

N
P

iD1
x2i D

N
P

iD1
xiyi:

(8.38)

8.5 Show that the best-fit parameter b of a linear fit to a Gaussian dataset is

insensitive to a change of all datapoints by the same amount 
x, or by the same

amount 
y. You can show that this property applies in the case of equal errors in

the dependent variable, although the same result applies also for the case of different

errors.

8.6 The background rate in a measuring apparatus is assumed to be constant with

time. N measurements of the background are taken, of which N=2 result in a value

of yC
, and N=2 in a value y�
. Determine the sample variance of the background

rate.

8.7 Find an analytic solution for the best-fit parameters of a linear model to the

following Poisson dataset:

x y

�2 �1
�1 0

0 1

1 0

2 2

8.8 Use the data provided in Table 6.1 to calculate the best-fit parameters a and b

for the fit to the radius vs. pressure ratio data, and the minimum �2. For the fit, you

can assume that the radius is known exactly, and that the standard deviation of the

pressure ratio is obtained as a linear average of the positive and negative errors.

8.9 Show that, when all measurement errors are identical, the least squares

estimators of the linear parameters a and b are given by b D Cov.X;Y/=Var.X/

and a D E.Y/ � bE.X/.



Chapter 9

Multi-Variable Regression

Abstract In many situations a variable of interest depends on several other

variables. Such multi-variable data is common across the sciences and in many other

fields such as economics and business. Multi-variable analysis can be performed in

a simple and effective way when the relationship that links the variable of interest to

the other quantities is linear. In this chapter we study the method of multi-variable

regression and show how it is related to the multiple regression described in Chap. 8

which applies to the traditional two-variable dataset. This chapter also presents

methods for hypothesis testing on the multi-variable regression and its parameters.

9.1 Multi-Variable Datasets

Two-dimensional dataset studied so far include an independent variable (X) and a

dependent variable (Y) and the data take the form of a collection of (xi, yi ˙ �i),

where i D 1; : : : ;N and N indicates the total number of measurements. In Chap. 8

we have developed a method to fit such two-dimensional data. In that case, the linear

regression formula takes the form of y.x/ D aCbx, where a and b are the parameters

of the linear regression.

Datasets that have measurements for three or more variables are referred to

as multi-variable datasets. An example of multi-variable dataset is presented in

Sect. 9.2, which reports measurements of different characteristics of irises per-

formed by Fisher and Anderson in 1936 [14]. Each of those measurement comprises

four quantities: the sepal length, sepal width, petal length, and petal width of 50

irises. For several multi-variable datasets such as that of Fisher and Anderson it

is often unclear which variable is the dependent one. It typically depends on what

question we want to address with the data: if we want to determine the sepal length

of an iris flower based on the sepal width, petal length, and petal width, then

the sepal length becomes the dependent variable and the remaining three are the

independent variables.

Using multi-variable datasets to predict or forecast the behavior of one quantity

based on several other variables is a fundamental topic in data analysis. It is

common throughout the sciences and especially used in such fields as economics

or behavioral sciences, where a number of possible factors can be used to predict

one quantity of interest. An example is to predict the score on a college-admission

© Springer Science+Busines Media New York 2017
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test based on factors such as the grade-point average during the sophomore and the

junior year, a measure of the motivation of the student and their economic status.

Another example is to predict the price of a stock based, e.g., on the overall index of

the stock exchange, a consumer’s index for goods in the relevant class and the rate

of treasury bonds. To address any such questions clearly requires a multi-variable

dataset that has several measurements for all quantities of interest.

In this chapter we develop a method to determine the relationship between one of

the quantities of a multi-dimensional datasets based on the others, assuming a linear

relationship among the variables. This method will also let us study whether one

or more of the quantities are in fact not useful in predicting the variable of interest.

For example, we may find that the treasury bond rates are irrelevant in predicting

the stock value of a given corporation and therefore we can focus only on those

variables that are useful in predicting its stock price.

9.2 A Classic Experiment: The R.A. Fisher and

E. Anderson Measurements of Iris Characteristics

R.A. Fisher is one of the fathers of modern statistics. In 1936 he published the

paper The Use of Multiple Measurements in Taxonomic Problems reporting

measurements of several characteristics of three species of the iris plant [14].

Figure 9.1 reproduces the original measurements, performed by E. Ander-

son, of the petal length and the sepal length of 150 iris plants of the species

Iris setosa, Iris versicolor, and Iris virginica. The measurements are in milli-

meters (mm). Fisher’s aim was to find a linear combination of the four

characteristics that would be best suited to identify one species from the

others. It is already clear from the data in Fig. 9.1 that one of the quantites

(e.g., the sepal length) may be used as a discriminator among the three species.

R.A. Fisher used this dataset to find a linear combination of the four quantities

that would improve the classification of irises.

The dataset is a classic example of a multi-variate dataset, in which several

variables are measured simultaneously and independently. In addition to

Fisher’s original purpose, these data can also be used to determine whether

one of the characteristics, e.g., the sepal length, can be efficiently predicted

based on any (or all) of the other characteristics. For example, one could

expect that the length of the sepal (which is part of the calyx of the flower) is

related linearly to its width, or to the length of the petal. Assuming a linear

relationship among the variables, we set

SL D aC bSW C cPLC dPW (9.1)

where a, b, c, and d are coefficients that we can estimate from the data using

the method described in Sect. 9.3.

(continued)
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Throughout this chapter we use these data to study the linear regression of

(9.1) for the species Iris setosa. We will find that the most important variable

needed to predict the sepal length is the sepal width, while the measurements

of characteristics of petals are not very important in predicting the sepal

length.
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Fig. 9.1 Measurements of three iris species from the 1936 R.A. Fisher paper [14]. Measure-

ments are in mm



168 9 Multi-Variable Regression

9.3 The Multi-Variable Linear Regression

Consider a dataset of N measurements of mC 1 variables which we call Y, X1, : : :,

Xm. We can use the index i to indicate the measurement, i D 1; : : : ;N, and the index

k for the variables Xk, k D 1; : : : ;m. Each set of measurements is therefore indicated

as .yi ˙ �i; x1i; : : : ; xmi/.

We write the variable Y as a linear function of the m variables Xi,

y.x/ D a0 C a1x1 C � � � C amxm D a0 C
m
X

kD1
akxk: (9.2)

The goal is to find the values for the m C 1 coefficients ak, k D 0; : : : ;m that

minimize the �2 function

�2 D
N
X

iD1

�

yi � y.xi/

�i

�2

: (9.3)

The quantity y.xi/ D a0 C a1x1i C � � � C amxmi is the value of y.x/ calculated for

the i-th set of measurements of the Xk’s. The coefficient a0 is an overall offset,

equivalent to the constant a for the two-dimensional linear regression function y D
aC bx.

This form for the �2 function is the same as that used for the multiple linear

regression of Sect. 8.4. The only change is that the measurements xki take the place

of the functions fk.xi/. The quantity �i is interpreted as the error in the variable Y,

which is the dependent quantity in this regression. As in the case of the two-variable

dataset, we ignore the errors in the variables Xk (see Chap. 12 for an extension of

the two-variable dataset regression with errors in both variables). When the multi-

variable dataset has no errors, or if we choose to ignore the errors in the Y variable

as well, we can omit the �i term in (9.3). This corresponds to assuming a uniform

error for all measurements.

The similarity in form between the �2 functions to minimize for the present

multi-variable linear regression and the multiple regression of Sect. 8.4 means that

we have already at hand a solution for the coefficients of the regression and their

errors. We need to make the following substitutions:

(

f1.x/ D 1 � x0 .thus x0i’s are not needed/

fkC1.x/ D xk; k D 1; : : : ;m:
(9.4)

and use the solution from Sect. 8.4 with mC 1 terms. The best-fit parameters ak can

be found via the matrix equation

a D ˇA�1; (9.5)
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where the row vectors ˇ and a and the .mC 1/ � .mC 1/ symmetric matrix A are

given by

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

ˇ D .ˇ0; ˇ1; : : : ; ˇm/ in which ˇk D
N
P

iD1
xkiyi=�

2
i

a D .a0; a1; : : : ; am/

Alk D
N
P

iD1

xlixki

�2i
(l; k component of A).

The errors and covariances among parameters are likewise given by the error matrix

� D A�1. Assuming a constant value for the variance �2 (i.e., uniform measurement

errors), the matrix A and the vector ˇ can be written in extended form as

A D 1

�2

2

6

6

4

N
P

x1i : : :
P

xmi
P

x1i

P

x21i : : :
P

x1ixmi

: : :
P

xmi

P

xmix1i : : :
P

x2mi

3

7

7

5

(9.6)

ˇ D 1

�2
.
X

yi;
X

x1iyi; : : : ;
X

xmiyi/ (9.7)

where all sums are over the N measurements. An estimate for the variance �2 is

given by

s2 D 1

N � m � 1

N
X

iD1
.yi � Oyi/

2 (9.8)

where Oyi D a0 C a1x1i C � � � C amxmi is calculated for the best-fit values of the

coefficients ak.

An alternative notation for finding the coefficients ak makes use of the following

definitions:

y D

2

6

6

4

y1

y2

: : :

yN

3

7

7

5

IX D

2

6

6

4

1 x11 : : : x1m

1 x21 : : : x2m

: : :

1 xN1 : : : xNm

3

7

7

5

and a D

2

6

6

4

a0

a1

: : :

am

3

7

7

5

(9.9)

where X is called the design matrix and we have arranged the Y measurements and

the vector of coefficients in column vectors. With this notation, the least-squares

approach gives the following solution for the coefficients [41]:

a D .XTX/�1XTY (9.10)
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It is easy to show that (9.5) and (9.10) are equivalent (see Problem 9.3). Using this

notation, the error matrix is given by

� D s2.XTX/�1: (9.11)

We therefore have two equivalent methods to calculate the coefficients of the

multiple regression and their errors. The latter form (9.9) may be convenient if the

data are already tabulated according to the form of matrix A and therefore a can be

found using the matrix algebra of (9.10). The drawback is that the design matrix can

be of very large size, N � .m C 1/, where N is the number of measurements. The

form of (9.5) is more compact, since the matrix A is .m C 1/ � .m C 1/, and the

summation over the N measurements must be performed beforehand to obtain A.

9.4 Tests for Significance of the Multiple Regression

Coefficients

The multi-variable linear regression model of (9.2) is specified by the m C 1

coefficients ak. After determining their best-fit values and errors, it is necessary to

establish whether the model is an accurate representation of the data and whether

there are any independent variables Xi that do not provide significant contribution

to the prediction of the Y variable. Both tasks can be performed using hypothesis

testing on the relevant statistic. We discuss these tests of significance using the

Fisher’s data of Sect. 9.2

9.4.1 T-Test for the Significance of Model Components

It is necessary to test the significance of each of the mC 1 parameters of the multi-

variable linear regression. The null hypothesis is that their true value is zero, i.e., the

corresponding variable is not needed in the model. For this purpose, we show that

the ratio of the parameter’s best-fit value ak and its standard deviation sk,

tk D
ak

sk

(9.12)

is distributed like a Student’s t distribution with N �m � 1 degrees of freedom.

Proof Following the derivation provided in Sect. 7.5.1 for the sample mean,

we can write

tk D
.ak � �k/=�k

sk=�k

(9.13)



9.4 Tests for Significance of the Multiple Regression Coefficients 171

where�k D 0 is the null hypothesis and �2k is the unknown parent variance for

the parameter. Recall that the sample variance of the parameter s2k is obtained

as a product of the diagonal term in the error matrix and the estimate of the

data variance s2. Accordingly we set

.N �m � 1/s2k
�2k

�
P

.yi � Oyi/
2

�2k
� �2.N �m � 1/; (9.14)

i.e., the denominator of tk can be written as a function of a variable that is �2-

distributed. It is also clear that, under the null hypothesis, �k D 0 is the parent

value of ak, and therefore the numerator of tk is distributed like a standard

normal distribution.

It follows that tk is distributed like a t distribution,

tk �
N.0; 1/

p

�2.N �m � 1/=.N � m � 1/
� t.N � m � 1/ (9.15)

according to the definition of the t distribution of (7.33). ut

To test for the significance of coefficient ak we therefore use the critical value for

the t distribution for the appropriate number of degrees of freedom and the desired

confidence level.

Example 9.1 (Multi-Variable Linear Regression on Iris setosa Data) The data of

Fig. 9.1 for the Iris setosa species are fit to the linear model of (9.1), where the sepal

length is used as the Y variable and the remaining three variables are the independent

variables. Using (9.5) and the inverse of matrix A for the errors, we find the results

shown in Table 9.1, including the t scores for the four parameters of the multiple

regression.

For each parameter is reported the probability to exceed the absolute value of

the measured t according to a t distribution with f D 46 degrees of freedom, where

f D N � m � 1 with N D 50 measurements and m D 3 independent variable. It

is clear that the parameters a2 and a3, corresponding to the petal length and width,

are not significant because of the large probability p to exceed their value under the

null hypothesis. Accordingly, it would be meaningful to repeat the linear regression

using only the sepal width as an estimator for the sepal length. }

Table 9.1 Multiple

regression parameter for the

Iris setosa data

Parameter Best-fit value Error t score p value

a0 2:352 0:393 5:99 < 0:001

a1 0:655 0:092 7:08 < 0:001

a2 0:238 0:208 1:14 0:26

a3 0:252 0:347 0:73 0:47
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9.4.2 F-Test for Goodness of Fit

The purpose of the multi-variable linear model is to provide a fit to the data

that is more accurate than a simple constant predictor, i.e., the average of the Y

measurements. In other words, we want to establish whether any of the parameters

a1, : : :, am provides a significant improvement over the constant model with a1 D
a2 D : : : D am D 0.

For this purpose we write the total variance of the data as follows:

N
X

iD1
.yi � Ny/2 D

N
X

iD1
.yi � Oyi/

2 C
N
X

iD1
.Oyi � Ny/2 (9.16)

where Oyi D y.xi/ is evaluated for the best-fit values of the parameters ak. This

equation can be shown to hold because the following property applies,

N
X

iD1
.yi � Oyi/.Oyi � Ny/ D 0 (9.17)

(see Problem 9.7). The parent variance �2 of the data is unknown and it is not

required for this test. We therefore ignore it for the considerations that follow by

setting �2 D 1. The three terms in (9.16) are interpreted as follows. The left-hand

side term is the total variance of the data and it is distributed like

S2 D
N
X

iD1
.yi � Ny/2 � �2.N � 1/: (9.18)

The total variance S2 can be interpreted as the variance obtained using a model

with a1 D : : : D am D 0, i.e., a constant model equal to the average of the Y

measurements.

The first term on the right-hand side is the residual variance after the data are fit

to the linear model and it follows the usual �2 distribution

S2r D
N
X

iD1
.yi � Oyi/

2 � �2.N � m � 1/ (9.19)

because of the mC 1 parameters used in the fit. This is the usual variance obtained

using the full model in which at least some of the ak parameters are not equal to

zero.
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Finally, the second term on the right-hand side can be interpreted as the variance

explained by the best-fit model and it is distributed like

S2e D
N
X

iD1
.Oyi � Ny/2 � �2.m/: (9.20)

The distribution of the last term can be explained by the independence between the

two variables on the right-hand side of the equation and the distribution of the left-

hand side term, following a derivation similar to that of Sect. 7.3. Such derivation is

not discussed in this book.

The variances described above can be used to define the variable

F D S2e=m

S2r=.N � m � 1/ D
PN

iD1.Oyi � Ny/2=m
PN

iD1.yi � Oyi/2=.N � m � 1/
; (9.21)

which is distributed as an F variable with m, N�m�1 degrees of freedom under the

null hypothesis that a1 D : : : D am D 0. The meaning of this variable is the ratio

between the variance explained by the fit and the residual variance, each normalized

by the respective degrees of freedom. A large value of this ratio is desirable, since it

means that the model does a good job at explaining the variability of the data.

The measurement of F that results from the fit of a dataset to the multi-variable

linear model can therefore be used to test the null hypothesis. If the measurement

exceeds the critical value of the F distribution for the desired confidence level, the

null hypothesis must be rejected and the linear model is considered acceptable.

Example 9.2 (F-Test of Iris setosa Data) The variances for the Iris setosa data are

shown in Table 9.2. The variable F is

F D S2e=3

S2r=46
D 3:50=2

2:59=46
D 20:76: (9.22)

The 99 % (p D 0:01) critical value for an F distribution with 3, 46 degrees of

freedom is 4.24. Therefore the null hypothesis that the linear model does not provide

a significant improvement must be rejected. In practice, this means that the linear

Table 9.2 Variances and F-test results for the Iris setosa data

Variances Value d.o.f F-test Value p value

S2 6:09 N � 1 D49

S2r 2:59 N � m � 1=46

S2e 3:50 m D 3

S2e=m

S2r =.N � m � 1/
20:76 1:2� 10�8
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model is warranted. The probability to exceed the measured value of 20.7 for the

test statistic is 1:2 � 10�8, i.e., very small. }

9.4.3 The Coefficient of Determination

The ratio of the explained variance S2e to the total variance S2, defined as

R2 D S2e

S2
D
PN

iD1.Oyi � Ny/2
PN

iD1.yi � Ny/2
(9.23)

is a common measure of the ability of the linear model to describe the data. This

ratio is called the coefficient of (multiple) determination and it is 0 � R2 � 1. A

value close to 1 indicates that the model describes the data with little additional

variance left unexplained.

It is possible to relate the coefficient R2 to the F-test variable defined in (9.21)

and obtain an equivalent test for the multi-variable regression based on R2 instead

of the F variable (see, e.g., [41] and [29]). Since the two quantities are related, it

is sufficient to test the overall multiple regression using the F test provided in the

previous section. The advantage of reporting explicitly a value for R2 is that we

can identify in a simple way the amount of variance that remains in the data after

performing the multiple regression.

Example 9.3 (R2 Value for the Iris setosa Data) We can use the data in Table 9.2

to calculate a coefficient of multiple determination R2 D 0:575. This number

means that 57.5 % of the total data variance is explained by the best-fit regression

model. }
In the case of the simple linear regression with just one independent variable,

y D aC bx, the coefficient of determination is the same as the coefficient of linear

correlation r defined earlier in (2.19) (see Problem 9.4). In this case it is possible to

test the significance of the linear model using either the correlation coefficient r or

the F test. The two tests will be equivalent.

Example 9.4 (Linear Fit to the Iris setosa Data Using a Single Independent

Variable) In a previous example we have shown that the coefficients of multiple

regression for the variables Petal Length and Petal Width were not statistically

significant, according to the t test.

Excluding these two columns of data, a fit to the function y D a C bx, where

Y is the Sepal Length and X the Sepal Width, can be shown to return the values

a D 2:64˙ 0:31 and b D 0:69˙ 0:09 with a correlation coefficient of r D 0:7425
or a value of F D 58:99 for 1, 49 degrees of freedom (see Problem 9.5). The value

of r2 D 0:551 is very similar to that obtained from the full fit using the additional

two variables. The fact that the reduction in r2 is minimal between the m D 3 and
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the m D 1 case is an indication that the Sepal Length can be predicted with nearly

the same precision using just the Sepal Width as an indicator. }

Summary of Key Concepts for this Chapter

� Multi-variable dataset Simultaneous measurements of several (> 2)

variables, usually without reference to a specific independent variable.

� Multi-variable linear regression: Extension of the (multiple) linear regres-

sion to the case of multi-variable data. Best-fit coefficients are given by the

matrix equation

a D .XTX/�1XTY:

� Coefficient of determination: The ratio between the explained variance and

total variance R2 D S2e=S2 � 1.

Problems

9.1 Calculate the best-fit parameters and uncertainties for the multi-variable regres-

sion of the Iris setosa data of Fig. 9.1.

9.2 Use an F test to determine whether the multi-variable regression of the Iris

setosa data is justified or not.

9.3 Prove that (9.5) and (9.10) are equivalent. Take into consideration that in (9.5)

the vectors a and ˇ are row vectors. You may re-write (9.5) using column vectors.

9.4 Prove that the coefficient of determination R2 for the simple linear regression

y D aC bx is equivalent to the sample correlation coefficient of (2.20).

9.5 Fit the Iris setosa data using the function y D a C bx, where Y is the Sepal

Length and X the Sepal Width. For this fit, you will ignore the data associated with

the petal. Determine the best-fit parameters of the linear model and their errors.

9.6 Using the results of Problem 9.5, determine whether there is sufficient evidence

for the use of the simple y D aC bx model for the data. Use a confidence level of

99 % to draw your conclusions.

9.7 Prove (9.17).



Chapter 10

Goodness of Fit and Parameter Uncertainty

Abstract After calculating the best-fit values of model parameters, it is necessary

to determine whether the model is actually a correct description of the data, even

when we use the best possible values for the free parameters. In fact, only when

the model is acceptable are best-fit parameters meaningful. The acceptability of a

model is typically addressed via the distribution of the �2 statistic or, in the case of

Poisson data, of the Cash statistic. A related problem is the estimate of uncertainty

in the best-fit parameters. This chapter describes how to derive confidence intervals

for fit parameters, in the general case of Gaussian distributions that require �2

minimization, and for the case of Poisson data requiring the Cash statistic. We

also study whether a linear relationship between two variables is warranted at all,

providing a statistical test based on the linear correlation coefficient. This is a

question that should be asked of a two-variable dataset prior to any attempt to fit

with a linear or more sophisticated model.

10.1 Goodness of Fit for the �2
min

Fit Statistic

For both linear and nonlinear Gaussian fits, one needs to establish if the set of best-

fit parameters that minimize �2 are acceptable, i.e., if the fit was successful. For this

purpose, we need to perform a hypothesis testing based on the minimum of the �2

statistic that was obtained for the given model. According to its definition,

�2min D
N
X

iD1

.yi � Oyi/
2

�2i
(10.1)

in which Oyi D y.xi/jbest-fit is the model calculated with the best-fit parameters. It

is tempting to say that the �2min statistic is distributed like a �2 random variable

(Sect. 7.2), since it is the sum of N several random variables, each assumed to be

distributed like a standard normal. If the function y.x/ has no free parameters, this is

certainly the case, and it would be also clear that �2 will have N degrees of freedom.

The complication is that the fit function has m free parameters that were adjusted

in such a way as to minimize the �2. This has two implications on the �2min statistic:

the free parameters will reduce the value of �2 with respect to the case in which no
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free parameters were present, and, more importantly, the fit function y.x/ introduces

a dependence among the N random variables in the sum. Given that the �2min is no

longer the sum of N independent terms, we cannot conclude that �2min � �2.N/.
It can be shown that �2min is in fact still distributed as a �2 variable, but with

f D N � m (10.2)

degrees of freedom. This result applies to any type of function f .x/, under the

assumptions that the m parameters are independent of one another, as is normally

the case for “meaningful” fit functions. The general proof of this statement is rather

elaborate, and can be found in the textbook by Cramer [11]. Here we limit ourselves

to provide a proof for a specific case in which f .x/ D a, meaning a one-parameter

fit function that is a constant, to illustrate the reduction of degrees of freedom from

N to N � 1 when there is just one free parameter that can be used to minimize �2.

Proof When performing a maximum likelihood fit to the function y.x/ D a,

we have shown that the best-fit parameter is estimated as

a D x D 1

N

N
X

iD1
xi;

under the assumption that all measurements are drawn from the same distri-

bution N.�; �/ (see Sect. 5.1). Therefore, we can write

�2 D
N
X

iD1

.xi � �/2
�2

D .x � �/2
�2=N

C
N
X

iD1

.xi � x/2

�2
D .x � �/2

�2=N
C �2min:

This equation is identical to the relationship used to derive the sampling

distribution of the variance, (7.19), and therefore we can directly conclude

that �2min � �2.N� 1/ and that �2min and �2 are independent random variables.

Both properties will be essential for the calculation of confidence intervals on

fit parameters. ut

Now that the distribution function of the fit statistic �2min is known, we can use

the hypothesis testing methods of Sect. 7.2.3 to determine whether a value of the

statistic is acceptable or not. The null hypothesis that the data are well fit by, or

compatible with, the model, can be rejected at a confidence level p according to a

one-tailed test defined by

1 � p D
Z 1

�2crit

f�2. f ; x/dx D P.�2. f / � �2crit/: (10.3)

The value �2crit calculated from (10.3) for a specified value of p defines the rejection

region �2min � �2crit. The data analyst must chose a value of p, say p D 0:9, and
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calculate the critical value �2crit that satisfies (10.3), using Table A.7. If the �2

value measured from the data is higher than what calculated from (10.3), then the

hypothesis should be rejected at the p, say 90 %, confidence level. On the other hand,

if the �2 value measured from the data is lower than this critical value, the hypothesis

should not be rejected, and the fit considered as consistent with the model or, more

precisely, not rejected, at that confidence level.

Example 10.1 In Fig. 10.1 it is shown a linear fit using data from Table 6.1. The

quantity Energy 1 is used as the independent variable, and its errors are neglected.

The quantity Energy 2 is the dependent variable, and errors are calculated as

the average of the positive and negative error bars. The best-fit linear model is

represented as the dotted line, for a fit statistic of �2min D 60:5 for 23 degrees of

freedom. The value of the fit statistic is too large, and the linear model must be

discarded (see Appendix A.3 for critical values of the �2 distribution).

Despite failing the �2min test, the best-fit model appears to be a reasonable match

to the data. The large value of the test statistic are clearly caused by a few datapoints

with small error bars, but there appears to be no systematic deviation from the linear

model. One reason for the poor fit statistic could be that errors in the independent

variables were neglected. In Chap. 12 we explain an alternative fitting method that

takes into account errors in both variables. Another possibility for the poor fit is

that there are other sources of error that are not accounted. This additional errors

are often referred to as systematic errors. In Chap. 11 we address the presence of

systematic errors and how one can handle the presence of such errors in the fit. }

Fig. 10.1 Linear fit to the

data of Table 6.1. We

assumed that the independent

variable is Energy 1, errors

for this variable were

neglected in the fit. Note the

logarithmic scale for both

axes
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10.2 Goodness of Fit for the Cash C Statistic

In the case of a Poisson dataset (Sect. 8.8) the procedure to determine whether the

best-fit model is acceptable is identical to that for Gaussian data, provided that the

�2 fit statistic is replaced by the Cash statistic C, defined by

C D �2 ln L � B;

where

B D 2
N
X

iD1
yi � 2

N
X

iD1
yi ln yi C 2

N
X

iD1
ln yiŠ:

We now prove that C is approximately distributed like a �2 distribution with

N � m/ degrees of freedom. This is an important result that lets us use the Cash

statistic C in the same way as the �2 statistic.

Proof We start with

�2 ln L D �2
 

N
X

iD1
yi ln y.xi/�

N
X

iD1
y.xi/ �

N
X

iD1
ln yiŠ

!

:

and rewrite as

�2 ln L D 2
N
X

iD1

�

y.xi/� yi ln
y.xi/

yi

� yi ln yi C ln yiŠ

�

:

In order to find an expression that asymptotically relates C to �2, define d D
yi�y.xi/ as the “average” deviation of the measurement from the parent mean.

It is reasonable to expect that

d

yi

' 1
p

yi

) y.xi/

yi

D yi � d

yi

D 1 � d

yi

where yi is the number of counts in that specific bin. It follows that

�2 ln L D 2
N
X

iD1

�

y.xi/ � yi ln.1 � d

yi

/ � yi ln yi C ln yiŠ

�

' 2
N
X

iD1

 

y.xi/ � yi

 

� d

yi

� 1
2

�

d

yi

�2
!

� yi ln yi C ln yiŠ

!

D 2
N
X

iD1

�

y.xi/C .yi � y.xi//C
1

2

.yi � y.xi//
2

yi

� yi ln yi C ln yiŠ

�
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The quadratic term can now be written in such a way that the denominator

carries the term y.xi/ D �2:

.yi � y.xi//
2

yi

D .yi � y.xi//
2

dC y.xi/
D .yi � y.xi//

2

y.xi/

�

d

y.xi/
C y.xi/

y.xi/

��1

' .yi � y.xi//
2

y.xi/

�

1 � d

y.xi/

�

:

We therefore conclude that

�2 ln L D
N
X

iD1

.yi�y.xi//
2

y.xi/

�

1� d

y.xi/

�

C
 

2

N
X

iD1
yi�2

N
X

iD1
yi ln yiC2

N
X

iD1
ln yiŠ

!

;

showing that, within the multiplicative terms .1 � d=y.xi//, the variable C D
�2 ln L � B has a �2 distribution with N � m degrees of freedom. ut

For the purpose of finding the best-fit parameters via minimization of the fit

statistic, the constant term B is irrelevant. However, in order to determine the

goodness of fit and confidence intervals, it is important to work with a statistic that

is distributed as a �2 variable. Therefore the Cash statistic is defined as

C D �2
N
X

iD1
yi ln

y.xi/

yi

C 2
N
X

iD1
.y.xi/ � yi/: (10.4)

Example 10.2 Consider an ideal set of N D 10 identical measurements , yi D 1.

For a fit to a constant model, y D a, it is clear that the best-fit model parameter must

be a D 1. Using the Cash statistic as redefined by (10.4), we find that C D 0, since

the data and the model match exactly. A similar result would be obtained if we had

assumed a Gaussian dataset of yi D 1 and �i D 1, for which �2 D 0. }

10.3 Confidence Intervals of Parameters for Gaussian Data

In this section we develop a method to calculate confidence intervals on model

parameters assuming a Gaussian dataset. The results will also be applicable to

Poisson data, provided that the �2 statistic is replaced with the Cash C statistic

(see Sect. 10.4).



182 10 Goodness of Fit and Parameter Uncertainty

Under the assumption that a given model with m parameters is the correct

description of the data, the fit statistic �2 calculated with these fixed true values,

�2true D
N
X

iD1

�

yi � y.xi/jtrue

�2i

�2

(10.5)

is distributed as �2.N/, i.e., we expect random variations of the measurement of

�2true according to a �2 distribution with N degrees of freedom. This is so because the

true parameters are fixed and no minimization of the �2 function can be performed.

The quantity �2true is clearly only a mathematical construct, since the true values

of the parameters are unknown. One does not expect that �2true D 0, meaning a

perfect match between the data and the model. In fact, even if the model was correct,

statistical fluctuations will result in random deviations from the parent model.

On the other hand, when finding the best-fit parameters ai, we calculate the

statistic:

�2min D
N
X

iD1

�

yi � Oyi

�i

�2

(10.6)

which minimizes �2 with respect to all possible free parameters. In this case, we

know that �2min � �2.N � m/ from the discussion in Sect. 10.1. It is also clear that

the values of the best-fit parameters are not identical to the true parameters, again

for the presence of random fluctuations of the datapoints.

After finding �2min, any change in the parameters (say, from ak to a0
k) will yield a

larger value of the test statistic, �2 > �2min. We want to test whether the new set of

parameters a0
k can be the true (yet unknown) values of the parameters, e.g., whether

the corresponding �2 can be considered �2true. For this purpose we construct a new

statistic:


�2 � �2 � �2min (10.7)

where �2 is obtained for a given set of model parameters and, by definition, 
�2 is

always positive. The hypothesis we want to test is that �2 is distributed like �2true,

i.e., the �2 calculated using a new set of parameters is consistent with �2true. Since

�2true and �2min are independent (see Sect. 10.1), we conclude that


�2 � �2.m/ (10.8)

when �2 � �2true. Equation (10.8) provides a quantitative way to determine

how much �2 can increase, relative to �2min, and still the value of �2 remaining

consistent with �2true. The method to use (10.8) for confidence intervals on the model

parameters is described below.
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10.3.1 Confidence Interval on All Parameters

Equation (10.8) provides a quantitative method to estimate the confidence interval

on the m best-fit parameters. The value of 
�2 is expected to follow the �2.m/

distribution. This means that one can tolerate deviations from the best-fit values of

the parameters leading to an increase in �2, provided such increase is consistent

with the critical value of the respective 
�2 distribution. For example, in the case

of a model with m D 2 free parameters, one can expect a change 
�2 � 4:6 for

p D 0:9 confidence, or for a model with m D 1 parameter a change
�2 � 2:7 (see

Table A.7).

The method to determine the confidence interval on the parameters starts with

the value of �2min. From this, one constructs an m-dimensional volume bounded by

the surface of 
�2 D �2 � �2min � �2crit, where �2crit is the value that corresponds to

a given confidence level p for m degrees of freedom, as tabulated in Table A.7. The

surface of this m-dimensional volume marks the boundaries of the rejection region

at the p level (say p = 90 %) for the m parameters, i.e., the parameters can vary

within this volume and still remain an acceptable fit to the data at that confidence

level. In practice, a surface at fixed 
�2 D �2crit can be calculated by a grid

of points around the values that correspond to �2min. This calculation can become

computationally intensive as the number of parameters m increases. An alternative

method to estimate confidence intervals on fit parameters that makes use of Monte

Carlo Markov chains (see Chap. 16) will overcome this limitation.

Example 10.3 Consider the case of a linear fit to the data of Table 10.1. According

to the data in Table 10.1, one can calculate the best-fit estimates of the parameters

as a D 23:54 ˙ 4:25 and b D 13:48 ˙ 2:16, using (8.7) and (8.22). The best-fit

line is shown in Fig. 10.2. There is no guarantee that these values are in fact the true

values: they are only the best estimates based on the maximum likelihood method.

For these best-fit values of the coefficients, the fit statistic is �2min D 0:53, for f D 3
degrees of freedom, corresponding to a probability p D 0:09 (i.e., a probability

P.�2.3/ � 0:53 D 0:91). The fit cannot be rejected at any reasonable confidence

level, since the probability to exceed the measured �2min is so high.

We now sample the parameter space, and determine variations in the fit statistic

�2 around the minimum value. The result is shown in Fig. 10.3, in which the

contours mark the �2min C 1:0, �2min C 2:3 and �2min C 4:6 boundaries. In this

Table 10.1 Data used to

illustrate the linear

regression, and the estimate

of confidence intervals on fit

parameters

xi yi �i

(Indep. variable) (Dependent variable)

0 25 5

1 36 6

2 47 6:85

3 64 8

4 81 9
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Fig. 10.2 Best-fit linear

model (dashed line) to the

data of Table 10.1. The

�min D 0:53 indicates a very

good fit which cannot be

rejected at any reasonable

confidence level

xi yi σi

(indep. variable) (dependent variable)

0 25 5
1 36 6
2 47 6.85
3 64 8
4 81 9

application, m D 2, a value of 
�2 D 4:6 or larger is expected 10 % of the time.

Accordingly, the 
�2 D 4:6 contour marks the 90 % confidence surface: the true

values of a and b are within this area 90 % of the time, if the null hypothesis that

the model is an accurate description of the data is correct. This area is therefore the

90 % confidence area for the two fitted parameters. }

10.3.2 Confidence Intervals on Reduced Number

of Parameters

In the case of a large number m of free parameters, it is customary to report the

uncertainty on each of the fitted parameters or, in general, on just a subset of l < m

parameters considered to be of interest. In this case, the l parameters a1; : : : ; al are

said to be the interesting parameters, and the remaining m � l parameters are said

to be uninteresting. This can be thought of as reducing the number of parameters

of the model from m to l, often in such a way that only one interesting parameter

is investigated at a time (l D 1). This is a situation that is of practical importance

for several reason. First, it is not convenient to display surfaces in more than two or

three dimensions. Also, sometimes there are parameters that are truly uninteresting
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Fig. 10.3 Contours of 
�2 D 1.0, 2.3 and 4.6 (from smaller to larger areas). For the example of

m D 2 free parameters, the contours mark the area within which the true parameters a and b are

expected to be with, respectively, 25, 67, and 90 % probability

to the interpretation of the data, although necessary for its analysis. One case of this

is the presence of a measurement background, which must be taken into account

for a proper analysis of the data, but it is of no interest in the interpretation of the

results.

New considerations must be applied to �2true and its parent distribution in this

situation. We find �2min in the usual way, that is, by fitting all parameters and

adjusting them until the minimum �2 is found. Therefore �2min continues to be

distributed like �2.N � m/. For �2true, we want to ignore the presence of the

uninteresting parameters. We do so by assuming that the l interesting parameters are

fixed at the true values and marginalize over the m� l uninteresting parameters. This

process of marginalization means that we let the uninteresting parameters adjust

themselves to the values that yield the lowest value of �2. This process ensures that

�2true / �2.N � .m � l//. Notice that the marginalization does not mean fixing the

values of the uninteresting parameters to their best-fit values.

In summary, the change in �2 that can be tolerated will therefore be 
�2 D
�2true � �2min, in which �2true / �2.N � .m� l// and �2min / �2.N �m/.Since the two

�2 distributions are independent of one another, it follows that


�2 � �2.l/ (10.9)

where l is the number of interesting parameters. The process of finding confidence

intervals for a reduced number of parameters is illustrated in the following example

of a model with m D 2 free parameters, for which we also find confidence intervals

for one interesting parameters at a time.



186 10 Goodness of Fit and Parameter Uncertainty

Example 10.4 Consider the case in Fig. 10.3, and assume that the interesting

parameter is a. The �2min for each value of a is done by searching the minimum

�2 long a vertical line (i.e., for a fixed value of a). The best-fit value of a is already

known, marked by a cross in Fig. 10.3. When seeking the 68 % confidence interval

for the interesting parameter a, the limiting values of a are those on either side

of the best-fit value that result in a minimum �2 value of �2min C 1:0 (where �2min

is the global minimum). Therefore, the 68 % confidence interval for a is found by

projecting the �2minC1:0 contour along the a axis. That is to say, we find the smallest

and largest values of a along the �2minC 1:0 contour, which is the innermost contour

in Fig. 10.3. Likewise the projection of the same contour along the b axis gives the

68 % confidence interval on b, when considered as the only interesting parameter.

On the other hand, the 2-dimensional 68 % confidence surface on a, b was given

by the �2C 2:3 contour. It is important not to confuse those two confidence ranges,

both at the same level of confidence of 68 %. The reason for the difference (�2min C
1:0 for one interesting parameter vs. �2 C 2:3 for two interesting parameters) is the

numbers of degrees of freedom of the respective
�2. }
This procedure for estimation of intervals on a reduced number of parameters

was not well understood until the work of Lampton and colleagues in 1976 [27]. It

is now widely accepted as the correct method to estimate errors in a subset of the

model parameters.

10.4 Confidence Intervals of Parameters for Poisson Data

The fit to Poisson data was described in Sect. 8.8. Since the Cash statistic C follows

approximately the �2 distribution in the limit of a large number of datapoints, then

the statistic


C D Ctrue � Cmin (10.10)

has the same statistical properties as the
�2 distribution. Parameter estimation with

Poisson statistic therefore follows the same rules and procedures as with the �2

statistic.

Example 10.5 Consider an ideal dataset of N identical measurement yi D 1. We

want to fit the data to a constant model y D a, and construct a 1-� confidence

interval on the fit parameter a using both the Poisson fit statistic C, and the Gaussian

fit statistic �2. In the case of the Poisson statistic, we assume that the measurements

are derived from a counting experiment, that is, a count of 1 was recorded in each

case. In the case of Gaussian variables, we assume uncertainties of �i D 1.

In the case of Poisson data, we use the Cash statistic defined in (10.4). The best-

fit value of the model is clearly a D 1, and we want to find the value ı corresponding
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to a change in C by a value of 1 with respect to the minimum value Cmin,


C D 1) �2
X

1 ln
.1C ı/
1

C 2
X

.1C ı � 1/ D 1

Using the approximation ln.1C ı/ ' .ı � ı2=2/, we find that

�20ıC 10ı2 C 20ı D 1) ı D
r

1

10
:

This shows that the 68 % confidence range is between 1 �
p

1=10 and 1C
p

1=10,

or 1˙
p

1=10.

Using Gaussian errors, we calculate
�2 D 1, leading to 10ı2 D 1, and the same

result as in the case of the Poisson dataset. }

10.5 The Linear Correlation Coefficient

We want to define a quantity that describes whether there is a linear relationship

between two random variables X and Y. This quantity is based on the slopes of two

linear fits of X and Y, using each in turn as the independent variable. Call b the slope

of the regression y D aC bx (where X is the independent variable) and b0 the slope

of the regression x D a0Cb0y (where Y is the independent variable) and assume that

there are N measurements of the two variables. The linear correlation coefficient r

is defined as the product of the slopes of the two fits via

r2 D bb0 D .N
P

xiyi �
P

xi

P

yi/
2

�

N
P

x2i � .
P

xi/
2
� �

N
P

y2i � .
P

yi/
2
� (10.11)

in which we have used the results of (8.23). It is easy to show that this expression

can be rewritten as

r2 D .
P

.xi � x/.yi � y//
2

P

.xi � x/2
P

.yi � y/2
(10.12)

and therefore r is the sample correlation coefficient as defined in (2.20).

Consider as an example the data from Pearson’s experiment at page 30. The

measurement of mother’s and father’s height are likely to have the same uncertainty,

since one expects that both women and men followed a similar procedure for the

measurement. Therefore no precedence should be given to either when assigning

the tag of “independent” variable. Instead, one can proceed with two separate fits:

one in which the father’s height (X) is considered as the independent variable, or the

regression of Y on X (dashed line), and the other in which the mother’s height (Y) is
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Fig. 10.4 Linear regressions

based on the data collected by

Pearson, Table 2.3 at page 30.

Larger circles indicate a

higher number of occurrence

for that bin

the independent variable, or linear regression of X on Y (dot-dash line). The two fits

are reported in Fig. 10.4, obtained by maximum likelihood method assuming equal

errors for the dependent variables.

If the two variables X and Y are uncorrelated, then the two best-fit slopes b and

b0 are expected to be zero. In fact, as one variable varies through its range, the

other is not expected to either decrease (negative correlation) or increase (positive

correlation), resulting in null best-fit slopes for the two fits. We therefore expect

the sample distribution of r to have zero mean, under the null hypothesis of lack

of correlation between X and Y. If there is a true linear correlation between the

two variables, i.e., y D a C bx is satisfied with b ¤ 0, then it is also true that

x D a0 C b0x D �a=bC 1=by. In this case one therefore expects bb0 D r2 D 1.

10.5.1 The Probability Distribution Function

A quantitative test for the correlation between two random variables requires the

distribution function fr.r/. We show that the probability distribution of r, under the

hypothesis that the two variables X and Y are uncorrelated, is given by

fr.r/ D
1p
�

�

�

f C 1
2

�

�

�

f

2

�

�

1

1 � r2

�� f �2
2

(10.13)

where f D N � 2 is the effective number of degrees of freedom of a dataset with

N measurements of the pairs of variables. The form of the distribution function is
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reminiscent of the t distribution, which in fact plays a role in the determination of

this distribution.

Proof The proof starts with the determination of the probability distribution

function of a suitable function of r, and then, by change of variables, the

distribution of r is obtained.

The best-fit parameter b is given by

b2 D .N
P

xiyi �
P

xi

P

yi/
2

.N
P

x2i � .
P

xi/2/2
D .

P

.xi � x/.yi � y//2

.
P

.xi � x/2/2
I

and accordingly we obtain

r2 D .
P

.xi � x/.yi � y//
2

P

.xi � x/2
P

.yi � y/2
D b2

P

.xi � x/2
P

.yi � y/2
: (10.14)

Also, using (8.5), the best-fit parameter a can be shown to be equal to a D
y � bx, and therefore we obtain

S2 �
X

.yi � a � bxi/
2 D

X

.yi � y/2 � b2
X

.xi � x/2: (10.15)

Notice that S2=�2 D �2min, where �2 is the common variance of the Y

measurements, and therefore using (10.14) and (10.15) it follows that

S2
P

.yi � y/2
D 1 � r2

or, alternatively,

rp
1� r2

D b
p
P

.xi � x/2

S
: (10.16)

Equation (10.16) provides the means to determine the distribution function of

r=
p
1�r2. First, notice that the variance of b is given by

�2b D
N�2

N
P

x2i � .
P

xi/
2
D �2
P

.xi � x/2
:

According to (8.35), s2 D S2=.N�2/ is the unbiased estimator of the variance

�2, since two parameters have been fit to the data. Assuming that the true

parameter for the slope of the distribution is ˇ, then

b � ˇ
�b

D b � ˇ
�=
p
P

.xi � x/2
� N.0; 1/
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is therefore distributed like a standard Gaussian. In the earlier equation, if we

replace �2 with the sample variance s2 D S2=.N � 2/, and enforce the null

hypothesis that the variables X and Y are uncorrelated (ˇ D 0), we obtain

a new variable that is distributed like a t distribution with N � 2 degrees of

freedom,

b

S

p
N � 2

r

X

.xi � x/2 � t.N � 2/:

Using (10.16), we find that the variable

r
p

N � 2p
1 � r2

(10.17)

is distributed like a t distribution with f D N�2 degrees of freedom and, since

it is a monotonic function of r, its distribution can be related to the distribution

fr.r/ via a simple change of variables, following the method described in

Sect. 4.4.1.

Starting with v D r
p

N � 2=
p
1 � r2, and

fT.v/ D
1p
�f

� ..f C 1/=2/
� .f=2/

�

1 � v
2

f

�� f C1
2

with

dv

dr
D
p

N � 2
.1 � r2/3=2

;

the equation of change of variables fr.r/ D fT.v/dv=dr yields (10.13) after a

few steps of algebra. ut

10.5.2 Hypothesis Testing

A test for the presence of linear relationship between two variables makes use of the

distribution function of r derived in the previous section. In the absence of linear

relationship, we expect a value of r close to 0, while values close to the extremes of

˙1 indicate a strong correlation between the two variables. Since the null hypothesis

is that there is no correlation, we use a two-tailed test to define the critical value of

r via

P.jrj > rcrit/ D 1 �
Z rcrit

�rcrit

fr.r
0/dr0 D 1 � p; (10.18)
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where p is intended, as usual, as a number close to 1 (e.g., p=0.9 or 90 % confi-

dence). Critical values of r for various probability levels are listed in Table A.24.

If the measured value of r exceeds the critical value, the null hypothesis must be

discarded. This is an indication that there is a linear relationship between the two

quantities and further modelling of Y vs. X or X vs. Y is warranted. In practice,

the linear correlation coefficient test should be performed prior to attempting any

regression between the two variables.

Example 10.6 The two fits to the data from Pearson’s experiment (page 30) are

illustrated in Fig. 10.4. A linear regression provides a best-fit slope of b D 0:25

(dashed line) and of b0 D 0:33 (dot-dash line), respectively, when using the father’s

stature (x axis) or the mother’s stature as the independent variable. For these fits

we use the data provided in Table 2.3. Each combination of father–mother heights

is counted a number of times equal to its frequency of occurrence, for a total of

N D 1; 079 datapoints.

The linear correlation coefficient for these data is r D 0:29, which is also equal

to
p

bb0. For N D 1; 079 datapoints, Table A.24 indicates that the hypothesis of

no correlation between the two quantities must be discarded at > 99% confidence,

since the critical value at 99 % confidence is �0.081, and our measurement exceeds

it. As a result, we conclude that the two quantities are likely to be truly correlated.

The origin of the correlation is probably with the fact that people have a preference

to marry a person of similar height, or more precisely, a person of a height that is

linearly proportional to their own. }

Summary of Key Concepts for this Chapter

� The �2min statistic: It applies to Gaussian data and it is distributed like a �2

distribution with N � m degrees of freedom.

� The Cash statistic: It applies to Poisson data and it is defined as

C D �2
X

yi ln.y.xi/=yi/C 2
X

.y.xi/ � yi/:

It is approximately distributed like �2min.

� Confidence intervals for �2min statistic: They are obtained from the condi-

tion that 
�2 � �2.m/, where m is the number of parameters of interest.

� Interesting parameters: A subset of all model parameters for which we are

interested in calculating confidence intervals.

� Linear correlation coefficient: The quantity �1 � r � 1 that determines

whether there is a linear correlation between two variables.
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Problems

10.1 Use the same data as in Problem 8.2 to answer the following questions.

(a) Plot the 2-dimensional confidence contours at 68 and 90 % significance, by

sampling the (a,b) parameter space in a suitable interval around the best-fit

values.

(b) Using a suitable 2-dimensional confidence contour, determine the 68 % con-

fidence intervals on each parameter separately, and compare with the analytic

results obtained from the linear regression method.

10.2 Find the minimum �2 of the linear fit to the radius vs. ratio data of Table 6.1

and the number of degrees of freedom of the fit. Determine if the null hypothesis

can be rejected at the 99 % confidence level.

10.3 Consider a simple dataset with the following measurements, assumed to be

derived from a counting process. Show that the best-fit value of the parameter a for

x y

0 1

1 1

2 1

the model y D eax is a D 0 and derive its 68 % confidence interval.

10.4 Consider the same dataset as in Problem 10.3 but assume that the y mea-

surements are Gaussian, with variances equal to the measurements. Show that the

confidence interval of the best-fit parameter a D 0 is given by �a D
p

1=5.

10.5 Consider the same dataset as in Problem 10.3 but assume a constant fit

function, y D a. Show that the best-fit is given by a D 1 and that the 68 %

confidence interval corresponds to a standard deviation of
p

1=3.

10.6 Consider the biometric data in Pearson’s experiment (page 30). Calculate the

average father height (X variable) for each value of the mother’s height (Y variable),

and the average mother height for each value of the father’s height. Using these two

averaged datasets, perform a linear regression of Y on X, where Y is the average

value you have calculated, and, similarly, the linear regression of X on Y. Calculate

the best-fit parameters a, b (regression of Y on X) and a0, b0 (regression of X on

Y), assuming that each datapoint in your two sets has the same uncertainty. This

problem is an alternative method to perform the linear regressions of Fig. 10.4, and

it yields similar results to the case of a fit to the “raw” data, i.e., without averaging.

10.7 Calculate the linear correlation coefficient for the data of Hubble’s experiment

(logarithm of velocity, and magnitude m), page 157. Determine whether the
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hypothesis of uncorrelation between the two quantities can be rejected at the 99 %

confidence level.

10.8 Use the data from Table 6.1 for the radius vs. ratio, assuming that the radius is

the independent variable with no error. Draw the 68 and 90 % confidence contours

on the two fit parameters a and b, and calculate the 68 % confidence interval on the

b parameter.



Chapter 11

Systematic Errors and Intrinsic Scatter

Abstract Certain types of uncertainty are difficult to estimate and may not be

accounted in the initial error budget. This sometimes leads to a poor goodness-of-fit

statistic and the rejection of the model used to fit the data. These missing sources

of uncertainty may either be associated with the data themselves or with the model

used to describe the data. In both cases, we describe methods to account for these

errors and ensure that hypothesis testing is not biased by them.

11.1 What to Do When the Goodness-of-Fit Test Fails

The first step to ensure that a dataset is accurately described by a model is to test that

the goodness-of-fit statistic is acceptable. For example, when the data have Gaussian

errors, �2min can be used as the goodness-of-fit statistic. If the value of �2min exceeds

a critical value, it is recommended that one rejects the model. At that point, the

standard option is to use an alternative model, and repeat the testing procedure.

There are cases when it is reasonable to try a bit harder and investigate further

whether the model and the dataset may still be compatible, despite the poor

goodness of fit. The general situation when additional effort is warranted is in the

case of a model that generally follows the data without severe outliers, yet the best-

fit statistic (such as �2min) indicates that the model is not acceptable. An example of

this situation is that of Fig. 10.1: the best-fit linear model follows the distribution

of the data without systematic deviations, yet its high value of �2min D 60:5 for 23

degrees of freedom cannot be formally accepted at any level of confidence.

In this chapter we describe two types of analysis that can be performed when

the fit of a dataset to a model is poor. The first method assumes that the model

itself has a degree of uncertainty that results in an intrinsic scatter above and

beyond the variance of the data (Sect. 11.2). The second investigates whether

there are additional sources of error in the data that may not have been properly

accounted (Sect. 11.3). The two methods are conceptually different but result in

similar modifications to the analysis.
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11.2 Intrinsic Scatter and Debiased Variance

When fitting a dataset to a model we assume that the data are drawn from a parent

model that is described by a number of parameters. As such, we surmise that there

are exact model parameters that describe the parent distribution of the data, although

we don’t know their precise values. We use the data to estimate them, typically

through a maximum likelihood method that consists of finding model parameters

that maximize the likelihood of the data being drawn from that model (Chap. 8). For

Gaussian data, the maximum likelihood method consists of finding the minimum of

the �2 statistic.

A possible reason for a poor value of the minimum �2 statistic is that the model

itself, although generally accurate, may have an intrinsic scatter or variance that

needs to be accounted in the determination of the fit statistic. In other words, the

parent model may not be exact but it may feature an inherent degree of variability.

The goal of this section is to provide a method to describe and measure such scatter.

11.2.1 Direct Calculation of the Intrinsic Scatter

Each measurement in a dataset can be described as the sum of two variables,

yi D �i C �i; (11.1)

where �i represents the parent value from which the measurement yi is drawn and

�i is the variable representing the measurement error. Usually, we assume that �i D
y.xi/ is a fixed number, estimated by the least-squares (or other) method. Since �i

is a variable of zero mean, and its variance is simply the measurement variance �2i ,

(11.1) implies that the variance of the measurement yi is just �2i .

The model �i may, however, be considered a variable with non-zero variance.

This is to describe the fact that the model is not known exactly, but has an intrinsic

degree of variability measured by its variance �2int D Var.�i/. For simplicity, we

assume that this model variance is constant for all points along the model. Under the

assumption that the measurement error and the model are independent, variances of

the variables on the right-hand side of (11.1) add and this yields to

�2int D Var.yi/ � �2i : (11.2)

The equation means that the intrinsic variance is obtained as the difference of the

data variance minus the variance due to measurement errors. In keeping up with the

definitions of (11.1), Var.yi/ refers to the total variance of the i-th variable at location

xi. It is meaningful to calculate the average variance for all the yi’s assuming that

each measurement is drawn from a parent mean of Oyi, the best-fit value of the model

y.xi/. In so doing, we make use of the fact that the model is not constant but it varies
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at different positions. As a result, (11.2) can be used to calculate the intrinsic scatter

or variance of the model �2int as

�2int D
1

N �m

N
X

iD1
.yi � Oyi/

2 � 1

N

N
X

iD1
�2i : (11.3)

where m is the number of model parameters. The intrinsic variance can also be

referred to as the debiased variance, because of the subtraction of the expected

scatter (due to measurement errors) from the total sample variance. Equation (11.3)

can be considered a generalization of (2.11) in two ways. First, the presence of errors

in the measurements of yi leads to the addition of the last term on the right-hand side.

Second, the total variance of the data are calculated not relative to the data mean y

but to the parent mean of each measurement. It is possible that the second term in

the right-hand side of (11.3) is larger than the first term, leading to a negative value

for the intrinsic variance. This is an indication that, within the statistical errors �i,

there is no evidence for an intrinsic scatter of the model. This method to estimate

the intrinsic scatter is derived from [2] and [24].

It is important to remember that in calculating the intrinsic scatter we have made

the assumption that the model is an accurate representation of the data. This means

that we can no longer test for the null hypothesis that the model represents the parent

distribution—we have already assumed this to be the case.

When the model is constant, with Oyi D y being the sample mean, the intrinsic

scatter is calculated as

�2int D
1

N � 1

N
X

iD1
.yi � y/2 � 1

N

N
X

iD1
�2i : (11.4)

In this case, (11.4) is an unbiased estimate of the variance of Y.

11.2.2 Alternative Method to Estimate the Intrinsic Scatter

An alternative method to measure the amount of extra variance in a fit makes use of

the fact that, for a Gaussian dataset, the expected value of the reduced �2min is one.

A large value of the minimum �2 can be reduced by increasing the size of the errors

until �2red ' 1, or

�2min D
N
X

iD1

.yi � Oyi/
2

�2i C �2int

' N � m (11.5)

where m is the number of free model parameters, and �int is the intrinsic scatter

that makes the reduced �2 unity. In (11.5) we have made the following substitution
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relative to the standard use of the �2min method:

�2i ! �2i C �2int: (11.6)

This method is only approximate, in that an acceptable model need not yield exactly

a value of �2red D 1. This method to estimate the intrinsic scatter is nonetheless

useful as an estimate of the level of scatter present in the data. Like in the earlier

method, the analyst is making the assumption that the model fits the data and that

the extra variance is attributed to an intrinsic variability of the model (�2int).

Example 11.1 The example shown in Fig. 10.1 illustrates a case in which the data

do not show systematic deviations from a best-fit model, and yet the �2 test would

require a rejection of the model. The quantities Energy 1 (independent variable) and

Energy 2 were fit to a linear model, the best-fit linear model yielded a fit statistic of

�2min D 60:5 for 23 degrees of freedom and the model was therefore not acceptable.

Making use of the methods developed in this section, we can estimate the

intrinsic scatter that makes the model consistent with the data. Using (11.3), the

intrinsic scatter is estimated to be �int D 2:5. This means that the model has a

typical uniform variability of 2.5 units (the units are those of the y axis, in this case

used to measure energy). Using (11.5), a value of �int D 1:6 is needed to obtain

a reduced �2min of unity. The two methods were not expected to provide the same

answer since they are based on different assumptions. }

11.3 Systematic Errors

The errors described so far in this book are usually referred to as random errors,

since they describe the uncertainties in the random variables of interest. There are

many sources of random error. A common source of randome error is the Poisson or

counting error which derives from measuring N counts in an experiment and results

in an error of
p

N. Another source of error is due to the presence of a background

that needs to be subtracted from the measured signal. In general, any instrument used

to record data will have sources of error that causes the measurements to fluctuate

randomly around its mean value.

One of the main tasks of a data analyst is to find all the important sources of error

that contribute to the variance of the random variable of interest. A typical case is

the measurement of a total signal T in the presence of a background B, where the

random variable of interest is the background-subtracted signal S,

S D T � B: (11.7)

If the background is measured independently from the signal T, then the variance of

the source is

�2S D �2T C �2B: (11.8)



11.3 Systematic Errors 199

The lesson to learn is that the variance of the random variable of interest S increases

when the background is subtracted. If one assumes that there is no background, or

that the background is constant (�2B D 0), the random error associated with S may

be erroneously underestimated.

The term statistical error is often used as a synonym of random error. Sometimes,

however, it is used to designate the leading source of random error, such as the

Poisson uncertainty in a counting experiment, not including other sources of random

error that are equally statistical or random in nature. Such use is not accurate, but the

reader should be aware that there is no universally accepted meaning for the term

“statistical error.”

The term systematic error designates sources of error that systematically shift

the signal of interest either too high or too low. Sources of systematic errors need to

be identified to correct the erroneous offset. A typical example is an instrument that

is miscalibrated and systematically reports measurements that have an erroneous

offset. Even after the correction for the offset, it is however quite likely that there still

remains a source of error, for example associated with the fact that such correction

may not be uniform for all datapoints. If the systematic error is additive in nature,

i.e., it shifts the random variable X according to X0 D X ˙ E, then the variance of

the data is to be modified according to

�
0 2
i D �2i C �2E: (11.9)

The term �2E denotes the variance of the systematic error E. If E is known exactly,

then it would ideally have zero variance. But in all practical cases, there will be an

additional source of variance from the correction of a systematic error that needs

to be accounted. The modification of the error �i due to the presence of a source

of systematic error is therefore identical in form to the presence of intrinsic error

[compare (11.6) and (11.9)].

If the systematic error is multiplicative in nature, i.e., X0 D E � X, it may be

convenient to use the logarithms, log X0 D log X C log E and then proceed as in the

case of a linear offset.

Example 11.2 Continuing with the example shown in Fig. 10.1, we can use the

results provided in Example 11.1 to say that an additional error of �E D 1:6 would

yield a fit statistic of �2min;red D 1. This means that a possible interpretation for

the large value of �2min is that we had neglected an additional source of error �E.

This additional source of error would be in place of the intrinsic scatter, since either

correction to the calculation of �2min is sufficient to bring the data in agreement with

the model.

The errors of the data in Fig. 10.1 accounted for several sources of random

error, including Poisson errors in the counting of photons from these sources, the

background subtraction and for errors associated with the model used to describe

the distribution of energy. The additional error of order �E D 1:6 for each datapoint

may therefore be (a) an intrinsic error of the model (as described in Example 11.1),

(b) an additional error from the correction of certain systematic errors that were
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performed in the process of the analysis or (c) an additional random error that were

not already included in the original error budget. The magnitude of possible errors

in cases (b) and (c) can be estimated based on the knowledge of the collection of

the data and its analysis. If such errors cannot be as large as required to obtain

an acceptable fit, the only remaining option is to attribute this error to an intrinsic

variance of the model or to conclude that the model is not an accurate description of

the data. }

11.4 Estimate of Model Parameters with Systematic Errors

or Intrinsic Scatter

In Sects. 11.2 and 11.3 we have assumed that intrinsic scatter or additional sources

of systematic errors could be estimated using the best-fit values Oyi obtained from

the fit without these errors. Systematic errors or intrinsic scatter, however, do have

an effect on the estimate of model parameters. The presence of systematic errors or

intrinsic scatter, as discussed earlier in this chapter, is accounted with the addition

of another source of variance to the data according to

�
0 2
i D �2i C �2: (11.10)

The quantity � is either the systematic error �E not accounted in the initial estimate

of �i, or the intrinsic scatter �int. Both cases lead to the same effect on the overall

error budget and the �2 fit statistic to minimize becomes

�2 D
N
X

iD1

.yi � y.xi//
2

�2i C �2
: (11.11)

It is clear that repeating the fitting procedure with the larger �
0

i errors instead

of the original error will lead to new best-fit values and new uncertainties for the

model parameters. The effect of the larger errors is to de-weight datapoints that

have small values of �i and in general to provide larger confidence intervals for the

model parameters. An acceptable procedure to obtain truly best-fit values of model

parameters and their confidence intervals is to first estimate the additional source of

error � (either an intrinsic scatter or additional statistical or systematic errors) and

then repeat the fit.

Example 11.3 The linear fit to the data of Table 6.1 for Energy 1 (independent

variable) and Energy 2 resulted in a �2min D 60:5 for 23 degrees of freedom. The

fit was not acceptable at any level of confidence. In Example 11.1 we calculated

that an additional variance of �2 D 1:6 yields a �2min D 23. We fit the data with

the addition of this error to the dependent variable and find the best-fit values of

a D �0:085˙ 0:48, b D 1:05˙ 0:05.



11.4 Estimate of Model Parameters with Systematic Errors or Intrinsic Scatter 201

For comparison, the fit obtained with the original errors returned values of a D
�0:26˙ 0:088, b D 1:04˙ 0:27. These values could not be properly called “best-

fit,” since the fit was not acceptable. Yet, comparison between these values and those

for the �2red D 1:0 case shows that best-fit parameters are affected by the additional

source of error and that the confidence intervals become larger with the increased

errors, as expected. }

Summary of Key Concepts for this Chapter

� Intrinsic scatter: An uncertainty of the model that increases the measure-

ment error according to yi D �i C �i.

� Debiased variance: A correction to the measured variance that accounts

for the presence of measurement errors,

�2int D
1

N � m

X

.yi � Oyi/
2 � 1

N

X

�2i :

The square root provides a measure of the intrinsic scatter.

� Systematic error: A type of measurement error �E that systematically shifts

the measurements (as opposed to the statistical error �i). The two errors

typically are added in quadrature, �
0 2
i D �2i C �2.

Problems

11.1 Fit the data from Table 6.1 for the radius vs. ratio using a linear model and

calculate the intrinsic scatter using the best-fit linear model.

11.2 Using the same data as in Problem 11.1, provide an additional estimate of the

intrinsic scatter using the �2red ' 1 method.

11.3 Justify the 1=.N � m/ and 1=.N � 1/ coefficients in (11.3) and (11.4).

11.4 Using the data for the Hubble measurements of page 157, assume that each

measurement of log v has an uncertainty of � D 0:01. Estimate the intrinsic scatter

in the linear regression of log v vs. m.

11.5 Using the data of Problem 8.2, estimate the intrinsic scatter in the linear fit of

the X;Y data.



Chapter 12

Fitting Two-Variable Datasets with Bivariate

Errors

Abstract The maximum likelihood method for the fit of a two-variable dataset

described in Chap. 8 assumes that one of the variables (the independent variable

X) has negligible errors. There are many applications where this assumption is

not applicable and uncertainties in both variables must be taken into account. This

chapter expands the treatment of Chap. 8 to the fit of a two-variable dataset with

errors in both variables.

12.1 Two-Variable Datasets with Bivariate Errors

Throughout Chaps. 8 and 10 we have assumed a simple error model where the

independent variable X is known without error, and all sources of uncertainty in

the fit are due to the dependent variable Y. The two-variable dataset (X;Y) was

effectively treated as a sequence of random variables of values yi ˙ �i at a fixed

location xi with a parent model y.xi/.

There are many applications, however, in which both variables have comparable

uncertainties (�x ' �y) and there is no reason to treat one variable as independent.

In general, a two-variable dataset is described by the datapoints

.xi ˙ �xi; yi ˙ �yi/

and the covariance �2xyi between the two measurements. One example is the two

measurements of energy in the data in Table 6.1, where it would be appropriate to

account for errors in both measurements. There is in fact no particular reason why

one measurement should be considered as the independent variable and the other

the dependent variable.

There are several methods to deal with two-variable datasets with bivariate error.

Given the complexity of the statistical model, there is not a uniquely accepted

solution to the general problem of fitting data with bivariate errors. This chapter

presents two methods for the linear fit to data with two-variable errors. The first

method (Sect. 12.2) applies to a linear fit and it is an extension of the least-squares

method of Sect. 8.3. The second method (Sect. 12.3) is based on an alternative

definition of �2 and it applies to any type of fit function. Although this method
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does not have an analytic solution, it can be easily implemented using numerical

methods such as Monte Carlo Markov chains described later in this book.

12.2 Generalized Least-Squares Linear Fit to Bivariate Data

In the case of identical measurement errors on the dependent variable Y and no

error on the independent variable X, the least-squares method described in Sect. 8.3

estimated the parameters of the linear model as

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

b D Cov.X;Y/

Var.X/
D
PN

iD1.xi � x/.yi � y/
PN

iD1.xi � x/2

a D E.Y/ � bE.X/ D 1

N

N
P

iD1
yi � b

1

N

N
P

iD1
xi:

(12.1)

A generalization of this least-squares method accounts for the presence of

measurement errors in the estimate of the variances and the covariance in (12.1).

The methods of analysis presented in this section were developed by Akritas and

Bershady [2] and others [22, 24]. Those references can be used as source of

additional information on these methods for bivariate data.

Measurements of the X and Y variables can be described by

(

xi D �xi C �xi

yi D �yi C �yi;
(12.2)

each the sum of a parent quantity and a measurement error, as in (11.1). Accord-

ingly, the variances of the parent variables are given by

(

Var.�xi/ D Var.xi/ � �2xi

Var.�yi/ D Var.yi/ � �2yi:
(12.3)

This means that in (12.1) one must replace the sample covariance and variance by a

debiased or intrinsic covariance and variance, i.e., quantities that take into account

the presence of measurement errors.

The method of analysis that led to (12.1) assumes that the variable Y depends on

X. In other words, we assumed that X is the independent variable. In this case, we

talk of a fit of Y-given-X, or Y=X, and we write the linear model as

y D aY=X C bY=Xx: (12.4)

Modification of (12.1) with (12.3) (and an equivalent formula for the covariance)

leads to the following estimator for the slope and intercept of the linear Y=X model:
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8

ˆ

<

ˆ

:

bY=X D
Cov.X;Y/ � �2xy

Var.X/� �2x
D
PN

iD1.xi � x/.yi � y/ �
PN

iD1 �
2
xyi

PN
iD1.xi � x/2 �

PN
iD1 �

2
xi

aY=X D y � bY=Xx:

(12.5)

In this equation the sample variance and covariance of (12.1) were replaced with

the corresponding intrinsic quantities, and the subscript Y=X indicates that X was

considered as the independent variable.

A different result is obtained if Y is considered as the independent variable. In

that case, the X-given-Y (or X=Y) model is described as

x D a0 C b0y: (12.6)

The same equations above apply by exchanging the two variables X and Y:

8

ˆ

<

ˆ

:

b0 D
PN

iD1.xi � x/.yi � y/ �
PN

iD1 �
2
xyi

PN
iD1.yi � y/2 �

PN
iD1 �

2
yi

a0 D x � b0y:

It is convenient to compare the results of the Y/X and X/Y fits by rewriting the latter

in the usual form with x as the independent variable:

y D aX=Y C bX=Yx D �a0

b0 C
x

b0

for which we find that the slope and intercept are given by

8

ˆ

<

ˆ

:

bX=Y D
PN

iD1.yi � y/2 �
PN

iD1 �
2
yi

PN
iD1.xi � x/.yi � y/ �

PN
iD1 �

2
xyi

aX=Y D y � bX=Yx:

(12.7)

In general the two estimators Y/X and X/Y will give different results for the

best-fit line. This difference highlights the importance of interpreting the data to

determine which variable should be considered the independent quantity.

Uncertainties in the parameters a and b and the covariance between them have

been calculated by Akritas and Bershady [2]. For the Y/X estimator they can be
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obtained via the following variables:

�i D
.xi � Nx/.yi � bY=Xxi � aY=X/C bY=X�

2
xi � �2xyi

1

N

P

.xi � Nx/2 �
1

N

P

�2xi

�i Dyi � bY=Xxi � Nx�i:

(12.8)

With these, the variances of a and b and the covariance is given by

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

�2
bY=X
D 1

N

P

.�i � N�/2

�2
aY=X
D 1

N

P

.�i � N�/2

�2ab D
1

N

P

.�i � N�/.�i � N�/:

(12.9)

For the X/Y estimator there are equivalent formulas for the � and � variables that

need to be used in place of (12.8):

�i D
.yi � Ny/.yi � bX=Yxi � aX=Y/C bX=Y�

2
xyi � �2yi

1

N

P

.xi � Nx/.yi � Ny/ �
1

N

P

�2xyi

�i Dyi � bX=Yxi � Nx�i:

(12.10)

These values can then be used to calculate variances and the covariance of the

parameters as in the Y/X fit.

Example 12.1 In Fig. 12.1 we illustrate the difference in the best-fit models when X

is the independent variable (12.5) or Y is the independent variable (12.7), using the

data of Table 6.1. The Y/X parameters are aY=X D �0:367 and bY=X D 1:118 and

the X/Y parameters are aX=Y D �0:521 and bX=Y D 1:132. Unfortunately there is no

definitive prescription to decide which variable should be regarded as independent.

In this example each variable could be equally treated as the independent variable

and the difference between the two best-fit models is relatively small. The difference

between the two models for a value of the x axis of 1 is approximately 20 %. Note

that the linear model and the data were plotted in a logarithmic scale to provide a

more compact figure.

Also, the data of Table 6.1 do not report any covariance measurement and

therefore the best-fit lines were calculated assuming independence between all

measurements (�2xyi D 0). }
The example based on the data of Table 6.1 show that there is not just a single

slope for the best-fit linear model, but that the results depend on which variable

is assumed to be independent, as in the case of no measurement errors available
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Fig. 12.1 Linear model fits to the data of Table 6.1 using the debiased variance method. The solid

line is the model that uses Energy 1 as the independent variable X (12.4), the dashed line is the

model that uses Energy 2 as the independent variable Y (12.6). Note the logarithmic scale for both

axes

(Sect. 8.5). In certain cases it may be appropriate to use a model that is intermediate

between the two Y/X and X/Y results. This is called the bisector model, which

consists of the linear model that bisects the two lines obtained from the Y/X and

X/Y fits described above. This method is also described by Akritas and Bershady

[2] and Isobe and Feigelson [22] and the best-fit bisector line can be obtained from

the following formulae:

8

ˆ

ˆ

<

ˆ

ˆ

:

bbis D
bY=XbX=Y � 1C

q

.1C b2
Y=X
/.1C b2

X=Y
/

bY=X C bX=Y

abis D Ny � bbis Nx:
(12.11)
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The uncertainties in the slope and intercept parameters can also be obtained using

this definition for the � and � variables:

�i D
.1C b2

X=Y
/bbis

.bY=X C bX=Y/
q

.1C b2
Y=X
/.1C b2

X=Y
/
�Y=XC

.1C b2
Y=X
/bbis

.bY=X C bX=Y/
q

.1C b2
Y=X
/.1C b2

X=Y
/
�X=Y

�i Dyi � bbisxi � Nx�i;

(12.12)

where �Y=X is the � variable defined in (12.8) for the Y/X fit and �X=Y is the � variable

defined in (12.10) for the X/Y fit.

Example 12.2 Figure 12.2 shows the fit to the variables Radius (X variable) and

Ratio of thermal energies (Y variable) from Table 6.1. The solid line is the Y/X

best-fit line with parameters a D 1:1253 and b D �0:0005, the dashed line is

the X/Y best-fit line with parameters a D 1:4260 and b D �0:0018 and the dot-

dash line is the bisector line with parameters a D 1:2778 and b D �0:0011.

Notice how the Y/X and X/Y regressions give significantly different results. This

is in part due to the presence of substantial scatter in the data, which results in

several datapoints significantly distant from the best-fit regression lines. In the other

Fig. 12.2 Fit to the data of Table 6.1 using errors in both variables (see Example 12.2)
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example of regression with errors in both variables (Fig. 12.1) the Y/X and X/Y

best-fit lines were in better agreement. }

12.3 Linear Fit Using Bivariate Errors in the �2 Statistic

An alternative method to fit a dataset with errors in both variables is to re-define the

�2 statistic to account for the presence of errors in the X variable. In the case of a

linear fit, the square of the deviation of each datapoint yi from the model is given by

.yi � a � bxi/
2: (12.13)

When there is no error in the X variable, the variance of the variable in (12.13) is

simply the variance of Y, �2yi. In the presence of a variance �2xi for X, the variance of

the linear combination yi � a � bxi is given by

Var.yi � a � bxi/ D �2yi C b2�2xi;

where a and b are the parameters of the linear model and the variables X and Y are

assumed to be independent. This suggests a new definition of the �2 function for

this dataset [35, 40], namely

�2 D
N
X

iD1

.yi � a � bxi/
2

�2yi C b2�2xi

: (12.14)

Since each term at the denominator is the variance of the term at the numerator,

the new �2 variable defined in (12.14) is �2-distributed with f D N � 2 degrees of

freedom.

The complication with the minimization of this function is that the unknown

parameter b appears both at the numerator and the denominator of the function that

needs to be minimized. As a result, an analytic solution to the maximum likelihood

method cannot be given in general. Fortunately, the problem of finding the values of

a and b that minimize (12.14) can be solved numerically. This method for the linear

fit of two-variable data with errors in both coordinates is therefore of common use,

and it is further described in [35].
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Summary of Key Concepts for this Chapter

� Data with bivariate errors: A two-variable dataset that has errors in both

variables. For these data there is no commonly accepted fit method.

� Generalized least-squares fit to bivariate data: An extension of the

traditional ML fit to two-variable data. When x is the independent variable

the best-fit parameters of the linear model are

8

ˆ

<

ˆ

:

bY=X D
Cov.X;Y/ � �2xy

Var.X/� �2x
aY=X D y � bY=Xx:

� Bisector model: A best-fit model for bivariate data that bisects the Y=X and

X=Y models, intended to provide and intermediate model.

� Use of bivariate errors in �2: The �2 statistic can also be redefined to

accommodate bivariate errors according to

�2 D
N
X

iD1

.yi � a � bxi/
2

�2yi C b2�2xi

:

Problems

12.1 Use the bivariate error data of Energy 1 and Energy 2 from Table 6.1. Calculate

the best-fit parameters and errors of the linear model Y=X, where X is Energy 1 and

Y is Energy 2.

12.2 Use the bivariate error data of Energy 1 and Energy 2 from Table 6.1. Calculate

the best-fit parameters and errors of the linear model X=Y, where X is Energy 1 and

Y is Energy 2.

12.3 For the Energy 1 and Energy 2 data of Table 6.1, use the results of

Problems 12.1 and 12.2 to calculate the bisector model to the Energy 1 vs. Energy

2 data.

12.4 Repeat Problem 12.1 for the Ratio vs. Radius data of Table 6.1.

12.5 Repeat Problem 12.2 for the Ratio vs. Radius data of Table 6.1.

12.6 Repeat Problem 12.3 for the Ratio vs. Radius data of Table 6.1.
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Model Comparison

Abstract The availability of alternative models to fit a dataset requires a quanti-

tative method for comparing the goodness of fit to different models. For Gaussian

data, a lower reduced �2 of one model with respect to another is already indicative of

a better fit, but the outstanding question is whether the value is significantly lower,

or whether a lower value can be just the result of statistical fluctuations. For this

purpose we develop the distribution function of the F statistic, useful to compare

the goodness of fit between two models and the need for an additional “nested”

model component, and the Kolmogorov–Smirnov statistics, useful in providing a

quantitative measure of the goodness of fit, and in comparing two datasets regardless

of their fit to a specific model.

13.1 The F Test

For Gaussian data, the �2 statistic is used for determining if the fit to a given parent

function y.x/ is acceptable. It is possible that several different parent functions yield

a goodness of fit that is acceptable. This may be the case when there are alternative

models to explain the experimental data, and the data analyst is faced with the

decision to determine what model best fits the experimental data. In this situation,

the procedure to follow is to decide first a confidence level that is considered

acceptable, say 90 or 99 %, and discard all models that do not satisfy this criterion.

The remaining models are all acceptable, although a lower �2min certainly indicates

a better fit.

The first version of the F test applies to independent measurements of the �2

fit statistic, and its application is therefore limited to cases that compare different

datasets. A more common application of the F test is to compare the fit of a given

dataset between two models that have a nested component, i.e., one model is a

simplified version of the other. For nested model components one can determine

whether the additional component is really needed to fit the data.
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13.1.1 F-Test for Two Independent �2 Measurements

Consider the case of two �2min values obtained by fitting data from a given

experiment to two different functions, y1.x/ and y2.x/. If both models equally well

approximate the parent model, then we would expect that the two values of �2

would be similar, after taking into consideration that they may have a different

number of degrees of freedom. But if one is a better approximation to the parent

model, then the value of �2 for such model would be significantly lower than for

the other. We therefore want to proceed to determine whether both �2min statistics

are consistent with the null hypothesis that the data are drawn from the respective

model. The statistic to use to compare the two values of �2 must certainly also take

into account the numbers of degrees of freedom, which is related to the number

of model parameters used in each determination of �2. In fact, a larger number of

model parameters may result in fact result in a lower value of �2min, simply because

of the larger flexibility that the model has in following the data. For example, a

dataset of N points will always be fitted perfectly by a polynomial having N terms,

but this does not mean that a simpler model may not be just as good a model for the

data, and the underlying experiment.

Following the theory described in Sect. 7.4, we define the F statistic as

F D
�21;min=f1

�22;min=f2
D
�21;min;red

�22;min;red

; (13.1)

where f1 and f2 are the degrees of freedom of �21;min and �22;min. Assuming that the

two �2 statistics are independent, then F will be distributed like the F statistic with

f1; f2 degrees of freedom, having a mean of approximately 1 [see (7.22) and (7.24)].

There is an ambiguity in the definition of which of the two models is labeled as 1

and which as 2, since two numbers can be constructed that are the reciprocal of each

other, F12 D 1=F21. The usual form of the F-test is that in which the value of the

statistic is F > 1, and therefore we choose the largest of F12 and F21 to implement

a one-tailed test of the null hypothesis with significance p,

1 � p D
Z 1

Fcrit

fF.f ; x/dx D P.F � Fcrit/: (13.2)

Critical values Fcrit are reported in Tables A.8, A.9, A.10, A.11, A.12, A.13, A.14,

and A.15 for various confidence levels p.

The null hypothesis is that the two values of �2min are distributed following

a �2 distributions; this, in turn, means that the respective fitting functions used

to determine each �2min are both good approximations of the parent distribution.

Therefore the test based on this distribution can reject the hypothesis that both fitting

functions are the parent distribution. If the test rejects the hypothesis at the desired

confidence level, then only one of the models will still stand after the test—the one
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at the denominator with the lowest reduced �2—even if the value of �2min alone was

not able to discriminate between the two models.

Example 13.1 Consider the radius vs. ratio data of Table 6.1 (see also Prob-

lem 11.1). The linear fit to the entire dataset is not acceptable, and therefore a linear

model for all measurements must be discarded. If we consider measurements 1

through 5, 6 through 10, and 11 through 15, a linear fit to these two subsets results in

the values of best-fit parameters and �2 shown in the table, along with the probability

to exceed the value of the fit statistic.

Measurements a b �2min Probability

1–5 0:97˙ 0:09 �0:0002˙ 0:0002 5.05 0.17

6–10 1:27˙ 0:22 �0:0007˙ 0:0011 6.19 0.10

10–15 0:75˙ 0:09 �0:0002˙ 0:0003 18.59 0.0

The third sample provides an unacceptable fit to the linear model, and therefore

this subset cannot be further considered. For the first two samples, the fits are

acceptable at the 90 % confidence level, and we can construct the F statistic as

F D �2min.6 � 10/
�2min.1 � 5/

D 1:23:

Both �2 have the same number of degrees of freedom (3), and Table A.13 shows

that the value of 1.23 is certainly well within the 90 % confidence limit for the F

statistics (Fcrit ' 5:4). This test shows that both subsets are equally well described

by a linear fit, and therefore the F-test cannot discriminate between them.

To illustrate the power of the F-test, assume that there is another set of five

measurements that yield a �2min D 1:0 when fit to a linear model. This fit is clearly

acceptable in terms of its �2 probability. Constructing an F statistic between this

new set and set 6–10, we would obtain

F D �2min.6 � 10/
�2min.new/

D 6:19:

In this case, the value of F is not consistent at the 90 % level with the F distribution

with f1 D f2 D 3 degrees of freedom (the measured value exceeds the critical value).

The F-test therefore results in the conclusion that, at the 90 % confidence level, the

two sets are not equally likely to be drawn from a linear model, with the new set

providing a better match. }
It is important to note that the hypothesis of independence of the two �2 is not

justified if the same data are used for both statistics. In practice, this means that the F

statistic cannot be used to compare the fit of a given dataset to two different models.

The test can still be used to test whether two different datasets, derived from the

same experiment but with independent measurements, are equally well described

by the same parametric model, as shown in the example above. In this case, the
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null hypothesis is that both datasets are drawn from the same parent model, and a

rejection of the hypothesis means that both datasets cannot derive from the same

distribution.

13.1.2 F-Test for an Additional Model Component

Consider a model y.x/ with m adjustable parameters, and another model y.x/

obtained by fixing p of the m parameters to a reference (fixed) value. In this case,

the y.x/ model is said to be nested into the more general model, and the task is to

determine whether the additional p parameters of the general model are required to

fit the data.

Example 13.2 An example of nested models are polynomial models. The general

model can be taken as a polynomial of second order,

y.x/ D aC bxC cx2

and the nested model as a linear model,

y.x/ D aC bx:

The nested model is obtained from the general model with c D 0 and has one fewer

degree of freedom than the general model. }
Following the same discussion as in Chap. 10, we can say that

(

�2min � �2.N �m/ (full model)

�2min � �2.N �mC p/ (“nested” model):
(13.3)

Clearly �2min < �2min because of the additional free parameters used in the

determination of �2min. A lower value of �2min does not necessarily mean that the

additional parameters of the general model are required. The nested model can in

fact achieve an equal or even better fit relative to the parent distribution of the fit

statistic, i.e., a lower �2red, because of the larger number of degrees of freedom. In

general, a model with fewer parameters is to be preferred to a model with larger

number of parameters because of its more economical description of the data,

provided that it gives an acceptable fit.

In Sect.10.3 we discussed that, when comparing the true value of the fit statistic

�2true for the parent model to the minimum �2min obtained by minimizing a set of p

free parameters, 
�2 D �2true � �2min and �2min are independent of one another, and

that 
�2 is distributed like �2 with p degrees of freedom. There are situations in

which the same properties apply to the two �2 statistics described in (13.3), such
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that the statistic 
�2 is distributed like


�2 D �2min � �2min � �2.p/; (13.4)

and it is independent of �2min. One such case of practical importance is precisely the

one under consideration, i.e., when there is a nested model component described by

parameters that are independent of the other model parameters. A typical example

is an additional polynomial term in the fit function, as illustrated in the example

above.

In this case, the null hypothesis we test is that y.x/ and y.x/ are equivalent models,

i.e., adding the p parameters does not constitute a significant change or improvement

to the model. Under this hypothesis we can use the two independent statistics 
�2

and �2min, and construct a bona fide F statistic as

F D 
�2=p

�2min=.N �m/
: (13.5)

This statistic tests the null hypothesis using an F distribution with f1 D p, f2 D N�m

degrees of freedom. A rejection of the hypothesis indicates that the two models

y.x/ and y.x/ are not equivalent. In practice, a rejection constitutes a positive result,

indicating that the additional model parameters in the nested component are actually

needed to fit the data. A common situation is when there is a single additional

model parameter, p D 1, and the corresponding critical values of F are reported

in Table A.8. A discussion of certain practical cases in which additional model

components may obey (13.4) is provided in a research article by Protassov [36].

Example 13.3 The data of Table 10.1 and Fig. 10.2 are well fit by a linear model,

while a constant model appears not to be a good fit to all measurements. Using only

the middle three measurements, we want to compare the goodness of fit to a linear

model, and that to a constant model, and determine whether the addition of the b

parameter provides a significant improvement to the fit.

The best-fit linear model has a �2min D 0:13 which, for f2 D N�m D 1 degree of

freedom, with a probability to exceed this value of 72 %, i.e., it is an excellent fit. A

constant model has a �2min D 7:9, which, for 2 degrees of freedom, has a probability

to exceed this value of �0.01, i.e., it is acceptable at the 99 % confidence level,

but not at the 90 % level. If the analyst requires a level of confidence �90 %, then

the constant model should be discarded, and no further analysis of the experiment is

needed. If the analyst can accept a 99 % confidence level, we can determine whether

the improvement in �2 between the constant and the linear model is significant. We

construct the statistic

F D �2min � �2min

�2min

1

1
D 59:4
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which, according to Table A.8 for f1 D 1 and f2 D 1, is significant at the 99 %

(and therefore 95 %) confidence level, but not at 90 % or lower. In fact, the critical

value of the F distribution with f1 D 1, f2 D 1 at the 99 % confidence level is

Fcrit D 4; 052. Therefore a data analyst willing to accept a 99 % confidence level

should conclude that the additional model component b is not required, since there

is �1 % (actually, �5 %) probability that such an improvement in the �2 statistic is

due by chance, and not by the fact that the general model is truly a more accurate

description of the data. }
The example above illustrates the principle of simplicity or parsimony in the

analysis of data. When choosing between two models, both with an acceptable fit

statistic at the same confidence level (in the previous example at the 99 % level),

one should prefer the model with fewer parameters, even if its fit statistic (e.g.,

the reduced �2min) is inferior to that of the more complex model. This general

guiding principle is sometimes referred to as Occam’s razor, after the Middle Ages

philosopher and Franciscan friar William of Occam.

13.2 Kolmogorov–Smirnov Tests

Kolmogorov–Smirnov tests are a different method for the comparison of a one-

dimensional dataset to a model, or for the comparison of two datasets to one another.

The tests make use of the cumulative distribution function, and are applicable to

measurements of a single variable X, for example to determine if it is distributed

like a Gaussian. For two-variable dataset, the �2 and F tests remain the most viable

option.

The greatest advantage the Kolmogorov–Smirnov test is that it does not require

the data to be binned, and, for the case of the comparison between two dataset, it

does not require any parameterization of the data. These advantages come at the

expense of a more complicated mathematical treatment to find the distribution func-

tion of the test statistic. Fortunately, numerical tables and analytical approximations

make these tests manageable.

13.2.1 Comparison of Data to a Model

Consider a random variable X with cumulative distribution function F.x/. The data

consist of N measurements, and for simplicity we assume that they are in increasing

order, x1 � x2 � : : : � xN . This condition can be achieved by re-labelling the

measurements, which preserves the statistical properties of the data. The goal is to

construct a statistic that describes the difference between the sample distribution of

the data and a specified distribution, to test whether the data are compatible with

this distribution.
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Start with the sample cumulative distribution

FN.x/ D
1

N
[# of measurements � x]: (13.6)

By definition, 0 � FN.x/ � 1. The test statistic we want to use is defined as

DN D max
x
jFN.x/ � F.x/j; (13.7)

where F.x/ is the parent distribution, and the maximum value of the difference

between the parent distribution and the sample distribution is calculated for all

values in the support of X.

One of the remarkable properties of the statistic DN is that it has the same

distribution for any underlying distribution of X, provided X is a continuous variable.

The proof that DN has the same distribution regardless of the distribution of X

illustrates the properties of the cumulative distribution and of the quantile function

presented in Sect. 4.8.

Proof We assume that F.x/ is continuous and strictly increasing. This is

certainly the case for a Gaussian distribution, or any other distribution that

does not have intervals where the distribution functions is f .x/ D 0. We make

the change of variables y D F.x/, so that the measurement xk corresponds to

yk D F.xk/. This change of variables is such that

FN.x/ D
.# of xi < x/

N
D .# of yk < y/

N
D UN.y/

where UN.y/ is the sample cumulative distribution of Y and 0 � y � 1. The

cumulative distribution of Y is

U.y/ D P.Y < y/ D P.X < x/ D F.x/ D y:

The fact that the cumulative distribution is U.y/ D y shows that Y is a uniform

distribution between 0 and 1. As a result, the statistic DN is equivalent to

DN D max
0�y�1

jUN.y/� U.y/j

where Y is a uniform distribution. Since this is true no matter the original

distribution X, DN has the same distribution for any X. Note that this derivation

relies on the continuity of X, and this assumption must be verified to apply the

resulting Kolmogorov–Smirnov test. ut
The distribution function of the statistic DN was determined by Kol-

mogorov in 1933 [25], and it is not easy to evaluate analytically. In the limit

of large N, the cumulative distribution of DN is given by

lim
N!1

P.DN < z=
p

N/ D
1
X

rD�1
.�1/re�2r2z2 � ˚.z/: (13.8)
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Table 13.1 Critical points of

the Kolmogorov distribution

DN for large values of N

Confidence level

p
p

NDN

0:50 0:828

0:60 0:895

0:70 0:973

0:80 1:073

0:90 1:224

0:95 1:358

0:99 1:628

The function˚.z/ can also be used to approximate the probability distribution

of DN for small values of N, using

P.DN < z=.
p

N C 0:12C 0:11=
p

N// ' ˚.z/: (13.9)

A useful numerical approximation for P.DN < z/ is also provided in [30].

The probability distribution of DN can be used to test whether a sample

distribution is consistent with a model distribution. Critical values of the DN

distribution with probability p,

P.DN � Tcrit/ D p (13.10)

are shown in Table 13.1 in the limit of large N. For small N, critical values of the

DN statistic are provided in Table A.25. If the measured value for DN is greater than

the critical value, then the null hypothesis must be rejected, and the data are not

consistent with the model. The test allows no free parameters, i.e., the distribution

that represents the null hypothesis must be fully specified.

Example 13.4 Consider the data from Thomson’s experiment to measure the ratio

m=e of an electron (page 23). We can use the DN statistic to test whether either of

the two measurement of the variable m=e is consistent with a given hypothesis. It is

necessary to realize that the Kolmogorov–Smirnov test applies to a fully specified

hypothesis H0, i.e., the parent distribution F.x/ cannot have free parameter that are

to be determined by a fit to the data. We use a fiducial hypothesis that the ratio

is described by a Gaussian distribution of � D 5:7 (the true value in units of

107 g Coulomb�1, though the units are unnecessary for this test), and a variance

of �2 D 1. Both measurements are inconsistent with this model, as can be seen

from Fig. 13.1. See Problem 13.1 for a quantitative analysis of the results. }
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Fig. 13.1 Kolmogorov–Smirnov test applied to the measurements of the ratio m=e from Thom-

son’s experiments described on page 23. The black line corresponds to the measurements for

Tube 1, and the red line to those of Tube 2 (measurements have been multiplied by 107). The

dot-dashed line is the cumulative distribution of a Gaussian with � D 5:7 (the correct value) and

a fiducial variance of �2 D 1

13.2.2 Two-Sample Kolmogorov–Smirnov Test

A similar statistic can be defined to compare two datasets:

DNM D max
x
jFM.x/� GN.x/j (13.11)

where FM.x/ is the sample cumulative distribution of a set of M observations, and

GN.x/ that of another independent set of N observations; in this case, there is no

parent model used in the testing. The statistic DNM measures the maximum deviation

between the two cumulative distributions, and by nature it is a discrete distribution.

In this case, we can show that the distribution of the statistic is the same as in (13.9),

provided that the change

N ! MN

M C N

is made. This number can be considered as the effective number of datapoints

of the two distributions. For the two-sample Kolmogorov–Smirnov DNM test we

can therefore use the same table as in the Kolmogorov–Smirnov one-sample test,

provided N is substituted with MN=.M C N/ and that N and M are both large.
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As N and M become large, the statistic approaches the following distribution:

lim
N;M!1

P

 

DNM < z=

r

MN

M C N

!

D ˚.z/: (13.12)

Proof We have already shown that for a sample distribution with M points,

FM.x/� F.x/ D UM.y/� U.y/;

where U is a uniform distribution in (0,1). Since

FM.x/ � GN.x/ D FM.x/ � F � .GN.x/ �G/;

where F D G is the parent distribution, it follows that FM.x/�GN.x/ D UN �
VN , where UM and VN are the sample distribution of two uniform variables.

Therefore the statistic

DNM D max
x
jFM.x/ �GN.x/j

is independent of the parent distribution, same as for the statistic DN .

Next we show how the factor
p

1=N C 1=M originates. It is clear that the

expectation of FM.x/ � GN.x/ is zero, at least in the limit of large N and M;

the second moment can be calculated as

EŒ.FM.x/� GN.x//
2� D EŒ.FM.x/ � F.x//2�

CEŒ.GN.x/� G.x//2�C 2EŒ.FM.x/ � F.x//.GN.x/ �G.x//�

D EŒ.FM.x/� F.x//2�C EŒ.GN.x/ � G.x//2�

In fact, since FM.x/ � F.x/ is independent of GN.x/ � G.x/, their covariance

is zero. Each of the two remaining terms can be evaluated using the following

calculation:

E
�

.FM.x/ � F.x//2
�

D E

�

1

M
.f# of xi’s < xg �MF.x//2

�

D

1

M2
E
�

.f# of xi’s < xg � EŒf# of xi’s < xg�/2
�

:

For a fixed value of x, the variable {# of xi’s < x} is a binomial distribution

in which “success” is represented by one measurement being < x, and the

probability of success is p D F.x/. The expectation in the equation above is
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therefore equivalent to the variance of a binomial distribution with M tries, for

which �2 D Mp.1� p/, leading to

E
�

.FM.x/ � F.x//2
�

D 1

M
F.x/.1� F.x//:

It follows that

EŒ.FM.x/ �GN.x//
2� D

�

1

M
C 1

N

�

F.x/.1� F.x//

A simple way to make the mean square of FM.x/�GN.x/ independent of N and

M is to divide it by
p

1=M C 1=N. This requirement is therefore a necessary

condition for the variable
p

NM=.N CM/DNM to be independent of N and M.

Finally, we show that
p

NM=.N CM/DNM is distributed in the same way

as
p

NDN , at least in the asymptotic limit of large N and M. Using the results

from the DN distribution derived in the previous section, we start with

max
x

ˇ

ˇ

ˇ

ˇ

ˇ

r

MN

M C N
.FM.x/ �GN.x//

ˇ

ˇ

ˇ

ˇ

ˇ

D max
0�y�1

ˇ

ˇ

ˇ

ˇ

ˇ

r

MN

M C N
.UM � VN//

ˇ

ˇ

ˇ

ˇ

ˇ

:

The variable can be rewritten as

r

MN

M C N
.UM � U C .V � VN// D

r

N

M C N
.
p

M.UM �U//

C
r

M

M C N
.
p

N.VN � V//:

Using the central limit theorem, it can be shown that the two variables ˛ Dp
M.UM �U/ and ˇ D

p
N.VN �V/ have the same distribution, which tends

to a Gaussian in the limit of large M. We then write

r

MN

M C N
.FM.x/ �GN.x// D

r

N

M C N
˛ C

r

M

M C N
ˇ

and use the property that, for two independent and identically distributed

Gaussian variables ˛ and ˇ the variable a � ˛ C b � ˇ is distributed like ˛,

provided that a2 C b2 D 1. We therefore conclude that, in the asymptotic

limit,

DNM D max
x

ˇ

ˇ

ˇ

ˇ

ˇ

r

MN

M C N
.FM.x/ �GN.x//

ˇ

ˇ

ˇ

ˇ

ˇ

� max
x

ˇ

ˇ

ˇ

p
N.VN � V/

ˇ

ˇ

ˇ
D DN :

ut
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Example 13.5 We can use the two-sample Kolmogorov–Smirnov statistic to com-

pare the data from Tube #1 and Tube #2 of Thomson’s experiment to measure the

ratio m=e of an electron (page 23). The result, shown in Fig. 13.1, indicates that the

two measurements are not in agreement with one another. See Problem 13.2 for a

quantitative analysis of this test. }

Summary of Key Concepts for this Chapter

� F Test: A test to compare two independent �2 measurements,

F D �21;red=�
2
2;red:

� F Test for additional component: The significance of an additional model

component with p parameters can be tested using

F D 
�2=p

�2min=.N �m/

when the additional component is nested within the general model.

� Kolmogorov–Smirnov test: A non-parametric test to compare a one-

variable dataset to a model or two datasets with one another.

Problems

13.1 Using the data from Thomson’s experiment at page 23, determine the values

of the Kolmogorov–Smirnov statistic DN for the measurement of Tube #1 and Tube

#2, when compared with a Gaussian model for the measurement with � D 5:7 and

�2 D1. Determine at what confidence level you can reject the hypothesis that the

two measurements are consistent with the model.

13.2 Using the data from Thomson’s experiment at page 23, determine the values

of the two-sample Kolmogorov–Smirnov statistic DNM for comparison between the

two measurements. Determine at what confidence level you can reject the hypothesis

that the two measurements are consistent with one another.

13.3 Using the data of Table 10.1, determine whether the hypothesis that the last

three measurements are described by a simple constant model can be rejected at the

99 % confidence level.

13.4 A given dataset with N D 5 points is fit to a linear model, for a fit statistic of

�2min. When adding an additional nested parameter to the fit, p D 1, determine by

how much should the �2min be reduced for the additional parameter to be significant

at the 90 % confidence level.
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13.5 A dataset is fit to model 1, with minimum �2 fit statistic of �21 D 10 for 5

degrees of freedom; the same dataset is also fit to another model, with �22 D 5 for 4

degrees of freedom. Determine which model is acceptable at the 90 % confidence,

and whether the F test can be used to choose one of the two models.

13.6 A dataset of size N is successfully fit with a model, to give a fit statistic �2min. A

model with a nested component with 1 additional independent parameter for a total

of m parameters is then fit to �2min, providing a reduction in the fit statistic of 
�2.

Determine what is the minimum
�2 that, in the limit of a large number of degrees

of freedom, provides 90 % confidence that the additional parameter is significant.



Chapter 14

Monte Carlo Methods

Abstract The term Monte Carlo refers to the use of random variables to evaluate

quantities such as integrals or parameters of fit functions that are typically too

complex to evaluate via other analytic methods. This chapter presents elementary

Monte Carlo methods that are of common use in data analysis and statistics,

in particular the bootstrap and jackknife methods to estimate parameters of fit

functions.

14.1 What is a Monte Carlo Analysis?

The term Monte Carlo derives from the name of a locality in the Principality of

Monaco known for its resorts and casinos. In statistics and data analysis Monte

Carlo is an umbrella word that means the use of computer-aided numerical methods

to solve a specific problem, typically with the aid of random numbers.

Traditional Monte Carlo methods include numerical integration of functions that

can be graphed but that don’t have a simple analytic solution and simulation of ran-

dom variables using random samples from a uniform distribution. Another problem

that benefits by the use of random numbers is the estimation of uncertainties in the

best-fit parameters of analytical models used to fit data. There are cases when an

analytical solution for the error in the parameters is not available. In many of those

cases, the bootstrap or the jackknife methods can be used to obtain reliable estimates

for those uncertainties.

Among many other applications, Monte Carlo Markov chains stand out as a class

of Monte Carlo methods that is now commonplace across many fields of research.

The theory of Markov chains (Chap. 15) dates to the early twentieth century, yet

only over the past 20 years or so it has found widespread use as Monte Carlo Markov

chains (Chap. 16) because of the computational power necessary to implement the

method.
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14.2 Traditional Monte Carlo Integration

A common numerical task is the evaluation of the integral of a function f .x/ for

which analytic solution is either unavailable or too complicated to calculate exactly,

I D
Z

A

f .x/dx: (14.1)

We want to derive a method to approximate this integral by randomly drawing

N samples from the support A. For simplicity, we assume that the domain of the

variable f .x/ is a subset of real numbers between a and b. We start by drawing

samples from a uniform distribution between these two values,

g.x/ D

8

<

:

1

b � a
if a � x � b

0 otherwise:
(14.2)

Recall that for a random variable X with continuous distribution f .x/, the expecta-

tion (or mean value) is defined as

EŒX� D
Z 1

�1
xg.x/dx (14.3)

(2.6); we have also shown that the mean can be approximated as

EŒX� ' 1

N

N
X

iD1
xi

where xi are independent measurements of that variable. The expectation of the

function f .x/ of a random variable is

EŒ f .x/� D
Z 1

�1
f .x/g.x/dx;

and it can be estimated using the Law of Large Numbers (Sect. 4.5):

EŒ f .x/� ' 1

N

N
X

iD1
f .xi/: (14.4)

These equations can be used to approximate the integral in (14.1) as a simple sum:

I D .b � a/

Z b

a

f .x/g.x/dx D .b � a/EŒ f .x/� ' .b � a/
1

N

N
X

iD1
f .xi/: (14.5)

Equation (14.5) can be implemented by drawing N random uniform samples xi from

the support, then calculating f .xi/, and evaluating the sum. This is the basic Monte

Carlo integration method, and it can be easily implemented by using a random

number generator available in most programming languages.
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The method can be generalized to more than one dimension; if the support A �
R

n has volume V , then the integration of an n-dimensional function f .x/ is given by

the following sum:

I D V

N

N
X

iD1
f .xi/ (14.6)

It is clear that the precision in the evaluation of the integral depends on the

number of samples drawn. The error made by this method of integration can be

estimated using the following interpretation of (14.6): the quantity Vf .x/ is the

random variable of interest, and I is the expected value. Therefore, the variance

of the random variable is given by the usual expression,

�2I D
V2

N

N
X

iD1
. f .xi/ � Nf /2: (14.7)

This means that the relative error in the calculation of the integral is

�I

I
D 1p

N

q

PN
iD1. f .xi/ � Nf /2
PN

iD1 f .xi/
/ 1p

N
I (14.8)

as expected, the relative error decreases like the square root of N, same as for a

Poisson variable. Equation (14.8) can be used to determine how many samples are

needed to estimate an integral with a given precision.

14.3 Dart Monte Carlo Integration and Function Evaluation

Another method to integrate a function, or to perform related mathematical opera-

tions, can be shown by way of an example. Assume that we want to measure the area

of a circle of radius R. One can draw a random sample of N values in the .x; y/ plane,

as shown in Fig. 14.1, and count all the points that fall within the circle, N.R/. The

area of the circle, or any other figure with known analytic function, is accordingly

estimated as

A D N.R/

N
� V (14.9)

in which V is the volume sampled by the two random variables. In the case of a

circle of radius R D 1 we have V D 4, and since the known area is A D �R2, this

method provides an approximation to the number � .
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Fig. 14.1 Monte Carlo method to perform a calculation of the area of a circle (also a simulation

of the number �), with N D 1000 iterations

Notice that (14.9) is equivalent to (14.6), in which the sum
P

f .xi/ becomes

N.R/, where f .xi/ D 1 indicates that a given random data point xi falls within the

boundaries of the figure of interest.

Example 14.1 (Simulation of the Number �) Figure 14.1 shows a Monte Carlo

simulation of the number � , using 1000 random numbers drawn in a box of linear

size 2, encompassing a circle of radius R D 1. The simulation has a number N.R/ D
772 of points within the unit circle, resulting in an estimate of the area of the circle

as �R2 D 0:772 � 4 D 3:088. Compared with the exact result of � D 3:14159, the

simulation has an error of 1.7 %. According to (14.8), a 1000 iteration simulation has

an expected relative error of order 3.1 %, therefore the specific simulation reported

in Fig. 14.1 is consisted with the expected error, and more numbers must be drawn

to improve the precision. }

14.4 Simulation of Random Variables

A method for the simulation of a random variable was discussed in Sect. 4.8. Since

the generation of random samples from a uniform random variable was involved,

this method also falls under the category of Monte Carlo simulations.
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The method is based on (4.42):

X D F�1.U/;

in which F�1 represents the inverse of the cumulative distribution of the target

variable X, and U represents a uniform random variable between 0 and 1. In

Sect. 4.8 we provided the examples on how to use (4.42) to simulate an exponential

distribution, which has a simple analytic function for its cumulative distribution.

The Gaussian distribution is perhaps the most common variable in many

statistical applications, and its generation cannot be accomplished by (4.42), since

the cumulative distribution is a special function and F.x/ does not have a close form.

A method to overcome this limitation was discussed in Sect. 4.8.2, and it consists of

using two uniform random variables U and V to simulate two standard Gaussians X

and Y of zero mean and unit variance via (4.45),

(

X D
p

�2 ln.1 �U/ � cos.2�V/

Y D
p

�2 ln.1 �U/ � sin.2�V/:
(14.10)

A Gaussian X0 of mean � and variance �2 is related to the standard Gaussian X

by the transformation

X D X0 � �
�

;

and therefore it can be simulated via

X0 D
�

p

�2 ln.1 �U/ � cos.2�V/
�

� C �: (14.11)

Figure 14.2 shows a simulation of a Gaussian distribution function using (14.11).

Precision can be improved with increasing number of samples.

Fig. 14.2 Monte Carlo

simulation of the probability

distribution function of a

Gaussian of � D 1 and

�2 D 2 using 1000 samples

according to (14.11)
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14.5 Monte Carlo Estimates of Errors for Two-Variable

Datasets

The two methods presented in this section, the bootstrap and the jackknife, are

among the most common techniques to estimate best-fit parameters and their uncer-

tainties in the fit to two-variable datasets. We have seen in previous chapters that the

best-fit parameters and their uncertainties can be estimated analytically, for example,

in the case of a linear regression with known errors in the dependent variable. In

those cases, the exact analytical solution is typically the most straightforward to

implement. When the analytic solution to a maximum likelihood fit is unavailable,

then �2 minimization followed by the �2min C 
�2 criterion can also be used to

measure best-fit values and uncertainties in the parameters. Finally, Markov chain

Monte Carlo methods to be presented in Chap. 16 can also be used in virtually any

case for which the likelihood can be calculated.

The two methods presented in this section have a long history of use in statistical

data analysis, and had been in use since well before the Markov chain Monte Carlo

methods became of wide use. The bootstrap and jackknife methods are typically

easier to implement than a Monte Carlo Markov chain. In particular, the bootstrap

uses a large number of repetitions of the dataset, and therefore is computer intensive;

the older jackknife method instead uses just a small number of additional random

datasets, and requires less computing resources.

14.5.1 The Bootstrap Method

Consider a dataset Z composed of N measurements of either a random variable or,

more generally, a pair of variables. The bootstrap method consists of generating

as large a number of random, “synthetic” datasets based on the original set. Each

set is then used to determine the distribution of the random variable (e.g., for the

one-dimensional case) or of the best-fit parameters for the y.x/ model (for the two–

dimensional case). The method has the following steps:

1. Draw at random N datapoints from the original set Z, with replacement, to form

a synthetic dataset Zi. The new dataset has therefore the same dimension as the

original set, but a few of the original points may be repeated, and a few missing.

2. For each dataset Zi, calculate the parameter(s) of interest ai. For example, the

parameters can be calculated using a �2 minimization technique.

3. Repeat this process as many times as possible, say Nboot times.

4. At the end of the process, the parameters an, n D 1; : : : ;Nboot, approximate the

posterior distribution of the parameter of interest. These values can therefore

be used to construct the sample distribution function for the parameters, and

therefore obtain the best-fit value and confidence intervals.
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Notice that one advantage of the bootstrap method is that it can be used even in cases

in which the errors on the datapoints are not available, which is a very common

occurrence. In this situation, the direct maximum likelihood method applied to the

original set Z alone would not provide uncertainties in the best-fit parameters, as

explained in Sect. 8.5. Since at each iteration the best-fit parameters alone must

be evaluated, a dataset without errors in the dependent variable can still be fit to

find the best-fit parameters, and the bootstrap method will provide an estimate of

the uncertainties. This is one of the main reasons why the bootstrap method is so

common.

Example 14.2 (Bootstrap Analysis of Hubble’s Data) We perform a bootstrap anal-

ysis on the data from Hubble’s experiment of page 157. The dataset Z consists of the

ten measurements of the magnitude m and logarithm of the velocity log v, as shown

in Fig. 8.2. We generate 10,000 random synthetic datasets of ten measurements each,

for which typically a few of the original datapoints are repeated. Given that error

bars on the dependent variable log v were not given, we assume that the uncertainties

have a common value for all measurement (and therefore the value of the error is

irrelevant for the determination of the best-fit parameters). For each dataset Zi we

perform a linear regression to obtain the best-fit values of the parameters ai and bi.

The sample distributions of the parameters are shown in Fig. 14.3; from them,

we can take the median of the distribution as the “best-fit” value for the parameter,

and the 68 % confidence interval as the central range of each parameter that

contains 68 % of the parameter occurrences. It is clear that both distributions are

somewhat asymmetric; the situation does not improve with a larger number of

bootstrap samples, since there is only a finite number of synthetic datasets that

Fig. 14.3 Monte Carlo bootstrap method applied to the data from Hubble’s experiment. (Left)

Sample distribution of parameter a, with a median of a D 0:54 and a 68 % central range of 0.45–

0.70. (Right) Distribution of b, with median b D 0:197 and a central range of 0.188–0.202. The

best-fit values of the original dataset Z were found to be a D 0:55 and b D 0:197 (see page 159)
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can be generated at random, with replacement, from the original dataset (see

Problem 14.1). }
A key feature of the bootstrap method is that it is an unbiased estimator for the

model parameters. We can easily prove this general property in the special case of a

one-dimensional dataset, with the goal of estimating the sample mean and variance

of the random variable X from N independent measurements. It is clear that we

would normally not use the bootstrap method in this situation, since (2.8) and (5.4)

provide the exact solution to the problem. The following proof is used to show that

the bootstrap method provides unbiased estimates for the mean and variance of a

random variable.

Proof The sample average calculated for a given bootstrap dataset Zi is given

by

Nxi D
1

N

N
X

jD1
xjnji (14.12)

where nji is the number of occurrence of datapoint xj in the synthetic set Zi. If

nji D 0 it means that xj was not selected for the set, nji D 1 it means that there

is just one occurrence of xj (as in the original set), and so on. The number

nji � N, and it is a random variable that is distributed like a binomial with

p D 1=N, since the drawing for each bootstrap set is done at random, and with

replacement. Therefore, we find that

8

<

:

EŒnji� D Np D 1
Var.nij/ � �2i D Np.1 � p/ D N � 1

N

(14.13)

where the expectation is calculated for a given dataset Z, drawing a large

number of bootstrap sample based on that specific set. It follows that Nxi is

an unbiased estimator of the sample mean,

EŒ Nxi� D
1

N

N
X

jD1
xjEŒnji� D Nx: (14.14)

The expectation operator used in the equation above relates to the way in

which a specific synthetic dataset can be drawn, i.e., indicates an “average”

over a specific dataset. The operation of expectation should also be repeated

to average over all possible datasets Z consisting of N measurements of the

random variable X, and that operation will also result in an expectation that is

equal to the parent mean of X,

EŒNx� D �: (14.15)
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Although we used the same symbol for the expectation of (14.14) and (14.15),

the two operations are therefore different in nature.

The proof that the variance of the sample mean of dataset Zi is an unbiased

estimator of the parent variance �2=N is complicated by the fact that the

random variables nij are not independent. In fact, they are related by

N
X

iD1
nij D N; (14.16)

and this enforces a negative correlation between the variables that vanishes

only in the limit of very large N. It can be shown that the covariance of the

nij’s (say, the covariance between nij and nki, were i ¤ k, and i labels the

dataset) is given by

�2jk D �
1

N
: (14.17)

The proof of (14.17) is left as an exercise, and it is based on the use of (14.16),

and (4.3) (see Problem 14.2).

The variance of Nxi can be calculated using (4.3), since Nxi is a linear

combination of N random variables nij:

Var. Nxi/ D Var

0

@

1

N

N
X

jD1
xjnji

1

A D

1

N2

0

@

N
X

jD1
x2j �

2
i C 2

N
X

jD1

N
X

kDjC1
xjxk�

2
jk

1

A D

1

N2

0

@

N � 1
N

N
X

jD1
x2j �

2

N

N
X

jD1

N
X

kDjC1
xjxk

1

A

in which we have used the results of (14.13) and (14.17). Next, we need to

calculate the expectation of this variance, in the sense of varying the dataset Z

itself:

EŒVar. Nxi/� D
N � 1

N3
EŒ

N
X

jD1
x2j ��

2

N3

0

@

1

2

X

j¤k

EŒxjxk�

1

A (14.18)

The last sum in the equation above is over all pairs .j; k/; the factor 1/2 takes

into account the double-counting of terms such as xjxk and xkxj, and the sum



234 14 Monte Carlo Methods

contains a total of N.N � 1/ identical terms. Since the measurements xi, xj are

independent and identically distributed, EŒxixk� D EŒxj�
2, it follows that

EŒVar. Nxi/� D
N � 1

N2




EŒx2i � � EŒxi�
2
�

D N � 1
N2

�2 D N � 1
N

�2�

where �2 is the variance of the random variable X, and �2� D �2=N the

variance of the sample mean. The equation states that EŒVar. Nxi/� D EŒs2�,

where s2 is the sample variance of X. We showed in Sect. 5.1.2 that the sample

variance is an unbiased estimator of the variance of the mean, provided it is

multiplied by the known factor N=.N � 1/. In practice, when calculating the

variance from the N bootstrap samples, we should use the factor 1=.N � 1/
instead of 1=N, as is normally done according to (5.6). ut

14.5.2 The Jackknife Method

The jackknife method is an older Monte Carlo method that makes use of just N

resampled datasets to estimate best-fit parameters and their uncertainties. As in the

bootstrap method, we consider a dataset Z of N independent measurements either

of a random variable X or of a pair of random variables. The method consists of the

following steps:

1. Generate a resampled dataset Zj by deleting the jth element from the dataset. This

resampled dataset has therefore dimension N � 1.

2. Each dataset Zj is used to estimate the parameters of interest. For example, apply

the linear regression method to dataset Zj and find the best-fit values of the linear

model, aj and bj.

3. The parameters of interest are also calculated from the full-dimensional dataset

Z, as one normally would. The best-fit parameters are called Oa.

4. For each dataset Zj, define the pseudo-values a?j as

a?j D N Oa � .N � 1/aj (14.19)

5. The jackknife estimate of each parameter of interest and its uncertainty are given

by the following equations:

8

ˆ

ˆ

<

ˆ

ˆ

:

a? D 1

N

n
P

jD1
a?j

�2a? D
1

N.N � 1/
N
P

jD1
.a?j � a?/2:

(14.20)

To prove that (14.20) provide an accurate estimate for the parameters and their

errors, we apply them to the simple case of the estimate of the mean from a sample of
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N measurements. In this case we want to show that the expectation of the jackknife

estimate of the mean a? is equal to the parent mean �, and that the expectation of

its variance �2a? is equal to �2=N.

Proof For a sample of N measurements of a random variable x, the sample

mean and its variance are given by

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

Nx D 1

N

N
P

jD1
xi

s2

N
D 1

N.N � 1/
N
P

jD1
.xi � Nx/2:

(14.21)

The proof consists of showing that a?j D xj, so that a? is the sample mean

and �2a? is the sample variance. The result follows from:

aj D
1

N � 1
X

i¤j

xi; Oa D
1

N

N
X

iD1
xi

) a?j DN
1

N

N
X

iD1
xi �

N � 1
N � 1

X

i¤j

xi D xj:

Notice that the factor of 1=.N � 1/ was used in the calculation of the sample

variance, according to (5.6). ut

Example 14.3 In the case of the Hubble experiment of page 157, we can use the

jackknife method to estimate the best-fit parameters of the fit to a linear model of

m versus log v. According to (14.20), we find that a? D 0:52, �a? D 0:13, and

b? D 0:199, �b? D 0:008. These estimates are in very good agreement with the

results of the bootstrap method, and those of the direct fit to the original dataset for

which, however, we could not provide uncertainties in the fit parameters. }

Summary of Key Concepts for this Chapter

� Monte Carlo method: Any numerical method that makes use of random

variables to perform calculations that are too complex to be performed

analytically, such as Monte Carlo integration and “dart” methods.

� Bootstrap method: A common method to estimate model parameters that

uses a large number of synthetic datasets obtained by re-sampling of the

original data.

� Jackknife method: A simple method to estimate model parameters that uses

just N re-sampled datasets.
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Problems

14.1 Calculate how many synthetic bootstrap datasets can be generated at random

from a dataset Z with N unique datapoints. Notice that the order in which the

datapoints appear in the dataset is irrelevant.

14.2 For a bootstrap dataset Zj constructed from a set Z of N independent

measurements of a variable X, show that the covariance between the number of

occurrence nji and njk is given by (14.17),

�2ik D �
1

N
:

14.3 Perform a numerical simulation of the number � , and determine how many

samples are sufficient to achieve a precision of 0.1 %. The first six significant digits

of the number are � D 3:14159.

14.4 Perform a bootstrap simulation on the Hubble data presented in Fig. 14.3, and

find the 68 % central confidence ranges on the parameters a and b.

14.5 Using the data of Problem 8.2, run a bootstrap simulation with N D 1000

iterations for the fit to a linear model. After completion of the simulation, plot the

sample probability distribution function of the parameters a and b, and find the

median and 68 % confidence intervals on the fit parameters. Describe the possible

reason why the distribution of the fit parameters are not symmetric.

14.6 Use the data of Problem 8.2, but assuming that the errors in the dependent

variable y are unknown. Run a bootstrap simulation with N D 1000 iterations, and

determine the median and 68 % confidence intervals on the parameters a and b to

the fit to a linear model.

14.7 Using the data of Problem 8.2, assuming that the errors in the dependent

variable y are unknown, estimate the values of a and b to the fit to a linear model

using a jackknife method.

14.8 Given two uniform random variables U1 and U2 between �R and CR, as

often available in common programming software, provide an analytic expression

to simulate a Gaussian variable of mean � and variance �2.



Chapter 15

Introduction to Markov Chains

Abstract The theory of Markov chains is rooted in the work of Russian mathe-

matician Andrey Markov and has an extensive body of literature to establish its

mathematical foundations. The availability of computing resources has recently

made it possible to use Markov chains to analyze a variety of scientific data. Monte

Carlo Markov chains are now one of the most popular methods of data analysis.

This chapter presents the key mathematical properties of Markov chains, necessary

to understand its implementation as Monte Carlo Markov chains.

15.1 Stochastic Processes and Markov Chains

This section presents key mathematical properties of Markov chains. The treatment

is somewhat theoretical, but necessary to ensure that the applications we make to the

analysis of data are consistent with the mathematics of Markov chains, which can

be very complex. The goal is therefore that of defining and understanding a basic

set of definitions and properties necessary to use Markov chains for the analysis of

data, especially via the Monte Carlo simulations.

Markov chains are a specific type of stochastic processes, or sequence of random

variables. A typical example of Markov chain is the so-called random walk, in which

at each time step a person randomly takes a step either to the left, or to the right. As

time progresses, the location of the person is the random variable of interest, and the

collection of such random variables forms a Markov chain. The ultimate goal of a

Markov chain is to determine the stationary distribution of the random variable. For

the random walk, where we are interested in knowing the probability that at a given

time the person is located n steps to the right or to the left of the starting point.

In the typical case of interest for the analysis of data, a dataset Z is fit to a

parametric model. The goal is to create a Markov chain for each parameter of

the model, in such a way that the stationary distribution for each parameter is

the distribution function of the parameter. The chain will therefore result in the

knowledge of the best-fit value of the parameter, and of confidence intervals, making

use of the information provided by the dataset.
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15.2 Mathematical Properties of Markov Chains

A stochastic process is defined as a sequence of variables Xt,

fXt; for t�Tg (15.1)

where t labels the sequence. The domain for the index t is indicated as T to signify

“time.” The domain is usually a subset of the real numbers (T � R) or of the natural

numbers (T � N). As time progresses, the random variables Xt change value, and

the stochastic process describes this evolution.

A Markov chain is a particular stochastic process that satisfies the following

properties:

1. The time domain is the natural numbers (T � N), and each random variable

Xt can have values in a countable set, e.g., the natural numbers or even an

n-dimensional space (Nn), but not real numbers (Rn). A typical example of a

Markov chain is one in which Xi D n, where both i (the time index) and n (the

value of the random variable) are natural numbers. Therefore a Markov chain

takes the form of

X1 ! X2 ! X3 ! : : :! Xn ! : : :

The random variable Xi describes the state of the system at time t D i. The

fact that Markov chains must be defined by way of countable sets may appear

an insurmountable restriction, since it would appear that the natural domain for

an n-parameter space is R
n. While a formal extension of Markov chains to R

n

is also possible, this is not a complication for any practical application, since

any parameter space can be somehow “binned” into a finite number of states.

For example, the position of the person in a random walk was “binned” into a

number of finite (or infinite but countable) positions, and a similar process can

be applied to virtually any parameter of interest for a given model. This means

that the variable under consideration can occupy one of a countable multitude

of states "1, "2,. . . , "n, . . . , and the random variable Xi identifies the state of the

system at time step i, Xi D "n.

2. A far more important property that makes a stochastic process a Markov chain is

the fact that subsequent steps in the chain are only dependent on the current state

of the chain, and not on any of its previous history. This “short memory” property

is known as the Markovian property, and it is the key into the construction of

Markov chains for the purpose of data analysis. In mathematical terms, given

the present time t D n, the future state of the chain at t D n C 1 (XnC1)
depends only on the present time (Xn), but not on past history. Much of the efforts

in the construction of a Monte Carlo Markov chain lies in the identification
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of a transition probability from state "i to state "j between consecutive time

steps,

pij D P.XnC1 D "j=Xn D "i/: (15.2)

A Markov chain requires that this probability be time-independent, and therefore

a Markov chain has the property of time homogeneity. In Chap. 16 we will see

how the transition probability takes into account the likelihood of the data Z with

the model.

The two properties described above result in the fact that Markov chain is a

sequence of states determined by transition probabilities pij (also referred to as

transition kernel) that are fixed in time. The ultimate goal is to determine the

probability to find the system in each of the allowed states. With an eye towards

future applications for the analysis of data, each state may represent values of one

or many parameters, and therefore a Markov chain makes it possible to reconstruct

the probability distribution of the parameters.

Example 15.1 (Random Walk) The random walk is a Markov chain that represents

the location of a person who randomly takes a step of unit length forward with

probability p, or a step backward with probability q D 1 � p (typically p D q D
1=2). The state of the system is defined by the location i at which the person find

itself at time t D n,

Xn D {Location i along the NC axis}

where N
C indicates all positive and negative integers. For this chain, the time

domain is the set of positive numbers (T D N), and the position can be any negative

or positive integer (NC). The transition probability describes the fact that the person

can only take either a step forward or backward:

pij D

8

ˆ

ˆ

<

ˆ

ˆ

:

p if j D iC 1, or move forward

q if j D i � 1, or move backward

0 otherwise:

(15.3)

}
The chain satisfies the Markovian property, since the transition probability depends

only on its present position, and not on previous history.

Example 15.2 Another case of a Markov chain is a simple model of diffusion,

known as the Ehrenfest chain. Consider two boxes with a total of m balls. At each

time step, one selects a ball at random from either box, and replaces it in the other

box. The state of the system can be defined via the random variable

Xn D {Number of balls in the first box}:
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The random variable can have only a finite number of values .0; 1; : : : ;m/. At each

time step, the transition probability is

pij D

8

ˆ

ˆ

<

ˆ

ˆ

:

m � i

m
if j D iC 1 (box had i balls, now has iC 1)

i

m
if j D i� 1 (box had i balls, now has i� 1):

(15.4)

For example, in the first case it means that we chose one of m � i balls from the

second box. The transition probabilities depend only on the number of balls in the

first box at any given time, and are completely independent of how the box came to

have that many balls. This chain therefore satisfies the Markovian property. }

15.3 Recurrent and Transient States

We are interested in knowing how often a state is visited by the chain and, in

particular, whether a given state can be visited infinitely often. Assume that the

system is initially in state "i. We define uk the probability that the system returns to

the initial state in exactly k time steps, and vn the probability that the system returns

to the initial state at time n, with the possibility that it may have returned there other

times prior to n. Clearly, it is true that vn � un.

To determine whether a state is recurrent or transient, we define

u �
1
X

nD1
un (15.5)

as the probability of the system returning the initial state "i for the first time at

some time n. The state can be classified as recurrent or transient according to the

probability of returning to that state:

(

u D 1 state is recurrentI
u < 1 state is transient:

(15.6)

Therefore a recurrent state is one that will certainly be visited again by the chain.

Notice that no indication is given as to the time at which the system will return to

the initial state.

We also state a few theorems that are relevant to the understanding of recurrent

states. Proofs of these theorems can be found, for example, in the textbook by Ross

[38] or other books on stochastic processes, and are not reported here.
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Theorem 15.1 With vn the probability that the system returns to a state "i at time n,

state "i is recurrent ”
1
X

nD1
vn D 1: (15.7)

This theorem states that, if the system does return to a given state, then it will

do so infinitely often. Also, since this is a necessary and sufficient condition, any

transient state will not be visited by the chain an infinite number of times. This

means that transient states will not be visited any more after a given time, i.e., they

are only visited during an initial period. The fact that recurrent states are visited

infinitely often means that it is possible to construct a sample distribution function

for recurrent states with a precision that is function of the length of the chain. No

information is, however, provided on the timing of the return to a recurrent state.

We also introduce the definition of accessible states: a state "j is said to be

accessible from state "i if pij.m/ > 0 for some natural number m, meaning that

there is a non-zero probability of reaching this state from another state in m time

steps. The following theorems establish properties of accessible states, and how the

property of accessibility relates to that of recurrence.

Theorem 15.2 If a state "j is accessible from a recurrent state "i, then "j is also

recurrent, and "i is accessible from "j.

This theorem states that once the system reaches a recurrent state, the states

visited previously by the chain must also be recurrent, and therefore will be visited

again infinitely often. This means that recurrent states form a network, or class, of

states that share the property of recurrence, and these are the states that the chain

will sample over and over again as function of time.

Theorem 15.3 If a Markov chain has a finite number of states, then each state is

accessible from any other state, and all states are recurrent.

This theorem ensures that all states in a finite chain will be visited infinitely often,

and therefore the chain will sample all states as function of time. This property is

of special relevance for Monte Carlo Markov chain methods in which the states of

the chain are possible values of the parameters. As the chain progresses, all values

of the parameters are accessible, and will be visited in proportion of the posterior

distribution of the parameters.

Example 15.3 (Recurrence of States of the Random Walk) Consider the random

walk with transition probabilities given by (15.3). We want to determine whether

the initial state of the chain is a recurrent or a transient state for the chain.

The probability of returning to the initial state in k steps is clearly given by the

binomial distribution,

pii.k/ D
(

0 if k is odd

C.n; k/pnqn if k D 2n is even
(15.8)
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where

C.n; k/ D
 

k

n

!

D kŠ

.k � n/ŠnŠ
(15.9)

is the number of combinations [of n successes out of k D 2n tries, see (3.3)]. Using

Stirling’s approximation for the factorial function in the binomial coefficient,

nŠ '
p
2�nnne�n;

the probability to return at time k D 2n to the initial state becomes

vk D pii.k/ D
 

2n

n

!

pnqn D .2n/Š

.nŠ/2
pnqn '

p
4�n

2�n

.2n/2ne�2n

n2ne�2n
pnqn D .4pq/np

�n

which holds only for k even.

This equation can be used in conjunction with Theorem 15.1 to see if the initial

state is transient or recurrent. Consider the series

1
X

nD1
vn D

1
X

nD1

1p
�n
.4pq/n:

According to Theorem 15.1, the divergence of this series is a necessary and

sufficient condition to prove that the initial state is recurrent.

(a) p ¤ q. In this case, x D 4pq < 1 and

1
X

nD1

1p
�n
.4pq/n <

1
X

nD1
xn D x

1 � x
I

since x < 1, the series converges and therefore the state is transient. This means

that the system may return to the initial state, but only for a finite number of

times, even after an infinite time. Notice that as time progresses the state of the

system will drift in the direction that has a probability> 1=2.

(b) p D q D 1=2, thus 4pq D 1. The series becomes

1p
�

1
X

nD1

1

n1=2
: (15.10)

It can be shown (see Problem 15.2) that this series diverges, and therefore a random

walk with the same probability of taking a step to the left or to the right will return

to the origin infinitely often. }
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15.4 Limiting Probabilities and Stationary Distribution

The ultimate goal of a Markov chain is to calculate the probability that a system

occupies a given state "i after a large number n of steps. This probability is called

the limiting probability. According to the frequentist approach defined in (1.2), it is

given by

p?j D lim
n!1

pj.n/; (15.11)

where pj.n/ is the probability of the system to be found in state "j at time t D n.

With the aid of the total probability theorem, the probability of the system to be in

state �j at time t D n is

pj.n/ D
X

k

pk.n � 1/pkj: (15.12)

In fact pk.n � 1/ represents the probability of being in state "k at time n � 1, and

the set of probabilities pk.n � 1/ forms a set of mutually exclusive events which

encompasses all possible outcomes, with the index k running over all possible states.

This formula can be used to calculate recursively the probability pj.n/ using the

probability at the previous step and the transition probabilities pkj, which do not

vary with time.

Equation (15.12) can be written in a different form if the system is known to

be in state "i at an initial time t D 0:

pij.n/ D P.Xn D "j/ D
X

k

pik.n � 1/pkj (15.13)

where pij.n/ is the probability of the system going from state "i to "j in n time

steps.

The probabilities pj.n/ and pij.n/ change as the chain progresses. The

limiting probabilities p?j , on the other hand, are independent of time, and

they form the stationary distribution of the chain. General properties for

the stationary distribution can be given for Markov chains that have certain

specific properties. In the following we introduce additional definitions that

are useful to characterize Markov chains, and to determine the stationary

distribution of the chain.

A number of states that are accessible from each other, meaning there is

a non-zero probability to reach one state from the other (pij > 0), are said

to communicate, and all states that communicate are part of the same class.

The property of communication ($) is an equivalence relation, meaning that

it obeys the following three properties:
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(a) The reflexive property: i$ i;

(b) The symmetric property: if i$ j, then j$ i; and

(c) The transitive property: if i $ j and j $ k, then i $ k. Therefore, each

class is separate from any other class of the same chain. A chain is said

to be irreducible if it has only one class, and thus all states communicate

with each other.

Another property of Markov chains is periodicity. A state is said to be

periodic with period T if pii.n/ D 0 when n is not divisible by T, and T is the

largest such integer with this property. This means that the return to a given

state must occur in multiples of T time steps. A chain is said to be aperiodic if

T D 1, and return to a given state can occur at any time. It can be shown that

all states in a class share the same period.

The uniqueness of the stationary distribution and an equation that can be

used to determine it are established by the following theorems.

Theorem 15.4 An irreducible aperiodic Markov chain belongs to either of

the following two classes:

1. All states are positive recurrent. In this case, p?i D �i is the stationary

distribution, and this distribution is unique.

2. All states are transient or null recurrent; in this case, there is no stationary

distribution.

This theorem establishes that a “well behaved” Markov chain, i.e., one with

positive recurrent states, does have a stationary distribution, and that this

distribution is unique. Positive recurrent states, defined in Sect. 15.3, are those

for which the expected time to return to the same state is finite, while the time

to return to a transient or null recurrent state is infinite. This theorem also

ensures that, regardless of the starting point of the chain, the same stationary

distribution will eventually be reached.

Theorem 15.5 The limiting probabilities are the solution of the system of linear

equations

p?j D
N
X

iD1
p?i pij: (15.14)

Proof According to the recursion formula (15.12),

pj.n/ D
N
X

iD1
pi.n � 1/pij: (15.15)

Therefore the result follows by taking the limit n!1 of the above equation.

ut
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If we consider a chain with a probability distribution at a time t0 that

satisfies

pj.t0/ D
N
X

iD1
pi.t0/pij; (15.16)

then the probability distribution of the states satisfies (15.14), and the chain

has reached the stationary distribution pj.n/ D p?j . Theorem 15.5 guarantees

that, from that point on, the chain will maintain its stationary distribution.

The importance of a stationary distribution is that, as time elapses, the

chain samples this distribution. The sample distribution of the chain, e.g., a

hystogram plot of the occurrence of each state, can therefore be used as an

approximation of the posterior distribution.

Example 15.4 (Stationary Distribution of the Ehrenfest Chain) We want to find a

distribution function p?j that is the stationary distribution of the Ehrenfest chain. This

case is of interest because the finite number of states makes the calculation of the

stationary distribution easier to achieve analytically. The condition for a stationary

distribution is

p?j D
N
X

iD1
p?i pij

where N is the number of states of the chain. The condition can also be written in

matrix notation. Recall that the transition probabilities for the Ehrenfest chain are

pij D

8

ˆ

ˆ

<

ˆ

ˆ

:

m � i

m
if j D iC 1

i

m
if j D i� 1;

and they can be written as a transition matrix P

P D Œpij� D

2

6

6

6

6

6

6

6

4

0 1 0 0 : : : 0 0
1

m
0

m � 1
m

0 : : : 0 0

0
2

m
0

m � 2
m

: : : 0 0

. . . . . . . . . . . .

0 0 0 0 : : : 1 0

3

7

7

7

7

7

7

7

5

: (15.17)

Notice that the sum of each line is one, since

X

j

pij D 1
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is the probability of going from state "i to any state "j. In (15.17) you can regard the

vertical index to be i D 0; : : : ;m, and the horizontal index j D 0; : : : ;m.

The way in which we typically use (15.14) is simply to verify whether a

distribution is the stationary distribution of the chain. In the case of the Ehrenfest

chain, we try the binomial distribution as the stationary distribution,

pi D
 

m

i

!

piqm�i i D 0; : : : ;m;

in which p and q represent the probability of finding a ball in either box. At

equilibrium one expects p D q D 1=2, since even an initially uneven distribution of

balls between the two boxes should result in an even distribution at later times. It is

therefore reasonable to expect that the probability of having i balls in the first box,

out of a total of m, is equivalent to that of i positive outcomes in a binary experiment.

To prove this hypothesis, consider p D Œp0; p1; : : : ; pm� as a row vector of

dimension mC 1, and verify the equation

p D pP; (15.18)

which is the matrix notation for the condition of a stationary distribution. For the

Erhenfest chain, this condition is

Œp0; p1; : : : ; pm� D Œp0; p1; : : : ; pm�

2

6

6

6

6

6

6

6

4

0 1 0 0 : : : 0 0
1

m
0

m � 1
m

0 : : : 0 0

0
2

m
0

m � 2
m

: : : 0 0

. . . . . . . . . . . .

0 0 0 0 : : : 1 0

3

7

7

7

7

7

7

7

5

:

For a given state i, only two terms (at most) contribute to the sum,

pi D pi�1pi�1;i C piC1piC1;i: (15.19)

From this we can prove that the p D q D 1=2 binomial is the stationary distribution

of the Ehrenfest chain (see Problem 15.1). }
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Summary of Key Concepts for this Chapter

� Markov chain: A stochastic process or sequence of random variables as

function of an integer time variable.

� Markovian property: It is the key property of Markov chains, stating that

the state of the system at a given time depends only on the state at the

previous time step.

� Recurrent and transient state: A recurrent state occurs infinitely often

while a transient state only occurs a finite number of times in the Markov

chain.

� Stationary distribution: It is the asymptotic distribution of each variable,

obtained after a large number of time steps of the Markov chain. When

the variable represents a model parameter, the stationary distribution is the

posterior distribution of the parameter.

Problems

15.1 Consider the Markov chain for the Ehrenfest chain described in Example 15.4.

Show that the stationary distribution is the binomial with p D q D 1=2.

15.2 Show that the random walk with p D q D 1=2 (15.10) returns to the origin

infinitely often, and therefore the origin is a recurrent state of the chain.

15.3 For the random walk with p ¤ p, show that the origin is a transient state.

15.4 Assume that the diffusion model of Example 15.2 is modified in such a way

that at each time step one has the option to choose one box at random from which

to replace a ball to the other box.

(a) Determine the transition probabilities pij for this process.

(b) Determine whether this process is a Markov chain.

15.5 Using the model of diffusion of Problem 15.4, determine if the binomial

distribution with p D q D 1=2 is the stationary distribution.



Chapter 16

Monte Carlo Markov Chains

Abstract Monte Carlo Markov Chains (MCMC) are a powerful method to ana-

lyze scientific data that has become popular with the availability of modern-day

computing resources. The basic idea behind an MCMC is to determine the

probability distribution function of quantities of interest, such as model parameters,

by repeatedly querying datasets used for their measurement. The resulting sequence

of values form a Markov chain that can be analyzed to find best-fit values and

confidence intervals. The modern-day data analyst will find that MCMCs are an

essential tool that permits tasks that are simply not possible with other methods,

such as the simultaneous estimate of parameters for multi-parametric models of

virtually any level of complexity, even in the presence of correlation among the

parameters.

16.1 Introduction to Monte Carlo Markov chains

A typical data analysis problem is the fit of data to a model with adjustable

parameters. Chapter 8 presented the maximum likelihood method to determine the

best-fit values and confidence intervals for the parameters. For the linear regression

to a two-variable dataset, in which the independent variable is assumed to be known

and the dependent variable has errors associated with its measurements, we found

an analytic solution for the best-fit parameters and its uncertainties (Sect. 8.3). Even

the case of a multiple linear regressions is considerably more complex to solve

analytically (Chap. 9) and most fits to non-linear functions do not have analytic

solutions at all.

When an analytic solution is not available, the �2min method to search for

best-fit parameters and their confidence intervals is still applicable, as described

in Sect. 10.3. The main complication is the computational cost of sampling the

parameter space in search of �2min and surfaces of constant �2min C 
�2. Consider,

for example, a model with 10 free parameters: even a very coarse sampling of 10

values for each parameter will result in 1010 evaluations of the likelihood, or �2, to

cover the entire parameter space. Moreover, it is not always possible to improve the

situation by searching for just a few interesting parameters at a time, e.g., fixing the

value of the background while searching for the flux of the source. In fact, there may
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be correlation among parameters and this requires that the parameters be estimated

simultaneously.

The Monte Carlo Markov chain (MCMC) methods presented in this chapter

provide a way to bypass altogether the need for a uniform sampling of parameter

space. This is achieved by constructing a Markov chain that only samples the

interesting region of parameters space, i.e., the region near the maximum of the

likelihood. The method is so versatile and computationally efficient that MCMC

techniques have become the leading analysis method in many fields of data analysis.

16.2 Requirements and Goals of a Monte Carlo

Markov Chain

A Monte Carlo Markov chain makes use of a dataset Z and a model with m

adjustable parameters, � D .�1; : : : ; �m/, for which it is possible to calculate the

likelihood

L D P.Z=�/: (16.1)

Usually, the calculation of the likelihood is the most intensive task for an MCMC.

It necessary to be able to evaluate the likelihood for all possible parameter values.

According to Bayesian statistic, one is allowed to have a prior knowledge on the

parameters, even before they are measured (see Sect. 1.7). The prior knowledge may

come from experiments that were conducted beforehand, or from any other type a

priori belief on the parameters. The prior probability distribution will be referred to

as p.�/.

The information we seek is the probability distribution of the model parameters

after the measurements are made, i.e., the posterior distribution P.�=Z/. According

to Bayes’ theorem, the posterior distribution is given by

P.�=Z/ D P.�/P.Z=�/

P.Z/
D P.�/ � L

P.Z/
; (16.2)

where the quantity P.Z/ D
R

P.Z=�/P.�/d� is a normalization constant.

Taken at face value, (16.2) appears to be very complicated, as it requires a multi-

dimensional integration of the term P.Z/. The alternative provided by a Monte

Carlo Markov chain is the construction of a sequence of dependent samples for the

parameters � in the form of a Markov chain. Such Markov chain is constructed

in such a way that each parameter value appears in the chain in proportion to

this posterior distribution. With this method, it will be shown that the value of the

normalization constant P.Z/ becomes unimportant, thus alleviating significantly the

computational burden. The goal of a Monte Carlo Markov chain is therefore that

of creating a sequence of parameter values that has as its stationary distribution the
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posterior distribution of the parameters. After the chain is run for a large number

of iterations, the posterior distribution is obtained via the sample distribution of the

parameters in the chain.

There are several algorithms to sample the parameter space that satisfy the

requirement of having the posterior distribution of the parameters P.�=Z/ as the

stationary distribution of the chain. A very common algorithm that can be used in

most applications is that of Metropolis and Hastings [19, 32]. It is surprisingly easy

to implement, and therefore constitutes a reference for any MCMC implementation.

Another algorithm is that of Gibbs, but its use is limited by certain specific require-

ments on the distribution function of the parameters.Both algorithms presented in

this chapter provide a way to sample values of the parameters and describe a way to

accept them into the Markov chain.

16.3 The Metropolis–Hastings Algorithm

The Metroplis–Hastings algorithm [19, 32] was devised well before personal com-

puters became of widespread use. In this section we first describe the algorithm and

then prove that the resulting Markov chain has the desired stationary distribution.

The method has the following steps.

1. The Metropolis–Hastings algorithm starts with an arbitrary choice of the initial

values of the model parameters, �0 D .�01 ; : : : ; �0m/. This initial set of parameters

is automatically accepted into the chain. As will be explained later, some of the

initial links in the MCMC will later be discarded to offset the arbitrary choice of

the starting point.

2. A candidate for the next link of the chain, � 0, is then drawn from a proposal

(or auxiliary) distribution q.� 0=�n/, where �n is the current link in the chain.

The distribution q.� 0=�n/ is the probability of drawing a given candidate � 0,
given that the chain is in state �n. There is a large amount of freedom in the

choice of the auxiliary distribution, which can depend on the current state of

the chain �n, according to the Markovian property, but not on its prior history.

One of the simplest choices for a proposal distribution is an m-dimensional

uniform distribution of fixed width in the neighborhood of the current parameter.

A uniform prior is very simple to implement, and it is the default choice in many

applications. More complex candidate distributions can be implemented using,

e.g., the method of simulation of variables described in Sect. 4.8.

3. A prior distribution p.�/ has to be assumed before a decision can be made

whether the candidate is accepted into the chain or rejected. The Metropolis–

Hastings algorithm gives freedom on the choice of the prior distribution as well.

A typical choice of prior is another uniform distribution between two hard limits,

enforcing a prior knowledge that a given parameter may not exceed certain

boundaries. Sometimes the boundaries are set by nature of the parameter itself,

e.g., certain parameter may only be positive numbers, or in a fixed interval range.
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Other priors may be more restrictive. Consider the case of the measurement of

the slope of the curve in the Hubble experiment presented on page 157. It is clear

that, after a preliminary examination of the data, the slope parameter b will not

be a negative number, and will not be larger than, say, b D 2. Therefore one can

safely assume a prior on this parameter equal to p.b/ D 1=2, for 0 � b � 2.

Much work on priors has been done by Jeffreys [23], in search of mathematical

functions that express the lack of prior knowledge, known as Jeffreys priors.

For many applications, though, simple uniform prior distributions are typically

sufficient.

4. After drawing a random candidate � 0, we must decide whether to accept it into

the chain or reject it. This choice is made according to the following acceptance

probability, which is the heart of the Metropolis–Hastings algorithm:

˛.� 0=�n/ D min

�

�.� 0/q.�n=�
0/

�.�n/q.� 0=�n/
; 1

�

; (16.3)

The acceptance probability ˛.� 0=�n/ determines the probability of going from

�n to the new candidate state � 0, where q.� 0=�n/ is the proposal distribution,

and �.� 0/ D P.�=Z/ is the intended stationary distribution of the chain.

Equation (16.3) means that the probability of going to a new value in the chain,

� 0, is proportional to the ratio of the posterior distribution of the candidate to that

of the previous link. The acceptance probability can also be re-written by making

use of Bayes’ theorem (16.2), as

˛.� 0=�n/ D min

�

p.� 0/P.Z=� 0/q.�n=�
0/

p.�n/P.Z=�n/q.� 0=�n/
; 1

�

(16.4)

In this form, the acceptance probability can be calculated based on known

quantites. The term p.�n/q.�
0=�n/ at the denominator represents the probability

of occurrence of a given candidate � 0; in fact, the first term is the prior probability

of the n-th link in the chain, and the second term is the probability of generating

the candidate, once the chain is at that state. The other term, L D P.Z=�n/,

is the likelihood of the current link in the chain. At the numerator, all terms

have reverse order of conditioning between the current link and the candidate.

Therefore all quantities in (16.4) are known, since p.�n/ and q.� 0=�n/ (and their

conjugates) are chosen by the analyst and the likelihood can be calculated for all

model parameters.

Acceptance probability means that the candidate is accepted in the chain in

proportion to the value of ˛.� 0=�n/. Two cases are possible:

• ˛ D 1: This means that the candidate will be accepted in the chain, since the

probability of acceptance is 100 %. The candidate becomes the next link in the

chain, �nC1 D � 0. The min operator guarantees that the probability is never

greater than 1, which would not be meaningful.
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• ˛ < 1: This means that the candidate can only be accepted in the chain with a

probability ˛. To enforce this probability of acceptance, it is sufficient to draw

a random number 0 � u � 1 and then accept or reject the candidate according

to the following criterion:

(

if ˛ � u) candidate is accepted, �nC1 D � 0

if ˛ < u) candidate is rejected, �nC1 D �n :
(16.5)

It is important to notice that if the candidate is rejected, then the chain doesn’t

move from its current location and a new link equal to the previous one is added

to the chain. This means that at each time step in the chain a new link is added,

either by repeating the last link (if the candidate is rejected) or by adding a

different link (if the candidate is accepted).

The logic of the Metropolis–Hastings algorithm can be easily understood in the

case of uniform priors and auxiliary distributions. In that case, the candidate is

accepted in proportion to just the ratio of the likelihoods, since all other terms in

(16.3) cancel out:

˛.� 0=�n/ D min

�

L .� 0/

L .�n/
; 1

�

: (16.6)

If the candidate has a higher likelihood than the current link, it is automatically

accepted. If the likelihood of the candidate is lower than the likelihood of the current

link, then it is accepted in proportion to the ratio of the likelihoods of the candidate

and of the current link. The possibility of accepting a parameter of lower likelihood

permits a sampling of the parameter space, instead of a simple search for the point

of maximum likelihood which would only result in a point estimate.

We now show that use of the Metropolis–Hastings algorithm creates a Markov

chain that has �.�n/ D P.�n=Z/ as its stationary distribution. For this purpose, we

will show that the posterior distribution of the parameters satisfies the relationship

�.�n/ D
X

j

�.�j/pjn; (16.7)

where pjn are the transition probabilities of the Markov chain and the index j runs

over all possible states.

Proof (Justification of the Metropolis–Hastings Algorithm) To prove that the

Metropolis–Hastings algorithm leads to a Markov chain with the desired

stationary distribution, consider the time-reversed chain:

original chain: X0 ! X1 ! X2 ! : : :! Xn ! : : :

time-reversed chain: X0  X1  : : :Xn  XnC1  : : : :
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The time-reversed chain is defined by the transition probability p?ij:

p?ij D P.Xn D "j=XnC1 D "i/ D
P.Xn D "j;XnC1 D "i/

P.XnC1 D "i/
D

P.XnC1 D "i=Xn D "j/P.Xn D "j/

P.XnC1 D "i/
;

leading to the following relationship with the transition probability of the

original chain:

) p?ij D
pji�.�j/

�.�i/
(16.8)

If the original chain is time-reversible, then p?ij D pij, and the time-reversed

process is also a Markov chain. In this case, the stationary distribution will

follow the relationship

�.�i/ � pij D pji � �.�j/ (16.9)

known as the equation of detailed balance. The detailed balance is the

hallmark of a time-reversible Markov chain, stating that the probability to

move forward and backwards is the same, once the stationary distribution is

reached. Therefore, if the transition probability of the Metropolis–Hastings

algorithm satisfies this equation, with �.�/ D P.�=Z/, then the chain

is time reversible, and with the desired stationary distribution. Moreover,

Theorem 15.4 can be used to prove that this distribution is unique.

The Metropolis–Hastings algorithm enforces a specific transition probabil-

ity between states �i and �j,

pij D q.�j=�i/˛.�j=�i/ if �i ¤ �j (16.10)

where q is the probability of generating the candidate (or proposal distri-

bution), and ˛ the probability of accepting it. One can also show that the

probability of remaining at the same state �i is

pii D 1 �
X

j¤i

q.�j=�i/˛.�j=�i/:

where the sum is over all possible states.
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According to the transition probability described by (16.3),

˛.�j=�i/ D min

�

p.�j/P.Z=�j/q.�i=�j/

p.�i/P.Z=�i/q.�j=�i/
; 1

�

D min

�

�.�j/q.�i=�j/

�.�i/q.�j=�i/
; 1

�

in which we have substituted �.�i/ � p.�i=Z/ D P.Z=�i/p.�i/=p.Z/ as the

posterior distribution. Notice that the probability p.Z/ cancels out, therefore

its value does not play a role in the construction of the chain.

It is clear that, if ˛.�j=�i/ < 1, then ˛.�i=�j/ D 1, thanks to the min

operation. Assume, without loss of generality, that ˛.�i; �j/ < 1:

˛.�j=�i/ D
�.�j/q.�i=�j/

�.�i/q.�j=�i/

) ˛.�j=�i/�.�i/q.�j=�i/ D �.�j/q.�i=�j/ � ˛.�i=�j/

Now, since we assumed ˛.�j=�i/ < 1, the operation of min becomes

redundant. Using (16.10) the previous equation simplifies to

pij � �.�i/ D pji � �.�j/

which shows that the Metropolis–Hastings algorithm satisfies the detailed

balance equation; it thus generates a time-reversible Markov chain, with

stationary distribution equal to the posterior distribution. ut

Example 16.1 The data from Hubble’s experiment (page 157) can be used to run a

Monte Carlo Markov chain to obtain the posterior distribution of the parameters

a and b. This fit was also performed using a maximum likelihood method (see

page 159) in which the common uncertainty in the dependent variable, log v, was

estimated according to the method described in Sect. 8.5.

Using these data, a chain is constructed using uniform priors on the two fit

parameters a and b:

8

<

:

p.a/ D 10

7
for 0:2 � b � 0.9

p.b/ D 10 for 0:15 � a � 0.25:

The proposal distributions are also uniform distributions, respectively, of fixed

width 0.1 and 0.02 for a and b, and centered at the current value of the parameters:

(

p.�nC1=an/ D 5 for an � 0:1 � �nC1 � an C 0:1
p.�nC1=bn/ D 25 for bn � 0:02 � �nC1 � bn C 0:02
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in which an and bn are, respectively, the n-th links of the chain, and �nC1 represent

the candidate for the .nC 1/-th link of the chain, for each parameter.

In practice, once the choice of a uniform distribution with fixed width is made, the

actual value of the prior and proposals distributions are not used explicitly. In fact,

the acceptance probability becomes simply a function of the ratio of the likelihoods,

or of the �2’s:

˛.� 0=�n/ D min

�

L .� 0/

L .�n/
; 1

�

D min

�

e
�2.�n/��2.� 0/

2 ; 1

�

}
where �2.�n/ and �2.� 0/ are the minimum �2’s calculated, respectively, using the

n-th link of the chain and the candidate parameters (Fig. 16.1).

A few steps of the chain are reported in Table 16.1. Where two consecutive links

in the chain are identical, it is an indication that the candidate parameter drawn at

that iteration was rejected, and the previous link was therefore repeated. Figure 16.2

shows the sample distributions of the two fit parameters from a chain with 100,000

links. A wider prior on parameter a would make it possible to explore further the

tails of the distribution.

Fig. 16.1 MCMC for parameters a, b of linear model fit to the data in Table 8.1. The chain was

run for 10,000 iterations, using uniform priors on both parameters (between 0.15 and 0.25 for a,

and 0.2 and 0.9 for b). The chain started at a D 0:90 and b D 0:25. The proposal distributions

were also uniform, with width of, respectively, 0.2 for a and 0.04 for b, centered at the current

value of the chain
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Table 16.1 Sample of MCMC chain for the Hubble data

n a b �2.�n/

1 0:90000 0:25000 3909:55420 136 0:80627 0:18064 11:47313

2 0:94116 0:24395 3563:63110 137 0:77326 0:18284 10:63887

3 0:96799 0:23951 3299:28149 138 0:77326 0:18284 10:63887

4 0:96799 0:23951 3299:28149 139 0:77326 0:18284 10:63887

5 0:96799 0:23951 3299:28149 140 0:77326 0:18284 10:63887

6 0:96799 0:23951 3299:28149 . . . . . . . . . . . . . . . . . . .

7 0:97868 0:22983 2503:21655 1141 0:42730 0:20502 8:90305

8 0:97868 0:22983 2503:21655 1142 0:42730 0:20502 8:90305

9 0:96878 0:22243 1885:28088 1143 0:42174 0:20494 8:68957

10 1:01867 0:21679 1714:54456 1144 0:42174 0:20494 8:68957

. . . . . . . . . . . . . . . . . . . 1145 0:42174 0:20494 8:68957

21 1:08576 0:19086 563:56506 1146 0:42174 0:20494 8:68957

22 1:06243 0:19165 536:47919 1147 0:42174 0:20494 8:68957

23 1:06243 0:19165 536:47919 1148 0:42174 0:20494 8:68957

24 1:06559 0:18244 254:36528 1149 0:42174 0:20494 8:68957

25 1:06559 0:18244 254:36528 1150 0:43579 0:20323 8:65683

26 1:06559 0:18244 254:36528 . . . . . . . . . . . . . . . . . . .

27 1:06559 0:18244 254:36528 9991 0:66217 0:19189 12:43171

28 1:06559 0:18244 254:36528 9992 0:62210 0:19118 8:52254

29 1:04862 0:17702 118:84048 9993 0:62210 0:19118 8:52254

30 1:04862 0:17702 118:84048 9994 0:62210 0:19118 8:52254

. . . . . . . . . . . . . . . . . . . 9995 0:62210 0:19118 8:52254

131 0:84436 0:17885 13:11242 9996 0:62210 0:19118 8:52254

132 0:84436 0:17885 13:11242 9997 0:62210 0:19118 8:52254

133 0:84436 0:17885 13:11242 9998 0:62210 0:19118 8:52254

134 0:80627 0:18064 11:47313 9999 0:64059 0:18879 11:11325

135 0:80627 0:18064 11:47313 10;000 0:64059 0:18879 11:11325

Fig. 16.2 Sample distribution function for parameters a and b, constructed using a histogram plot

of 100,000 samples of a MCMC ran with the same parameters as Fig. 16.1
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16.4 The Gibbs Sampler

The Gibbs sampler is another algorithm that creates a Markov chain having as

stationary distribution the posterior distribution of the parameters. This algorithm

is based on the availability of the full conditional distribution, defined as

�i.�i/ D �.�ij�j; j ¤ i/ (16.11)

The full conditional distribution is the (posterior) distribution of a given parameter,

given that the values of all other parameters are known. If the full conditional

distributions are known and can be sampled from, then a simple algorithm can be

implemented:

1. Start the chain at a given value of the parameters, �0 D .�10 ; : : : ; �m
0 /.

2. Obtain a new value in the chain through successive generations:

�11 drawn from �.�1j�20 ; �30 ; : : :/

�21 drawn from �.�2j�11 ; �30 ; : : :/
: : :

�m
1 drawn from �.�mj�11 ; �21 ; : : : ; �m�1

1 /

3. Iterate until convergence to stationary distribution is reached.

The justification of this method can be found in [15]. In the case of data fitting

with a dataset Z and a model with m adjustable parameters, usually it is not possible

to know the full conditional distributions, thus this method is not as common as

the Metropolis–Hastings algorithm. The great advantage of the Gibbs sampler is the

fact that the acceptance is 100 %, since there is no rejection of candidates for the

Markov chain, unlike the case of the Metropolis–Hastings algorithm.

Example 16.2 This example reproduces an application presented by Carlin et al.

[8], and illustrates a possible application in which the knowledge of the full

conditional distribution results in the possibility of implementing a Gibbs sampler.

Consider the case in which a Poisson dataset of n numbers, yi, i D 1; : : : ; n, is fit

to a step-function model:

(

y D � if i �m

y D � if i >m
(16.12)

The model therefore has three parameters, the values �, �, and the point of

discontinuity, m. This situation could be a set of measurements of a quantity that

may suddenly change its value at an unknown time, say the voltage in a given portion

of an electric circuit after a switch has been opened or closed.
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Assume that the priors on the parameters are, respectively, a gamma distributions

for � and �, p.�/ D G.˛; ˇ/ and p.�/ D G.; ı/, and a uniform distribution for

m, p.m/ D 1=n (see Sect. 7.2 for definition of the gamma distribution). According

to Bayes’ theorem, the posterior distribution is proportional to the product of the

likelihood and the priors:

�.�; �;m/ / P.y1; : : : ; yn=�; �;m/ � p.�/p.�/p.m/: (16.13)

The posterior is therefore given by

�.�; �;m/ /
m
Y

iD1
e���yi

n
Y

iDmC1
e���yi � �˛�1e�ˇ� � ��1e�ı� � 1

n

) �.�; �;m/ / �.˛C
Pm

iD1 yi�1/e�.ˇCm/� � �.C
Pn

iDmC1 yi�1/e�.ıCn�m/�:

The equation above indicates that the conditional posteriors, obtained by fixing all

parameters except one, are given by

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��.�/ D G

�

˛ C
m
P

iD1
yi; ˇ C m

�

��.�/ D G

�

 C
n
P

iDmC1
yi; ı C n � m

�

�m.m/ D
�.˛C

Pm
iD1 yi�1/e�.ˇCm/� � �.CPn

iDmC1 yi�1/e�.ıCn�m/�

Pn
iD1

�

�.˛CPm
iD1 yi�1/e�.ˇCm/� � �.C

Pn
iDmC1 yi�1/e�.ıCn�m/�

� :

(16.14)

This is therefore an example of a case where the conditional posterior distributions

are known, and therefore the Gibbs algorithm is applicable. The only complication

is the simulation of the three conditional distributions, which can be achieved using

the methods described in Sect. 4.8. }

16.5 Tests of Convergence

It is necessary to test that the MCMC has reached convergence to the stationary

distribution before inference on the posterior distribution can be made. Convergence

indicates that the chain has started to sample the posterior distribution, so that the

MCMC samples are representative of the distribution of interest, and are not biased

by such choices as the starting point of the chain. The period of time required for

the chain to reach convergence goes under the name of burn-in period, and varies

from chain to chain according to a variety of factors, such as the choice of prior and

proposal distributions. We therefore must identify and remove such initial period
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from the chain prior to further analysis. The Geweke z-score test and the Gelman-

Rubin test are two of the most common tests used to identify the burn-in period.

Another important consideration is that the chain must be run for a sufficient

number of iterations, so that the sample distribution becomes a good approximation

of the true posterior distribution. It is clear that the larger the number of iterations

after the burn-in period, the more accurate will be the estimates of the parameters of

the posterior distribution. In practice it is convenient to know the minimum stopping

time that enables to estimate the posterior distribution with the required precision.

The Raftery-Lewis test is designed to give an approximate estimate of both the burn-

in time and the minimum required stopping time.

Typical considerations concerning the burn-in period and the stopping time of

a chain can be illustrated with the example of three chains based on the data from

Table 10.1. The chains were run, respectively, with a uniform proposal distribution

of 1, 10, and 100 for both parameters of the linear model, starting at the same point

(Figs. 16.3, 16.4 and 16.5). The chain with a narrower proposal distribution requires

a longer time to reach the stationary value of the parameters, in part because at

each time interval the candidate can be chosen in just a limited neighborhood of the

Fig. 16.3 MCMC for parameters a, b of linear model fit to the data in Table 10.1, using a uniform

proposal distribution with width of 1 for both parameters. The chain started at a D 12 and b D 6.

In grey is the sample distribution obtained by removing the initial 2000 iterations, the ones that are

most affected by the arbitrary choice of starting point
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Fig. 16.4 MCMC for parameters a, b of linear model fit to the data in Table 10.1, using a uniform

proposal distribution with width of 10 for both parameters. The chain started at same values as in

Fig. 16.3

previous link. Moreover, the sampling of parameter space is less uniform because

the chain requires longer time to span the entire parameter range. The intermediate

value for the proposal distribution results in an almost immediate convergence, and

the sampling of parameter space is clearly more uniform. An increase in the size

of the proposal distribution, however, may eventually lead to slow convergence and

poor sampling, as indicated by the chain with the largest value of the proposal width.

In this case, candidates are drawn from regions of parameter space that have very

low likelihood, or large �2, and therefore the chain has a tendency to remain at the

same location for extended periods of time, with low acceptance rate. The result

is a chain with poor coverage of parameter space and poorly determined sample

distribution for their parameters. A smoother distribution is preferable, because it

leads to a more accurate determination of the median, and of confidence ranges on

the parameters.

Another consideration is that elements in the chain are more or less correlated

to one another, according to the choice of the proposal distribution, and other

choices in the construction of the chain. Links in the chains are always correlated

by construction, since the next link in the chain typically depends on the current

state of the chain. In principle a Markov chain can be constructed that does not
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Fig. 16.5 MCMC for parameters a, b of linear model fit to the data in Table 10.1, using a uniform

proposal distribution with width of 50 for both parameters. The chain started at same values as in

Fig. 16.3

depend on the current state of the chain, but in most cases it is convenient to make

full use of the Markovian property that allows to make use of the current state of

the chain. The chains in Figs. 16.3, 16.4 and 16.5 illustrate the fact that the degree

of correlation varies with the proposal distribution choice. For example, the chain

with the narrowest proposal distribution appears more correlated than that with the

intermediate choice for the width; also, the chain with the largest width appears to

have periods with the highest degree of correlation, when the chain does not move

for hundreds of iterations. This shows that the degree of correlation is a nonlinear

function of the proposal distribution width, and that fine-tuning is always required

to obtain a chain with good mixing properties. The degree of correlation among

elements of the chain will become important when we desire to estimate the variance

of the mean from a specific segment of the chain, since the formulas derived earlier

in Chap. 4 apply only to independent samples.

Testing for convergence and stopping time of the chain are critical tasks for

a Monte Carlo Markov chain. The tests discussed below are some of the more

common analytic tools and can be implemented with relative ease.
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16.5.1 The Geweke Z Score Test

A simple test of convergence is provided by the difference of the mean of two

segments of the chain. Under the null hypothesis that the chain is sampling the

same distribution during both segments, the sample means are expected to be drawn

from the same parent mean. Consider segment A at the beginning of the chain, and

segment B at the end of the chain; for simplicity, consider one parameter at a time.

If the chain is of length N, the prescription is to use an initial segment of NA D 0:1N

elements, and a final segment with NB D 0:5N links, although those choices are

somewhat arbitrary, and segments of different length can also be used.

The mean of each parameter in the two segments A and B is calculated as

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

 A D
1

NA

NA
P

jD1
 j

 B D
1

NB

N
P

jDN�NBC1
 j:

(16.15)

To compare the two sample means, it is also necessary to estimate their sample

variances �2
 A

and �2
 B

. This task is complicated significantly by the fact that one

cannot just use (2.11), because of the correlation between links of the chain. One

possibility to overcome this difficulty is to thin the chain by using only every n-th

iteration, so that the thinned chain better approximates independent samples.

The test statistic is the Z score of the difference between the means of the two

segments:

ZG D
 B �  A

q

�2
 A
C �2

 B

: (16.16)

Under the assumption that the two means follow the same distribution and that they

are uncorrelated, the Z-score is distributed as a standard Gaussian, ZG � N.0; 1/.

For this reason the two segments of the chain are typically separated by a large

number of iterations. An application of the Geweke Z score is to step the start of

segment A forward in time, until the ZG scores don’t exceed approximately ˙3,

which correspond to a ˙3� deviation in the means of the two segments. The burn-

in period that needs to be excised is that before the Z scores stabilize around the

expected values. An example of the use of this test statistic is provided in Fig. 16.6,

in which ZG was calculated from the chain with proposal width 10. An initial

segment of length 20 % of the total chain length is compared to the final 40 % of

the chain, by stepping the beginning of the initial segment until it overlaps with

the final segment. By using all links in the chain to estimate the variance of the
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Fig. 16.6 Geweke Z scores with segment A and segment B, respectively, 20 and 40 % of the total

chain length. The results correspond to the chain run with a proposal width of 10. The Z scores are

calculated by using only every other 10-th iteration

mean, the variance would be underestimated because of the correlation among links,

leading to erroneously large values of ZG. If the chain is thinned by a factor of 10,

then the estimate of the variance using (2.11) is more accurate, and the resulting Z

scores show that the chains converge nearly immediately, as is also clear by a visual

inspection of the chain from Fig. 16.4.

The effect of the starting point in the evaluation of the burn-in period is shown in

Fig. 16.3, in which it is apparent that it takes about 2000 iterations for the chain to

forget the initial position, and to start sampling the posterior distribution, centered

at the dashed lines. A larger proposal distribution, as in Fig. 16.4, makes it easier

to reach the posterior distribution more rapidly, to the point that no burn-in period

is visible in this case. In the presence of a burn-in period, the sample distribution

must be constructed by excising the initial portion of the chain, as shown in the grey

histogram plot of Fig. 16.3.

16.5.2 The Gelman–Rubin Test

The Gelman–Rubin test investigates the effect of initial conditions on the conver-

gence properties of the MCMC and makes use of m parallel chains starting from

different initial points. Initially, the m chain will be far apart because of the different

starting points. As the chains start sampling the stationary distribution, they will

have the same statistical properties.
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The test is based on two estimates of the variance, or variability, of the chains: the

within-chain variance for each of the m chains W, and the between-chain variance B.

At the beginning of the chain, W will underestimate the true variance of the model

parameters, because the chains have not had time to sample all possible values. On

the other hand, B will initially overestimate the variance, because of the different

starting points. The test devised by Gelman and Rubin [17] defines the ratio of

the within-to-between variance as a test to measure convergence of the chains, to

identify an initial burn-in period that should be removed because of the lingering

effect of initial conditions.

For each parameter, consider m chains of N iterations each, where N i is the mean

of each chain i D 1; : : : ;m and N the mean of the means:

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

N i D
1

N

N
P

jD1
 j

N D 1

m

m
P

iD1
N i:

(16.17)

The between-chain variance B is defined as the average of the variances of the m

chains,

B D N

m � 1

m
X

iD1
. N i � N /2 (16.18)

Notice that, in (16.18), B=N is the variance of the means N i. The within-chain

variance W is defined by

s2i D
1

N � 1

N
X

jD1
. j � N i/

2

W D 1
m

m
X

iD1
s2i :

(16.19)

The quantity O�2 , defined as

O�2 D
�

N � 1
N

�

W C 1

N
B (16.20)

is intended to be an unbiased estimator of the variance of the parameter under the

hypothesis that the stationary distribution is being sampled. At the beginning of a

chain—before the stationary distribution is reached— O�2 overestimates the variance,

because of the different initial starting points. It was suggested by Brooks and

Gelman [6] to add an additional term to this estimate of the variance, to account
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for the variability in the estimate of the means, so that the estimate of the within-

chain variance to use becomes

OV D O�2 C
B

mN
: (16.21)

Convergence can be monitored by use of the following statistic:

p

OR �

s

OV
W
; (16.22)

which should converge to 1 when the stationary distribution in all chains has been

reached. A common use of this statistic is to repeat the calculation of the Gelman–

Rubin statistic after excising an increasingly longer initial portion of the chain, until

approximately

p

OR � 1:2: (16.23)

A procedure to test for convergence of the chain using the Gelman–Rubin

statistic is to divide the chain into segments of length b, such that the N iterations

are divided into N=b batches. For each segment starting at iteration i D k � b; k D
0; : : : ;N=b � 1, we can calculate the value OR and claim convergence of the chains

when (16.23) is satisfied. Figure 16.7 shows results of this test run on m D 2 chains

Fig. 16.7 Gelman–Rubin statistic OR calculated from m D 2 chains with the same distributions as

in Fig. 16.3, one starting at a D 12, b D 6, and the other at a D 300 and b D 300. The chain

rapidly converges to its stationary distribution, and appears to forget about the starting point after

approximately 500 iterations. The values of OR were calculated in segments of length b D 200,

starting at iteration i D 0
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Fig. 16.8 Plot of the average of the parameters a and b for the two chains used in Fig. 16.7 (top

lines are for parameter a, bottom lines for b). For both parameters, the two chains sample the same

posterior distribution after approximately 500 iterations

based on the data of Table 10.1, starting at different values: one chain starting at

a value that is close to the posterior mean of the parameters, and one starting at

values that were intentionally chosen to be much larger than the parent values. After

approximately 500 or so iterations, the within-chain and between-chain estimates of

the variance become comparable, and the value of OR approaches the value of one.

Another related tool that aids in assessing convergence is the plot of the mean

of the parameters, shown in Fig. 16.8: it takes approximately 500 iterations for the

chain starting with high initial values, to begin sampling the stationary distribution.

It is clear that, from that point on, both chains hover around similar values of the

parameters. One should also check that, individually, both OV and W also stabilize to

a common value as function of starting point of the batch, and not just their ratio OR.

In fact, under the hypothesis of convergence, both within-chain and between-chain

variances should converge to a common value.

Similar procedures to monitor convergence using the Gelman–Rubin may instead

use batches of increasing length, starting from one of length b, and increasing to 2b,

etc., optionally discarding the first half of each batch. Moreover, thinning can be

implemented when calculating means, to reduce the effect of correlation among the

samples. In all cases, the goal is to show that eventually the value of OR stabilizes

around unity.

16.5.3 The Raftery–Lewis Test

An ideal test for the convergence of MCMCs is one that determines the length of the

burn-in period, and how long should the chain be run to achieve a given precision in
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the estimate of the model parameters. The Raftery–Lewis test provides estimates of

both quantities, based on just a short test run of the chain. The test was developed by

Raftery and Lewis [37], and it uses the comparison of the short sample chain with an

uncorrelated chain to make inferences on the convergence properties of the chain.

In this section we describe the application of the test and refer the reader interested

in its justification to [37].

The starting point to use the Raftery–Lewis test is to determine what inferences

we want to make from the Markov chain. Typically we want to estimate confidence

intervals at a given significance for each parameter, which means we need to

estimate two values �min and �max for each parameter � such that their interval

contains a probability 1�q (e.g., respectively, q D 0:32, 0.10 or 0.01 for confidence

level 68, 90 or 99 %),

1 � q D
Z �max

�min

�.�/d�:

Consider, for example, the case of a 90 % confidence interval: the two parameter

values �min and �max are respectively the q D 0:95 and the q D 0:05 quantiles, so

that the interval .�min; �max/ will contain 90 % of the posterior probability for that

parameter.

One can think of each quantile as a statistic, meaning that we can only

approximately estimate their values O�min and O�max. The Raftery–Lewis test lets us

estimate any quantile O�q such that it satisfies P.� � O�q/ D 1 � q to within ˙r, with

probability s (say 95 % probability, s D 0:95). We have therefore introduced two

additional probabilities, r and s, which should not be confused with the quantile q.

Consider, for example, that the requirement is to estimate the q D 0:05 quantile,

with a precision of r D 0:01 and a probability of achieving this precision of

s D 0:95. This corresponds to accepting that the 90 % confidence interval resulting

from such estimate of the q D 0:05 quantile (and of the q D 0:95 as well) may in

reality be a 88 % or a 92 % confidence interval, 95 % of the time.

The Raftery–Lewis test uses the information provided by the sample chain,

together with the desired quantile q and the tolerances r and s, and returns the

number of burn-in iterations, and the required number of iterations N. A justification

for this test can be found in [37], and the test can be simply run using widely

available software such as the gibbsit code or the the CODA software [28, 34]. Note

that the required number of iterations are a function of the quantile to be estimated,

with estimation of smaller quantiles typically requiring longer iterations.
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Summary of Key Concepts for this Chapter

� Monte Carlo Markov chain (MCMC): A numerical method to implement

a Markov chain, with the goal of estimating the posterior distribution of

model parameters via

P.�=Z/ / P.�/L:

� Metropolis–Hastings algorithm: A commonly used method to draw and

accept or reject candidates for the MCMC. It is based on an acceptance

probability that simplifies to a ratio of likelihoods,

˛.�
0

=�n/ D min

(

L.�
0

/

L.�n/
; 1

)

when the priors and proposal distributions are uniform.

� The Gibbs Sampler: An alternative algorithm to create an MCMC that

makes use of the full conditional distribution of each parameter.

� Convergence tests: Tests to ensure that the MCMC is sampling the

intended posterior distribution. They typically require to excise a burn-in

time when the MCMC has not yet reached the stationary distribution.

� Geweke z-score test: A simple test of convergence that makes use of z-

scores of two segments of the chain.

� Gelman–Rubin test: A convergence test that requires multiple parallel

chains and makes use of between-chain and within-chain variances.

� Raftery–Lewis test: A convergence test that compares a sample of the

MCMC to an uncorrelated chain to determine burn-in time and required

length of the chain.

Problems

16.1 Prove that, in the presence of positive correlation among MCMC samples, the

variance of the sample mean is larger than that of an independent chain.

16.2 Using the data of log m and velocity from Table 8.1 of Hubble’s experiment,

construct a Monte Carlo Markov chain for the fit to a linear model with 10,000

iterations. Use uniform distributions for the prior and proposal distributions of the

two model parameters a and b, the latter with widths of 0.1 and 0.02, respectively,

for a and b in the neighborhood of the current value. You can start your chain at

values of a D 0:2 and b D 0:9. After completion of the chain, plot the sample

distribution of the two model parameters.
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16.3 A one-parameter chain is constructed such that in two intervals A and B the

following values are accepted into the chain:

A W 10; 11; 13; 11; 10
B W 7; 8; 1; 11; 10; 8I

where A is an initial interval, and B an interval at the end of the chain. Not knowing

how the chain was constructed, use the Geweke z score to determine whether the

chain might have converged.

16.4 Using the data of Table 10.1, construct a Monte Carlo Markov chain for the

parameters of the linear model, with 10,000 iterations. Use uniform distributions for

the prior and proposal distributions, the latter with a width of 10 for both parameters.

Start the chain at a D 12 and b D 6. After completion of the chain, plot the sample

distribution of the two model parameters.

16.5 Consider the following portions of two one-parameter chains, run in parallel

and starting from different initial positions:

7; 8; 1; 11; 10; 8

11; 11; 8; 10; 9; 12:

Using two segments of length b D 3, calculate the Gelman–Rubin statistic
p

OR for

both segments under the hypothesis of uncorrelated samples.

16.6 Consider the step-function model described in Example 16.2, and a dataset

consisting of n measurements. Assuming that the priors on the parameters �, � and

m are uniform, show that the full conditional distributions are given by

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

��.�/ D G

�

m
P

iD1
yi C 1;m

�

��.�/ D G

�

n
P

iDmC1
yi C 1; n� m

�

�m.m/ D
e�m��

Pm
iD1 yi e�.n�m/��

Pn
iDmC1 yi

Pn
lD1 e�l��

Pl
iD1 yi e�.n�l/��

Pn
iDlC1 yi

;

(16.24)

where G represents the gamma distribution.

16.7 Consider the step-function model described in Example 16.2, and a dataset

consisting of the following five measurements:

0; 1; 3; 4; 2:

Start a Metropolis–Hastings MCMC at � D 0, � D 2 and m D 1, and use uniform

priors on all three parameters. Assume for simplicity that all parameters can only
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be integer, and use uniform proposal distributions that span the ranges 
� D ˙2,


� D ˙2 and 
m D ˙2, and that the following numbers are drawn in the first

three iterations:

Iteration 
� 
� 
m ˛

1 C1 �1 C1 0:5

2 C1 C2 C1 0:7

3 �1 �2 C1 0:1

With this information, calculate the first four links of the Metropolis–Hastings

MCMC.

16.8 Consider a Monte Carlo Markov chain constructed with a Metropolis–

Hastings algorithm, using uniform prior and proposal distribution. At a given

iteration, the chain is at the point of maximum likelihood or, equivalently, minimum

�2. Calculate the probability of acceptance of a candidate that has, respectively,


�2 D 1, 2, and 10.



Appendix: Numerical Tables

A.1 The Gaussian Distribution and the Error Function

The Gaussian distribution (3.11) is defined as

f .x/ D 1p
2��2

e
� .x��/2

2�2 : (A.1)

The maximum value is obtained at x D �, and the value of x where the Gaussian is

a times the peak value is given by

z � x � �
�
D
p
�2 ln a: (A.2)

Figure A.1 shows a standard Gaussian normalized to its peak value, and values of a

times the peak value are tabulated in Table A.1. The Half Width at Half Maximum

(HWHM) has a value of approximately 1.18� .

The error function is defined in (3.13) as

erf z D 1p
�

Z z

�z

e�x2dx (A.3)

and it is related to the integral of the Gaussian distribution defined in (3.12),

A.z/ D
Z �Cz�

��z�

f .x/dx D 1p
2�

Z z

�z

e
� x2

2 dx: (A.4)

The relationship between the two integrals is given by

erf
�

z=
p
2
�

D A.z/: (A.5)
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Fig. A.1 Normalized values of the probability distribution function of a standard Gaussian (� D 0

and � D 1)

Table A.1 Values of a times the peak value for a Gaussian distribution

a z a z a z a z a z

0:980 0:201 0:960 0:286 0:940 0:352 0:920 0:408 0:900 0:459

0:880 0:506 0:860 0:549 0:840 0:591 0:820 0:630 0:800 0:668

0:780 0:705 0:760 0:741 0:740 0:776 0:720 0:811 0:700 0:845

0:680 0:878 0:660 0:912 0:640 0:945 0:620 0:978 0:600 1:011

0:580 1:044 0:560 1:077 0:540 1:110 0:520 1:144 0:500 1:177

0:480 1:212 0:460 1:246 0:440 1:281 0:420 1:317 0:400 1:354

0:380 1:391 0:360 1:429 0:340 1:469 0:320 1:510 0:300 1:552

0:280 1:596 0:260 1:641 0:240 1:689 0:220 1:740 0:200 1:794

0:180 1:852 0:160 1:914 0:140 1:983 0:120 2:059 0:100 2:146

0:080 2:248 0:060 2:372 0:040 2:537 0:020 2:797 0:010 3:035

The function A.z/ describes the integrated probability of a Gaussian distribution

to have values between � � z� and �C z� . The number z therefore represents the

number of � by which the interval extends in each direction. The function A.z/ is

tabulated in Table A.2, where each number in the table corresponds to a number z

given by the number in the left column (e.g., 0.0, 0.1, etc.), and for which the second

decimal digit is given by the number in the top column (e.g., the value of 0.007979

corresponds to z D 0:01).

The cumulative distribution of a standard Gaussian function was defined in (3.14)

as

B.z/ D
Z z

�1

1p
2�

e
� t2

2 dtI (A.6)
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and it is therefore related to the integral A.z/ by

B.z/ D 1

2
C A.z/

2
: (A.7)

The values of B.z/ are tabulated in Table A.3. Each number in the table corresponds

to a number z given by the number in the left column (e.g., 0.0, 0.1, etc.), and for

which the second decimal digit is given by the number in the top column (e.g., the

value of 0.503990 corresponds to z D 0:01).

Critical values of the standard Gaussian distribution functions corresponding to

selected values of the integrals A.z/ and B.z/ are shown in Table A.4. They indicate

the value of the variable z required to include a given probability, and are useful for

either two-sided or one-sided rejection regions in hypothesis testing.

A.2 Upper and Lower Limits for a Poisson Distribution

The Gehrels approximation described in [16] can be used to calculate upper

and lower limits for a Poisson distribution, when nobs counts are recorded. The

confidence level is described by the parameter S, corresponding to the number of

standard deviations � for a Gaussian distribution; for example, S D 1 corresponds

to an 84.1 % confidence level, S D 2 to a 97.7 %, and S D 3 corresponds to 99.9 %;

see Table 5.2 for correspondence between values of S and probability. The upper

and lower limits are described, in the simplest approximation, by

8

ˆ

ˆ

<

ˆ

ˆ

:

�up D nobs C
S2 C 3
4
C S

r

nobs C
3

4

�lo D nobs

�

1 � 1

9nobs

� S

3
p

nobs

�3 (A.8)

and more accurate approximations are provided in [16] (Tables A.5 and A.6).

A.3 The �2 Distribution

The probability distribution function for a �2 variable is defined in (7.11) as

f�2.z/ D
�

1

2

�f=2
1

� . f=2/
e

� z
2 z

f

2
�1
;
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Table A.4 Table of critical

values of the standard

Gaussian distribution to

include a given probability,

for two-sided confidence

intervals (-z, z/ of the integral

A.z/, and for one-sided

intervals (-1, z/ of the

integral B.z/

Probability Two-sided z One-sided z

0:01 0:013 �2:326
0:05 0:063 �1:645
0:10 0:126 �1:282
0:20 0:253 �0:842
0:30 0:385 �0:524
0:40 0:524 �0:253
0:50 0:674 �0:000
0:60 0:842 0:253

0:70 1:036 0:524

0:80 1:282 0:842

0:90 1:645 1:282

0:95 1:960 1:645

0:99 2:576 2:326

0:999 3:290 3:090

0:9999 3:890 3:718

Table A.5 Selected upper

limits for a Poisson variable

using the Gehrels

approximation

Upper limits

Poisson parameter S or confidence level

S = 1 S = 2 S = 3

nobs (1-� , or 84.1 %) (2-� , or 97.7 %) (3-� , or 99.9 %)

0 1:87 3:48 5:60

1 3:32 5:40 7:97

2 4:66 7:07 9:97

3 5:94 8:62 11:81

4 7:18 10:11 13:54

5 8:40 11:55 15:19

6 9:60 12:95 16:79

7 10:78 14:32 18:35

8 11:96 15:67 19:87

9 13:12 16:99 21:37

10 14:28 18:31 22:84

20 25:56 30:86 36:67

30 36:55 42:84 49:64

40 47:38 54:52 62:15

50 58:12 66:00 74:37

60 68:79 77:34 86:38

70 79:41 88:57 98:23

80 89:99 99:72 109:96

90 100:53 110:80 121:58

100 111:04 121:82 133:11
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Table A.6 Selected lower

limits for a Poisson variable

using the Gehrels

approximation

Lower limits

Poisson parameter S or confidence level

S = 1 S = 2 S = 3

nobs (1-� , or 84.1 %) (2-� , or 97.7 %) (3-� , or 99.9 %)

1 0:17 0:01 0:00

2 0:71 0:21 0:03

3 1:37 0:58 0:17

4 2:09 1:04 0:42

5 2:85 1:57 0:75

6 3:63 2:14 1:13

7 4:42 2:75 1:56

8 5:24 3:38 2:02

9 6:06 4:04 2:52

10 6:90 4:71 3:04

20 15:57 12:08 9:16

30 24:56 20:07 16:16

40 33:70 28:37 23:63

50 42:96 36:88 31:40

60 52:28 45:53 39:38

70 61:66 54:28 47:52

80 71:08 63:13 55:79

90 80:53 72:04 64:17

100 90:02 81:01 72:63

where f is the number of degrees of freedom. The critical value or p-quantile of the

distribution is given by

P�2.z � �2crit/ D
Z �2crit

0

f�2.z/dz D p (A.9)

or, equivalently,

P�2.z � �2crit/ D
Z 1

�2crit

f�2.z/dz D 1 � p: (A.10)

The critical value is a function of the number of degrees of freedom f and the level

of probability p. Normally p is intended as a large number, such as 0.68, 0.90, or

0.99, meaning that there is just a 32, 10, or 1 % probability to have values higher

than the critical value �2crit.

As described in Sect. 7.2, the �2 distribution has the following mean and

variance:

�

� D f

�2 D 2f :
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It is convenient to tabulate the value of reduced �2, or �2crit=f , that corresponds to

a given probability level, as function of the number of degrees of freedom. Selected

critical values of the �2 distribution are reported in Table A.7. When using this table,

remember to multiply the tabulated reduced �2 by the number of defrees of freedom

f to obtain the value of �2.

If Z is a �2-distributed variable with f degrees of freedoms,

lim
f !1

Z � fp
2f
D N.0; 1/: (A.11)

In fact, a �2 variable is obtained as the sum of independent distributions (Sect. 7.2),

to which the central theorem limit applies (Sect. 4.3). For a large number of degrees

of freedom, the standard Gaussian distribution can be used to supplement Table A.7

according to (A.11). For example, for p D 0:99, the one-sided critical value of the

standard Gaussian is approximately 2.326, according to Table A.4. Using this value

into (A.11) for f = 200 would give a critical value for the �2 distribution of 1.2326

(compare to 1.247 from Table A.7). The values of f D 1 in Table A.7 is obtained

using the Gaussian approximation, according to (A.11).

A.4 The F Distribution

The F distribution with f1, f2 degrees of freedom is defined in (7.22) as

fF.z/ D
�

�

f1 C f2

2

�

�

�

f1

2

�

�

�

f2

2

�

�

f1

f2

�

f1
2 z

f1
2

�1

�

1C z
f1

f2

�

f1Cf2
2

:

The critical value Fcrit that includes a probability p is given by

P.z � Fcrit/ D
Z 1

Fcrit

fF.z/dz D 1 � p; (A.12)

and it is a function of the degrees of freedom f1 and f2. In Table A.8 are reported

the critical values for various probability levels p, for a fixed value f1 = 1, and as

function of f2. Tables A.9, A.10, A.11, A.12, A.13, A.14, and A.15 have the critical

values as function of both f1 and f2.

Asymptotic values when f1 and f2 approach infinity can be found using (7.25),

reported here for convenience:

8

<

:

lim
f2!1

fF.z; f1; f2/ D f�2.x; f1/ where x D f1z

lim
f1!1

fF.z; f1; f2/ D f�2.x; f2/ where x D f2=z:
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Table A.8 Critical values of F statistics for f1 D 1 degrees of freedom

Probability p to have a value of F below the critical value

f2 0:50 0:60 0:70 0:80 0:90 0:95 0:99

1 1:000 1:894 3:852 9:472 39:863 161:448 4052:182

2 0:667 1:125 1:922 3:556 8:526 18:513 98:503

3 0:585 0:957 1:562 2:682 5:538 10:128 34:116

4 0:549 0:885 1:415 2:351 4:545 7:709 21:198

5 0:528 0:846 1:336 2:178 4:060 6:608 16:258

6 0:515 0:820 1:286 2:073 3:776 5:987 13:745

7 0:506 0:803 1:253 2:002 3:589 5:591 12:246

8 0:499 0:790 1:228 1:951 3:458 5:318 11:259

9 0:494 0:780 1:209 1:913 3:360 5:117 10:561

10 0:490 0:773 1:195 1:883 3:285 4:965 10:044

20 0:472 0:740 1:132 1:757 2:975 4:351 8:096

30 0:466 0:729 1:112 1:717 2:881 4:171 7:562

40 0:463 0:724 1:103 1:698 2:835 4:085 7:314

50 0:462 0:721 1:097 1:687 2:809 4:034 7:171

60 0:461 0:719 1:093 1:679 2:791 4:001 7:077

70 0:460 0:717 1:090 1:674 2:779 3:978 7:011

80 0:459 0:716 1:088 1:670 2:769 3:960 6:963

90 0:459 0:715 1:087 1:667 2:762 3:947 6:925

100 0:458 0:714 1:085 1:664 2:756 3:936 6:895

200 0:457 0:711 1:080 1:653 2:731 3:888 6:763

1 0:455 0:708 1:074 1:642 2:706 3:842 6:635

For example, the critical values of the F distribution for f1 = 1 and in the limit of

large f2 are obtained from the first row of Table A.7.

A.5 The Student’s t Distribution

The Student t distribution is given by (7.34),

fT.t/ D
1p
f�

� .. f C 1/=2/
� . f=2/

�
�

1C t2

f

�� 1
2
. f C1/

;

where f is the number of degrees of freedom. The probability p that the absolute

value of a t variable exceeds a critical value Tcrit is given by

P.jtj � Tcrit/ D P.jNx � �j � Tcrit � s=
p

n/ D
Z Tcrit

�Tcrit

fT.t/dt D 1 � p: (A.13)



286 Appendix: Numerical Tables

Table A.9 Critical values of F statistic that include p D 0:50 probability

f1

f2 2 4 6 8 10 20 40 60 80 100

1 1:500 1:823 1:942 2:004 2:042 2:119 2:158 2:172 2:178 2:182

2 1:000 1:207 1:282 1:321 1:345 1:393 1:418 1:426 1:430 1:433

3 0:881 1:063 1:129 1:163 1:183 1:225 1:246 1:254 1:257 1:259

4 0:828 1:000 1:062 1:093 1:113 1:152 1:172 1:178 1:182 1:184

5 0:799 0:965 1:024 1:055 1:073 1:111 1:130 1:136 1:139 1:141

6 0:780 0:942 1:000 1:030 1:048 1:084 1:103 1:109 1:113 1:114

7 0:767 0:926 0:983 1:013 1:030 1:066 1:085 1:091 1:094 1:096

8 0:757 0:915 0:971 1:000 1:017 1:053 1:071 1:077 1:080 1:082

9 0:749 0:906 0:962 0:990 1:008 1:043 1:061 1:067 1:070 1:072

10 0:743 0:899 0:954 0:983 1:000 1:035 1:053 1:059 1:062 1:063

20 0:718 0:868 0:922 0:950 0:966 1:000 1:017 1:023 1:026 1:027

30 0:709 0:858 0:912 0:939 0:955 0:989 1:006 1:011 1:014 1:016

40 0:705 0:854 0:907 0:934 0:950 0:983 1:000 1:006 1:008 1:010

50 0:703 0:851 0:903 0:930 0:947 0:980 0:997 1:002 1:005 1:007

60 0:701 0:849 0:901 0:928 0:945 0:978 0:994 1:000 1:003 1:004

70 0:700 0:847 0:900 0:927 0:943 0:976 0:993 0:998 1:001 1:003

80 0:699 0:846 0:899 0:926 0:942 0:975 0:992 0:997 1:000 1:002

90 0:699 0:845 0:898 0:925 0:941 0:974 0:991 0:996 0:999 1:001

100 0:698 0:845 0:897 0:924 0:940 0:973 0:990 0:996 0:998 1:000

200 0:696 0:842 0:894 0:921 0:937 0:970 0:987 0:992 0:995 0:997

1 0:693 0:839 0:891 0:918 0:934 0:967 0:983 0:989 0:992 0:993

These two-sided critical values are tabulated in Tables A.16, A.17, A.18, A.19, A.20,

A.21, and A.22 for selected values of f , as function of the critical value Tcrit. In these

tables, the left column indicates the value of Tcrit to the first decimal digit, and the

values on the top column are the second decimal digit.

Table A.23 provides a comparison of the probability p for five critical values,

Tcrit D 1 through 5, as function of f : The case of f D 1 corresponds to a standard

Gaussian.

A.6 The Linear Correlation Coefficient r

The linear correlation coefficient is defined as

r2 D .N
P

xiyi �
P

xi

P

yi/
2

�

N
P

x2i � .
P

xi/
2
� �

N
P

y2i � .
P

yi/
2
� (A.14)
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Table A.10 Critical values of F statistic that include p D 0:60 probability

f1

f2 2 4 6 8 10 20 40 60 80 100

1 2:625 3:093 3:266 3:355 3:410 3:522 3:579 3:598 3:608 3:613

2 1:500 1:718 1:796 1:835 1:859 1:908 1:933 1:941 1:945 1:948

3 1:263 1:432 1:489 1:518 1:535 1:570 1:588 1:593 1:596 1:598

4 1:162 1:310 1:359 1:383 1:397 1:425 1:439 1:444 1:446 1:448

5 1:107 1:243 1:287 1:308 1:320 1:345 1:356 1:360 1:362 1:363

6 1:072 1:200 1:241 1:260 1:272 1:293 1:303 1:307 1:308 1:309

7 1:047 1:171 1:209 1:227 1:238 1:257 1:266 1:269 1:270 1:271

8 1:030 1:150 1:186 1:203 1:213 1:231 1:239 1:241 1:242 1:243

9 1:016 1:133 1:168 1:185 1:194 1:210 1:217 1:219 1:220 1:221

10 1:006 1:120 1:154 1:170 1:179 1:194 1:200 1:202 1:203 1:204

20 0:960 1:064 1:093 1:106 1:112 1:122 1:124 1:124 1:124 1:124

30 0:945 1:046 1:074 1:085 1:090 1:097 1:097 1:097 1:096 1:096

40 0:938 1:037 1:064 1:075 1:080 1:085 1:084 1:083 1:082 1:081

50 0:933 1:032 1:058 1:068 1:073 1:078 1:076 1:074 1:073 1:072

60 0:930 1:029 1:054 1:064 1:069 1:073 1:070 1:068 1:066 1:065

70 0:928 1:026 1:052 1:061 1:066 1:069 1:066 1:064 1:062 1:061

80 0:927 1:024 1:049 1:059 1:064 1:067 1:063 1:060 1:059 1:057

90 0:926 1:023 1:048 1:057 1:062 1:065 1:061 1:058 1:056 1:054

100 0:925 1:021 1:047 1:056 1:060 1:063 1:059 1:056 1:054 1:052

200 0:921 1:016 1:041 1:050 1:054 1:055 1:050 1:046 1:043 1:041

1 0:916 1:011 1:035 1:044 1:047 1:048 1:041 1:036 1:032 1:029

and it is equal to the product bb0, where b is the best-fit slope of the linear regression

of Y on X, and b0 is the slope of the linear regression of X on Y. The probability

distribution function of r, under the hypothesis that the variables X and Y are not

correlated, is given by

fr.r/ D
1p
�

� .
f C 1
2

/

� .
f

2
/

�

1

1 � r2

��
f � 2
2

(A.15)

where N is the size of the sample, and f D N� 2 is the effective number of degrees

of freedom of the dataset.

In Table A.24 we report the critical values of r calculated from the following

equation,

1 � p D
Z rcrit

�rcrit

fr.r/dr (A.16)



288 Appendix: Numerical Tables

Table A.11 Critical values of F statistic that include p D 0:70 probability

f1

f2 2 4 6 8 10 20 40 60 80 100

1 5:056 5:830 6:117 6:267 6:358 6:544 6:639 6:671 6:687 6:697

2 2:333 2:561 2:640 2:681 2:705 2:754 2:779 2:787 2:791 2:794

3 1:847 1:985 2:028 2:048 2:061 2:084 2:096 2:100 2:102 2:103

4 1:651 1:753 1:781 1:793 1:800 1:812 1:818 1:819 1:820 1:821

5 1:547 1:629 1:648 1:656 1:659 1:665 1:666 1:666 1:667 1:667

6 1:481 1:551 1:565 1:570 1:571 1:572 1:570 1:570 1:569 1:569

7 1:437 1:499 1:509 1:511 1:511 1:507 1:504 1:502 1:501 1:501

8 1:405 1:460 1:467 1:468 1:466 1:460 1:455 1:452 1:451 1:450

9 1:380 1:431 1:436 1:435 1:433 1:424 1:417 1:414 1:413 1:412

10 1:361 1:408 1:412 1:409 1:406 1:395 1:387 1:384 1:382 1:381

20 1:279 1:311 1:305 1:297 1:290 1:268 1:252 1:245 1:242 1:240

30 1:254 1:280 1:271 1:261 1:253 1:226 1:206 1:197 1:192 1:189

40 1:241 1:264 1:255 1:243 1:234 1:205 1:182 1:172 1:167 1:163

50 1:233 1:255 1:245 1:233 1:223 1:192 1:167 1:156 1:150 1:146

60 1:228 1:249 1:238 1:226 1:215 1:183 1:157 1:146 1:139 1:135

70 1:225 1:245 1:233 1:221 1:210 1:177 1:150 1:138 1:131 1:127

80 1:222 1:242 1:230 1:217 1:206 1:172 1:144 1:132 1:125 1:120

90 1:220 1:239 1:227 1:214 1:203 1:168 1:140 1:127 1:120 1:115

100 1:219 1:237 1:225 1:212 1:200 1:165 1:137 1:123 1:116 1:111

200 1:211 1:228 1:215 1:201 1:189 1:152 1:121 1:106 1:097 1:091

1 1:204 1:220 1:205 1:191 1:178 1:139 1:104 1:087 1:076 1:069

where p is the probability for a given value of the correlation coefficient to exceed, in

absolute value, the critical value rcrit. The critical values are function of the number

of degrees of freedom, and of the probability p.

To evaluate the probability distribution function in the case of large f , a

convenient approximation can be given using the asymptotic expansion for the

Gamma function (see [1]):

� .azC b/ '
p
2�e�az.az/azCb�1=2: (A.17)

For large values of f , the ratio of the Gamma functions can therefore be approxi-

mated as

�

�

f C 1
2

�

�

�

f

2

� '
r

f

2
:
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Table A.12 Critical values of F statistic that include p D 0:80 probability

f1

f2 2 4 6 8 10 20 40 60 80 100

1 12:000 13:644 14:258 14:577 14:772 15:171 15:374 15:442 15:477 15:497

2 4:000 4:236 4:317 4:358 4:382 4:432 4:456 4:465 4:469 4:471

3 2:886 2:956 2:971 2:976 2:979 2:983 2:984 2:984 2:984 2:984

4 2:472 2:483 2:473 2:465 2:460 2:445 2:436 2:433 2:431 2:430

5 2:259 2:240 2:217 2:202 2:191 2:166 2:151 2:146 2:143 2:141

6 2:130 2:092 2:062 2:042 2:028 1:995 1:976 1:969 1:965 1:963

7 2:043 1:994 1:957 1:934 1:918 1:879 1:857 1:849 1:844 1:842

8 1:981 1:923 1:883 1:856 1:838 1:796 1:770 1:761 1:756 1:753

9 1:935 1:870 1:826 1:798 1:778 1:732 1:704 1:694 1:689 1:686

10 1:899 1:829 1:782 1:752 1:732 1:682 1:653 1:642 1:636 1:633

20 1:746 1:654 1:596 1:558 1:531 1:466 1:424 1:408 1:399 1:394

30 1:699 1:600 1:538 1:497 1:468 1:395 1:347 1:328 1:318 1:312

40 1:676 1:574 1:509 1:467 1:437 1:360 1:308 1:287 1:276 1:269

50 1:662 1:558 1:492 1:449 1:418 1:338 1:284 1:262 1:249 1:241

60 1:653 1:548 1:481 1:437 1:406 1:324 1:268 1:244 1:231 1:223

70 1:647 1:540 1:473 1:429 1:397 1:314 1:256 1:231 1:218 1:209

80 1:642 1:535 1:467 1:422 1:390 1:306 1:247 1:222 1:208 1:199

90 1:639 1:531 1:463 1:418 1:385 1:300 1:240 1:214 1:200 1:191

100 1:636 1:527 1:459 1:414 1:381 1:296 1:234 1:208 1:193 1:184

200 1:622 1:512 1:443 1:396 1:363 1:274 1:209 1:180 1:163 1:152

1 1:609 1:497 1:426 1:379 1:344 1:252 1:182 1:150 1:130 1:117

A.7 The Kolmogorov–Smirnov Test

The one-sample Kolmogorov–Smirnov statistic DN is defined in (13.7) as

DN D max
x
jFN.x/ � F.x/j;

where F.x/ is the parent distribution, and FN.x/ the sample distribution.

The cumulative distribution of the test statistic can be approximated by

P.DN < z=.
p

N C 0:12C 0:11=
p

N// ' ˚.z/:

where

˚.z/ D
1
X

rD�1
.�1/re�2r2z2 :
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Table A.13 Critical values of F statistic that include p D 0:90 probability

f1

f2 2 4 6 8 10 20 40 60 80 100

1 49:500 55:833 58:204 59:439 60:195 61:740 62:529 62:794 62:927 63:007

2 9:000 9:243 9:326 9:367 9:392 9:441 9:466 9:475 9:479 9:481

3 5:462 5:343 5:285 5:252 5:230 5:184 5:160 5:151 5:147 5:144

4 4:325 4:107 4:010 3:955 3:920 3:844 3:804 3:790 3:782 3:778

5 3:780 3:520 3:404 3:339 3:297 3:207 3:157 3:140 3:132 3:126

6 3:463 3:181 3:055 2:983 2:937 2:836 2:781 2:762 2:752 2:746

7 3:257 2:960 2:827 2:752 2:703 2:595 2:535 2:514 2:504 2:497

8 3:113 2:806 2:668 2:589 2:538 2:425 2:361 2:339 2:328 2:321

9 3:006 2:693 2:551 2:469 2:416 2:298 2:232 2:208 2:196 2:189

10 2:924 2:605 2:461 2:377 2:323 2:201 2:132 2:107 2:095 2:087

20 2:589 2:249 2:091 1:999 1:937 1:794 1:708 1:677 1:660 1:650

30 2:489 2:142 1:980 1:884 1:820 1:667 1:573 1:538 1:519 1:507

40 2:440 2:091 1:927 1:829 1:763 1:605 1:506 1:467 1:447 1:434

50 2:412 2:061 1:895 1:796 1:729 1:568 1:465 1:424 1:402 1:389

60 2:393 2:041 1:875 1:775 1:707 1:544 1:437 1:395 1:372 1:358

70 2:380 2:027 1:860 1:760 1:691 1:526 1:418 1:374 1:350 1:335

80 2:370 2:016 1:849 1:748 1:680 1:513 1:403 1:358 1:334 1:318

90 2:362 2:008 1:841 1:739 1:671 1:503 1:391 1:346 1:320 1:304

100 2:356 2:002 1:834 1:732 1:663 1:494 1:382 1:336 1:310 1:293

200 2:329 1:973 1:804 1:701 1:631 1:458 1:339 1:289 1:261 1:242

1 2:303 1:945 1:774 1:670 1:599 1:421 1:295 1:240 1:207 1:185

and it is independent of the form of the parent distribution F.x/: For large values of

N, we can use the asymptotic equation

P.DN < z=
p

N/ D ˚.z/:

In Table A.25 are listed the critical values of
p

NDN for various levels of probability.

Values of the Kolmogorov–Smirnov statistic above the critical value indicate a

rejection of the null hypothesis that the data are drawn from the parent model.

The two-sample Kolmogorov–Smirnov statistic is

DNM D max
x
jFM.x/� GN.x/j

where FM.x/ and GN.x/ are the sample cumulative distribution of two independent

sets of observations of size M and N. This statistic has the same distribution as the

one-sample Kolmogorov-Smirnov statistic, with the substitution of MN=.MCN/ in

place of N, and in the limit of large M and N, (13.12).
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Table A.23 Comparison of integrals of Student’s function at different critical values.

Critical value

f T D 1 T D 2 T D 3 T D 4 T D 5

1 0:500000 0:704833 0:795168 0:844042 0:874334

2 0:577351 0:816497 0:904534 0:942809 0:962251

3 0:608998 0:860674 0:942332 0:971992 0:984608

4 0:626099 0:883884 0:960058 0:983870 0:992510

5 0:636783 0:898061 0:969901 0:989677 0:995896

6 0:644083 0:907574 0:975992 0:992881 0:997548

7 0:649384 0:914381 0:980058 0:994811 0:998435

8 0:653407 0:919484 0:982929 0:996051 0:998948

9 0:656564 0:923448 0:985044 0:996890 0:999261

10 0:659107 0:926612 0:986657 0:997482 0:999463

11 0:661200 0:929196 0:987921 0:997914 0:999598

12 0:662951 0:931345 0:988934 0:998239 0:999691

13 0:664439 0:933160 0:989762 0:998488 0:999757

14 0:665718 0:934712 :990449 0:998684 0:999806

15 0:666830 0:936055 0:991028 0:998841 0:999842

16 0:667805 0:937228 0:991521 0:998968 0:999870

17 0:668668 0:938262 0:991946 0:999073 0:999891

18 0:669435 0:939179 0:992315 0:999161 0:999908

19 0:670123 0:939998 0:992639 0:999234 0:999921

20 0:670744 0:940735 0:992925 0:999297 0:999932

21 0:671306 0:941400 0:993179 0:999351 0:999940

22 0:671817 0:942005 0:993406 0:999397 0:999948

23 0:672284 0:942556 0:993610 0:999438 0:999954

24 0:672713 0:943061 0:993795 0:999474 0:999959

25 0:673108 0:943524 0:993962 0:999505 0:999963

26 0:673473 0:943952 0:994115 0:999533 0:999967

27 0:673811 0:944348 0:994255 0:999558 0:999970

28 0:674126 0:944715 0:994383 0:999580 0:999973

29 0:674418 0:945057 0:994501 0:999600 0:999975

30 0:674692 0:945375 0:994610 0:999619 0:999977

31 0:674948 0:945673 0:994712 0:999635 0:999979

32 0:675188 0:945952 0:994806 0:999650 0:999981

33 0:675413 0:946214 0:994893 0:999664 0:999982

34 0:675626 0:946461 0:994975 0:999677 0:999983

35 0:675826 0:946693 0:995052 0:999688 0:999984

36 0:676015 0:946912 0:995123 0:999699 0:999985

37 0:676194 0:947119 0:995191 0:999709 0:999986

38 0:676364 0:947315 0:995254 0:999718 0:999987

39 0:676525 0:947501 0:995314 0:999727 0:999988

40 0:676678 0:947678 0:995370 0:999735 0:999989

(continued)
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Table A.23 (continued)

Critical value

f T D 1 T D 2 T D 3 T D 4 T D 5

41 0:676824 0:947846 0:995424 0:999742 0:999989

42 0:676963 0:948006 0:995474 0:999749 0:999990

43 0:677095 0:948158 0:995522 0:999755 0:999990

44 0:677222 0:948304 0:995568 0:999761 0:999991

45 0:677343 0:948443 0:995611 0:999767 0:999991

46 0:677458 0:948576 0:995652 0:999773 0:999992

47 0:677569 0:948703 0:995691 0:999778 0:999992

48 0:677675 0:948824 0:995729 0:999782 0:999992

49 0:677777 0:948941 0:995765 0:999787 0:999993

50 0:677875 0:949053 0:995799 0:999791 0:999993

1 0:682690 0:954500 0:997301 0:999937 1:000000

Table A.24 Critical values of the linear correlation coefficient

Probability p to have an absolute value of r below the critical value

f 0:50 0:60 0:70 0:80 0:90 0:95 0:99

2 0:500 0:600 0:700 0:800 0:900 0:950 0:990

3 0:404 0:492 0:585 0:687 0:805 0:878 0:959

4 0:347 0:426 0:511 0:608 0:729 0:811 0:917

5 0:309 0:380 0:459 0:551 0:669 0:754 0:875

6 0:281 0:347 0:420 0:507 0:621 0:707 0:834

7 0:260 0:321 0:390 0:472 0:582 0:666 0:798

8 0:242 0:300 0:365 0:443 0:549 0:632 0:765

9 0:228 0:282 0:344 0:419 0:521 0:602 0:735

10 0:216 0:268 0:327 0:398 0:497 0:576 0:708

20 0:152 0:189 0:231 0:284 0:360 0:423 0:537

30 0:124 0:154 0:189 0:233 0:296 0:349 0:449

40 0:107 0:133 0:164 0:202 0:257 0:304 0:393

50 0:096 0:119 0:147 0:181 0:231 0:273 0:354

60 0:087 0:109 0:134 0:165 0:211 0:250 0:325

70 0:081 0:101 0:124 0:153 0:195 0:232 0:302

80 0:076 0:094 0:116 0:143 0:183 0:217 0:283

90 0:071 0:089 0:109 0:135 0:173 0:205 0:267

100 0:068 0:084 0:104 0:128 0:164 0:195 0:254

200 0:048 0:060 0:073 0:091 0:116 0:138 0:181

300 0:039 0:049 0:060 0:074 0:095 0:113 0:148

500 0:030 0:038 0:046 0:057 0:073 0:087 0:114

1000 0:021 0:027 0:033 0:041 0:052 0:062 0:081
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Table A.25 Critical values of the Kolmogorov–Smirnov statistic DN

Probability p to have DN �
p

N below the critical value

N 0:50 0:60 0:70 0:80 0:90 0:95 0:99

1 0:750 0:800 0:850 0:900 0:950 0:975 0:995

2 0:707 0:782 0:866 0:967 1:098 1:191 1:314

3 0:753 0:819 0:891 0:978 1:102 1:226 1:436

4 0:762 0:824 0:894 0:985 1:130 1:248 1:468

5 0:765 0:827 0:902 0:999 1:139 1:260 1:495

6 0:767 0:833 0:910 1:005 1:146 1:272 1:510

7 0:772 0:838 0:914 1:009 1:154 1:279 1:523

8 0:776 0:842 0:917 1:013 1:159 1:285 1:532

9 0:779 0:844 0:920 1:017 1:162 1:290 1:540

10 0:781 0:846 0:923 1:020 1:166 1:294 1:546

15 0:788 0:855 0:932 1:030 1:177 1:308 1:565

20 0:793 0:860 0:937 1:035 1:184 1:315 1:576

25 0:796 0:863 0:941 1:039 1:188 1:320 1:583

30 0:799 0:866 0:943 1:042 1:192 1:324 1:588

35 0:801 0:868 0:946 1:045 1:194 1:327 1:591

40 0:803 0:869 0:947 1:046 1:196 1:329 1:594

45 0:804 0:871 0:949 1:048 1:198 1:331 1:596

50 0:805 0:872 0:950 1:049 1:199 1:332 1:598

60 0:807 0:874 0:952 1:051 1:201 1:335 1:601

70 0:808 0:875 0:953 1:053 1:203 1:337 1:604

80 0:810 0:877 0:955 1:054 1:205 1:338 1:605

90 0:811 0:878 0:956 1:055 1:206 1:339 1:607

100 0:811 0:879 0:957 1:056 1:207 1:340 1:608

200 0:816 0:883 0:961 1:061 1:212 1:346 1:614

300 0:818 0:885 0:964 1:063 1:214 1:348 1:617

500 0:820 0:887 0:966 1:065 1:216 1:350 1:620

1000 0:822 0:890 0:968 1:067 1:218 1:353 1:622

1 0:828 0:895 0:973 1:073 1:224 1:358 1:628
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hypothesis testing, 126

mean, 125

moment generating function, 126

probability function, 124

reduced �2, 125

use of bivariate errors, 209

variance, 125

�2min statistic, 149, 177


�2 statistic for confidence intervals, 182

hypothesis testing, 178

probability function, 178

� , simulation of number, 228
OR statistic, 266

acceptability of goodness of fit, 195

acceptability of null hypothesis, 120

acceptable region, 118

acceptance probability, 252

accessible state, 241

Akritas, M., 204

Anderson, E., 165

auxiliary distribution, 251

average

linear, 107

relative-error weighted, 113

weighted, 107

Bayes’ theorem, 10

Bayes, Rev. Thomas, 4

Bayesian method for Poisson mean, 102

Bayesian statistics, 12

Bershady, M., 204

Beta function, 133

binary experiment, 35

binning of data, 162

Kolmogorov Smirnov test, 216

binomial distribution, 35

comparison with Gaussian and Poisson, 51

Ehrenfest chain, 246

mean, 38

moments, 38

probability function, 38

variance, 39

bisector model, 207

bivariate data, 203

use of �2, 209

bootstrap simulation, 230

synthetic dataset, 230

unbiased estimator, 232

burn-in period, 259

candidate of MCMC, 251

Cartesian coordinates, 65

transformation to polar, 81

Cash statistic, 161, 180

approximate distribution, 180
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Cash, W., 161

central limit theorem, 61

central moments of random variable, 23

change of variables, method, 65

CODA software, 268

coefficient of determination, 174

coin toss experiment, 4

combinations, 37

complementary event, 2

conditional probability, 7

confidence intervals, 93

all fit parameters, 183

central, 93

Gaussian variables, 94

model parameters, 181, 186

one-sided, 93

Poisson data, 186

Poisson mean, 97

reduced parameters, 184

significance, 93

confidence levels, 118

contingency table, 31

convergence tests of MCMC, 259

convolution, 67

coordinate transformation, Cartesian to polar,

65

correlation coefficient, 27

sample, see sample correlation coefficient

correlation of random variables, 26

counting experiment and Poisson distribution,

47

counting process, 48

covariance, 26, 27

cumulative distribution function, 19

debiased variance, 197, 204

degrees of freedom, 124

�2 distribution, 124

F statistic, 134

sampling distribution of variance, 130

Student’s t distribution, 139

design matrix, 169

detailed balance, 254

deviation of random variable, 22

distribution function, 17, 19

properties, 19

full conditional, 258

Ehrenfest chain, 239

transition probability, 240

stationary distribution, 245, 247

error function, 44, 273

error matrix, 153, 169

error propagation, 55, 70

error propagation formula, 71

exponential of variable, 75

logarithm of variable, 75

power of variable, 74

product and division, 73

sum of constant, 72

table of common functions, 76

three independent variables, 83

weighted sum of two variables, 72

event, 1

expectation of random variable, 20

experiment, 1

explained variance, 173

exponential distribution, 19

cumulative distribution function, 20

probability function, 19

simulation, 79

F statistic, 131

approximations, 134

degrees of freedom, 134

distribution function, 132

hypothesis testing, 134

mean, 134

variance, 134

tables, 282

F test, 211

for additional model component, 214

multi–variable linear regression, 172

degrees of freedom, 212

nested component, 214

two independent �2 measurements, 212

use on same dataset, 213

factorial function, Stirling’s approximation, 51

Fisher, R.A., 133, 165

fractional errors, 109

full conditional distribution, 258

full-width at half maximum (FWHM), 44

function of random variables, 64

mean, 69

multi-dimensional method, 66

variance, 70

gamma distribution, 123

Gamma function, 124, 134

asymptotic expansion, 288

Gaussian distribution, 40

comparison with binomial and Poisson, 51

confidence intervals, 94

cumulative distribution function, 44
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log-normal distribution, 110

mean, 43

moment generating function, 59

moments, 44

probability function, 43

simulation, 45, 79

upper and lower limits, 95

variance, 43

tables, 273

Geherels approximation, 99

tables of upper and lower limits, 277

Gelman Rubin statistic, 260, 264

between–chain variance, 265

within–chain variance, 265

genes and genotypes, 8

Geweke Z score, 260, 263

Gibbs sampler, 258

gibbsit software, 268

goodness of fit

�2min statistic, 177

Cash statistic, 180

Gaussian data, 149

Poisson data, 161

Gosset, W.S. (Student), 140

half-width at half maximum (HWHM), 44

Hubble constant, 158

Hubble’s law, 157

Hubble, E., 157

hypothesis testing, 117

�2 distribution, 126

�2min statistic, 178

acceptable region, 118

confidence level, 118

F statistic, 134

four–step process, 118

linear correlation coefficient, 190

rejection region, 118

sampling distribution of variance, 131

Student’s t distribution, 141

acceptability of null hypothesis, 120

rejection, 120

impossible event, 1

independent events, 5

independent variables, 28

two–variable data, 187

interesting and uninteresting parameters, 184

intrinsic covariance, 204

intrinsic scatter, 196

alternative method using �2red , 197

direct calculation, 196

parameter estimation, 200

intrinsic variance, 197, 204

Iris dataset (Fisher and Anderson), 166

irreducible aperiodic Markov chains, 244

jackknife simulation, 234

resampled dataset, 234

unbiased estimator, 234

pseudo-values, 234

resampled dataset, 234

Jacobian of transformation, 66

Jeffreys priors, 252

Jeffreys, H., 252

joint distribution function, 26

Kolmogorov axioms, 2

Kolmogorov Smirnov test, 216

DN statistic, 217

DNM statistic, 219

approximation, 218

comparison of data with model, 216

non–parametric nature, 216

two-sample test, 219

tables, 290

Law of heredity (Mendel experiment), 8

Law of independent assortment (Mendel

experiment), 9

law of large numbers, 68, 226

least–squares method, 150

likelihood, 11, 250

Gaussian data, 85

Poisson data, 50

linear average, 107

linear combination of random variables, 55

linear correlation coefficient, 187

hypothesis testing, 190

probability function, 188

tables, 286, 308

linear regression, 150

error matrix, 153

identical errors, 151

multi–variable, 168

identical errors or no errors, 155

model sample variance, 156

parameter errors and covariance, 154

log-normal distribution, 110
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logarithmic average, 109

weighted, 110

marginalization of random variables, 29, 31

marginalization of uninteresting parameters,

185

Markov chains, 237

accessible states, 241

dependence of samples, 250

Markovian property, 238

recurrent and transient states, 240

short memory property, 238

state of system, 238

communication of states, 243

detailed balance, 254

irreducible aperiodic chains, 244

limiting probability, 243

periodicity, 244

recurrent and transient states, 242

stationary distribution, 243

time reversible, 253

Markovian property, 238

mass distribution function, see probability

mass function

maximum likelihood method

bivariate data, 204

fit to non-linear functions, 160

fit to two–dimensional data, 149

Gaussian data, 149

Gaussian variable, 85

estimate of mean, 86

estimate of sample variance, 87

estimate of variance, 87

other variables, 90

Poisson data, 160

Poisson variable, 90

MCMC, see Monte Carlo Markov chains

mean, 21

function of random variables, 69

linear combination of variables, 55

weighted, 89

Bayesian expectation for Poisson mean,

102

non-uniform errors, 88

median, 22, 109

insensitivity to outliers, 109

Mendel, G., 8

method of moments, 91

Metropolis Hastings algorithm, 251

case of uniform priors and proposals,

253

justification of method, 253

proposal (auxiliary) distribution, 251

mixing properties of MCMC, 262

mode, 22

model sample variance, 156

moment generating function, 58

properties, 59

Gaussian distribution, 59

Poisson distribution, 60

sum of Poisson variables, 60

sum of uniform distributions, 63

sum of uniform variables, 62

moments of distribution function, 20

Monte Carlo, 225

function evaluation, 227

integration, 226

dart method, 227

multi-dimensional integration, 227

simulation of variables, 228

Monte Carlo Markov chains, 249

acceptance probability, 252

candidates, 251

prior distribution, 251

burn-in period, 259, 263

convergence tests, 259

correlation of links, 261

mixing, 262

posterior distribution, 250, 252

stopping time, 260

thinning, 263

multi–variable dataset, 165

multi–variable linear regression, 168

coefficient of determination, 174

design matrix, 169

error matrix, 169

F test, 172

Iris data, 171

T test, 170

tests for significance, 170

multiple linear regression, 151

best-fit parameters, 152

error matrix, 153

parameter errors, 153

multiplicative errors, 109

mutually exclusive events, 2

nested component, 211, 214

normal distribution, 40

null hypothesis, 118

Occam’s razor, 216

Occam, William of, 216

orthonormal transformation, 129

overbooking, probability, 39
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parent distribution, 18

parent mean, 22

comparison with sample mean, 137

partition of sample space, 2

Pearson, K., 30

data on biometric characteristics,

30

periodicity of Markov chains, 244

permutations, 36

photon counting experiment, 29

Poisson distribution, 45

Bayesian expectation of mean, 103

Baysian upper and lower limits, 103

comparison with binomial and Gaussian,

51

likelihood, 49

mean, 46

moment generating function, 60

posterior distribution, 50

posterior probability, 49, 102

S parameter, 100

upper and lower limits, 98

variance, 47

Poisson process, 48

polar coordinates, 65

transformation to Cartesian, 81

posterior distribution, 241

Markov chains, 250

posterior probability, 11, 13

Poisson mean, 102

prior distribution, 250

MCMC, 251

prior probability, 11

probability

Bayesian method, 1, 4

classical method, 3

empirical method, 4

frequentist method, 1, 3

fundamental properties, 4

probability distribution function, 19

probability mass function, 19

probability of event, 2

proposal distribution, 251

quantile, 93, 268

quantile function, 76

exponential distribution, 77

uniform distribution, 77

Raftery Lewis test, 267

random error, 198

random variables, 17

random walk, 237, 239

recurrence of states, 241

transition probability, 239

recurrent states, 247

Rayleigh distribution, 66

cumulative distribution, 80

quantile function, 80

reduced �2, 125

rejection of hypothesis, 120

rejection region, 118

one–sided, 119

two–sided, 119

relative uncertainty of random variable, 57, 72

relative-error weighted average, 113

resampled dataset, 234

residual variance, 172

sample correlation coefficient, 27, 28

sample covariance, 27, 28

sample distribution, 18

sample mean, 21

comparison of two means, 141

comparison with parent mean, 137

sample space, 1

partition, 2

sample variance, 23

sampling distribution of mean, 137

sampling distribution of variance, 127

degrees of freedom, 130

probability function, 130

sequence of events, 36

sequence of random variables, 237

signal–to–noise ratio, 72

simulation of number � , 228

simulation of random variables, 78

exponential, 79

Gaussian, 79, 229

Monte Carlo methods, 228

square of uniform distribution, 79

standard deviation, 22

standard error, 22

standard Gaussian, 45

stationary distribution, 237

statistic, 117

statistical error, 108, 199

statistical independence, 5

necessary conditions for, 6

statistical independence of random variables,

28

Stirling’s approximation, 51

stochastic processes, 237

stopping time of MCMC, 260

strong law of large numbers, 68
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Student’s t distribution, 137

comparison of two sample means, 142

degrees of freedom, 139

hypothesis testing, 141

mean, 140

probability function, 139

tables, 285

sum of random variables, 62

synthetic dataset, 230

systematic error, 108, 199

additive, 199

multiplicative, 199

parameter estimation, 200

T test, 170

thinning of MCMC, 263

Thomson, J.J., 23

analysis of experimental data, 222

discovery of electron, 23

Total probability theorem, 10

transition kernel, 239

transition probability, 239

triangular distribution, 64, 67

two–variable dataset, 147

bivariate errors, 203

independent variable, 147, 187

Monte Carlo estimates of errors, 230

uncorrelated variables, 27, 56

uniform distribution, 67

probability function, 67

simulation, 79

square, 69

sum of two variables, 67

upper and lower limits, 94

Bayesian method for Poisson mean, 103

Gaussian variables, 95

Geherels approximation, 99

Poisson variable, 98, 99

upper limit to non detection, 96

Bayesian, 103

Gaussian, 96

Poisson, 101

variance

debiased, 204

explained, 173

intrinsic, 204

linear combination of variables, 56

residual, 172

weighted mean, 90

anti-correlated variables, 56

correlated variables, 57

function of random variables, 70

variance of random variable, 22

variance of sum of variables, 28

weighted logarithmic average, 110

weighted mean, 89, 107

variance, 90

z–score, 45, 138
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