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Preface
The purpose of this new book is to fill a void that has appeared in the instruction of digital circuits

over the past decade due to the rapid abstraction of system design. Up until the mid-1980s, digital

circuits were designed using classical techniques. Classical techniques relied heavily on manual design

practices for the synthesis, minimization, and interfacing of digital systems. Corresponding to this design

style, academic textbooks were developed that taught classical digital design techniques. Around 1990,

large-scale digital systems began being designed using hardware description languages (HDLs) and

automated synthesis tools. Broad-scale adoption of this modern design approach spread through the

industry during this decade. Around 2000, hardware description languages and the modern digital

design approach began to be taught in universities, mainly at the senior and graduate level. There

were a variety of reasons that the modern digital design approach did not penetrate the lower levels of

academia during this time. First, the design and simulation tools were difficult to use and overwhelmed

freshman and sophomore students. Second, the ability to implement the designs in a laboratory setting

was infeasible. The modern design tools at the time were targeted at custom integrated circuits, which

are cost and time prohibitive to implement in a university setting. Between 2000 and 2005, rapid

advances in programmable logic and design tools allowed the modern digital design approach to be

implemented in a university setting, even in lower level courses. This allowed students to learn the

modern design approach based on HDLs and prototype their designs in real hardware, mainly field

programmable gate arrays (FPGAs). This spurred an abundance of textbooks to be authored teaching

hardware description languages and higher levels of design abstraction. This trend has continued until

today. While abstraction is a critical tool for engineering design, the rapid movement toward teaching only

the modern digital design techniques has left a void for freshman and sophomore level courses in digital

circuitry. Legacy textbooks that teach the classical design approach are outdated and do not contain

sufficient coverage of HDLs to prepare the students for follow-on classes. Newer textbooks that teach

the modern digital design approach move immediately into high-level behavioral modeling with minimal

or no coverage of the underlying hardware used to implement the systems. As a result, students are not

being provided the resources to understand the fundamental hardware theory that lies beneath the

modern abstraction such as interfacing, gate level implementation, and technology optimization.

Students moving too rapidly into high levels of abstraction have little understanding of what is going

on when they click the “compile & synthesize” button of their design tool. This leads to graduates who can

model a breadth of different systems in an HDL, but have no depth into how the system is implemented in

hardware. This becomes problematic when an issue arises in a real design, and there is no foundational

knowledge for the students to fall back on in order to debug the problem.

This new book addresses the lower level foundational void by providing a comprehensive, bottoms-

up, coverage of digital systems. This book begins with a description of lower level hardware including

binary representations, gate-level implementation, interfacing, and simple combinational logic design.

Only after a foundation has been laid in the underlying hardware theory is the Verilog language

introduced. The Verilog introduction gives only the basic concepts of the language in order to model,

simulate, and synthesize combinational logic. This allows the students to gain familiarity with the

language and the modern design approach without getting overwhelmed by the full capability of the

language. This book then covers sequential logic and finite state machines at the structural level. Once

this secondary foundation has been laid, the remaining capabilities of Verilog are presented that allow

sophisticated, synchronous systems to be modeled. An entire chapter is then dedicated to examples of

sequential system modeling, which allows the students to learn by example. The second part of this

textbook introduces the details of programmable logic, semiconductor memory, and arithmetic circuits.

This book culminates with a discussion of computer system design, which incorporates all of the
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knowledge gained in the previous chapters. Each component of a computer system is described with an

accompanying Verilog implementation, all while continually reinforcing the underlying hardware beneath

the HDL abstraction.

Written the Way It Is Taught

The organization of this book is designed to follow the way in which the material is actually learned.

Topics are presented only once sufficient background has been provided by earlier chapters to fully

understand the material. An example of this learning-oriented organization is how the Verilog language is

broken into two chapters. Chapter 5 presents an introduction to Verilog and the basic constructs to model

combinational logic. This is an ideal location to introduce the language because the reader has just

learned about combinational logic theory in Chap. 4. This allows the student to begin gaining experience

using the Verilog simulation tools on basic combinational logic circuits. The more advanced constructs of

Verilog such as sequential modeling and test benches are presented in Chap. 8 only after a thorough

background in sequential logic is presented in Chap. 7. Another example of this learning-oriented

approach is how arithmetic circuits are not introduced until Chap. 12. While technically the arithmetic

circuits in Chap. 12 are combinational logic circuits and could be presented in Chap. 4, the student does

not have the necessary background in Chap. 4 to fully understand the operation of the arithmetic circuitry

so its introduction is postponed.

This incremental, just-in-time presentation of material allows the book to follow the way the material

is actually taught in the classroom. This design also avoids the need for the instructor to assign sections

that move back-and-forth through the text. This not only reduces course design effort for the instructor

but allows the student to know where they are in the sequence of learning. At any point, the student

should know the material in prior chapters and be moving toward understanding the material in

subsequent ones.

An additional advantage of this book’s organization is that it supports giving the student hands-on

experience with digital circuitry for courses with an accompanying laboratory component. The flow is

designed to support lab exercises that begin using discrete logic gates on a breadboard and then move

into HDL-based designs implemented on off-the-shelf FPGA boards. Using this approach to a laboratory

experience gives the student experience with the basic electrical operation of digital circuits, interfacing,

and HDL-based designs.

Learning Outcomes

Each chapter begins with an explanation of its learning objective followed by a brief preview of the

chapter topics. The specific learning outcomes are then presented for the chapter in the form of concise

statements about the measurable knowledge and/or skills the student will possess by the end of the

chapter. Each section addresses a single, specific learning outcome. This eases the process of

assessment and gives specific details on student performance. There are 600+ exercise problems

and concept check questions for each section tied directly to specific learning outcomes for both

formative and summative assessment.

Teaching by Example

With over 200worked examples, concept checks for each section, 200+ supporting figures, and 600+

exercise problems, students are provided with multiple ways to learn. Each topic is described in a clear,

concise written form with accompanying figures as necessary. This is then followed by annotated worked

examples that match the form of the exercise problems at the end of each chapter. Additionally, concept

check questions are placed at the end of each section in this book to measure the student’s general
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understanding of the material using a concept inventory assessment style. These features provide the

student multiple ways to learn the material and build an understanding of digital circuitry.

Course Design

This book can be used in multiple ways. The first is to use the book to cover two, semester-based

college courses in digital logic. The first course in this sequence is an introduction to logic circuits and

covers Chaps. 1, 2, 3, 4, 5, 6, and 7. This introductory course, which is found in nearly all accredited

electrical and computer engineering programs, gives students a basic foundation in digital hardware and

interfacing. Chapters 1, 2, 3, 4, 5, 6 and 7 only cover relevant topics in digital circuits to make room for a

thorough introduction to Verilog. At the end of this course, students have a solid foundation in digital

circuits and are able to design and simulate Verilog models of concurrent and hierarchical systems. The

second course in this sequence covers logic design using Chaps. 8, 9, 10, 11, 12, and 13. In this second

course, students learn the advanced features of Verilog such as procedural assignments, sequential

behavioral modeling, system tasks, and test benches. This provides the basis for building larger digital

systems such as registers, finite state machines, and arithmetic circuits. Chapter 13 brings all of the

concepts together through the design of a simple 8-bit computer system that can be simulated and

implemented using many off-the-shelf FPGA boards.

This book can also be used in a more accelerated digital logic course that reaches a higher level of

abstraction in a single semester. This is accomplished by skipping some chapters and moving quickly

through others. In this use model, it is likely that Chap. 2 on numbers systems and Chap. 3 on digital

circuits would be quickly referenced but not covered in detail. Chapters 4 and 7 could also be covered

quickly in order to move rapidly into Verilog modeling without spending significant time looking at the

underlying hardware implementation. This approach allows a higher level of abstraction to be taught but

provides the student with the reference material so that they can delve in the details of the hardware

implementation if interested.

All exercise and concept problems that do not involve a Verilog model are designed so that they can

be implemented as a multiple choice or numeric entry question in a standard course management

system. This allows the questions to be automatically graded. For the Verilog design questions, it is

expected that the students will upload their Verilog source files and screenshots of their simulation

waveforms to the course management system for manual grading by the instructor or teaching assistant.

Instructor Resources

Instructors adopting this book can request a solution manual that contains a graphic-rich description

of the solutions for each of the 600+ exercise problems. Instructors can also receive the Verilog solutions

and test benches for each Verilog design exercise. A complementary lab manual has also been

developed to provide additional learning activities based on both the 74HC discrete logic family and

an off-the-shelf FPGA board. This manual is provided separately from the book in order to support the

ever-changing technology options available for laboratory exercises.

Bozeman, MT, USA Brock J. LaMeres
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Chapter 1: Introduction: Analog

vs. Digital
We often hear that we live in a digital age. This refers to the massive adoption of computer systems

within every aspect of our lives from smart phones to automobiles to household appliances. This statement

also refers to the transformation that has occurred to our telecommunications infrastructure that now

transmits voice, video and data using 1’s and 0’s. There are a variety of reasons that digital systems have

become so prevalent in our lives. In order to understand these reasons, it is good to start with an

understanding of what a digital system is and how it compares to its counterpart, the analog system.

The goal of this chapter is to provide an understanding of the basic principles of analog and digital systems.

Learning Outcomes—After completing this chapter, you will be able to:

1.1 Describe the fundamental differences between analog and digital systems.
1.2 Describe the advantages of digital systems compared to analog systems.

1.1 Differences Between Analog and Digital Systems

Let’s begin by looking at signaling. In electrical systems, signals represent information that is

transmitted between devices using an electrical quantity (voltage or current). An analog signal is defined

as a continuous, time-varying quantity that corresponds directly to the information it represents. An

example of this would be a barometric pressure sensor that outputs an electrical voltage corresponding

to the pressure being measured. As the pressure goes up, so does the voltage. While the range of the

input (pressure) and output (voltage) will have different spans, there is a direct mapping between the

pressure and voltage. Another example would be sound striking a traditional analog microphone. Sound

is a pressure wave that travels through a medium such as air. As the pressure wave strikes the

diaphragm in the microphone, the diaphragm moves back and forth. Through the process of inductive

coupling, this movement is converted to an electric current. The characteristics of the current signal

produced (e.g., frequency and magnitude) correspond directly to the characteristics of the incoming

sound wave. The current can travel down a wire and go through another system that works in the

opposite manner by inductively coupling the current onto another diaphragm, which in turn moves back

and forth forming a pressure wave and thus sound (i.e., a speaker). In both of these examples, the

electrical signal represents the actual information that is being transmitted and is considered analog.

Analog signals can be represented mathematically as a function with respect to time.

In digital signaling the electrical signal itself is not directly the information it represents, instead, the

information is encoded. The most common type of encoding is binary (1’s and 0’s). The 1’s and 0’s are

represented by the electrical signal. The simplest form of digital signaling is to define a threshold voltage

directly in the middle of the range of the electrical signal. If the signal is above this threshold, the signal is

representing a 1. If the signal is below this threshold, the signal is representing a 0. This type of signaling

is not considered continuous as in analog signaling, instead, it is considered to be discrete because the

information is transmitted as a series of distinct values. The signal transitions between a 1 to 0 or 0 to

1 are assumed to occur instantaneously. While this is obviously impossible, for the purposes of

information transmission, the values can be interpreted as a series of discrete values. This is a digital

signal and is not the actual information, but rather the binary encoded representation of the original

information. Digital signals are not represented using traditional mathematical functions, instead, the

digital values are typically held in tables of 1’s and 0’s.
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Figure 1.1 shows an example analog signal (left) and an example digital signal (right). While the

digital signal is in reality continuous, it represents a series of discrete 1 and 0 values.

CONCEPT CHECK

CC1.1 If a digital signal is only a discrete representation of real information, how is it possible to

produce high quality music without hearing “gaps” in the output due to the digitization

process?

(A) The gaps are present but they occur so quickly that the human ear can’t

detect them.

(B) When the digital music is converted back to analog sound the gaps are smoothed

out since an analog signal is by definition continuous.

(C) Digital information is a continuous, time-varying signal so there aren’t gaps.

(D) The gaps can be heard if the music is played slowly, but at normal speed, they

can’t be.

1.2 Advantages of Digital Systems over Analog Systems

There are a variety of reasons that digital systems are preferred over analog systems. First is their

ability to operate within the presence of noise. Since an analog signal is a direct representation of the

physical quantity it is transmitting, any noise that is coupled onto the electrical signal is interpreted as

noise on the original physical quantity. An example of this is when you are listening to an AM/FM radio

and you hear distortion of the sound coming out of the speaker. The distortion you hear is not due to

Fig. 1.1
Analog (left) vs. digital (right) signals
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actual distortion of the music as it was played at the radio station, but rather electrical noise that was

coupled onto the analog signal transmitted to your radio prior to being converted back into sound by the

speakers. Since the signal in this case is analog, the speaker simply converts it in its entirety (noise +

music) into sound. In the case of digital signaling, a significant amount of noise can be added to the

signal while still preserving the original 1’s and 0’s that are being transmitted. For example, if the signal is

representing a 0, the receiver will still interpret the signal as a 0 as long as the noise doesn’t cause the

level to exceed the threshold. Once the receiver interprets the signal as a 0, it stores the encoded value

as a 0 thus ignoring any noise present during the original transmission. Figure 1.2 shows the exact same

noise added to the analog and digital signals from Fig. 1.1. The analog signal is distorted; however, the

digital signal is still able to transmit the 0’s and 1’s that represent the information.

Another reason that digital systems are preferred over analog ones is the simplicity of the circuitry. In

order to produce a 1 and 0, you simply need an electrical switch. If the switch connects the output to a

voltage below the threshold, then it produces a 0. If the switch connects the output to a voltage above the

threshold, then it produces a 1. It is relatively simple to create such a switching circuit using modern

transistors. Analog circuitry, however, needs to perform the conversion of the physical quantity it is

representing (e.g., pressure, sound) into an electrical signal all the while maintaining a direct correspon-

dence between the input and output. Since analog circuits produce a direct, continuous representation of

information, they require more complicated designs to achieve linearity in the presence of environmental

variations (e.g., power supply, temperature, fabrication differences). Since digital circuits only produce a

discrete representation of the information, they can be implemented with simple switches that are only

altered when information is produced or retrieved. Figure 1.3 shows an example comparison between an

analog inverting amplifier and a digital inverter. The analog amplifier uses dozens of transistors (inside

the triangle) and two resistors to perform the inversion of the input. The digital inverter uses two

transistors that act as switches to perform the inversion.

Fig. 1.2
Noise on analog (left) and digital (right) signals
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A final reason that digital systems are being widely adopted is their reduced power consumption.

With the advent of Complementary Metal Oxide Transistors (CMOS), electrical switches can be created

that consume very little power to turn on or off and consume relatively negligible amounts of power to

keep on or off. This has allowed large scale digital systems to be fabricated without excessive levels of

power consumption. For stationary digital systems such as servers and workstations, extremely large

and complicated systems can be constructed that consume reasonable amounts of power. For portable

digital systems such as smart phones and tablets, this means useful tools can be designed that are able

to run on portable power sources. Analog circuits, on the other hand, require continuous power to

accurately convert and transmit the electrical signal representing the physical quantity. Also, the circuit

techniques that are required to compensate for variances in power supply and fabrication processes in

analog systems require additional power consumption. For these reasons, analog systems are being

replaced with digital systems wherever possible to exploit their noise immunity, simplicity and low power

consumption. While analog systems will always be needed at the transition between the physical (e.g.,

microphones, camera lenses, sensors, video displays) and the electrical world, it is anticipated that the

push toward digitization of everything in between (e.g., processing, transmission, storage) will continue.

CONCEPT CHECK

CC1.2 When does the magnitude of electrical noise on a digital signal prevent the original informa-

tion from being determined?

(A) When it causes the system to draw too much power.

(B) When the shape of the noise makes the digital signal look smooth and continuous
like a sine wave.

(C) When the magnitude of the noise is large enough that it causes the signal to

inadvertently cross the threshold voltage.

(D) It doesn’t. A digital signal can withstand any magnitude of noise.

Fig. 1.3
Analog (left) vs. digital (right) circuits
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Summary

v An analog system uses a direct mapping
between an electrical quantity and the infor-
mation being processed. A digital system, on
the other hand, uses a discrete representa-
tion of the information.

v Using a discrete representation allows the dig-
ital signals to be more immune to noise in
addition to requiring simple circuits that require
less power to perform the computations.

Exercise Problems

Section 1.1: Differences Between Analog

and Digital Systems

1.1.1 If an electrical signal is a direct function of a
physical quantity, is it considered analog or
digital?

1.1.2 If an electrical signal is a discrete representa-
tion of information, is it considered analog or
digital?

1.1.3 What part of any system will always require an
analog component?

1.1.4 Is the sound coming out of earbuds analog or
digital?

1.1.5 Is the MP3 file stored on an iPod analog or
digital?

1.1.6 Is the circuitry that reads the MP3 file from
memory in an iPod analog or digital?

1.1.7 Is the electrical signal that travels down ear-
phone wires analog or digital?

1.1.8 Is the voltage coming out of the battery in an
iPod analog or digital?

1.1.9 Is the physical interface on the touch display of
an iPod analog or digital?

1.1.10 Take a look around right now and identify two
digital technologies in use.

1.1.11 Take a look around right now and identify two
analog technologies in use.

Section 1.2: Advantages of Digital

Systems over Analog Systems

1.2.1 Give three advantages of using digital systems
over analog.

1.2.2 Name a technology or device that has evolved
from analog to digital in your lifetime.

1.2.3 Name an analog technology or device that has
become obsolete in your lifetime.

1.2.4 Name an analog technology or device that has
been replaced by digital technology but is still
in use due to nostalgia.

1.2.5 Name a technology or device invented in your
lifetime that could not have been possible with-
out digital technology.
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Chapter 2: Number Systems
Logic circuits are used to generate and transmit 1’s and 0’s to compute and convey information. This

two-valued number system is called binary. As presented earlier, there are many advantages of using a

binary system; however, the human brain has been taught to count, label and measure using the

decimal number system. The decimal number system contains 10 unique symbols (0 ! 9) commonly

referred to as the Arabic numerals. Each of these symbols is assigned a relative magnitude to the other

symbols. For example, 0 is less than 1, 1 is less than 2, etc. It is often conjectured that the 10 symbol

number system that we humans use is due to the availability of our 10 fingers (or digits) to visualize

counting up to 10. Regardless, our brains are trained to think of the real world in terms of a decimal

system. In order to bridge the gap between the way our brains think (decimal) and how we build our

computers (binary), we need to understand the basics of number systems. This includes the formal

definition of a positional number system and how it can be extended to accommodate any arbitrarily large

(or small) value. This also includes how to convert between different number systems that contain

different numbers of symbols. In this chapter, we cover 4 different number systems: decimal

(10 symbols), binary (2 symbols), octal (8 symbols), and hexadecimal (16 symbols). The study of

decimal and binary is obvious as they represent how our brains interpret the physical world (decimal)

and how our computers work (binary). Hexadecimal is studied because it is a useful means to represent

large sets of binary values using a manageable number of symbols. Octal is rarely used but is studied as

an example of how the formalization of the number systems can be applied to all systems regardless of

the number of symbols they contain. This chapter will also discuss how to perform basic arithmetic in the

binary number system and represent negative numbers. The goal of this chapter is to provide an

understanding of the basic principles of binary number systems.

Learning Outcomes—After completing this chapter, you will be able to:

2.1 Describe the formation and use of positional number systems.
2.2 Convert numbers between different bases.
2.3 Perform binary addition and subtraction by hand.
2.4 Use two’s complement numbers to represent negative numbers.

2.1 Positional Number Systems

A positional number system allows the expansion of the original set of symbols so that they can be

used to represent any arbitrarily large (or small) value. For example, if we use the 10 symbols in our

decimal system, we can count from 0 to 9. Using just the individual symbols we do not have enough

symbols to count beyond 9. To overcome this, we use the same set of symbols but assign a different

value to the symbol based on its position within the number. The position of the symbol with respect to

other symbols in the number allows an individual symbol to represent greater (or lesser) values. We can

use this approach to represent numbers larger than the original set of symbols. For example, let’s say we

want to count from 0 upward by 1. We begin counting 0, 1, 2, 3, 4, 5, 6, 7, 8 to 9. When we are out of

symbols and wish to go higher, we bring on a symbol in a different position with that position being valued

higher and then start counting over with our original symbols (e.g., . . ., 9, 10, 11,... 19, 20, 21,...). This is

repeated each time a position runs out of symbols (e.g., . . ., 99, 100, 101. . . 999, 1000, 1001,. . .).

First, let’s look at the formation of a number system. The first thing that is needed is a set of symbols.

The formal term for one of the symbols in a number system is a numeral.One or more numerals are used

to form a number. We define the number of numerals in the system using the terms radix or base.
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For example, our decimal number system is said to be base 10, or have a radix of 10 because it consists

of 10 unique numerals or symbols.

Radix ¼ Base � the number of numerals in the number system

The next thing that is needed is the relative value of each numeral with respect to the other numerals

in the set. We can say 0< 1< 2< 3 etc. to define the relative magnitudes of the numerals in this set. The

numerals are defined to be greater or less than their neighbors by a magnitude of 1. For example, in the

decimal number system each of the subsequent numerals is greater than its predecessor by exactly

1. When we define this relative magnitude we are defining that the numeral 1 is greater than the numeral

0 by a magnitude of 1; the numeral 2 is greater than the numeral 1 by a magnitude of 1, etc. At this point

we have the ability to count from 0 to 9 by 1’s. We also have the basic structure for mathematical

operations that have results that fall within the numeral set from 0 to 9 (e.g., 1 + 2¼ 3). In order to expand

the values that these numerals can represent, we need define the rules of a positional number system.

2.1.1 Generic Structure

In order to represent larger or smaller numbers than the lone numerals in a number system can

represent, we adopt a positional system. In a positional number system, the relative position of the

numeral within the overall number dictates its value. When we begin talking about the position of a

numeral, we need to define a location to which all of the numerals are positioned with respect to. We

define the radix point as the point within a number to which numerals to the left represent whole numbers

and numerals to the right represent fractional numbers. The radix point is denoted with a period (i.e., “.”).

A particular number system often renames this radix point to reflect its base. For example, in the base

10 number system (i.e., decimal), the radix point is commonly called the decimal point; however, the term

radix point can be used across all number systems as a generic term. If the radix point is not present in a

number, it is assumed to be to the right of number. Figure 2.1 shows an example number highlighting the

radix point and the relative positions of the whole and fractional numerals.

Next, we need to define the position of each numeral with respect to the radix point. The position of

the numeral is assigned a whole number with the number to the left of the radix point having a position

value of 0. The position number increases by 1 as numerals are added to the left (2, 3, 4. . .) and

decreased by 1 as numerals are added to the right (�1, �2, �3). We will use the variable p to represent

position. The position number will be used to calculate the value of each numeral in the number based on

its relative position to the radix point. Figure 2.2 shows the example number with the position value of

each numeral highlighted.

Fig. 2.1
Definition of radix point

Fig. 2.2
Definition of position number (p) within the number
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In order to create a generalized format of a number, we assign the term digit (d) to each of the

numerals in the number. The term digit signifies that the numeral has a position. The position of the digit

within the number is denoted as a subscript. The term digit can be used as a generic term to describe a

numeral across all systems, although some number systems will use a unique term instead of digit which

indicates its base. For example, the binary system uses the term bit instead of digit; however, using the

term digit to describe a generic numeral in any system is still acceptable. Figure 2.3 shows the generic

subscript notation used to describe the position of each digit in the number.

We write a number from left to right starting with the highest position digit that is greater than 0 and

end with the lowest position digit that is greater than 0. This reduces the amount of numerals that are

written; however, a number can be represented with an arbitrary number of 0’s to the left of the highest

position digit greater than 0 and an arbitrary number of 0’s to the right of the lowest position digit greater

than 0 without affecting the value of the number. For example, the number 132.654 could be written as

0132.6540 without affecting the value of the number. The 0’s to the left of the number are called leading

0’s and the 0’s to the right of the number are called trailing 0’s. The reason this is being stated is because

when a number is implemented in circuitry, the number of numerals is fixed and each numeral must have

a value. The variable n is used to represent the number of numerals in a number. If a number is defined

with n ¼ 4, that means 4 numerals are always used. The number 0 would be represented as 0000 with

both representations having an equal value.

2.1.2 Decimal Number System (Base 10)

As mentioned earlier, the decimal number system contains 10 unique numerals (0, 1, 2, 3, 4, 5, 6, 7,

8 and 9). This system is thus a base 10 or a radix 10 system. The relative magnitudes of the symbols are

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.

2.1.3 Binary Number System (Base 2)

The binary number system contains 2 unique numerals (0 and 1). This system is thus a base 2 or a

radix 2 system. The relative magnitudes of the symbols are 0 < 1. At first glance, this system looks very

limited in its ability to represent large numbers due to the small number of numerals. When counting up,

as soon as you count from 0 to 1, you are out of symbols and must increment the p + 1 position in order to

represent the next number (e.g., 0, 1, 10, 11, 100, 101, . . .); however, magnitudes of each position scale

quickly so that circuits with a reasonable amount of digits can represent very large numbers. The term bit

is used instead of digit in this system to describe the individual numerals and at the same time indicate

the base of the number.

Due to the need for multiple bits to represent meaningful information, there are terms dedicated to

describe the number of bits in a group. When 4 bits are grouped together, they are called a nibble. When

8 bits are grouped together, they are called a byte. Larger groupings of bits are calledwords. The size of

the word can be stated as either an n-bit word or omitted if the size of the word is inherently implied. For

example, if you were using a 32-bit microprocessor, using the term word would be interpreted as a 32-bit

word. For example, if there was a 32-bit grouping, it would be referred to as a 32-bit word. The leftmost bit

Fig. 2.3
Digit notation
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in a binary number is called the Most Significant Bit (MSB). The rightmost bit in a binary number is

called the Least Significant Bit (LSB).

2.1.4 Octal Number System (Base 8)

The octal number system contains 8 unique numerals (0, 1, 2, 3, 4, 5, 6, 7). This system is thus a

base 8 or a radix 8 system. The relative magnitudes of the symbols are 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7.

We use the generic term digit to describe the numerals within an octal number.

2.1.5 Hexadecimal Number System (Base 16)

The hexadecimal number system contains 16 unique numerals. This system is most often referred

to in spoken word as “hex” for short. Since we only have 10 Arabic numerals in our familiar decimal

system, we need to use other symbols to represent the remaining 6 numerals. We use the alphabetic

characters A-F in order to expand the system to 16 numerals. The 16 numerals in the hexadecimal

system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The relative magnitudes of the symbols are

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < D < E < F. We use the generic term digit to

describe the numerals within a hexadecimal number.

At this point, it becomes necessary to indicate the base of a written number. The number 10 has an

entirely different value if it is a decimal number or binary number. In order to handle this, a subscript is

typically included at the end of the number to denote its base. For example, 1010 indicates that this

number is decimal “ten”. If the number was written as 102, this number would represent binary “one zero”.

Table 2.1 lists the equivalent values in each of the 4 number systems just described for counts from 010 to

1510. The left side of the table does not include leading 0’s. The right side of the table contains the same

information but includes the leading zeros. The equivalencies of decimal, binary and hexadecimal in this

table are typically committed to memory.

Table 2.1
Number system equivalency
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CONCEPT CHECK

CC2.1 The base of a number system is arbitrary and is commonly selected to match a particular

aspect of the physical system in which it is used (e.g., base 10 corresponds to our 10 fingers,

base 2 corresponds to the 2 states of a switch). If a physical system contained 3 unique
modes and a base of 3 was chosen for the number system, what is the base 3 equivalent of

the decimal number 3?

(A) 310 ¼ 113 (B) 310 ¼ 33 (C) 310 ¼ 103 (D) 310 ¼ 213

2.2 Base Conversion

Now we look at converting between bases. There are distinct techniques for converting to and

from decimal. There are also techniques for converting between bases that are powers of 2 (e.g., base

2, 4, 8, 16, etc.).

2.2.1 Converting to Decimal

The value of each digit within a number is based on the individual digit value and the digit’s position.

Each position in the number contains a different weight based on its relative location to the radix point.

The weight of each position is based on the radix of the number system that is being used. The weight of

each position in decimal is defined as:

Weight ¼ Radixð Þp

This expression gives the number system the ability to represent fractional numbers since an

expression with a negative exponent (e.g., x�y) is evaluated as one over the expression with the

exponent change to positive (e.g., 1/xy). Figure 2.4 shows the generic structure of a number with its

positional weight highlighted.

In order to find the decimal value of each of the numerals in the number, its individual numeral value

is multiplied by its positional weight. In order to find the value of the entire number, each value of the

individual numeral-weight products is summed. The generalized format of this conversion is written as:

Total Decimal Value ¼
X

pmax

i¼pmin

di � radixð Þi

In this expression, pmax represents the highest position number that contains a numeral greater

than 0. The variable pmin represents the lowest position number that contains a numeral greater than 0.

These limits are used to simplify the hand calculations; however, these terms theoretically could be +1

Fig. 2.4
Weight definition
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to�1 with no effect on the result since the summation of every leading 0 and every trailing 0 contributes

nothing to the result.

As an example, let’s evaluate this expression for a decimal number. The result will yield the original

number but will illustrate how positional weight is used. Let’s take the number 132.65410. To find the

decimal value of this number, each numeral is multiplied by its positional weight and then all of

the products are summed. The positional weight for the digit 1 is (radix)p or (10)2. In decimal this is

called the hundred’s position. The positional weight for the digit 3 is (10)1, referred to as the ten’s position.

The positional weight for digit 2 is (10)0, referred to as the one’s position. The positional weight for digit

6 is (10)�1, referred to as the tenth’s position. The positional weight for digit 5 is (10)�2, referred to as the

hundredth’s position. The positional weight for digit 4 is (10)�3, referred to as the thousandth’s position.

When these weights are multiplied by their respective digits and summed, the result is the original

decimal number 132.65410. Example 2.1 shows this process step-by-step.

This process is used to convert between any other base to decimal.

2.2.1.1 Binary to Decimal

Let’s convert 101.112 to decimal. The same process is followed with the exception that the base in

the summation is changed to 2. Converting from binary to decimal can be accomplished quickly in your

head due to the fact that the bit values in the products are either 1 or 0. That means any bit that is a 0 has

no impact on the outcome and any bit that is a 1 simply yields the weight of its position. Example 2.2

shows the step-by-step process converting a binary number to decimal.

Example 2.1
Converting decimal to decimal
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2.2.1.2 Octal to Decimal

When converting from octal to decimal, the same process is followed with the exception that the

base in the weight is changed to 8. Example 2.3 shows an example of converting an octal number to

decimal.

Example 2.2
Converting binary to decimal

Example 2.3
Converting octal to decimal
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2.2.1.3 Hexadecimal to Decimal

Let’s convert 1AB.EF16 to decimal. The same process is followed with the exception that the base is

changed to 16. When performing the conversion, the decimal equivalent of the numerals A-F need to be

used. Example 2.4 shows the step-by-step process converting a hexadecimal number to decimal.

2.2.2 Converting From Decimal

The process of converting from decimal to another base consists of two separate algorithms. There

is one algorithm for converting the whole number portion of the number and another algorithm for

converting the fractional portion of the number. The process for converting the whole number portion

is to divide the decimal number by the base of the system you wish to convert to. The division will result in

a quotient and a whole number remainder. The remainder is recorded as the least significant numeral in

the converted number. The resulting quotient is then divided again by the base, which results in a new

quotient and new remainder. The remainder is recorded as the next higher order numeral in the new

number. This process is repeated until a quotient of 0 is achieved. At that point the conversion is

complete. The remainders will always be within the numeral set of the base being converted to.

The process for converting the fractional portion is to multiply just the fractional component of the

number by the base. This will result in a product that contains a whole number and a fraction. The whole

number is recorded as themost significant digit of the new converted number. The new fractional portion

is then multiplied again by the base with the whole number portion being recorded as the next lower order

numeral. This process is repeated until the product yields a fractional component equal to zero or the

desired level of accuracy has been achieved. The level of accuracy is specified by the number of

numerals in the new converted number. For example, the conversion would be stated as “convert this

decimal number to binary with a fractional accuracy of 4 bits”. This means the algorithm would stop once

4-bits of fraction had been achieved in the conversion.

Example 2.4
Converting hexadecimal to decimal
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2.2.2.1 Decimal to Binary

Let’s convert 11.37510 to binary. Example 2.5 shows the step-by-step process converting a decimal

number to binary.

2.2.2.2 Decimal to Octal

Let’s convert 10.410 to octal with an accuracy of 4 fractional digits. When converting the fractional

component of the number, the algorithm is continued until 4 digits worth of fractional numerals has been

achieved. Once the accuracy has been achieved, the conversion is finished even though a product with

a zero fractional value has not been obtained. Example 2.6 shows the step-by-step process converting a

decimal number to octal with a fractional accuracy of 4 digits.

Example 2.5
Converting decimal to binary
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2.2.2.3 Decimal to Hexadecimal

Let’s convert 254.65510 to hexadecimal with an accuracy of 3 fractional digits. When doing this

conversion, all of the divisions and multiplications are done using decimal. If the results end up between

1010 and 1510, then the decimal numbers are substituted with their hex symbol equivalent (i.e., A to F).

Example 2.7 shows the step-by-step process of converting a decimal number to hex with a fractional

accuracy of 3 digits.

Example 2.6
Converting decimal to octal
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2.2.3 Converting Between 2n Bases

Converting between 2n bases (e.g., 2, 4, 8, 16, etc.) takes advantage of the direct mapping that each

of these bases has back to binary. Base 8 numbers take exactly 3 binary bits to represent all 8 symbols

(i.e., 08 ¼ 0002, 78 ¼ 1112). Base 16 numbers take exactly 4 binary bits to represent all 16 symbols (i.e.,

016 ¼ 00002, F16 ¼ 11112).

When converting from binary to any other 2n base, the whole number bits are grouped into the

appropriate-sized sets starting from the radix point and working left. If the final leftmost grouping does not

have enough symbols, it is simply padded on left with leading 0’s. Each of these groups is then directly

substituted with their 2n base symbol. The fractional number bits are also grouped into the appropriate-

sized sets starting from the radix point, but this time working right. Again, if the final rightmost grouping

does not have enough symbols, it is simply padded on the right with trailing 0’s. Each of these groups is

then directly substituted with their 2n base symbol.

2.2.3.1 Binary to Octal

Example 2.8 shows the step-by-step process of converting a binary number to octal.

Example 2.7
Converting decimal to hexadecimal
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2.2.3.2 Binary to Hexadecimal

Example 2.9 shows the step-by-step process of converting a binary number to hexadecimal.

2.2.3.3 Octal to Binary

When converting to binary from any 2n base, each of the symbols in the originating number are

replaced with the appropriate-sized number of bits. An octal symbol will be replaced with 3 binary bits

while a hexadecimal symbol will be replaced with 4 binary bits. Any leading or trailing 0’s can be removed

Example 2.8
Converting binary to octal

Example 2.9
Converting binary to hexadecimal
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from the converted number once complete. Example 2.10 shows the step-by-step process of converting

an octal number to binary.

2.2.3.4 Hexadecimal to Binary

Example 2.11 shows the step-by-step process of converting a hexadecimal number to binary.

2.2.3.5 Octal to Hexadecimal

When converting between 2n bases (excluding binary) the number is first converted into binary and

then converted from binary into the final 2n base using the algorithms described before. Example 2.12

shows the step-by-step process of converting an octal number to hexadecimal.

Example 2.10
Converting octal to binary

Example 2.11
Converting hexadecimal to binary
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2.2.3.6 Hexadecimal to Octal

Example 2.13 shows the step-by-step process of converting a hexadecimal number to octal.

Example 2.12
Converting octal to hexadecimal

Example 2.13
Converting hexadecimal to octal
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CONCEPT CHECK

CC2.2 A “googol” is the term for the decimal number 1e100. When written out manually this number

is a 1 with 100 zeros after it (e.g., 10,000,000,000,000,000,000,000,000,000,000,000,000,

000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000).
This term is more commonly associated with the search engine company Google, which uses a

different spelling but is pronounced the same. Howmany bits does it take to represent a googol in

binary?

(A) 100 bits (B) 256 bits (C) 332 bits (D) 333 bits

2.3 Binary Arithmetic

2.3.1 Addition (Carries)

Binary addition is a straightforward process that mirrors the approach we have learned for longhand

decimal addition. The two numbers (or terms) to be added are aligned at the radix point and addition

begins at the least significant bit. If the sum of the least significant position yields a value with two bits

(e.g., 102), then the least significant bit is recorded and the most significant bit is carried to the next higher

position. The sum of the next higher position is then performed including the potential carry bit from the

prior addition. This process continues from the least significant position to the most significant position.

Example 2.14 shows how addition is performed on two individual bits.

When performing binary addition, the width of the inputs and output is fixed (i.e., n-bits). Carries that

exist within the n-bits are treated in the normal fashion of including them in the next higher position sum;

however, if the highest position summation produces a carry, this is a uniquely named event. This event

is called a carry out or the sum is said to generate a carry. The reason this type of event is given special

terminology is because in real circuitry, the number of bits of the inputs and output is fixed in hardware

and the carry out is typically handled by a separate circuit. Example 2.15 shows this process when

adding two 4-bit numbers.

Example 2.14
Single bit binary addition
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The largest decimal sum that can result from the addition of two binary numbers is given by

2�(2n�1). For example, two 8-bit numbers to be added could both represent their highest decimal value

of (2n�1) or 25510 (i.e., 1111 11112). The sum of this number would result in 51010 or (1 1111 11102).

Notice that the largest sum achievable would only require one additional bit. This means that a single

carry bit is sufficient to handle all possible magnitudes for binary addition.

2.3.2 Subtraction (Borrows)

Binary subtraction also mirrors longhand decimal subtraction. In subtraction, the formal terms for the

two numbers being operated on are minuend and subtrahend. The subtrahend is subtracted from the

minuend to find the difference. In longhand subtraction, the minuend is the top number and the

subtrahend is the bottom number. For a given position if the minuend is less than the subtrahend, it

needs to borrow from the next higher order position to produce a difference that is positive. If the next

higher position does not have a value that can be borrowed from (i.e., 0), then it in turn needs to borrow

from the next higher position, and so forth. Example 2.16 shows how subtraction is performed on two

individual bits.

As with binary addition, binary subtraction is accomplished on fixed widths of inputs and output (i.e.,

n-bits). The minuend and subtrahend are aligned at the radix point and subtraction begins at the least

significant bit position. Borrows are used as necessary as the subtractions move from the least signifi-

cant position to the most significant position. If the most significant position requires a borrow, this is a

uniquely named event. This event is called a borrow in or the subtraction is said to require a borrow.

Again, the reason this event is uniquely named is because in real circuitry, the number of bits of the input

Example 2.16
Single bit binary subtraction

Example 2.15
Multiple bit binary addition
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and output is fixed in hardware and the borrow in is typically handled by a separate circuit. Example 2.17

shows this process when subtracting two 4-bit numbers.

Notice that if the minuend is less than the subtrahend, then the difference will be negative. At this

point, we need a way to handle negative numbers.

CONCEPT CHECK

CC2.3 If an 8-bit computer system can only perform unsigned addition on 8-bit inputs and produce an

8-bit sum, how is it possible for this computer to perform addition on numbers that are larger than

what can be represented with 8-bits (e.g., 1,00010 + 1,00010 ¼ 2,00010)?

(A) There are multiple 8-bit adders in a computer to handle large numbers.

(B) The result is simply rounded to the nearest 8-bit number.

(C) The computer returns an error and requires smaller numbers to be entered.

(D) The computer keeps track of the carry out and uses it in a subsequent 8-bit

addition, which enables larger numbers to be handled.

2.4 Unsigned and Signed Numbers

All of the number systems presented in the prior sections were positive. We need to also have a

mechanism to indicate negative numbers. When looking at negative numbers, we only focus on the

mapping between decimal and binary since octal and hexadecimal are used as just another representa-

tion of a binary number. In decimal, we are able to use the negative sign in front of a number to indicate it

is negative (e.g., �3410). In binary, this notation works fine for writing numbers on paper (e.g., �10102),

but we need a mechanism that can be implemented using real circuitry. In a real digital circuit, the circuits

can only deal with 0’s and 1’s. There is no “�” in a digital circuit. Since we only have 0’s and 1’s in the

hardware, we use a bit to represent whether a number is positive or negative. This is referred to as the

sign bit. If a binary number is not going to have any negative values, then it is called an unsigned number

and it can only represent positive numbers. If a binary number is going to allow negative numbers, it is

called a signed number. It is important to always keep track of the type of number we are using as the

same bit values can represent very different numbers depending on the coding mechanism that is

being used.

Example 2.17
Multiple bit binary subtraction
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2.4.1 Unsigned Numbers

An unsigned number is one that does not allow negative numbers. When talking about this type of

code, the number of bits is fixed and stated up front. We use the variable n to represent the number of bits

in the number. For example, if we had an 8-bit number, we would say, “This is an 8-bit, unsigned number”.

The number of unique codes in an unsigned number is given by 2n. For example, if we had an 8-bit

number, we would have 28 or 256 unique codes (e.g., 0000 00002 to 1111 11112).

The range of an unsigned number refers to the decimal values that the binary code can represent. If

we use the notationNunsigned to represent any possible value that an n-bit, unsigned number can take on,

the range would be defined as: 0 < Nunsigned < (2n � 1)

Range of an UNSIGNED number ) 0 � Nunsigned � 2n�1ð Þ

For example, if we had an unsigned number with n ¼ 4, it could take on a range of values from +010
(00002) to +1510 (11112). Notice that while this number has 16 unique possible codes, the highest

decimal value it can represent is 1510. This is because one of the unique codes represents 010. This is

the reason that the highest decimal value that can be represented is given by (2n�1). Example 2.18

shows this process for a 16-bit number.

2.4.2 Signed Numbers

Signed numbers are able to represent both positive and negative numbers. The most significant bit

of these numbers is always the sign bit, which represents whether the number is positive or negative.

The sign bit is defined to be a 0 if the number is positive and 1 if the number is negative. When using

signed numbers, the number of bits is fixed so that the sign bit is always in the same position. There are a

variety of ways to encode negative numbers using a sign bit. The encoding method used exclusively in

modern computers is called two’s complement. There are two other encoding techniques called signed

magnitude and one’s complement that are rarely used but are studied to motivate the power of two’s

complement. When talking about a signed number, the number of bits and the type of encoding is always

stated. For example, we would say, “This is an 8-bit, two’s complement number”.

Example 2.18
Finding the range of an unsigned number
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2.4.2.1 Signed Magnitude

Signed Magnitude is the simplest way to encode a negative number. In this approach, the most

significant bit (i.e., leftmost bit) of the binary number is considered the sign bit (0¼ positive, 1¼ negative).

The rest of the bits to the right of the sign bit represent the magnitude or absolute value of the number. As

an example of this approach, let’s look at the decimal values that a 4-bit, signed magnitude number can

take on. These are shown in Example 2.19.

There are drawbacks of signed magnitude encoding that are apparent from this example. First, the

value of 010 has two signed magnitude codes (00002 and 10002). This is an inefficient use of the

available codes and leads to complexity when building arithmetic circuitry since it must account for

two codes representing the same number.

The second drawback is that addition using the negative numbers does not directly map to how

decimal addition works. For example, in decimal if we added (�5) + (1), the result would be�4. In signed

magnitude, adding these numbers using a traditional adder would produce (�5) + (1) ¼ (�6). This is

because the traditional addition would take place on the magnitude portion of the number. A 510 is

represented with 1012. Adding 1 to this number would result in the next higher binary code 1102 or 610.

Since the sign portion is separate, the addition is performed on |5|, thus yielding 6. Once the sign bit is

included, the resulting number is �6. It is certainly possible to build an addition circuit that works on

signed magnitude numbers, but it is more complex than a traditional adder because it must perform a

different addition operation for the negative numbers versus the positive numbers. It is advantageous to

have a single adder that works across the entire set of numbers.

Due to the duplicate codes for 0, the range of decimal numbers that signedmagnitude can represent

is reduced by 1 compared to unsigned encoding. For an n-bit number, there are 2n unique binary codes

available but only 2n�1 can be used to represent unique decimal numbers. If we use the notation NSM to

represent any possible value that an n-bit, signed magnitude number can take on, the range would be

defined as:

Range of a SIGNED MAGNITUDE number ) � 2n�1 � 1
� �

� NSM � þ 2n�1�1
� �

Example 2.19
Decimal values that a 4-bit, signed magnitude code can represent
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Example 2.20 shows how to use this expression to find the range of decimal values that an 8-bit,

signed magnitude code can represent.

The process to determine the decimal value from a signed magnitude binary code involves treating

the sign bit separately from the rest of the code. The sign bit provides the polarity of the decimal number

(0 ¼ Positive, 1 ¼ Negative). The remaining bits in the code are treated as unsigned numbers and

converted to decimal using the standard conversion procedure described in the prior sections. This

conversion yields the magnitude of the decimal number. The final decimal value is found by applying the

sign. Example 2.21 shows an example of this process.

2.4.2.2 One’s Complement

One’s complement is another simple way to encode negative numbers. In this approach, the

negative number is obtained by taking its positive equivalent and flipping all of the 1’s to 0’s and 0’s to

1’s. This procedure of flipping the bits is called a complement (notice the two e’s). In this way, the most

significant bit of the number is still the sign bit (0 ¼ positive, 1 ¼ negative). The rest of the bits represent

Example 2.20
Finding the range of a signed magnitude number

Example 2.21
Finding the decimal value of a signed magnitude number
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the value of the number, but in this encoding scheme the negative number values are less intuitive. As an

example of this approach, let’s look at the decimal values that a 4-bit, one’s complement number can

take on. These are shown in Example 2.22.

Again, we notice that there are two different codes for 010 (00002 and 11112). This is a drawback of

one’s complement because it reduces the possible range of numbers that can be represented from 2n to

(2n�1) and requires arithmetic operations that take into account the gap in the number system. There are

advantages of one’s complement, however. First, the numbers are ordered such that traditional addition

works on both positive and negative numbers (excluding the double 0 gap). Taking the example of

(�5) + (1) again, in one’s complement the result yields �4, just as in a traditional decimal system. Notice

in one’s complement, �510 is represented with 10102. Adding 1 to this entire binary code would result in

the next higher binary code 10112 or �410 from the above table. This makes addition circuitry less

complicated, but still not as simple as if the double 0 gap was eliminated. Another advantage of one’s

complement is that as the numbers are incremented beyond the largest value in the set, they roll over

and start counting at the lowest number. For example, if you increment the number 01112 (710), it goes to

the next higher binary code 10002, which is �710. The ability to have the numbers roll over is a useful

feature for computer systems.

If we use the notation N1comp to represent any possible value that an n-bit, one’s complement

number can take on, the range is defined as:

Range of a ONE’S COMPLEMENT number ) � 2n�1�1
� �

� N1’s comp � þ 2n�1�1
� �

Example 2.23 shows how to use this expression to find the range of decimal values that a 24-bit,

one’s complement code can represent.

Example 2.22
Decimal values that a 4-bit, one’s complement code can represent
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The process of finding the decimal value of a one’s complement number involves first identifying

whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the sign

bit is 0), then the number is treated as an unsigned code and is converted to decimal using the standard

conversion procedure described in prior sections. If the number is negative (i.e., the sign bit is 1), then the

number sign is recorded separately and the code is complemented in order to convert it to its positive

magnitude equivalent. This new positive number is then converted to decimal using the standard conver-

sion procedure. As the final step, the sign is applied. Example 2.24 shows an example of this process.

2.4.2.3 Two’s Complement

Two’s complement is an encoding scheme that addresses the double 0 issue in signed magnitude

and 1’s complement representations. In this approach, the negative number is obtained by subtracting its

positive equivalent from 2n. This is identical to performing a complement on the positive equivalent and

then adding one. If a carry is generated, it is discarded. This procedure is called “taking the two’s

complement of a number”. The procedure of complementing each bit and adding one is the most

common technique to perform a two’s complement. In this way, the most significant bit of the number

is still the sign bit (0¼ positive, 1¼ negative) but all of the negative numbers are in essence shifted up so

Example 2.23
Finding the range of a 1’s complement number

Example 2.24
Finding the decimal value of a 1’s complement number
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that the double 0 gap is eliminated. Taking the two’s complement of a positive number will give its

negative counterpart and vice versa. Let’s look at the decimal values that a 4-bit, two’s complement

number can take on. These are shown in Example 2.25.

There are many advantages of two’s complement encoding. First, there is no double 0 gap, which

means that all possible 2n unique codes that can exist in an n-bit number are used. This gives the largest

possible range of numbers that can be represented. Another advantage of two’s complement is that

addition with negative numbers works exactly the same as decimal. In our example of (�5) + (1), the

result (�4). Arithmetic circuitry can be built to mimic the way our decimal arithmetic works without the

need to consider the double 0 gap. Finally, the rollover characteristic is preserved from one’s comple-

ment. Incrementing +7 by +1 will result in �8.

If we use the notation N2comp to represent any possible value that an n-bit, two’s complement

number can take on, the range is defined as:

Range of a TWO’S COMPLEMENT number ) � 2n�1
� �

� N2’s comp � þ 2n�1�1
� �

Example 2.26 shows how to use this expression to find the range of decimal values that a 32-bit,

two’s complement code can represent.

Example 2.25
Decimal values that a 4-bit, two’s complement code can represent
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The process of finding the decimal value of a two’s complement number involves first identifying

whether the number is positive or negative by looking at the sign bit. If the number is positive (i.e., the

sign bit is 0), then the number is treated as an unsigned code and is converted to decimal using

the standard conversion procedure described in prior sections. If the number is negative (i.e., the sign

bit is 1), then the number sign is recorded separately and a two’s complement is performed on the code in

order to convert it to its positive magnitude equivalent. This new positive number is then converted to

decimal using the standard conversion procedure. The final step is to apply the sign. Example 2.27

shows an example of this process.

To convert a decimal number into its two’s complement code, the range is first checked to determine

whether the number can be represented with the allocated number of bits. The next step is to convert the

decimal number into unsigned binary. The final step is to apply the sign bit. If the original decimal number

was positive, then the conversion is complete. If the original decimal number was negative, then the

two’s complement is taken on the unsigned binary code to find its negative equivalent. Example 2.28

shows this procedure when converting �9910 to its 8-bit, two’s complement code.

Example 2.27
Finding the decimal value of a two’s complement number

Example 2.26
Finding the range of a two’s complement number
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2.4.2.4 Arithmetic with Two’s Complement

Two’s complement has a variety of arithmetic advantages. First, the operations of addition, subtrac-

tion and multiplication are handled exactly the same as when using unsigned numbers. This means that

duplicate circuitry is not needed in a system that uses both number types. Second, the ability to convert

a number from positive to its negative representation by performing a two’s complement means

that an adder circuit can be used for subtraction. For example, if we wanted to perform the subtraction

1310 – 410 ¼ 910, this is the same as performing 1310 + (�410)¼ 910. This allows us to use a single adder

circuit to perform both addition and subtraction as long as we have the ability to take the two’s

complement of a number. Creating a circuit to perform two’s complement can be simpler and faster

than building a separate subtraction circuit, so this approach can sometimes be advantageous.

There are specific rules for performing two’s complement arithmetic that must be followed to ensure

proper results. First, any carry or borrow that is generated is ignored. The second rule that must be

followed is to always check if two’s complement overflow occurred. Two’s complement overflow refers

to when the result of the operation falls outside of the range of values that can be represented by the

number of bits being used. For example, if you are performing 8-bit, two’s complement addition,

the range of decimal values that can be represented is �12810 to +12710. Having two input terms of

12710 (0111 11112) is perfectly legal because they can be represented by the 8-bits of the two’s

Example 2.28
Finding the two’s complement code of a decimal number
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complement number; however, the summation of 12710 + 12710 ¼ 25410 (111111102). This number does

not fit within the range of values that can be represented and is actually the two’s complement code for

�210, which is obviously incorrect. Two’s complement overflow occurs if any of the following occurs:

• The sum of like signs results in an answer with opposite sign (i.e., Positive + Positive ¼ Neg-
ative or Negative + Negative ¼ Positive)

• The subtraction of a positive number from a negative number results in a positive number (i.e.,
Negative – Positive ¼ Positive)

• The subtraction of a negative number from a positive number results in a negative number (i.e.,
Positive – Negative ¼ Negative)

Computer systems that use two’s complement have a dedicated logic circuit that monitors for any of

these situations and lets the operator know that overflow has occurred. These circuits are straightforward

since they simply monitor the sign bits of the input and output codes. Example 2.29 shows how to use

two’s complement in order to perform subtraction using an addition operation.

Example 2.29
Two’s complement addition
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CONCEPT CHECK

CC2.4 A 4-bit, two’s complement number has 16 unique codes and can represent decimal numbers

between �810 to +710. If the number of unique codes is even, why is it that the range of

integers it can represent is not symmetrical about zero?

(A) One of the positive codes is used to represent zero. This prevents the highest

positive number from reaching +810 and being symmetrical.

(B) It is asymmetrical because the system allows the numbers to roll over.

(C) It isn’t asymmetrical if zero is considered a positive integer. That way there are
eight positive numbers and eight negatives numbers.

(D) It is asymmetrical because there are duplicate codes for 0.

Summary

v The base, or radix, of a number system refers
to the number of unique symbols within its
set. The definition of a number system
includes both the symbols used and the rela-
tive values of each symbol within the set.

v Themost common number systems are base
10 (decimal), base 2 (binary), and base
16 (hexadecimal). Base 10 is used because
it is how the human brain has been trained to
treat numbers. Base 2 is used because the
two values are easily represented using elec-
trical switches. Base 16 is a convenient way
to describe large groups of bits.

v A positional number system allows larger
(or smaller) numbers to be represented
beyond the values within the original symbol
set. This is accomplished by having each posi-
tion within a number have a different weight.

v There are specific algorithms that are used to
convert any base to or from decimal. There
are also algorithms to convert between num-
ber systems that contain a power-of-two
symbols (e.g., binary to hexadecimal and
hexadecimal to binary).

v Binary arithmetic is performed on a fixed width
of bits (n). When an n-bit addition results in a
sum that cannot fit within n-bits, it generates a
carry out bit. In an n-bit subtraction, if the min-
uend is smaller than the subtrahend, a borrow
in can be used to complete the operation.

v Binary codes can represent both unsigned
and signed numbers. For an arbitrary n-bit
binary code, it is important to know the
encoding technique and the range of values
that can be represented.

v Signed numbers use the most significant
position to represent whether the number is
negative (0 ¼ positive, 1 ¼ negative). The
width of a signed number is always fixed.

v Two’s complement is the most common
encoding technique for signed numbers. It
has an advantage that there are no duplicate
codes for zero and that the encoding
approach provides a monotonic progression
of codes from the most negative number that
can be represented to the most positive. This
allows addition and subtraction to work the
same on two’s complement numbers as it
does on unsigned numbers.

v When performing arithmetic using two’s com-
plement codes, the carry bit is ignored.

v When performing arithmetic using two’s com-
plement codes, if the result lies outside of the
range that can be represented it is called
two’s complement overflow. Two’s comple-
ment overflow can be determined by looking
at the sign bits of the input arguments and the
sign bit of the result.

Exercise Problems

Section 2.1: Positional Number Systems

2.1.1 What is the radix of the binary number system?

2.1.2 What is the radix of the decimal number
system?

2.1.3 What is the radix of the hexadecimal number
system?

2.1.4 What is the radix of the octal number system?

2.1.5 For the number 261.367, what position (p) is
the number 2 in?
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2.1.6 For the number 261.367, what position (p) is
the number 1 in?

2.1.7 For the number 261.367, what position (p) is
the number 3 in?

2.1.8 For the number 261.367, what position (p) is
the number 7 in?

2.1.9 What is the name of the number system
containing 102?

2.1.10 What is the name of the number system
containing 1010?

2.1.11 What is the name of the number system
containing 1016?

2.1.12 What is the name of the number system
containing 108?

2.1.13 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 22 be part of?
Give all that are possible.

2.1.14 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 99 be part of?
Give all that are possible.

2.1.15 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 1F be part of?
Give all that are possible.

2.1.16 Which of the four number systems covered in
this chapter (i.e., binary, decimal, hexadecimal,
and octal) could the number 88 be part of?
Give all that are possible.

Section 2.2: Base Conversions

2.2.1 If the number 101.111 has a radix of 2,
what is the weight of the position containing
the bit 0?

2.2.2 If the number 261.367 has a radix of 10, what is
the weight of the position containing the
numeral 2?

2.2.3 If the number 261.367 has a radix of 16, what is
the weight of the position containing the
numeral 1?

2.2.4 If the number 261.367 has a radix of 8, what is
the weight of the position containing the
numeral 3?

2.2.5 Convert 1100 11002 to decimal. Treat all num-
bers as unsigned.

2.2.6 Convert 1001.10012 to decimal. Treat all num-
bers as unsigned.

2.2.7 Convert 728 to decimal. Treat all numbers as
unsigned.

2.2.8 Convert 12.578 to decimal. Treat all numbers
as unsigned.

2.2.9 Convert F316 to decimal. Treat all numbers as
unsigned.

2.2.10 Convert 15B.CEF16 to decimal. Treat all num-
bers as unsigned. Use an accuracy of 7 frac-
tional digits.

2.2.11 Convert 6710 to binary. Treat all numbers as
unsigned.

2.2.12 Convert 252.98710 to binary. Treat all numbers
as unsigned. Use an accuracy of 4 fractional
bits and don’t round up.

2.2.13 Convert 6710 to octal. Treat all numbers as
unsigned.

2.2.14 Convert 252.98710 to octal. Treat all numbers
as unsigned. Use an accuracy of 4 fractional
digits and don’t round up.

2.2.15 Convert 6710 to hexadecimal. Treat all num-
bers as unsigned.

2.2.16 Convert 252.98710 to hexadecimal. Treat all
numbers as unsigned. Use an accuracy of
4 fractional digits and don’t round up.

2.2.17 Convert 1 0000 11112 to octal. Treat all num-
bers as unsigned.

2.2.18 Convert 1 0000 1111.0112 to hexadecimal.
Treat all numbers as unsigned.

2.2.19 Convert 778 to binary. Treat all numbers as
unsigned.

2.2.20 Convert F.A16 to binary. Treat all numbers as
unsigned.

2.2.21 Convert 668 to hexadecimal. Treat all numbers
as unsigned.

2.2.22 Convert AB.D16 to octal. Treat all numbers as
unsigned.

Section 2.3: Binary Arithmetic

2.3.1 Compute 10102 + 10112 by hand. Treat all
numbers as unsigned. Provide the 4-bit sum
and indicate whether a carry out occurred.

2.3.2 Compute 1111 11112 + 0000 00012 by hand.
Treat all numbers as unsigned. Provide the 8-bit
sum and indicate whether a carry out occurred.

2.3.3 Compute 1010.10102 + 1011.10112 by hand.
Treat all numbers as unsigned. Provide the 8-bit
sum and indicate whether a carry out occurred.

2.3.4 Compute 1111 1111.10112 + 0000 0001.11002
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit sum and indicate whether a
carry out occurred.

2.3.5 Compute 10102 � 10112 by hand. Treat all
numbers as unsigned. Provide the 4-bit differ-
ence and indicate whether a borrow in
occurred.

2.3.6 Compute 1111 11112 � 0000 00012 by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.7 Compute 1010.10102 � 1011.10112 by hand.
Treat all numbers as unsigned. Provide the
8-bit difference and indicate whether a borrow
in occurred.

2.3.8 Compute 1111 1111.10112 � 0000 0001.11002
by hand. Treat all numbers as unsigned. Pro-
vide the 12-bit difference and indicate whether
a borrow in occurred.
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Section 2.4: Unsigned and Signed

Numbers

2.4.1 What range of decimal numbers can be
represented by 8-bit, two’s complement
numbers?

2.4.2 What range of decimal numbers can be
represented by 16-bit, two’s complement
numbers?

2.4.3 What range of decimal numbers can be
represented by 32-bit, two’s complement
numbers?

2.4.4 What range of decimal numbers can be
represented by 64-bit, two’s complement
numbers?

2.4.5 What is the 8-bit, two’s complement code for
+8810?

2.4.6 What is the 8-bit, two’s complement code for
�8810?

2.4.7 What is the 8-bit, two’s complement code
for �12810?

2.4.8 What is the 8-bit, two’s complement code
for �110?

2.4.9 What is the decimal value of the 4-bit, two’s
complement code 00102?

2.4.10 What is the decimal value of the 4-bit, two’s
complement code 10102?

2.4.11 What is the decimal value of the 8-bit, two’s
complement code 0111 11102?

2.4.12 What is the decimal value of the 8-bit, two’s
complement code 1111 11102?

2.4.13 Compute 11102 + 10112 by hand. Treat all
numbers as 4-bit, two’s complement codes.
Provide the 4-bit sum and indicate whether
two’s complement overflow occurred.

2.4.14 Compute 1101 11112 + 0000 00012 by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

2.4.15 Compute 1010.10102 + 1000.10112 by hand.
Treat all numbers as 8-bit, two’s complement
codes. Provide the 8-bit sum and indicate
whether two’s complement overflow occurred.

2.4.16 Compute 1110 1011.10012 + 0010 0001.11012
by hand. Treat all numbers as 12-bit, two’s
complement codes. Provide the 12-bit sum
and indicate whether two’s complement over-
flow occurred.

2.4.17 Compute 410 – 510 using 4-bit two’s comple-
ment addition. You will need to first convert
each number into its 4-bit two’s complement
code and then perform binary addition (i.e.,
410 + (�510)). Provide the 4-bit result and indi-
cate whether two’s complement overflow
occurred. Check your work by converting the
4-bit result back to decimal.

2.4.18 Compute 710 � 710 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addition
(i.e., 710 + (�710)). Provide the 4-bit result and
indicate whether two’s complement overflow
occurred. Check your work by converting the
4-bit result back to decimal.

2.4.19 Compute 710 + 110 using 4-bit two’s comple-
ment addition. You will need to first convert
each decimal number into its 4-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 4-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 4-bit result
back to decimal.

2.4.20 Compute 6410 � 10010 using 8-bit two’s com-
plement addition. You will need to first convert
each number into its 8-bit two’s complement
code and then perform binary addition (i.e.,
6410 + (�10010)). Provide the 8-bit result and
indicate whether two’s complement overflow
occurred. Check your work by converting the
8-bit result back to decimal.

2.4.21 Compute (�99)10� 1110 using 8-bit two’s com-
plement addition. You will need to first convert
each decimal number into its 8-bit two’s com-
plement code and then perform binary addition
(i.e., (�9910) + (�1110)). Provide the 8-bit result
and indicate whether two’s complement over-
flow occurred. Check your work by converting
the 8-bit result back to decimal.

2.4.22 Compute 5010 + 10010 using 8-bit two’s com-
plement addition. You will need to first convert
each decimal number into its 8-bit two’s com-
plement code and then perform binary addi-
tion. Provide the 8-bit result and indicate
whether two’s complement overflow occurred.
Check your work by converting the 8-bit result
back to decimal.
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Chapter 3: Digital Circuitry

and Interfacing
Now we turn our attention to the physical circuitry and electrical quantities that are used to represent

and operate on the binary codes 1 and 0. In this chapter we begin by looking at how logic circuits are

described and introduce the basic set of gates used for all digital logic operations. We then look at the

underlying circuitry that implements the basic gates including digital signaling and how voltages are used

to represent 1’s and 0’s. We then look at interfacing between two digital circuits and how to ensure that

when one circuit sends a binary code, the receiving circuit is able to determine which code was sent.

Logic families are then introduced and the details of how basic gates are implemented at the switch level

are presented. Finally, interfacing considerations are covered for the most common types of digital loads

(i.e., other gates, resistors, and LEDs). The goal of this chapter is to provide an understanding of the

basic electrical operation of digital circuits.

Learning Outcomes—After completing this chapter, you will be able to:

3.1 Describe the functional operation of a basic logic gate using truth tables, logic expressions,
and logic waveforms.

3.2 Analyze the DC and AC behavior of a digital circuit to verify it is operating within
specification.

3.3 Describe the meaning of a logic family and the operation of the most common technologies
used today.

3.4 Determine the operating conditions of a logic circuit when driving various types of loads.

3.1 Basic Gates

The term gate is used to describe a digital circuit that implements the most basic functions possible

within the binary system. When discussing the operation of a logic gate, we ignore the details of how the

1’s and 0’s are represented with voltages and manipulated using transistors. We instead treat the inputs

and output as simply ideal 1’s and 0’s. This allows us to design more complex logic circuits without going

into the details of the underlying physical hardware.

3.1.1 Describing the Operation of a Logic Circuit

3.1.1.1 The Logic Symbol

A logic symbol is a graphical representation of the circuit that can be used in a schematic to show

how circuits in a system interface to one another. For the set of basic logic gates, there are uniquely

shaped symbols that graphically indicate their functionality. For more complex logic circuits that are

implemented with multiple basic gates, a simple rectangular symbol is used. Inputs of the logic circuit are

typically shown on the left of the symbol and outputs are on the right. Figure 3.1 shows two example logic

symbols.
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3.1.1.2 The Truth Table

We formally define the functionality of a logic circuit using a truth table. In a truth table, each and

every possible input combination is listed and the corresponding output of the logic circuit is given. If a

logic circuit has n inputs, then it will have 2n possible input codes. The binary codes are listed in

ascending order within the truth table mimicking a binary count starting at 0. By always listing the input

codes in this way, we can assign a row number to each input that is the decimal equivalent of the binary

input code. Row numbers can be used to simplify the notation for describing the functionality of larger

circuits. Figure 3.2 shows the formation of an example 3-input truth table.

3.1.1.3 The Logic Function

A logic expression, (also called a logic function), is an equation that provides the functionality of

each output in the circuit as a function of the inputs. The logic operations for the basic gates are given a

symbolic set of operators (e.g., +, ∙,
L

), the details of which will be given in the next sections. The logic

function describes the operations that are necessary to produce the outputs listed in the truth table. A

logic function is used to describe a single output that can take on only the values 1 and 0. If a circuit

contains multiple outputs, then a logic function is needed for each output. The input variables can be

included in the expression description just as in an analog function. For example, “F(A, B, C)¼ . . .”would

state that “F is a function of the inputs A, B and C”. This can also be written as “FA, B, C ¼ . . .”. The input

variables can also be excluded for brevity as in “F ¼ . . .”. Figure 3.3 shows the formation of an example

3-input logic expression.

Fig. 3.1
Example logic symbols

Fig. 3.2
Truth table formation
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3.1.1.4 The Logic Waveform

A logicwaveform is a graphical depiction of the relationship of the output to the inputs with respect to

time. This is often a useful description of behavior since it mimics the format that is typically observed

when measuring a real digital circuit using test equipment such as an oscilloscope. In the waveform,

each signal can only take on a value of 1 or 0. It is useful to write the logic values of the signal at each

transition in the waveform for readability. Figure 3.4 shows an example logic waveform.

3.1.2 The Buffer

The first basic gate is the buffer. The output of a buffer is simply the input. The logic symbol, truth

table, logic function and logic waveform for the buffer are given in Fig. 3.5.

Fig. 3.3
Logic function formation

Fig. 3.4
Example logic waveform

Fig. 3.5
Buffer symbol, truth table, logic function and logic waveform
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3.1.3 The Inverter

The next basic gate is the inverter. The output of an inverter is the complement of the input. Inversion

is also often called the not operation. In spoken word, we might say “A is equal to not B”. thus this gate is

also often called a not gate. The symbol for the inverter is the same as the buffer with the exception that

an inversion bubble (i.e., a circle) is placed on the output. The inversion bubble is a common way to show

inversions in schematics and will be used by many of the basic gates. In the logic function, there are two

common ways to show this operation. The first way is by placing a prime (‘) after the input variable (e.g.,

Out¼ In’). This notation has the advantage that it is supported in all text editors but has the drawback that

it can sometimes be difficult to see. The second way to indicate inversion in a logic function is by placing

an inversion bar over the input variable (e.g., Out¼ eIn ). The advantage of this notation is that it is easy to

see but has the drawback that it is not supported by many text editors. In this text, both conventions will

be used to provide exposure to each. The logic symbol, truth table, logic function and logic waveform for

the inverter are given in Fig. 3.6.

3.1.4 The AND Gate

The next basic gate is the AND gate. The output of an AND gate will only be true (i.e., a logic 1) if all

of the inputs are true. This operation is also called a logical product because if the inputs were

multiplied together, the only time the output would be a 1 is if each and every input was a 1. As a result,

the logic operator is the dot (∙). Another notation that is often seen is the ampersand (&). The logic

symbol, truth table, logic function and logic waveform for a 2-input AND gate are given in Fig. 3.7.

Ideal AND gates can have any number of inputs. The operation of an n-bit, AND gates still follows

the rule that the output will only be true when all of the inputs are true. Later sections will discuss the

limitations on expanding the number of inputs of these basic gates indefinitely.

Fig. 3.6
Inverter symbol, truth table, logic function and logic waveform

Fig. 3.7
2-Input AND gate symbol, truth table, logic function and logic waveform
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3.1.5 The NAND Gate

The NAND gate is identical to the AND gate with the exception that the output is inverted. The “N” in

NAND stands for “NOT”, which represents the inversion. The symbol for a NAND gate is an AND gate

with an inversion bubble on the output. The logic expression for a NAND gate is the same as an AND

gate but with an inversion bar over the entire operation. The logic symbol, truth table, logic function and

logic waveform for a 2-input NAND gate are given in Fig. 3.8. Ideal NAND gates can have any number of

inputs with the operation of an n-bit, NAND gate following the rule that the output is always the inversion

of an n-bit, AND operation.

3.1.6 The OR Gate

The next basic gate is the OR gate. The output of an OR gate will be true when any of the inputs

are true. This operation is also called a logical sum because of its similarity to logical disjunction in which

the output is true if at least one of the inputs is true. As a result, the logic operator is the plus sign (+). The

logic symbol, truth table, logic function and logic waveform for a 2-input OR gate are given in Fig. 3.9.

Ideal OR gates can have any number of inputs. The operation of an n-bit, OR gates still follows the rule

that the output will be true if any of the inputs are true.

3.1.7 The NOR Gate

The NOR gate is identical to the OR gate with the exception that the output is inverted. The symbol

for a NOR gate is an OR gate with an inversion bubble on the output. The logic expression for a NOR

gate is the same as an OR gate but with an inversion bar over the entire operation. The logic symbol,

truth table, logic function and logic waveform for a 2-input NOR gate are given in Fig. 3.10. Ideal NOR

gates can have any number of inputs with the operation of an n-bit, NOR gate following the rule that the

output is always the inversion of an n-bit, OR operation.

Fig. 3.8
2-Input NAND gate symbol, truth table, logic function and logic waveform

Fig. 3.9
2-Input OR gate symbol, truth table, logic function and logic waveform
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3.1.8 The XOR Gate

The next basic gate is the exclusive-OR gate, or XOR gate for short. This gate is also called a

difference gate because for the 2-input configuration, its output will be true when the input codes are

different from one another. The logic operator is a circle around a plus sign (
L

). The logic symbol, truth

table, logic function and logic waveform for a 2-input XOR gate are given in Fig. 3.11.

Using the formal definition of an XOR gate (i.e., the output is true if any of the input codes are

different from one another), an XOR gate with more than two inputs can be built. The truth table for a

3-bit, XOR gate using this definition is shown in Fig. 3.12. In modern electronics, this type of gate has

found little use since it is much simpler to build this functionality using a combination of AND and OR

gates. As such, XOR gates with greater than two inputs do not implement the difference function.

Instead, a more useful functionality has been adopted in which the output of the n-bit, XOR gate is the

result of a cascade of 2-input XOR gates. This results in an ultimate output that is true when there is an

ODD number of 1’s on the inputs. This functionality is much more useful in modern electronics for error

correction codes and arithmetic. As such, this is the functionality that is seen in modern n-bit, XOR gates.

This functionality is also shown in Fig. 3.12.

Fig. 3.10
2-Input NOR gate symbol, truth table, logic function and logic waveform

Fig. 3.11
2-Input XOR gate symbol, truth table, logic function and logic waveform
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3.1.9 The XNOR Gate

The exclusive-NOR gate is identical to the XOR gate with the exception that the output is inverted.

This gate is also called an equivalence gate because for the 2-input configuration, its output will be true

when the input codes are equivalent to one another. The symbol for an XNOR gate is an XOR gate

with an inversion bubble on the output. The logic expression for an XNOR gate is the same as an XOR

gate but with an inversion bar over the entire operation. The logic symbol, truth table, logic function and

logic waveform for a 2-input XNOR gate are given in Fig. 3.13. XNOR gates can have any number of

inputs with the operation of an n-bit, XNOR gate following the rule that the output is always the inversion

of an n-bit, XOR operation (i.e., the output is true if there is an ODD number of 1’s on the inputs).

Fig. 3.12
3-Input XOR gate implementation

Fig. 3.13
2-Input XNOR gate symbol, truth table, logic function and logic waveform
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CONCEPT CHECK

CC3.1 Given the following logic diagram, which is the correct logic expression for F?

(A) F ¼ (A�B)0
L

C

(B) F ¼ (A0
�B0)

L
C

(C) F ¼ (A0
�B0

L
C)

(D) F ¼ A�B0
L

C

3.2 Digital Circuit Operation

Now we turn our attention to the physical hardware that is used to build the basic gates just

described and how electrical quantities are used to represent and communicate the binary values

1 and 0. We begin by looking at digital signaling. Digital signaling refers to how binary codes are

generated and transmitted successfully between two digital circuits using electrical quantities (e.g.,

voltage and current). Consider the digital system shown in Fig. 3.14. In this system, the sending circuit

generates a binary code. The sending circuit is called either the transmitter (Tx) or driver. The transmitter

represents the binary code using an electrical quantity such as voltage. The receiving circuit

(Rx) observes this voltage and is able to determine the value of the binary code. In this way, 1’s and

0’s can be communicated between the two digital circuits. The transmitter and receiver are both

designed to use the same digital signaling scheme so that they are able to communicate with each

other. It should be noted that all digital circuits contain both inputs (Rx) and outputs (Tx) but are not

shown in this figure for simplicity.

3.2.1 Logic Levels

A logic level is the term to describe all possible states that a signal can have. We will focus explicitly

on circuits that represent binary values so these will only have two finite states (1 and 0). To begin, we

define a simplistic model of how to represent the binary codes using an electrical quantity. This model

uses a voltage threshold (Vth) to represent the switching point between the binary codes. If the voltage of

Fig. 3.14
Generic digital transmitter/receiver circuit
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the signal (Vsig) is above this threshold, it is considered a logic HIGH. If the voltage is below this

threshold, it is considered a logic LOW. A graphical depiction of this is shown in Fig. 3.15. The terms

HIGH and LOW are used to describe which logic level corresponds to the higher or lower voltage.

It is straightforward to have the HIGH level correspond to the binary code 1 and the LOW level

correspond to the binary code 0; however, it is equally valid to have the HIGH level correspond to the

binary code 0 and the LOW level correspond to the binary code 1. As such, we need to define how the

logic levels HIGH and LOWmap to the binary codes 1 and 0. We define two types of digital assignments:

Positive Logic and Negative Logic. In Positive Logic, the logic HIGH level represents a binary 1 and the

logic LOW level represents a binary 0. In Negative Logic, the logic HIGH level represents a binary 0 and

the logic LOW level represents a binary 1. Table 3.1 shows the definition of positive and negative logic.

There are certain types of digital circuits that benefit from using negative logic; however, we will focus

specifically on systems that use positive logic since it is more intuitive when learning digital design for the

first time. The transformation between positive and negative logic is straightforward and will be covered

in Chap. 4.

3.2.2 Output DC Specifications

Transmitting circuits provide specifications on the range of output voltages (VO) that they are

guaranteed to provide when outputting a logic 1 or 0. These are called the DC output specifications.

There are four DC voltage specifications that specify this range: VOH-max, VOH-min, VOL-max, and VOL-min.

The VOH-max and VOH-min specifications provide the range of voltages the transmitter is guaranteed to

provide when outputting a logic HIGH (or logic 1 when using positive logic). The VOL-max and VOL-min

specifications provide the range of voltages the transmitter is guaranteed to provide when outputting a

Fig. 3.15
Definition of logic HIGH and LOW

Table 3.1
Definition of positive and negative logic
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logic LOW (or logic 0 when using positive logic). In the subscripts for these specifications, the “O”

signifies “output” and the “L” or “H” signifies “LOW” or “HIGH” respectively.

The maximum amount of current that can flow through the transmitter’s output (IO) is also specified.

The specification IOH-max is the maximum amount of current that can flow through the transmitter’s output

when sending a logic HIGH. The specification IOL-max is the maximum amount of current that can flow

through the transmitter’s output when sending a logic LOW. When the maximum output currents are

violated, it usually damages the part. Manufacturers will also provide a recommended amount of current

for IO that will guarantee the specified operating parameters throughout the life of the part. Figure 3.16

shows a graphical depiction of these DC specifications. When the transmitter output is providing current

to the receiving circuit (a.k.a., the load), it is said to be sourcing current. When the transmitter output is

drawing current from the receiving circuit, it is said to be sinking current. In most cases, the transmitter

sources current when driving a logic HIGH and sinks current when driving a logic LOW. Figure 3.16

shows a graphical depiction of these specifications.

3.2.3 Input DC Specifications

Receiving circuits provide specifications on the range of input voltages (VI) that they will interpret as

either a logic HIGH or LOW. These are called the DC input specifications. There are four DC voltage

specifications that specify this range: VIH-max, VIH-min, VIL-max, and VIL-min. The VIH-max and VIH-min

specifications provide the range of voltages that the receiver will interpret as a logic HIGH (or logic

Fig. 3.16
DC Specifications of a digital circuit
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1 when using positive logic). The VIL-max and VIL-min specifications provide the range of voltages that the

receiver will interpret as a logic LOW (or logic 0 when using positive logic). In the subscripts for these

specifications, the “I” signifies “input”.

The maximum amount of current that the receiver will draw, or take in, when connected is also

specified II). The specification IIH-max is the maximum amount of current that the receiver will draw when it

is being driven with a logic HIGH. The specification IIL-max is the maximum amount of current that the

receiver will draw when it is being driven with a logic LOW. Again, Fig. 3.16 shows a graphical depiction

of these DC specifications.

3.2.4 Noise Margins

For digital circuits that are designed to operate with each other, the VOH-max and VIH-max

specifications have equal voltages. Similarly, the VOL-min and VIL-min specifications have equal voltages.

The VOH-max and VOL-min output specifications represent the best case scenario for digital signaling as

the transmitter is sending the largest (or smallest) signal possible. If there is no loss in the interconnect

between the transmitter and receiver, the full voltage levels will arrive at the receiver and be interpreted

as the correct logic states (HIGH or LOW).

The worst-case scenario for digital signaling is when the transmitter outputs its levels at VOH-min and

VOL-max. These levels represent the furthest away from an ideal voltage level that the transmitter can

send to the receiver and are susceptible to loss and noise that may occur in the interconnect system. In

order to compensate for potential loss or noise, digital circuits have a predefined amount of margin built

into their worst-case specifications. Let’s take the worst-case example of a transmitter sending a logic

HIGH at the level VOH-min. If the receiver was designed to have VIH-min (i.e., the lowest voltage that would

still be interpreted as a logic 1) equal to VOH-min, then if even the smallest amount of the output signal was

attenuated as it traveled through the interconnect, it would arrive at the receiver below VIH-min and would

not be interpreted as a logic 1. Since there will always be some amount of loss in any interconnect

system, the specifications for VIH-min is always less than VOH-min. The difference between these two

quantities is called the Noise Margin. More specifically, it is called the Noise Margin HIGH (or NMH) to

signify how much margin is built into the Tx/Rx circuit when communicating a logic 1. Similarly, the VIL-

max specification is always higher than the VOL-max specification to account for any voltage added to the

signal in the interconnect. The difference between these two quantities is called the Noise Margin LOW

(or NML) to signify how much margin is built into the Tx/Rx circuit when communicating a logic 0. Noise

margins are always specified as positive quantities, thus the order of the subtrahend and minuend in

these differences.

NMH ¼ VOH-min�VIH-min

NML ¼ VIL-max�VOL-max

Figure 3.16 includes the graphical depiction of the noise margins. Notice in this figure that there is a

region of voltages that the receiver will not interpret as either a HIGH or LOW. This region lies between

the VIH-min and VIL-max specifications. This is the uncertainty region and should be avoided. Signals in

this region will cause the receiver’s output to go to an unknown voltage. Digital transmitters are designed

to transition between the LOWand HIGH states quickly enough so that the receiver does not have time to

react to the input being in the uncertainty region.
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3.2.5 Power Supplies

All digital circuits require a power supply voltage and a ground. There are some types of digital

circuits that may require multiple power supplies. For simplicity, we will focus on digital circuits that only

require a single power supply voltage and ground. The power supply voltage is commonly given the

abbreviations of either VCC or VDD. The “CC” or “DD” have to do with how the terminals of the transistors

inside of the digital circuit are connected (i.e., “collector to collector” or “drain to drain”). Digital circuits will

specify the required power supply voltage. Ground is considered an ideal 0v. Digital circuits will also

specify the maximum amount of DC current that can flow through the VCC (ICC) and GND (IGND) pins

before damaging the part.

There are two components of power supply current. The first is the current that is required for the

functional operation of the device. This is called the quiescent current (Iq). The second component of the

power supply current is the output currents (IO). Any current that flows out of a digital circuit must also

flow into it. When a transmitting circuit sources current to a load on its output pin, it must bring in that

same amount of current on another pin. This is accomplished using the power supply pin (VCC).

Conversely, when a transmitting circuit sinks current from a load on its output pin, an equal amount of

current must exit the circuit on a different pin. This is accomplished using the GND pin. This means that

the amount of current flowing through the VCC and GND pins will vary depending on the logic states that

are being driven on the outputs. Since a digital circuit may contain numerous output pins, the maximum

amount of current flowing through the VCC and GND pins can scale quickly and care must be taken not to

damage the device.

The quiescent current is often specified using the term ICC. This should not be confused with the

specification for the maximum amount of current that can flow through the VCC pin, which is often called

ICC-max. It is easy to tell the difference because ICC (or Iq) is much smaller than ICC-max for CMOS parts.

ICC (or Iq) is specified in the uA to nA range while the maximum current that can flow through the VCC pin

is specified in the mA range. Example 3.1 shows the process of calculating the ICC and IGND currents

when sourcing multiple loads.
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Example 3.1
Calculating ICC and IGND when sourcing multiple loads
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Example 3.2 shows the process of calculating the ICC and IGND currents when both sourcing and

sinking loads.

Example 3.2
Calculating ICC and IGND when both sourcing and sinking loads
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3.2.6 Switching Characteristics

Switching characteristics refer to the transient behavior of the logic circuits. The first group of

switching specifications characterize the propagation delay of the gate. The propagation delay is the

time it takes for the output to respond to a change on the input. The propagation delay is formally defined

as the time it takes from the point at which the input has transitioned to 50% of its final value to the point at

which the output has transitioned to 50% of its final value. The initial and final voltages for the input are

defined to be GND and VCC, while the output initial and final voltages are defined to be VOL and VOH.

Specifications are given for the propagation delay when transitioning from a LOW to HIGH (tPLH) and

from a HIGH to LOW (tPHL). When these specifications are equal, the values are often given as a single

specification of tpd. These specifications are shown graphically in Fig. 3.17.

The second group of switching specifications characterize how quickly the output switches between

states. The transition time is defined as the time it takes for the output to transition from 10% to 90% of

the output voltage range. The rise time (tr) is the time it takes for this transition when going from a LOW to

HIGH, and the fall time (tf) is the time it takes for this transition when going from a HIGH to LOW. When

these specifications are equal, the values are often given as a single specification of tt. These

specifications are shown graphically in Fig. 3.17.

3.2.7 Data Sheets

The specifications for a particular part are given in its data sheet. The data sheet contains all of the

operating characteristics for a part, in addition to functional information such as package geometries and

pin assignments. The data sheet is usually the first place a designer will look when selecting a part.

Figures 3.18, 3.19, and 3.20 show excerpts from an example data sheet highlighting some of the

specifications just covered.

Fig. 3.17
Switching characteristics of a digital circuit
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Fig. 3.18
Example data sheet excerpt (1)
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Fig. 3.19
Example data sheet excerpt (2)
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Fig. 3.20
Example data sheet excerpt (3)

54 • Chapter 3: Digital Circuitry and Interfacing



CONCEPT CHECK

CC3.2(a) Given the following DC specifications for a driver/receiver pair, in what situationmay a logic

signal transmitted not be successfully received?

VOH-max ¼ þ3:4v VIH-max ¼ þ3:4v

VOH-min ¼ þ2:5v VIH-min ¼ þ2:5v

VOL-max ¼ þ1:5v VIL-max ¼ þ2:0v

VOL-min ¼ 0v VIL-min ¼ 0v

(A) Driving a HIGH with Vo ¼ +3.4v

(B) Driving a HIGH with Vo ¼ +2.5v

(C) Driving a LOW with Vo ¼ +1.5v

(D) Driving a LOW with Vo ¼ 0v

CC3.2(b) For the following driver configuration, which of the following is a valid constraint that could

be put in place to prevent a violation of the maximum power supply currents (ICC-max and

IGND-max)?

(A) Modify the driver transistors so that they can’t provide more than 5 mA on any
output.

(B) Apply a cooling system (e.g., a heat sink or fan) to the driver chip.

(C) Design the logic so that no more than half of the outputs are HIGH at any

given time.

(D) Drive multiple receivers with the same output pin.

CC3.2(c) Why is it desirable to have the output of a digital circuit transition quickly between the logic

LOW and logic HIGH levels?

(A) So that the outputs are not able to respond as the input transitions through the
uncertainty region. This avoids unwanted transitions.

(B) So that all signals look like square waves.

(C) To reduce power by minimizing the time spent switching.

(D) Because the system can only have two states, a LOW and a HIGH.
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3.3 Logic Families

It is apparent from the prior discussion of operating conditions that digital circuits need to have

comparable input and output specifications in order to successfully communicate with each other. If a

transmitter outputs a logic HIGH as +3.4v and the receiver needs a logic HIGH to be above +4v to be

successfully interpreted as a logic HIGH, then these two circuits will not be able to communicate. In order

to address this interoperability issue, digital circuits are grouped into Logic Families. A logic family is a

group of parts that all adhere to a common set of specifications so that they work together. The logic

family is given a specific name and once the specifications are agreed upon, different manufacturers

produce parts that work within the particular family. Within a logic family, parts will all have the same

power supply requirements and DC input/output specifications such that if connected directly, they will be

able to successfully communicate with each other. The phrase “connected directly” is emphasized

because it is very possible to insert an interconnect circuit between two circuits within the same logic

family and alter the output voltage enough so that the receiver will not be able to interpret the correct logic

level. Analyzing the effect of the interconnect circuit is part of the digital design process. There are many

logic families that exist (up to 100 different types!) and more emerge each year as improvements are

made to circuit fabrication processes that create smaller, faster and lower power circuits.

3.3.1 Complementary Metal Oxide Semiconductors (CMOS)

The first group of logic families we will discuss is called Complementary Metal Oxide

Semiconductors, or CMOS. This is currently the most popular group of logic families for digital circuits

implemented on the same integrated circuit (IC). An integrated circuit is where the entire circuit is

implemented on a single piece of semiconductor material (or chip). The IC can contain transistors,

resistors, capacitors, inductors, wires and insulators. Modern integrated circuits can contain billions of

devices and meters of interconnect. The opposite of implementing the circuit on an integrated circuit is to

use discrete components. Using discrete components refers to where every device (transistor, resistor,

etc.) is its own part and is wired together externally using either a printed circuit board (PCB) or jumper

wires as on a breadboard. The line between ICs and discrete parts has blurred in the past decades

because modern discrete parts are actually fabricated as an IC and regularly contain multiple devices

(e.g., 4 logic gates per chip). Regardless, the term discrete is still used to describe components that only

contain a few components where the term IC typically refers to a much larger system that is custom

designed.

The term CMOS comes from the use of particular types of transistors to implement the digital

circuits. The transistors are created using a Metal Oxide Semiconductor (MOS) structure. These

transistors are turned on or off based on an electric field, so they are given the name Metal Oxide

Semiconductor Field Effect Transistors, or MOSFETs. There are two transistors that can be built using

this approach that operate complementary to each other, thus the term Complementary Metal Oxide

Semiconductors. To understand the basic operation of CMOS logic, we begin by treating the MOSFETs

as ideal switches. This allows us to understand the basic functionality without diving into the detailed

electronic analysis of the transistors.

3.3.1.1 CMOS Operation

In CMOS, there is a single power supply (VCC or VDD) and a single ground (GND). The ground signal

is sometimes called VSS. Themaximum input and output DC specifications are equal to the power supply

(VCC ¼ VOH-max ¼ VIH-max). The minimum input and output DC specification are equal to ground

(GND ¼ 0v ¼ VOL-min ¼ VIL-min). In this way, using CMOS simplifies many of the specifications. If you

state that you are using “CMOS with a +3.4v power supply”, you are inherently stating that

VCC ¼ VOH-max ¼ VIH-max ¼ +3.4v and that VOL-min ¼ VIL-min ¼ 0v. Many times the name of the logic
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family will be associated with the power supply voltage. For example, a logic family may go by the name

“+3.3v CMOS” or “+2.5v CMOS”. These names give a first level description of the logic family operation,

but more details about the operation must be looked up in the data sheet.

There are two types of transistors used in CMOS. The transistors will be closed or open based on an

input logic level. The first transistor is called an N-type MOSFET, or NMOS. This transistor will turn on, or

close, when the voltage between the gate and source (VGS) is greater than its threshold voltage. The

threshold voltage (VT) is the amount of voltage needed to create a conduction path between the drain

and the source terminals. The threshold voltage of an NMOS transistor is typically between 0.2v to 1v

and much less than the VCC voltage in the system. The second transistor is called a P-type MOSFET, or

PMOS. This transistor turns on, or closes, when the voltage between the gate and the source (VGS) is

less than VT, where the VT for a PMOS is a negative value. This means that to turn on a PMOS transistor,

the gate terminal needs to be at a lower voltage than the source. The type of transistor (i.e., P-type or

N-type) has to do with the type of semiconductor material used to conduct current through the transistor.

An NMOS transistor uses negative charge to conduct current (i.e., Negative-Type) while a PMOS uses

positive charge (i.e., Positive-Type). Figure 3.21 shows the symbols for the PMOS and NMOS, the

fabrication cross-sections, and their switch level equivalents.

Fig. 3.21
CMOS transistors
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The basic operation of CMOS is that when driving a logic HIGH the switches are used to connect the

output to the power supply (VCC), and when driving a logic LOW the switches are used to connect

the output to GND. In CMOS, VCC is considered an ideal logic HIGH and GND is considered an ideal

logic LOW. VCC is typically much larger than VT so using these levels can easily turn on and off the

transistors. The design of the circuit must never connect the output to VCC and GND at the same time or

else the device itself will be damaged due to the current flowing directly from VCC to GND through the

transistors. Due to the device physics of the MOSFETS, PMOS transistors are used to form the network

that will connect the output to VCC (a.k.a., the pull-up network), and NMOS transistors are used to form

the network that will connect the output to GND (a.k.a., the pull-down network). Since PMOS transistors

are closed when the input is a 0 (thus providing a logic HIGH on the output) and NMOS transistors are

closed when the input is a 1 (thus providing a logic LOW on the output), CMOS implements negative

logic gates. This means CMOS can implement inverters, NAND and NOR gates but not buffers, AND

and OR gates directly. In order to create a CMOS AND gate, the circuit would implement a NAND gate

followed by an inverter and similarly for an OR gate and buffer.

3.3.1.2 CMOS Inverter

Let’s now look at how we can use these transistors to create a CMOS inverter. Consider the

transistor arrangement shown in Fig. 3.22.

The inputs of both the PMOS and NMOS are connected together. The PMOS is used to connect

the output to VCC and the NMOS is used to connect the output to GND. Since the inputs are

connected together and the switches operate in a complementary manner, this circuit ensures that

both transistors will never be on at the same time. When In ¼ 0, the PMOS switch is closed and the

NMOS switch is open. This connects the output directly to VCC, thus providing a logic HIGH on the

output. When In¼ 1, the PMOS switch is open and the NMOS switch is closed. This connects the output

directly to GND, thus providing a logic LOW. This configuration yields an inverter. This operation is

shown graphically in Fig. 3.23.

Fig. 3.22
CMOS inverter schematic
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3.3.1.3 CMOS NAND Gate

Let’s now look at how we use a similar arrangement of transistors to implement a 2-input NAND

gate. Consider the transistor configuration shown in Fig. 3.24.

Fig. 3.23
CMOS inverter operation

Fig. 3.24
CMOS 2-input NAND gate schematic
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The pull-down network consists of two NMOS transistors in series (M1 and M2) and the pull-up

network consists of two PMOS transistors in parallel (M3 and M4). Let’s go through each of the input

conditions and examine which transistors are on and which are off and how they impact the output. The

first input condition is when A¼ 0 and B¼ 0. This condition turns on both M3 andM4 creating two parallel

paths between the output and VCC. At the same time, it turns off both M1 and M2 preventing a path

between the output and GND. This input condition results in an output that is connected to VCC resulting

in a logic HIGH. The second input condition is when A ¼ 0 and B ¼ 1. This condition turns on M3 in the

pull-up network and M2 in the pull-down network. This condition also turns off M4 in the pull-up network

and M1 in the pull-down network. Since the pull-up network is a parallel combination of PMOS

transistors, there is still a path between the output and VCC through M3. Since the pull-down network

is a series combination of NMOS transistors, both M1 and M2 must be on in order to connect the output

to GND. This input condition results in an output that is connected to VCC resulting in a logic HIGH. The

third input condition is when A ¼ 1 and B ¼ 0. This condition again provides a path between the output

and VCC through M4 and prevents a path between the output and ground by having M2 open. This input

condition results in an output that is connected to VCC resulting in a logic HIGH. The final input condition

is when A ¼ 1 and B ¼ 1. In this input condition, both of the PMOS transistors in the pull-up network

(M3 and M4) are off preventing the output from being connected to VCC. At the same time, this input turns

on both M1 and M2 in the pull-down network connecting the output to GND. This input condition results in

an output that is connected to GND resulting in a logic LOW. Based on the resulting output values

corresponding to the four input codes, this circuit yields the logic operation of a 2-Input NAND gate. This

operation is shown graphically in Fig. 3.25.
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Creating a CMOS NAND gate with more than 2 inputs is accomplished by adding additional PMOS

transistors to the pull-up network in parallel and additional NMOS transistors to the pull-down network in

series. Figure 3.26 shows the schematic for a 3-Input NAND gate. This procedure is followed for creating

NAND gates with larger numbers of inputs.

Fig. 3.25
CMOS 2-input NAND gate operation
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If the CMOS transistors were ideal switches, the approach of increasing the number of inputs could

be continued indefinitely. In reality, the transistors are not ideal switches and there is a limit on how many

transistors can be added in series and continue to operate. The limitation has to do with ensuring that

each transistor has enough voltage to properly turn on or off. This is a factor in the series network

because the drain terminals of the NMOS transistors are not all connected to GND. If a voltage develops

across one of the lower transistors (e.g., M3), then it takes more voltage on the input to turn on the next

transistor up (e.g., M2). If too many transistors are added in series, then the uppermost transistor in the

series may not be able to be turned on or off by the input signals. The number of inputs that a logic gate

can have within a particular logic family is called its fan-in specification. When a logic circuit requires a

number of inputs that exceeds the fan-in specification for a particular logic family, then additional logic

gates must be used. For example, if a circuit requires a 5-input NAND gate but the logic family has a

fan-in specification of 4, this means that the largest NAND gate available only has 4-inputs. The 5-input

NAND operation must be accomplished using additional circuit design techniques that use gates with

4 or less inputs. These design techniques will be covered in Chap. 4.

3.3.1.4 CMOS NOR Gate

A CMOS NOR gate is created using a similar topology as a NAND gate with the exception that the

pull-up network consists of PMOS transistors in series and the pull-down network that consists of NMOS

transistors in parallel. Consider the transistor configuration shown in Fig. 3.27.

Fig. 3.26
CMOS 3-input NAND gate schematic
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The series configuration of the pull-up network will only connect the output to VCC when both inputs

are 0. Conversely, the pull-down network prevents connecting the output to GND when both inputs are

0. When either or both of the inputs are true, the pull-up network is off and the pull-down network is

on. This yields the logic function for a NOR gate. This operation is shown graphically in Fig. 3.28. As with

the NAND gate, the number of inputs can be increased by adding more PMOS transistors in series in the

pull-up network and more NMOS transistors in parallel in the pull-down network.

Fig. 3.27
CMOS 2-input NOR gate schematic
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The schematic for a 3-input NOR gate is given in Fig. 3.29. This approach can be used to increase

the number of inputs up until the fan-in specification of the logic family is reached.

Fig. 3.28
CMOS 2-input NOR gate operation
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3.3.2 Transistor-Transistor Logic (TTL)

One of the first logic families that emerged after the invention of the integrated circuit was Transistor-

Transistor Logic (TTL). This logic family uses bipolar junction transistor (BJT) as its fundamental

switching item. This logic family defined a set of discrete parts that contained all of the basic gates in

addition to more complex building blocks. TTL was used to build the first computer systems in the 1960s.

TTL is not widely used today other than for specific applications because it consumes more power than

CMOS and cannot achieve the density required for today’s computer systems. TTL is discussed

because it was the original logic family based on integrated circuits so it provides a historical perspective

of digital logic. Furthermore, the discrete logic pin-outs and part-numbering schemes are still used today

for discrete CMOS parts.

3.3.2.1 TTL Operation

TTL logic uses BJT transistors and resistors to accomplish the logic operations. The operation of a

BJT transistor is more complicated than a MOSFET; however, it performs essentially the same switch

operation when used in a digital logic circuit. An input is used to turn the transistor on, which in turn allows

current to flow between two other terminals. Figure 3.30 shows the symbol for the two types of BJT

transistors. The PNP transistor is analogous to a PMOS and the NPN is analogous to an NMOS. Current

will flow between the Emitter and Collector terminals when there is a sufficient voltage on the Base

terminal. The amount of current that flows between the Emitter and Collector is related to the current

flowing into the Base. The primary difference in operation between BJTs and MOSFETs is that BJTs

require proper voltage biasing in order to turn on and also draws current through the BASE in order to

stay on. The detailed operation of BJTs is beyond the scope of this text, so an overly simplified model of

TTL logic gates is given.

Fig. 3.29
CMOS 3-input NOR gate schematic
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Figure 3.31 shows a simplified model of how TTL logic operates using BJTs and resistors. This

simplified model does not show all of the transistors that are used in modern TTL circuits but instead is

intended to provide a high-level overview of the operation. This gate is an inverter that is created with an

NPN transistor and a resistor. When the input is a logic HIGH, the NPN transistor turns on and conducts

current between its collector and emitter terminals. This in effect closes the switch and connects the

output to GND providing a logic LOW. During this state, current will also flow through the resistor to GND

through Q1 thus consuming more power than the equivalent gate in CMOS. When the input is a logic

LOW, the NPN transistor turns off and no current flows between its collector and emitter. This, in effect, is

an open circuit leaving only the resistor connected to the output. The resistor pulls the output up to VCC

providing a logic HIGH on the output. One drawback of this state is that there will be a voltage drop

across the resistor so the output is not pulled fully to VCC.

Fig. 3.30
PNP and NPN transistors
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3.3.3 The 7400 Series Logic Families

The 7400 series of TTL circuits became popular in the 1960s and 1970s. This family was based on

TTL and contained hundreds of different digital circuits. The original circuits came in either plastic or

ceramic Dual-In-Line packages (DIP). The 7400 TTL logic family was powered off of a + 5v supply. As

mentioned before, this logic family set the pin-outs and part-numbering schemes for modern logic

families. There were many derivatives of the original TTL logic family that made modifications to improve

speed, reliability, decrease power and reduce power supplies. Today’s CMOS logic families within the

7400 series still use the same pin-outs and numbering schemes as the original TTL family. It is useful to

understand the history of this series because these parts are often used in introductory laboratory

exercises to learn how to interface digital logic circuits.

Fig. 3.31
TTL inverter
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3.3.3.1 Part Numbering Scheme

The part numbering scheme for the 7400 series and its derivatives contains five different fields:

(1) manufacturer, (2) temperature range, (3) logic family, (4) logic function and (5) package type. The

breakdown of these fields is shown in Fig. 3.32.

Fig. 3.32
7400 series part numbering scheme
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3.3.3.2 DC Operating Conditions

Table 3.2 gives the DC operating conditions for a few of the logic families within the 7400 series.

Notice that the CMOS families consume much less power than the TTL families. Also notice that the TTL

output currents are asymmetrical. The differences between the IOH and IOL within the TTL families has to

do with the nature of the bipolar transistors and the resistors used to create the pull-up networks within

the devices. CMOS has symmetrical drive currents due to using complementary transistors for the pull-

up (PMOS) and pull-down networks (NMOS).

3.3.3.3 Pin-out Information for the DIP Packages

Figure 3.33 shows the pin-out assignments for a subset of the basic gates from the 74HC logic

family in the Dual-In-Line package form factor. Most of the basic gates within the 7400 series follow these

assignments. Notice that each of these basic gates comes in a 14-pin DIP package, each with a single

VCC and single GND pin. It is up to the designer to ensure that the maximum current flowing through the

VCC and GND pins does not exceed the maximum specification. This is particularly important for parts

that contain numerous gates. For example, the 74HC00 part contains four, 2-Input NAND gates. If each

of the NAND gates was driving a logic HIGH at its maximum allowable output current (i.e., 25 mA from

Fig. 3.19), then a total of 4∙25 mA + Iq¼ ~100 mA would be flowing through its VCC pin. Since the VCC pin

can only tolerate a maximum of 50 mA of current (from Fig. 3.19), the part would be damaged since the

output current of ~100 mA would also flow through the VCC pin. The pin-outs in Fig. 3.33 are useful when

first learning to design logic circuits because the DIP packages plug directly into a standard breadboard.

Table 3.2
DC operating conditions for a sample of 7400 series logic families
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Fig. 3.33
Pin-outs for a subset of basic gates from the 74HC logic family in DIP packages
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CONCEPT CHECK

CC3.3 Why doesn’t the following CMOS transistor configuration yield a buffer?

(A) In order to turn on the NMOS transistor, VGS needs to be greater than zero. In the

given configuration, the gate terminal of the NMOS (G) needs to be driven above
the source terminal (S). If the source terminal was at +3.4v, then the input

(In) would never be able to provide a positive enough voltage to ensure the NMOS

is on because “In” doesn’t go above +3.4v.

(B) There is no way to turn on both transistors in this configuration.

(C) The power consumption will damage the device because both transistors will

potentially be on.

(D) The sources of the two devices can’t be connected together without causing a

short in the device.

3.4 Driving Loads

At this point we’ve discussed in depth how proper care must be taken to ensure that not only do the

output voltages of the driving gate meet the input specifications of the receiver in order to successfully

transmit 1’s and 0’s, but that the output current of the driver does not exceed the maximum specifications

so that the part is not damaged. The output voltage and current for a digital circuit depends greatly on the

load that is being driven. The following sections discuss the impact of driving some of the most common

digital loads.

3.4.1 Driving Other Gates

Within a logic family, all digital circuits are designed to operate with one another. If there is minimal

loss or noise in the interconnect system, then 1’s and 0’s will be successfully transmitted and no current

specifications will be exceeded. Consider the example in Example 3.3 for an inverter driving another

inverter from the same logic family.
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From this example, it is clear that there are no issues when a gate is driving another gate from the

same family. This is as expected because that is the point of a logic family. In fact, gates are designed to

drive multiple gates from within their own family. Based solely on the DC specifications for input and

output current, it could be assumed that the number of other gates that can be driven is simply IO-max/II-

max. For the example in Example 3.3, this would result in a 74HC gate being able to drive 25,000 other

gates (i.e., 25 mA/1 uA¼ 25,000). In reality, the maximum number of gates that can be driven is dictated

by the switching characteristics. This limit is called the fan-out specification. The fan-out specification

states the maximum number of other gates from within the same family that can be driven. As discussed

earlier, the output signal needs to transition quickly through the uncertainty region so that the receiver

does not have time to react and go to an unknown state. As more and more gates are driven, this

transition time is slowed down. The fan-out specification provides a limit to the maximum number of

gates from the same family that can be driven while still ensuring that the output signal transitions

between states fast enough to avoid the receivers from going to an unknown state. Example 3.4 shows

the process of determining the maximum output current that a driver will need to provide when driving the

maximum number of gates allowed by the fan-out specification.

Example 3.3
Determining if specifications are violated when driving another gate as a load
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3.4.2 Driving Resistive Loads

There are many situations where a resistor is the load in a digital circuit. A resistive load can be an

actual resistor that is present for some other purpose such as a pull-up, pull-down, or for impedance

matching. More complex loads such as buzzers, relays or other electronics can also be modeled as a

resistor. When a resistor is the load in a digital circuit, care must be taken to avoid violating the output

current specifications of the driver. The electrical circuit analysis technique that is used to evaluate how a

resistive load impacts a digital circuit isOhm’s Law. Ohm’s Law is a very simple relationship between the

current and voltage in a resistor. Figure 3.34 gives a primer on Ohm’s Law. For use in digital circuits,

there are only a select few cases that this technique will be applied to, so no prior experience with Ohm’s

Law is required at this point.

Example 3.4
Determining the output current when driving multiple gates as the load

Fig. 3.34
A primer on Ohm’s law
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Let’s see how we can use Ohm’s Law to analyze the impact of a resistive load in a digital circuit.

Consider the circuit configuration in Example 3.5 and how we can use Ohm’s Law to determine the

output current of the driver. The load in this case is a resistor connected between the output of the driver

and the power supply (+5v). When driving a logic HIGH, the output level will be approximately equal to

the power supply (i.e., +5v). Since in this situation both terminals of the resistor are at +5v, there is no

voltage difference present. That means when plugging into Ohm’s Law, the voltage component is 0v,

which gives 0 amps of current. In the case where the driver is outputting a logic LOW, the output will be

approximately GND. In this case, there is a voltage drop of +5v across the resistor (5v-0v). Plugging this

into Ohm’s Law yields a current of 50 mA flowing through the resistor. This can become problematic

because the current flows through the resistor and then into the output of the driver. For the 74HC logic

family, this would exceed the IO max specification of 25 mA and damage the part. Additionally, as more

current is drawn through the output, the output voltage becomes less and less ideal. In this example, the

first order analysis uses VO ¼ GND. In reality, as the output current increases, the output voltage will

move further away from its ideal value and may eventually reach a value within the uncertainty region.

Example 3.5
Determining the output current when driving a pull-up resistor as the load
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A similar process can be used to determine the output current when driving a resistive load between

the output and GND. This process is shown in Example 3.6.

3.4.3 Driving LEDs

A light emitting diode (LED) is a very common type of load that is driven using a digital circuit. The

behavior of diodes is typically covered in an analog electronics class. Since it is assumed that the reader

has not been exposed to the operation of diodes, the behavior of the LED will be described using a highly

simplified model. A diode has two terminals, the anode and cathode. Current that flows from the anode to

the cathode is called the forward current. A voltage that is developed across a diode from its anode to

cathode is called the forward voltage. A diode has a unique characteristic that when a forward voltage is

supplied across its terminal, it will only increase up to a certain point. The amount is specified as the

LED’s forward voltage (vf) and is typically between 1.5v and 2v in modern LEDs. When a power supply

circuit is connected to the LED, no current will flow until this forward voltage has been reached. Once it

has been reached, current will begin to flow and the LED will prevent any further voltage from developing

across it. Once current flows, the LED will begin emitting light. The more current that flows, the more light

that will be emitted up until the point that the maximum allowable current through the LED is reached and

then the device will be damaged. When using an LED, there are two specifications of interest: the

forward voltage and the recommended forward current. The symbols for a diode and an LED are given in

Fig. 3.35.

Example 3.6
Determining the output current when driving a pull-down resistor as the load
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When designing an LED driver circuit, a voltage must be supplied in order to develop the forward

voltage across the LED so that current will flow. A resistor is included in series with the LED for two

reasons. The first reason is to provide a place for any additional voltage provided by the driver to develop

in the situation that Vo > Vf, which is most often the case. The second reason for the resistor is to set the

output current. Since the voltage across the resistor will be a fixed amount (i.e., Vo-Vf), then the value of

the resistor can be chosen to set the current. This current is typically set to an optimum value that turns

on the LED to a desired luminosity while also ensuring that the maximum output current of the driver is

not violated. Consider the LED driver configuration shown in Example 3.7 where the LED will be turned

on when the driver outputs a HIGH.

Fig. 3.35
Symbols for a diode and a light emitting diode

Example 3.7
Determining the output current when driving an LED where HIGH ¼ ON

76 • Chapter 3: Digital Circuitry and Interfacing



Example 3.8 shows another example of driving an LED, but this time using a different configuration

where the LED will be on when the driver outputs a logic LOW.

CONCEPT CHECK

CC3.4 A fan-out specification is typically around 6–12. If a logic family has a maximum output current

specification of IO-max¼ 25mA and amaximum input current specification of only II-max¼ 1 uA,

a driver could conceivably source up to 25,000 gates (I
O-max

/II-max ¼ 25 mA/1 uA ¼ 25,000)

without violating its maximum output current specification. Why isn’t the fan-out specification
then closer to 25,000?

(A) The fan-out specification has significant margin built into it in order to protect the

driver.

(B) Connecting 25,000 loads to the driver would cause significant wiring congestion
and would be impractical.

(C) The fan-out specification is in place to reduce power, so keeping it small is

desirable.

(D) The fan-out specification is in place for AC behavior. It ensures that the AC loading

on the driver doesn’t slow down its output rise and fall times. If too many loads are
connected, the output transition will be too slow and it will reside in the uncertainty

region for too long leading to unwanted switching on the receivers.

Example 3.8
Determining the Output Current When Driving an LED where HIGH ¼ OFF
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Summary

v The operation of a logic circuit can be
described using either a logic symbol, a truth
table, a logic expression, or a logic waveform.

v Logic gates represent the most basic
operations that can be performed on binary
numbers. They are BUF, INV, AND, NAND,
OR, NOR, XOR, and XNOR.

v XOR gates that have a number of inputs
greater than two are created using a cascade
of 2-input XOR gates. This implementation
has more practical applications such as arith-
metic and error detection codes.

v The logic level describes whether the electri-
cal signal representing one of two states is
above or below a switching threshold region.
The two possible values that a logic level can
be are HIGH or LOW.

v The logic value describes how the logic
levels are mapped into the two binary codes
0 and 1. In positive logic a HIGH ¼ 1 and a
LOW¼ 0. In negative logic a HIGH¼ 0 and a
LOW ¼ 1.

v Logic circuits have DC specifications that
describe how input voltage levels are
interpreted as either HIGHs or LOWs
(VIH-max, VIH-min, VIL-max, and VIL-min).
Specifications are also given on what output
voltages will be produced when driving a
HIGH or LOW (VOH-max, VOH-min, VOL-max,
and VOL-min).

v In order to successfully transmit digital infor-
mation, the output voltages of the driver that
represent a HIGH and LOW must arrive at
the receiver within the voltage ranges that
are interpreted as a HIGH and LOW. If the
voltage arrives at the receiver outside of
these specified input ranges, the receiver
will not know whether a HIGH or LOW is
being transmitted.

v Logic circuits also specify maximum current
levels on the power supplies (IVCC, Ignd),
inputs (II-max), and outputs (IO-max) that may
not be exceeded. If these levels are

exceeded, the circuit may not operate prop-
erly or be damaged.

v The current exiting a logic circuit is equal to
the current entering.

v When a logic circuit sources current to a load,
an equivalent current is drawn into the circuit
through its power supply pin.

v When a logic circuit sinks current from a load,
an equivalent current flows out of the circuit
through its ground pin.

v The type of load that is connected to the
output of a logic circuit dictates how much
current will be drawn from the driver.

v The quiescent current (Iq or Icc) is the current
that the circuit always draws independent of
the input/output currents.

v Logic circuits have AC specifications that
describe the delay from the input to the out-
put (tPLH, tPHL) and also how fast the outputs
transition between the HIGH and LOW levels
(tr, tf).

v A logic family is a set of logic circuits that are
designed to operate with each other.

v The fan-in of a logic family describes the
maximum number of inputs that a gate
may have.

v The fan-out of a logic family describes the
maximum number of other gates from within
the same family that can be driven simulta-
neously by one gate.

v Complementary Metal Oxide Semiconductor
(CMOS) logic is the most popular family
series in use today. CMOS logic use two
transistors (NMOS and PMOS) that act as
complementary switches. CMOS transistors
draw very low quiescent current and can be
fabricated with extremely small feature sizes.

v In CMOS, only inverters, NAND gates, and
NOR gates can be created directly. If it is
desired to create a buffer, AND gate, or OR
gate, an inverter is placed on the output of
the original inverter, NAND, or NOR gate.

Exercise Problems

Section 3.1: Basic Gates

3.1.1 Give the truth table for a 3-input AND gate with
the input variables A, B, C and output F.

3.1.2 Give the truth table for a 3-input OR gate with
the input variables A, B, C and output F.

3.1.3 Give the truth table for a 3-input XNOR gate
with the input variables A, B, C and output F.

3.1.4 Give the logic expression for a 3-input AND
gate with the input variables A, B, C and
output F.

3.1.5 Give the logic expression for a 3-input OR gate
with the input variables A, B, C and output F.

3.1.6 Give the logic expression for a 3-input XNOR
gate with the input variables A, B, C and
output F.
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3.1.7 Give the logic waveform for a 3-input AND gate
with the input variables A, B, C and output F.

3.1.8 Give the logic waveform for a 3-input OR gate
with the input variables A, B, C and output F.

3.1.9 Give the logic waveform for a 3-input XNOR
gate with the input variables A, B, C and
output F.

Section 3.2: Digital Circuit Operation

3.2.1 Using the DC operating conditions from
Table 3.2, give the noise margin HIGH (NMH)
for the 74LS logic family.

3.2.2 Using the DC operating conditions from
Table 3.2, give the noise margin LOW (NML)
for the 74LS logic family.

3.2.3 Using the DC operating conditions from
Table 3.2, give the noise margin HIGH (NMH)
for the 74HC logic family with VCC ¼ +5v.

3.2.4 Using the DC operating conditions from
Table 3.2, give the noise margin LOW (NML)
for the 74HC logic family with VCC ¼ +5v.

3.2.5 Using the DC operating conditions from
Table 3.2, give the noise margin HIGH (NMH)
for the 74HC logic family with VCC ¼ +3.4v.

3.2.6 Using the DC operating conditions from
Table 3.2, give the noise margin LOW (NML)
for the 74HC logic family with VCC ¼ +3.4v.

3.2.7 For the driver configuration in Fig. 3.36, give
the current flowing through the VCC pin.

Fig. 3.36
Driver configuration 1

3.2.8 For the driver configuration in Fig. 3.36, give
the current flowing through the GND pin.

3.2.9 For the driver configuration in Fig. 3.37, give
the current flowing through the VCC pin.

Fig. 3.37
Driver configuration 2

3.2.10 For the driver configuration in Fig. 3.37, give
the current flowing through the GND pin.

3.2.11 Using the data sheet excerpt from Fig. 3.20,
give the maximum propagation delay (tpd) for
the 74HC04 inverter when powered with
VCC ¼ +2v.

3.2.12 Using the data sheet excerpt from Fig. 3.20,
give the maximum propagation delay from low
to high (tPLH) for the 74HC04 inverter when
powered with VCC ¼ +2v.

3.2.13 Using the data sheet excerpt from Fig. 3.20,
give the maximum propagation delay from high
to low (tPHL) for the 74HC04 inverter when
powered with VCC ¼ +2v.

3.2.14 Using the data sheet excerpt from Fig. 3.20,
give the maximum transition time (tt) for the
74HC04 inverterwhenpoweredwithVCC¼+2v.

3.2.15 Using the data sheet excerpt from Fig. 3.20,
give the maximum rise time (tr) for the 74HC04
inverter when powered with VCC ¼ +2v.

3.2.16 Using the data sheet excerpt from Fig. 3.20,
give the maximum fall time (tf) for the 74HC04
inverter when powered with VCC ¼ +2v.

Section 3.3: Logic Families

3.3.1 Provide the transistor-level schematic for a
4-Input NAND gate.

3.3.2 Provide the transistor-level schematic for a
4-Input NOR gate.

3.3.3 Provide the transistor-level schematic for a
2-Input AND gate.

3.3.4 Provide the transistor-level schematic for
a 2-Input OR gate.

3.3.5 Provide the transistor-level schematic for a
buffer.

Section 3.4: Driving Loads

3.4.1 In the driver configuration shown in Fig. 3.38,
the buffer is driving its maximum fan-out speci-
fication of 6. The maximum input current for
this logic family is II ¼ 1 nA. What is the
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maximum output current (IO) that the driver will
need to source?

Fig. 3.38
Driver configuration 3

3.4.2 For the pull-down driver configuration shown in
Fig. 3.39, calculate the value of the pull-down
resistor (R) in order to ensure that the output
current does not exceed 20 mA.

Fig. 3.39
Driver configuration 4

3.4.3 For the pull-up driver configuration shown in
Fig. 3.40, calculate the value of the pull-up
resistor (R) in order to ensure that the output
current does not exceed 20 mA.

3.4.4 For the LED driver configuration shown in
Fig. 3.41 where an output of HIGH on the driver
will turn on the LED, calculate the value of the
resistor (R) in order to set the LED forward
current to 5 mA. The LED has a forward volt-
age of 1.9v.

Fig. 3.41
Driver configuration 6

3.4.5 For the LED driver configuration shown in
Fig. 3.42 where an output of LOW on the driver
will turn on the LED, calculate the value of the
resistor (R) in order to set the LED forward
current to 5 mA. The LED has a forward volt-
age of 1.9v.

Fig. 3.42
Driver configuration 7

Fig. 3.40
Driver configuration 5
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Chapter 4: Combinational Logic

Design
In this chapter we cover the techniques to synthesize, analyze, and manipulate logic functions. The

purpose of these techniques is to ultimately create a logic circuit using the basic gates described in

Chap. 3 from a truth table or word description. This process is called combinational logic design.

Combinational logic refers to circuits where the output depends on the present value of the inputs.

This simple definition implies that there is no storage capability in the circuitry and a change on the input

immediately impacts the output. To begin, we first define the rules of Boolean algebra, which provide the

framework for the legal operations and manipulations that can be taken on a two-valued number system

(i.e., a binary system). We then explore a variety of logic design and manipulation techniques. These

techniques allow us to directly create a logic circuit from a truth table and then to manipulate it to either

reduce the number of gates necessary in the circuit or to convert the logic circuit into equivalent forms

using alternate gates. The goal of this chapter is to provide an understanding of the basic principles of

combinational logic design.

Learning Outcomes—After completing this chapter, you will be able to:

4.1 Describe the fundamental principles and theorems of Boolean algebra and how to use
them to manipulate logic expressions.

4.2 Analyze a combinational logic circuit to determine its logic expression, truth table, and
timing information.

4.3 Synthesis a logic circuit in canonical form (Sum of Products or Product of Sums) from a
functional description including a truth table, minterm list, or maxterm list.

4.4 Synthesize a logic circuit in minimized form (Sum of Products or Product of Sums) through
algebraic manipulation or with a Karnaugh map.

4.5 Describe the causes of timing hazards in digital logic circuits and the approaches to
mitigate them.

4.1 Boolean Algebra

The term Algebra refers to the rules of a number system. In Chap. 2 we discussed the number of

symbols and relative values of some of the common number systems. Algebra defines the operations

that are legal to perform on that system. Once we have defined the rules for a system, we can then use

the system for more powerful mathematics such as solving for unknowns and manipulating into equiva-

lent forms. The ability to manipulate into equivalent forms allows us to minimize the number of logic

operations necessary and also put into a form that can be directly synthesized using modern logic

circuits.

In 1854, English mathematician George Boole presented an abstract algebraic framework for a

system that contained only two states, true and false. This framework essentially launched the field of

computer science even before the existence of the modern integrated circuits that are used to implement

digital logic today. In 1930, American mathematician Claude Shannon applied Boole’s algebraic frame-

work to his work on switching circuits at Bell Labs, thus launching the field of digital circuit design and

information theory. Boole’s original framework is still used extensively in modern digital circuit design and

thus bears the name Boolean algebra. Today, the term Boolean algebra is often used to describe not only

George Boole’s original work, but all of those that contributed to the field after him.
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4.1.1 Operations

In Boolean algebra there are two valid states (true and false) and three core operations. The

operations are conjunction (^, equivalent to the AND operation), disjunction (_, equivalent to the OR

operation), and negation (Ø, equivalent to the NOT operation). From these three operations, more

sophisticated operations can be created including other logic functions (i.e., BUF, NAND, NOR, XOR,

XNOR, etc.) and arithmetic. Engineers primarily use the terms AND, OR and NOT instead of conjunction,

disjunction and negation. Similarly, engineers primarily use the symbols for these operators described in

Chap. 3 (e.g., ∙, + and ‘) instead of ^, _, and Ø.

4.1.2 Axioms

An axiom is a statement of truth about a system that is accepted by the user. Axioms are very simple

statements about a system, but need to be established before more complicated theorems can be

proposed. Axioms are so basic that they do not need to be proved in order to be accepted. Axioms can

be thought of as the basic laws of the algebraic framework. The terms axiom and postulate are

synonymous and used interchangeably. In Boolean algebra there are five main axioms. These axioms

will appear redundant with the description of basic gates from Chap. 3, but must be defined in this

algebraic context so that more powerful theorems can be proposed.

4.1.2.1 Axiom #1 – Logical Values

This axiom states that in Boolean algebra, a variable A can only take on one of two values, 0 or 1. If

the variable A is not 0, then it must be a 1, and conversely, if it is not a 1, then it must be a 0.

Axiom #1 – Boolean Values: A ¼ 0 if A 6¼ 1, conversely A ¼ 1 if A 6¼ 0.

4.1.2.2 Axiom #2 – Definition of Logical Negation

This axiom defines logical negation. Negation is also called the NOT operation or taking the

complement. The negation operation is denoted using either a prime (‘), an inversion bar or the negation

symbol (Ø). If the complement is taken on a 0, it becomes a 1. If the complement is taken on a 1, it

becomes a 0.

Axiom #2 – Definition of Logical Negation: if A ¼ 0 then A0 ¼ 1, conversely, if A ¼ 1 then A0 ¼ 0.

4.1.2.3 Axiom #3 – Definition of a Logical Product

This axiom defines a logical product or multiplication. Logical multiplication is denoted using either a

dot (∙), an ampersand (&) or the conjunction symbol (^). The result of logical multiplication is true when

both inputs are true and false otherwise.

Axiom #3 – Definition of a Logical Product: A∙B ¼ 1 if A ¼ B ¼ 1 and A∙B ¼ 0 otherwise.

82 • Chapter 4: Combinational Logic Design

http://dx.doi.org/10.1007/978-3-319-53883-9_3
http://dx.doi.org/10.1007/978-3-319-53883-9_3


4.1.2.4 Axiom #4 – Definition of a Logical Sum

This axiom defines a logical sum or addition. Logical addition is denoted using either a plus sign (+)

or the disjunction symbol (_). The result of logical addition is true when any of the inputs are true and

false otherwise.

Axiom #4 – Definition of a Logical Sum: A + B ¼ 1 if A ¼ 1 or B ¼ 1 and A + B ¼ 0 otherwise.

4.1.2.5 Axiom #5 – Logical Precedence

This axiom defines the order of precedence for the three operators. Unless the precedence is

explicitly stated using parentheses, negation takes precedence over a logical product and a logical

product takes precedence over a logical sum.

Axiom #5 – Definition of Logical Precedence: NOT precedes AND, AND precedes OR.

To illustrate Axiom #5, consider the logic function F¼A0
∙B +C. In this function, the first operation that

would take place is the NOT operation on A. This would be followed by the AND operation of A0 with

B. Finally, the result would be OR’d with C. The precedence of any function can also be explicitly stated

using parentheses such as F ¼ (((A0) ∙ B) + C).

4.1.3 Theorems

A theorem is a more sophisticated truth about a system that is not intuitively obvious. Theorems are

proposed and then must be proved. Once proved, they can be accepted as a truth about the system

going forward. Proving a theorem in Boolean algebra is much simpler than in our traditional decimal

system due to the fact that variables can only take on one of two values, true or false. Since the number

of input possibilities is bounded, Boolean algebra theorems can be proved by simply testing the theorem

using every possible input code. This is called proof by exhaustion. The following theorems are used

widely in the manipulation of logic expressions and reduction of terms within an expression.

4.1.3.1 DeMorgan’s Theorem of Duality

Augustus DeMorgan was a British mathematician and logician who lived during the time of George

Boole. DeMorgan is best known for his contribution to the field of logic through the creation of what have

been later called the DeMorgan’s Theorems (often called DeMorgan’s Laws). There are two major

theorems that DeMorgan proposed that expanded Boolean algebra. The first theorem is named duality.

Duality states that an algebraic equality will remain true if all 0’s and 1’s are interchanged and all AND

and OR operations are interchanged. The new expression is called the dual of the original expression.

Example 4.1 shows the process of proving duality using proof by exhaustion.
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Duality is important for two reasons. First, it doubles the impact of a theorem. If a theorem is proved

to be true, then the dual of that theorem is also proved to be true. This, in essence, gives twice the

theorem with the same amount of proving. Boolean algebra theorems are almost always given in pairs,

the original and the dual. That is why duality is covered as the first theorem.

The second reason that duality is important is because it can be used to convert between positive

and negative logic. Until now, we have used positive logic for all of our examples (i.e., a logic HIGH ¼

true ¼1 and a logic LOW ¼ false ¼0). As mentioned earlier, this convention is arbitrary and we could

have easily chosen a HIGH to be false and a LOW to be true (i.e., negative logic). Duality allows us to

take a logic expression that has been created using positive logic (F) and then convert it into an

equivalent expression that is valid for negative logic (FD). Example 4.2 shows the process for how this

works.

Example 4.1
Proving DeMorgan’s theorem of duality using proof by exhaustion
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One consideration when using duality is that the order of precedence follows the original function.

This means that in the original function, the axiom for precedence states the order as NOT-AND-OR;

however, this is not necessarily the correct precedence order in the dual. For example, if the original

function was F¼A�B + C, the AND operation of A and B would take place first, and then the result would

be OR’d with C. The dual of this expression is FD¼ A + B�C. If the expression for FD was evaluated using

traditional Boolean precedence, it would show that FD does NOT give the correct result per the definition

of a dual function (i.e., converting a function from positive to negative logic). The order of precedence for

FD must correlate to the precedence in the original function. Since in the original function A and B were

operated on first, they must also be operated on first in the dual. In order to easily manage this issue,

parentheses can be used to track the order of operations from the original function to the dual. If we put

parentheses in the original function to explicitly state the precedence of the operations, it would take the

form F ¼ (A�B) + C. These parentheses can be mapped directly to the dual yielding FD ¼ (A + B)�C. This

order of precedence in the dual is now correct.

Example 4.2
Converting between positive and negative logic using duality
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Now that we have covered the duality operation, its usefulness and its pitfalls, we can formally

define this theorem as:

DeMorgan’s Duality: An algebraic equality will remain true if all 0’s and 1’s are interchanged and all

AND and OR operations are interchanged. Furthermore, taking the dual of a positive logic function will

produce the equivalent function using negative logic if the original order of precedence is maintained.

4.1.3.2 Identity

An identity operation is one that when performed on a variable will yield itself regardless of the

variable’s value. The following is the formal definition of identity theorem. Figure 4.1 shows the gate level

depiction of this theorem.

Identity:OR’ing any variable with a logic 0 will yield the original variable. The dual: AND’ing any variable

with a logic 1 will yield the original variable.

The identity theorem is useful for reducing circuitry when it is discovered that a particular input will

never change values. When this is the case, the static input variable can simply be removed from the

logic expression making the entire circuit a simple wire from the remaining input variable to the output.

4.1.3.3 Null Element

A null element operation is one that, when performed on a constant value, will yield that same

constant value regardless of the values of any variables within the same operation. The following is the

formal definition of null element. Figure 4.2 shows the gate level depiction of this theorem.

Null Element: OR’ing any variable with a logic 1 will yield a logic 1 regardless of the value of the input

variable. The dual: AND’ing any variable with a logic 0 will yield a logic 0 regardless of the value of the

input variable.

Fig. 4.1
Gate level depiction of the identity theorem

Fig. 4.2
Gate level depiction of the null element theorem
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The null element theorem is also useful for reducing circuitry when it is discovered that a particular

input will never change values. It is also widely used in computer systems in order to set (i.e., force to a

logic 1) or clear (i.e., force to a logic 0) the value of a storage element.

4.1.3.4 Idempotent

An idempotent operation is one that has no effect on the input, regardless of the number of times the

operation is applied. The following is the formal definition of idempotence. Figure 4.3 shows the gate

level depiction of this theorem.

Idempotent:OR’ing a variable with itself results in itself. The dual: AND’ing a variable with itself results in

itself.

This theorem also holds true for any number of operations such as A + A + A + . . ... + A ¼ A and

A�A�A�. . ...�A ¼ A.

4.1.3.5 Complements

This theorem describes an operation of a variable with the variable’s own complement. The

following is the formal definition of complements. Figure 4.4 shows the gate level depiction of this

theorem.

Complements: OR’ing a variable with its complement will produce a logic 1. The dual: AND’ing a

variable with its complement will produce a logic 0.

The complement theorem is again useful for reducing circuitry when these types of logic

expressions are discovered.

Fig. 4.3
Gate level depiction of the idempotent theorem

Fig. 4.4
Gate level depiction of the complements theorem

4.1 Boolean Algebra • 87



4.1.3.6 Involution

An involution operation describes the result of double negation. The following is the formal definition

of involution. Figure 4.5 shows the gate level depiction of this theorem.

Involution: Taking the double complement of a variable will result in the original variable.

This theorem is not only used to eliminate inverters but also provides us a powerful tool for inserting

inverters in a circuit. We will see that this is used widely with the second of DeMorgan’s Laws that will be

introduced at the end of this section.

4.1.3.7 Commutative Property

The term commutative is used to describe an operation in which the order of the quantities or

variables in the operation have no impact on the result. The following is the formal definition of the

commutative property. Figure 4.6 shows the gate level depiction of this theorem.

Commutative Property: Changing the order of variables in an OR operation does not change the end

result. The dual: Changing the order of variables in an AND operation does not change the end result.

One practical use of the commutative property is when wiring or routing logic circuitry together.

Example 4.3 shows how the commutative property can be used to untangle crossed wires when

implementing a digital system.

Fig. 4.5
Gate level depiction of the involution theorem

Fig. 4.6
Gate level depiction of commutative property
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4.1.3.8 Associative Property

The term associative is used to describe an operation in which the grouping of the quantities or

variables in the operation have no impact on the result. The following is the formal definition of the

associative property. Figure 4.7 shows the gate level depiction of this theorem.

Example 4.3
Using the commutative property to untangle crossed wires
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Associative Property: The grouping of variables doesn’t impact the result of an OR operation. The dual:

The grouping of variables doesn’t impact the result of an AND operation.

One practical use of the associative property is addressing fan-in limitations of a logic family. Since

the grouping of the input variables does not impact the result, we can accomplish operations with large

numbers of inputs using multiple gates with fewer inputs. Example 4.4 shows the process of using the

associative property to address a fan-in limitation.

Fig. 4.7
Gate level depiction of the associative property

Example 4.4
Using the associative property to address fan-in limitations
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4.1.3.9 Distributive Property

The term distributive describes how an operation on a parenthesized group of operations (or higher

precedence operations) can be distributed through each term. The following is the formal definition of the

distributive property. Figure 4.8 shows the gate level depiction of this theorem.

Distributive Property: An operation on a parenthesized operation(s), or higher precedence operator,

will distribute through each term.

The distributive property is used as a logic manipulation technique. It can be used to put a logic

expression into a form more suitable for direct circuit synthesis, or to reduce the number of logic gates

necessary. Example 4.5 shows how to use the distributive property to reduce the number of gates in a

logic circuit.

Fig. 4.8
Gate level depiction of the distributive property

Example 4.5
Using the distributive property to reduce the number of logic gates in a circuit
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4.1.3.10 Absorption

The term absorption refers to when multiple logic terms within an expression produce the same

results. This allows one of the terms to be eliminated from the expression, thus reducing the number of

logic operations. The remaining terms essentially absorb the functionality of the eliminated term. This

theorem is also called covering because the remaining term essentially covers the functionality of both

itself and the eliminated term. The following is the formal definition of the absorption theorem. Figure 4.9

shows the gate level depiction of this theorem.

Absorption: When a term within a logic expression produces the same output(s) as another term, the

second term can be removed without affecting the result.

This theorem is better understood by looking at the evaluation of each term with respect to the

original expression. Example 4.6 shows how the absorption theorem can be proven through proof by

exhaustion by evaluating each term in a logic expression.

4.1.3.11 Uniting

The uniting theorem, also called combining or minimization, provides a way to remove variables

from an expression when they have no impact on the outcome. This theorem is one of the most widely

Fig. 4.9
Gate level depiction of absorption

Example 4.6
Proving the absorption theorem using proof by exhaustion
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used techniques for the reduction of the number of gates needed in a combinational logic circuit. The

following is the formal definition of the uniting theorem. Figure 4.10 shows the gate level depiction of this

theorem.

Uniting: When a variable (B) and its complement (B0) appear in multiple product terms with a common

variable (A) within a logical OR operation, the variable B does not have any effect on the result and can

be removed.

This theorem can be proved using prior theorems. Example 4.7 shows how the uniting theorem can

be proved using a combination of the distributive property, the complements theorem, and the identity

theorem.

4.1.3.12 DeMorgan’s Theorem

Now we look at the second of DeMorgan’s Laws. This second theorem is simply known as

DeMorgan’s Theorem. This theorem provides a technique to manipulate a logic expression that uses

AND gates into one that uses OR gates and vice-versa. It can also be used to manipulate traditional

Boolean logic expressions that use AND-OR-NOToperators, into equivalent forms that uses NAND and

NOR gates. The following is the formal definition of DeMorgan’s theorem. Figure 4.11 shows the gate

level depiction of this theorem.

Fig. 4.10
Gate level depiction of uniting

Example 4.7
Proving of the uniting theorem
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DeMorgan’s Theorem: An OR operation with both inputs inverted is equivalent to an AND operation

with the output inverted. The dual: An AND operation with both inputs inverted is equivalent to an OR

operation with the output inverted.

This theorem is used widely in modern logic design because it bridges the gap between the design

of logic circuitry using Boolean algebra and the physical implementation of the circuitry using CMOS.

Recall that Boolean algebra is defined for only three operations, the AND, the OR and inversion. CMOS,

on the other hand, can only directly implement negative-type gates such as NAND, NOR and NOT.

DeMorgan’s Theorem allows us to design logic circuitry using Boolean algebra and synthesize logic

diagrams with AND, OR, and NOT gates, and then directly convert the logic diagrams into an equivalent

form using NAND, NOR and NOT gates. As we’ll see in the next section, Boolean algebra produces logic

expressions in two common forms. These are the sum of products (SOP) and the product of sums

(POS) forms. Using a combination of involution and DeMorgan’s Theorem, SOP and POS forms can be

converted into equivalent logic circuits that use only NAND and NOR gates. Example 4.8 shows a

process to convert a sum of products form into one that uses only NAND gates.

Fig. 4.11
Gate level depiction of DeMorgan’s theorem
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Example 4.8
Converting a sum of products form into one that uses only NAND gates
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Example 4.9 shows a process to convert a product of sums form into one that uses only NOR gates.

DeMorgan’s Theorem can also be accomplished algebraically using a process known as breaking

the bar and flipping the operator. This process again takes advantage of the Involution Theorem, which

allows double negation without impacting the result. When using this technique in algebraic form,

involution takes the form of a double inversion bar. If an inversion bar is broken, the expression will

remain true as long as the operator directly below the break is flipped (AND to OR, OR to AND).

Example 4.10 shows how to use this technique when converting an OR gate with its inputs inverted

into an AND gate with its output inverted.

Example 4.9
Converting a product of sums form into one that uses only NOR gates
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Example 4.11 shows how to use this technique when converting an AND gate with its inputs inverted

into an OR gate with its output inverted.

Example 4.10
Using DeMorgan’s theorem in algebraic form (1)

Example 4.11
Using DeMorgan’s theorem in algebraic form (2)
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Table 4.1 gives a summary of all the Boolean algebra theorems just covered. The theorems are

grouped in this table with respect to the number of variables that they contain. This grouping is the most

common way these theorems are presented.

4.1.4 Functionally Complete Operation Sets

A set of Boolean operators is said to be functionally complete when the set can implement all

possible logic functions. The set of operators {AND, OR, NOT} is functionally complete because every

other operation can be implemented using these three operators (i.e., NAND, NOR, BUF, XOR, XNOR).

The DeMorgan’s Theorem showed us that all AND and OR operations can be replaced with NAND and

NOR operators. This means that NAND and NOR operations could be by themselves functionally

complete if they could perform a NOToperation. Figure 4.12 shows how a NAND gate can be configured

to perform a NOT operation. This configuration allows a NAND gate to be considered functionally

complete because all other operations can be implemented.

Table 4.1
Summary of Boolean algebra theorems

Fig. 4.12
Configuration to use a NAND gate as an inverter

98 • Chapter 4: Combinational Logic Design



This approach can also be used on a NOR gate to implement an inverter. Figure 4.13 shows how a

NOR gate can be configured to perform a NOToperation, thus also making it functionally complete.

CONCEPT CHECK

CC4.1 If the logic expression F¼A�B�C�D�E�F�G�H is implemented with only 2-input AND gates, how

many levels of logic will the final implementation have? Hint: Consider using the associative
property to manipulate the logic expression to use only 2-input AND operations.

(A) 2 (B) 3 (C) 4 (D) 5

4.2 Combinational Logic Analysis

Combinational logic analysis refers to the act of deciphering the operation of a circuit from its final

logic diagram. This is a useful skill that can aid designers when debugging their circuits. This can also be

used to understand the timing performance of a circuit and to reverse-engineer an unknown design.

4.2.1 Finding the Logic Expression from a Logic Diagram

Combinational logic diagrams are typically written with their inputs on the left and their output on the

right. As the inputs change, the intermediate nodes, or connections, within the diagram hold the interim

computations that contribute to the ultimate circuit output. These computations propagate from left to

right until ultimately the final output of the system reaches its final steady state value. When analyzing the

behavior of a combinational logic circuit a similar left-to-right approach is used. The first step is to label

each intermediate node in the system. The second step is to write in the logic expression for each node

Fig. 4.13
Configuration to use a NOR gate as an inverter

4.2 Combinational Logic Analysis • 99



based on the preceding logic operation(s). The logic expressions are written working left-to-right until the

output of the system is reached and the final logic expression of the circuit has been found. Consider the

example of this analysis in Example 4.12.

4.2.2 Finding the Truth Table from a Logic Diagram

The final truth table of a circuit can also be found in a similar manner as the logic expression. Each

internal node within the logic diagram can be evaluated working from the left to the right for each possible

input code. Each subsequent node can then be evaluated using the values of the preceding nodes.

Consider the example of this analysis is Example 4.13.

Example 4.12
Determining the logic expression from a logic diagram
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4.2.3 Timing Analysis of a Combinational Logic Circuit

Real logic gates have a propagation delay (tpd, tPHL, or tPLH) as presented in Chap. 3. Performing a

timing analysis on a combinational logic circuit refers to observing how long it takes for a change in the

inputs to propagate to the output. Different paths through the combinational logic circuit will take different

times to compute since they may use gates with different delays. When determining the delay of the

entire combinational logic circuit we always consider the longest delay path. This is because this delay

represents the worst case scenario. As long as we wait for the longest path to propagate through the

circuit, then we are ensured that the output will always be valid after this time. To determine which signal

path has the longest delay, we map out each and every path the inputs can take to the output of the

circuit. We then sum up the gate delay along each path. The path with the longest delay dictates the

delay of the entire combinational logic circuit. Consider this analysis shown in Example 4.14.

Example 4.13
Determining the truth table from a logic diagram
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CONCEPT CHECK

CC4.2 Does the delay specification of a combinational logic circuit change based on the input values

that the circuit is evaluating?

(A) Yes. There are times when the inputs switch between inputs codes that use paths

through the circuit with different delays.

(B) No. The delay is always specified as the longest delay path.

(C) Yes. The delay can vary between the longest delay path and zero. A delay of zero

occurs when the inputs switch between two inputs codes that produce the same

output.

(D) No. The output is always produced at a time equal to the longest delay path.

Example 4.14
Determining the delay of a combinational logic circuit
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4.3 Combinational Logic Synthesis

4.3.1 Canonical Sum of Products

One technique to directly synthesize a logic circuit from a truth table is to use a canonical sum of

products topology based on minterms. The term canonical refers to this topology yielding potentially

unminimized logic. A minterm is a product term (i.e., an AND operation) that will be true for one and only

one input code. The minterm must contain every input variable in its expression. Complements are

applied to the input variables as necessary in order to produce a true output for the individual input code.

We define the word literal to describe an input variable which may or may not be complemented. This is a

more useful word because if we say that a minterm “must include all variables”, it implies that all variables

are included in the term uncomplemented. A more useful statement is that a minterm “must include all

literals”. This now implies that each variable must be included, but it can be in the form of itself or its

complement (e.g., A or A0). Figure 4.14 shows the definition and gate level depiction of a minterm

expression. Each minterm can be denoted using the lower case “m” with the row number as a subscript.

For an arbitrary truth table, a minterm can be used for each row corresponding to a true output. If

each of these minterms’ outputs are fed into a single OR gate, then a sum of products logic circuit is

formed that will produce the logic listed in the truth table. In this topology, any input code that corresponds

to an output of 1 will cause its corresponding minterm to output a 1. Since a 1 on any input of an OR gate

will cause the output to go to a 1, the output of the minterm is passed to the final result. Example 4.15

shows this process. One important consideration of this approach is that no effort has been taken to

minimize the logic expression. This unminimized logic expression is also called the canonical sum. The

canonical sum is logically correct but uses the most amount of circuitry possible for a given truth table.

This canonical sum can be the starting point for minimization using Boolean algebra.

Fig. 4.14
Definition and gate level depiction of a minterm
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4.3.2 The Minterm List (Σ)

Aminterm list is a compact way to describe the functionality of a logic circuit by simply listing the row

numbers that correspond to an output of 1 in the truth table. The ∑ symbol is used to denote a minterm

list. All input variables must be listed in the order they appear in the truth table. This is necessary because

since a minterm list uses only the row numbers to indicate which input codes result in an output of 1, the

minterm list must indicate how many variables comprise the row number, which variable is in the most

significant position and which is in the least significant position. After the ∑ symbol, the row numbers

corresponding to a true output are listed in a comma-delimited format within parentheses. Example 4.16

shows the process for creating a minterm list from a truth table.

Example 4.15
Creating a canonical sum of products logic circuit using minterms
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A minterm list contains the same information as the truth table, the canonical sum and the canonical

sum of products logic diagram. Since the minterms themselves are formally defined for an input code, it

is trivial to go back and forth between the minterm list and these other forms. Example 4.17 shows how a

minterm list can be used to generate an equivalent truth table, canonical sum and canonical sum of

products logic diagram.

Example 4.16
Creating a minterm list from a truth table
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4.3.3 Canonical Product of Sums (POS)

Another technique to directly synthesize a logic circuit from a truth table is to use a canonical product

of sums topology based onmaxterms. A maxterm is a sum term (i.e., an OR operation) that will be false

for one and only one input code. The maxterm must contain every literal in its expression. Complements

are applied to the input variables as necessary in order to produce a false output for the individual input

code. Figure 4.15 shows the definition and gate level depiction of a maxterm expression. Each maxterm

can be denoted using the upper case “M” with the row number as a subscript.

Example 4.17
Creating equivalent functional representations from a minterm list
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For an arbitrary truth table, a maxterm can be used for each row corresponding to a false output. If

each of these maxterms outputs are fed into a single AND gate, then a product of sums logic circuit is

formed that will produce the logic listed in the truth table. In this topology, any input code that corresponds

to an output of 0 will cause its corresponding maxterm to output a 0. Since a 0 on any input of an AND

gate will cause the output to go to a 0, the output of the maxterm is passed to the final result. Example

4.18 shows this process. This approach is complementary to the sum of products approach. In the sum

of products approach based on minterms, the circuit operates by producing 1’s that are passed to the

output for the rows that require a true output. For all other rows, the output is false. A product of sums

approach based on maxterms operates by producing 0’s that are passed to the output for the rows that

require a false output. For all other rows, the output is true. These two approaches produce the

equivalent logic functionality. Again, at this point no effort has been taken to minimize the logic expres-

sion. This unminimized form is called a canonical product. The canonical product is logically correct,

but uses the most amount of circuitry possible for a given truth table. This canonical product can be the

starting point for minimization using the Boolean algebra theorems.

Fig. 4.15
Definition and gate level depiction of a maxterm
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4.3.4 The Maxterm List (Π)

Amaxterm list is a compact way to describe the functionality of a logic circuit by simply listing the row

numbers that correspond to an output of 0 in the truth table. The Π symbol is used to denote a maxterm

list. All literals used in the logic expression must be listed in the order they appear in the truth table. After

the Π symbol, the row numbers corresponding to a false output are listed in a comma-delimited format

within parentheses. Example 4.19 shows the process for creating a maxterm list from a truth table.

Example 4.18
Creating a product of sums logic circuit using maxterms
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A maxterm list contains the same information as the truth table, the canonical product and the

canonical product of sums logic diagram. Example 4.20 shows how a maxterm list can be used to

generate these equivalent forms.

Example 4.19
Creating a maxterm list from a truth table
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4.3.5 Minterm and Maxterm List Equivalence

The examples in Examples 4.17 and 4.20 illustrate how minterm and maxterm lists produce the

exact same logic functionality but in a complementary fashion. It is trivial to switch back and forth

between minterm lists and maxterm lists. This is accomplished by simply changing the list type (i.e.,

Example 4.20
Creating equivalent functional representations from a maxterm list
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min to max, max to min) and then switching the row numbers between those listed and those not

listed. Example 4.21 shows multiple techniques for representing equivalent logic functionality as a truth

table.

Example 4.21
Creating equivalent forms to represent logic functionality
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CONCEPT CHECK

CC4.3 All logic functions can be implemented equivalently using either a canonical sum of products

(SOP) or canonical product of sums (POS) topology. Which of these statements is true with

respect to selecting a topology that requires the least amount of gates.

(A) Since a minterm list and a maxterm list can both be written to describe the same

logic functionality, the number of gates in an SOP and POS will always be

the same.

(B) If a minterm list has over half of its row numbers listed, an SOP topology will
require fewer gates than a POS.

(C) A POS topology always requires more gates because it needs additional logic to

convert the inputs from positive to negative logic.

(D) If a minterm list has over half of its row numbers listed, a POS topology will
require fewer gates than SOP.

4.4 Logic Minimization

We now look at how to reduce the canonical expressions into equivalent forms that use less logic.

This minimization is key to reducing the complexity of the logic prior to implementing in real circuitry.

This reduces the amount of gates needed, placement area, wiring and power consumption of the logic

circuit.

4.4.1 Algebraic Minimization

Canonical expressions can be reduced algebraically by applying the theorems covered in prior

sections. This process typically consists of a series of factoring based on the distributive property

followed by replacing variables with constants (i.e., 0’s and 1’s) using the Complements Theorem.

Finally, constants are removed using the Identity Theorem. Example 4.22 shows this process.
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The primary drawback of this approach is that it requires recognition of where the theorems can be

applied. This can often lead to missed minimizations. Computer automation is often the best mechanism

to perform this minimization for large logic expressions.

4.4.2 Minimization Using Karnaugh Maps

A Karnaugh map is a graphical way to minimize logic expressions. This technique is named after

Maurice Karnaugh, American physicist, who introduced themap in its latest form in 1953 while working at

Bell Labs. The Karnaugh map (or K-map) is a way to put a truth table into a form that allows logic

minimization through a graphical process. This technique provides a graphical process that

accomplishes the same result as factoring variables via the distributive property and removing variables

via the Complements and Identity Theorems. K-maps present a truth table in a form that allows variables

to be removed from the final logic expression in a graphical manner.

Example 4.22
Minimizing a logic expression algebraically
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4.4.2.1 Formation of a K-Map

A K-map is constructed as a two-dimensional grid. Each cell within the map corresponds to the

output for a specific input code. The cells are positioned such that neighboring cells only differ by one bit

in their input codes. Neighboring cells are defined as cells immediately adjacent horizontally and

immediately adjacent vertically. Two cells positioned diagonally next to each other are not considered

neighbors. The input codes for each variable are listed along the top and side of the K-map. Consider the

construction of a 2-input K-map shown in Fig. 4.16.

When constructing a 3-input K-map, it is important to remember that each input code can only differ

from its neighbor by one bit. For example, the two codes 01 and 10 differ by two bits (i.e., the MSB is

different and the LSB is different), thus they could not be neighbors; however, the codes 01-11 and 11-10

can be neighbors. As such, the input codes along the top of the 3-input K-map must be ordered

accordingly (i.e., 00-01-11-10). Consider the construction of a 3-input K-map shown in Fig. 4.17. The

rows and columns that correspond to the input literals can now span multiple rows and columns. Notice

how in this 3-input K-map, the literals A, A0, B and B0 all correspond to two columns. Also, notice that B0

spans two columns, but the columns are on different edges of the K-map. The side edges of the 3-input

K-map are still considered neighbors because the input codes for these columns only differ by one bit.

This is an important attribute once we get to the minimization of variables because it allows us to

examine an input literal’s impact not only within the obvious adjacent cells but also when the variables

wrap around the edges of the K-map.

Fig. 4.16
Formation of a 2-input K-map
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When constructing a 4-input K-map, the same rules apply that the input codes can only differ from

their neighbors by one bit. Consider the construction of a 4-input K-map in Fig. 4.18. In a 4-input K-map,

neighboring cells can wrap around both the top-to-bottom edges in addition to the side-to-side edges.

Notice that all 16 cells are positioned within the map so that their neighbors on the top, bottom and sides

only differ by one bit in their input codes.

Fig. 4.17
Formation of a 3-input K-map
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4.4.2.2 Logic Minimization Using K-Maps (Sum of Products)

Now we look at using a K-map to create a minimized logic expression in a SOP form. Remember

that each cell with an output of 1 has a minterm associated with it, just as in the truth table. When two

neighboring cells have outputs of 1, it graphically indicates that the two minterms can be reduced into a

minimized product term that will cover both outputs. Consider the example given in Fig. 4.19.

Fig. 4.18
Formation of a 4-input K-map
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These observations can be put into a formal process to produce a minimized SOP logic expression

using a K-map. The steps are as follows:

1. Circle groups of 1’s in the K-map following the rules:

• Each circle should contain the largest number of 1’s possible.

• The circles encompass only neighboring cells (i.e., side-to-side sides and/or top and
bottom).

• The circles must contain a number of 1’s that is a power of 2 (i.e., 1, 2, 4, 8 or 16).

• Enter as many circles as possible without having any circles fully cover another circle.

• Each circle is called a Prime Implicant.

2. Create a product term for each prime implicant following the rules:

• Each variable in the K-map is evaluated one-by-one.

• If the circle covers a region where the input variable is a 1, then include it in the product
term uncomplemented.

• If the circle covers a region where the input variable is a 0, then include it in the product
term complemented.

Fig. 4.19
Observing how K-Maps visually highlight logic minimizations
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• If the circle covers a region where the input variable is both a 0 and 1, then the variable is
excluded from the product term.

3. Sum all of the product terms for each prime implicant.

Let’s apply this approach to our 2-input K-map example. Example 4.23 shows the process of finding

a minimized sum of products logic expression for a 2-input logic circuit using a K-map. This process

yielded the same SOP expression as the algebraic minimization and observations shown in Fig. 4.19,

but with a formalized process.

Let’s now apply this process to our 3-input K-map example. Example 4.24 shows the process of

finding a minimized sum of products logic expression for a 3-input logic circuit using a K-map. This

example shows circles that overlap. This is legal as long as one circle does not fully encompass another.

Overlapping circles are common since the K-map process dictates that circles should be drawn that

group the largest number of ones possible as long as they are in powers of 2. Forming groups of ones

using ones that have already been circled is perfectly legal to accomplish larger groupings. The larger

the grouping of ones, the more chance there is for a variable to be excluded from the product term. This

results in better minimization of the logic.

Example 4.23
Using a K-map to find a minimized sum of products expression (2-input)
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Let’s now apply this process to our 4-input K-map example. Example 4.25 shows the process of

finding a minimized sum of products logic expression for a 4-input logic circuit using a K-map.

Example 4.24
Using a K-map to find a minimized sum of products expression (3-input)
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4.4.2.3 Logic Minimization Using K-Maps (Product of Sums)

K-maps can also be used to create minimized product of sums logic expressions. This is the same

concept as how a minterm list and maxterm list each produce the same logic function, but in comple-

mentary fashions. When creating a product of sums expression from a K-map, groups of 0’s are circled.

For each circle, a sum term is derived with a negation of variables similar to when forming a maxterm

(i.e., in the input variable is a 0, then it is included uncomplemented in the sum term and vice versa). The

Example 4.25
Using a K-map to find a minimized sum of products expression (4-input)
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final step in forming the minimized POS expression is to AND all of the sum terms together. The formal

process is as follows:

1. Circle groups of 0’s in the K-map following the rules:

• Each circle should contain the largest number of 0’s possible.

• The circles encompass only neighboring cells (i.e., side-to-side sides and/or top and
bottom).

• The circles must contain a number of 0’s that is a power of 2 (i.e., 1, 2, 4, 8 or 16).

• Enter as many circles as possible without having any circles fully cover another circle.

• Each circle is called a Prime Implicant.

2. Create a sum term for each prime implicant following the rules:

• Each variable in the K-map is evaluated one-by-one.

• If the circle covers a region where the input variable is a 1, then include it in the sum term
complemented.

• If the circle covers a region where the input variable is a 0, then include it in the sum term
uncomplemented.

• If the circles cover a region where the input variable is both a 0 and 1, then the variable is
excluded from the sum term.

3. Multiply all of the sum terms for each prime implicant.

Let’s apply this approach to our 2-input K-map example. Example 4.26 shows the process of finding

a minimized product of sums logic expression for a 2-input logic circuit using a K-map. Notice that this

process yielded the same logic expression as the SOP approach shown in Example 4.23. This illustrates

that both the POS and SOP expressions produce the correct logic for the circuit.

Example 4.26
Using a K-map to find a minimized product of sums expression (2-input)
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Let’s now apply this process to our 3-input K-map example. Example 4.27 shows the process of

finding a minimized product of sums logic expression for a 3-input logic circuit using a K-map. Notice that

the logic expression in POS form is not identical to the SOP expression found in Example 4.24; however,

using a few steps of algebraic manipulation shows that the POS expression can be put into a form that is

identical to the prior SOP expression. This illustrates that both the POS and SOP produce equivalent

functionality for the circuit.

Example 4.27
Using a K-map to find a minimized product of sums expression (3-input)
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Let’s now apply this process to our 4-input K-map example. Example 4.28 shows the process of

finding a minimized product of sums logic expression for a 4-input logic circuit using a K-map.

4.4.2.4 Minimal Sum

One situation that arises when minimizing logic using a K-map is that some of the prime implicants

may be redundant. Consider the example in Fig. 4.20.

Example 4.28
Using a K-map to find a minimized product of sums expression (4-input)
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We need to define a formal process for identifying redundant prime implicants that can be removed

without impacting the result of the logic expression. Let’s start with examining the sum of products form.

First, we define the term essential prime implicant as a prime implicant that cannot be removed from

the logic expression without impacting its result. We then define the term minimal sum as a logic

expression that represents the most minimal set of logic operations to accomplish a sum of products

form. There may be multiple minimal sums for a given truth table, but each would have the same number

of logic operations. In order to determine if a prime implicant is essential, we first put in each and every

possible prime implicant into the K-map. This gives a logic expression known as the complete sum.

From this point we identify any cells that have only one prime implicant covering them. These cells are

Fig. 4.20
Observing redundant prime implicants in a K-map
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called distinguished one cells. Any prime implicant that covers a distinguished one cell is defined as an

essential prime implicant. All prime implicants that are not essential are removed from the K-map. A

minimal sum is then simply the sum of all remaining product terms associated with the essential prime

implicants. Example 4.29 shows how to use this process.

This process is identical for the product of sums form to produce the minimal product.

4.4.3 Don’t Cares

There are often times when framing a design problem that there are specific input codes that require

exact output values, but there are other codes where the output value doesn’t matter. This can occur for a

variety of reasons, such as knowing that certain input codes will never occur due to the nature of the

problem or that the output of the circuit will only be used under certain input codes. We can take

advantage of this situation to produce a more minimal logic circuit. We define an output as a don’t

care when it doesn’t matter whether it is a 1 or 0 for the particular input code. The symbol for a don’t care

is “X”. We take advantage of don’t cares when performing logic minimization by treating them as

whatever output value will produce a minimal logic expression. Example 4.30 shows how to use this

process.

Example 4.29
Deriving the minimal sum from a K-map
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4.4.4 Using XOR Gates

While Boolean algebra does not include the exclusive-OR and exclusive-NOR operations, XOR and

XNOR gates do indeed exist in modern electronics. They can be a useful tool to provide logic circuitry

with less operations, sometimes even compared to a minimal sum or product synthesized using the

techniques just described. An XOR/XNOR operation can be identified by putting the values from a truth

table into a K-map. The XOR/XNOR operations will result in a characteristic checkerboard pattern in the

K-map. Consider the following patterns for XOR and XNOR gates in Figs. 4.21, 4.22, 4.23, and 4.24.

Anytime these patterns are observed, it indicates an XOR/XNOR gate.

Example 4.30
Using don’t cares to produce a minimal SOP logic expression
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Fig. 4.21
XOR and XNOR checkerboard patterns observed in K-maps (2-input)

Fig. 4.22
XOR and XNOR checkerboard patterns observed in K-maps (3-input)

Fig. 4.23
XOR checkerboard pattern observed in K-maps (4-input)
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CONCEPT CHECK

CC4.4(a) Logic minimization is accomplished by removing variables from the original canonical logic

expression that don’t impact the result. How does a Karnaugh map graphically show what

variables can be removed?

(A) K-maps contain the same information as a truth table but the data is formatted

as a grid. This allows variables to be removed by inspection.

(B) K-maps rearrange a truth table so that adjacent cells have one and only one

input variable changing at a time. If adjacent cells have the same output value
when an input variable is both a 0 and a 1, that variable has no impact on the

interim result and can be eliminated.

(C) K-maps list both the rows with outputs of 1’s and 0’s simultaneously. This allows

minimization to occur for a SOP and POS topology that each have the same, but
minimal, number of gates.

(D) K-maps display the truth table information in a grid format, which is a more

compact way of presenting the behavior of a circuit.

CC4.4(b) A “Don’t Care” can be used to minimize a logic expression by assigning the output of a row
to either a 1 or a 0 in order to form larger groupings within a K-map. How does the output of

the circuit behave when it processes the input code for a row containing a don’t care?

(A) The output will be whatever value was needed to form the largest grouping in

the K-map.

(B) The output will go to either a 0 or a 1, but the final value is random.

(C) The output can toggle between a 0 and a 1 when this input code is present.

(D) The output will be driven to exactly halfway between a 0 and a 1.

Fig. 4.24
XNOR checkerboard pattern observed in K-maps (4-input)
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4.5 Timing Hazards & Glitches

Timing hazards, or glitches, refer to unwanted transitions on the output of a combinational logic

circuit. These are most commonly due to different delay paths through the gates in the circuit. In real

circuitry there is always a finite propagation delay through each gate. Consider the circuit shown in

Fig. 4.25 where gate delays are included and how they can produce unwanted transitions.

These timing hazards are given unique names based on the type of transition that occurs. A static

0 timing hazard is when the input switches between two input codes that both yield an output of 0 but the

output momentarily switches to a 1. A static 1 timing hazard is when the input switches between two

Fig. 4.25
Examining the source of a timing hazard (or glitch) in a combinational logic circuit
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input codes that both yield an output of 1 but the output momentarily switches to a 0. A dynamic hazard

is when the input switches between two input codes that result in a real transition on the output (i.e., 0 to

1 or 1 to 0), but the output has a momentary glitch before reaching its final value. These definitions are

shown in Fig. 4.26.

Timing hazards can be addressed in a variety of ways. One way is to try to match the propagation

delays through each path of the logic circuit. This can be difficult, particularly in modern logic families

such as CMOS. In the example in Fig. 4.25, the root cause of the different propagation delays was due to

an inverter on one of the variables. It seems obvious that this could be addressed by putting buffers on

the other inputs with equal delays as the inverter. This would create a situation where all input codes

would arrive at the first stage of AND gates at the same time regardless of whether they were inverted or

not and eliminate the hazards; however, CMOS implements a buffer as two inverters in series, so it is

difficult to insert a buffer in a circuit with an equal delay to an inverter. Addressing timing hazards in this

way is possible, but it involves a time-consuming and tedious process of adjusting the transistors used to

create the buffer and inverter to have equal delays.

Another technique to address timing hazards is to place additional circuitry in the system that will

ensure the correct output while the input codes switch. Consider how including a non-essential prime

implicant can eliminate a timing hazard in Example 4.31. In this approach, the minimal sum from Fig. 4.25

is instead replaced with the complete sum. The use of the complete sum instead of the minimal sum can

be shown to eliminate both static and dynamic timing hazards. The drawback of this approach is the

addition of extra circuitry in the combinational logic circuit (i.e., non-essential prime implicants).

Fig. 4.26
Timing hazard definitions
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CONCEPT CHECK

CC4.5 How long do you need to wait for all hazards to settle out?

(A) The time equal to the delay through the non-essential prime implicants.

(B) The time equal to the delay through the essential prime implicants.

(C) The time equal to the shortest delay path in the circuit.

(D) The time equal to the longest delay path in the circuit.

Example 4.31
Eliminating a timing hazard by including non-essential product terms
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Summary

v Boolean algebra defines the axioms and
theorems that guide the operations that can
be performed on a two-valued number
system.

v Boolean algebra theorems allow logic
expressions to be manipulated to make cir-
cuit synthesis simpler. They also allow logic
expressions to be minimized.

v The delay of a combinational logic circuit is
always dictated by the longest delay path
from the inputs to the output.

v The canonical form of a logic expression is
one that has not been minimized.

v A canonical sum of products form is a logic
synthesis technique based on minterms. A
minterm is a product term that will output a
one for only one unique input code. A
minterm is used for each row of a truth table
corresponding to an output of a one. Each of
the minterms are then summed together to
create the final system output.

v A minterm list is a shorthand way of describ-
ing the information in a truth table. The sym-
bol “Σ” is used to denote a minterm list.
Each of the input variables are added to this
symbol as comma delimited subscripts. The
row number is then listed for each row
corresponding to an output of a one.

v A canonical product of sums form is a logic
synthesis technique based on maxterms. A
maxterm is a sum term that will output a zero
for only one unique input code. A maxterm
is used for each row of a truth table
corresponding to an output of a zero. Each
of the maxterms are then multiplied together
to create the final system output.

v Amaxterm list is a shorthand way of describ-
ing the information in a truth table. The sym-
bol “Π” is used to denote a maxterm list.
Each of the input variables are added to this
symbol as comma delimited subscripts.
The row number is then listed for each row
corresponding to an output of a zero.

v Canonical logic expressions can be
minimized through a repetitive process of
factoring common variables using the distrib-
utive property and then eliminating remaining
variables using a combination of the
complements and identity theorems.

v A Karnaugh map (K-map) is a graphical
approach to minimizing logic expressions.
A K-map arranges a truth table into a grid in
which the neighboring cells have input codes
that differ by only one bit. This allows the
impact of an input variable on a group of
outputs to be quickly identified.

v Aminimized sum of products expression can
be found from a K-map by circling neighbor-
ing ones to form groups that can be produced
by a single product term. Each product term
(aka prime implicant) is then summed
together to form the circuit output.

v Aminimized product of sums expression can
be found from a K-map by circling neighbor-
ing zeros to form groups that can be pro-
duced by a single sum term. Each sum term
(aka prime implicant) is then multiplied
together to form the circuit output.

v A minimal sum or minimal product is a logic
expression that contains only essential prime
implicants and represents the smallest num-
ber of logic operations possible to produce
the desired output.

v A don’t care (X) can be used when the output
of a truth table row can be either a zero or a
one without affecting the system behavior.
This typically occurs when some of the input
codes of a truth table will never occur. The
value for the row of a truth table containing a
don’t care output can be chosen to give the
most minimal logic expression. In a K-map,
don’t cares can be included to form the larg-
est groupings in order to give the least
amount of logic.

v While exclusive-OR gates are not used in
Boolean algebra, they can be visually
identified in K-maps by looking for checker-
board patterns.

v Timing hazards are temporary glitches that
occur on the output of a combinational logic
circuit due to timing mismatches through dif-
ferent paths in the circuit. Hazards can be
minimized by including additional circuitry in
the system or by matching the delay of all
signal paths.

132 • Chapter 4: Combinational Logic Design



Exercise Problems

Section 4.1: Boolean Algebra

4.1.1 Which Boolean algebra theorem describes the
situation where any variable OR’d with itself
will yield itself?

4.1.2 Which Boolean algebra theorem describes the
situation where any variable that is double
complemented will yield itself?

4.1.3 Which Boolean algebra theorem describes the
situation where any variable OR’d with a 1 will
yield a 1?

4.1.4 Which Boolean algebra theorem describes the
situation where a variable that exists in multiple
product terms can be factored out?

4.1.5 Which Boolean algebra theorem describes the
situation where when output(s) corresponding
to a term within an expression are handled by
another term the original term can be
removed?

4.1.6 Which Boolean algebra theorem describes the
situation where any variable AND’d with its
complement will yield a 0?

4.1.7 Which Boolean algebra theorem describes the
situation where any variable AND’d with a 0 will
yield a 0?

4.1.8 Which Boolean algebra theorem describes the
situation where an AND gate with its inputs
inverted is equivalent to an OR gate with its
outputs inverted?

4.1.9 Which Boolean algebra theorem describes the
situation where a variable that exists in multiple
sum terms can be factored out?

4.1.10 Which Boolean algebra theorem describes the
situation where an OR gate with its inputs
inverted is equivalent to an AND gate with its
outputs inverted?

4.1.11 Which Boolean algebra theorem describes the
situation where the grouping of variables in an
OR operation does not affect the result?

4.1.12 Which Boolean algebra theorem describes the
situation where any variable AND’d with itself
will yield itself?

4.1.13 Which Boolean algebra theorem describes the
situation where the order of variables in an OR
operation does not affect the result?

4.1.14 Which Boolean algebra theorem describes the
situation where any variable AND’d with a 1 will
yield itself?

4.1.15 Which Boolean algebra theorem describes the
situation where the grouping of variables in an
AND operation does not affect the result?

4.1.16 Which Boolean algebra theorem describes the
situation where any variable OR’d with its com-
plement will yield a 1?

4.1.17 Which Boolean algebra theorem describes the
situation where the order of variables in an
AND operation does not affect the result?

4.1.18 Which Boolean algebra theorem describes the
situation where a variable OR’d with a 0 will
yield itself?

4.1.19 Use proof by exhaustion to prove that an OR
gate with its inputs inverted is equivalent to an
AND gate with its outputs inverted.

4.1.20 Use proof by exhaustion to prove that an AND
gate with its inputs inverted is equivalent to an
OR gate with its outputs inverted.

Section 4.2: Combinational Logic

Analysis

4.2.1 For the logic diagram given in Fig. 4.27, give
the logic expression for the output F.

Fig. 4.27
Combinational logic analysis 1

4.2.2 For the logic diagram given in Fig. 4.27, give
the truth table for the output F.

4.2.3 For the logic diagram given in Fig. 4.27, give
the delay.

4.2.4 For the logic diagram given in Fig. 4.28, give
the logic expression for the output F.

Fig. 4.28
Combinational logic analysis 2

4.2.5 For the logic diagram given in Fig. 4.28, give
the truth table for the output F.

4.2.6 For the logic diagram given in Fig. 4.28, give
the delay.

4.2.7 For the logic diagram given in Fig. 4.29, give
the logic expression for the output F.
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Fig. 4.29
Combinational logic analysis 3

4.2.8 For the logic diagram given in Fig. 4.29, give
the truth table for the output F.

4.2.9 For the logic diagram given in Fig. 4.29, give
the delay.

Section 4.3: Combinational Logic

Synthesis

4.3.1 For the 2-input truth table in Fig. 4.30, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.30
Combinational logic synthesis 1

4.3.2 For the 2-input truth table in Fig. 4.30, give the
canonical sum of products (SOP) logic
diagram.

4.3.3 For the 2-input truth table in Fig. 4.30, give the
minterm list.

4.3.4 For the 2-input truth table in Fig. 4.30, give the
canonical product of sums (POS) logic
expression.

4.3.5 For the 2-input truth table in Fig. 4.30, give the
canonical product of sums (POS) logic
diagram.

4.3.6 For the 2-input truth table in Fig. 4.30, give the
maxterm list.

4.3.7 For the 2-input minterm list in Fig. 4.31, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.31
Combinational logic synthesis 2

4.3.8 For the 2-input minterm list in Fig. 4.31, give
the canonical sum of products (SOP) logic
diagram.

4.3.9 For the 2-input minterm list in Fig. 4.31, give
the truth Table.

4.3.10 For the 2-input minterm list in Fig. 4.31, give
the canonical product of sums (POS) logic
expression.

4.3.11 For the 2-input minterm list in Fig. 4.31, give
the canonical product of sums (POS) logic
diagram.

4.3.12 For the 2-input minterm list in Fig. 4.31, give
the maxterm list.

4.3.13 For the 2-input maxterm list in Fig. 4.32, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.32
Combinational logic synthesis 3

4.3.14 For the 2-input maxterm list in Fig. 4.32, give
the canonical sum of products (SOP) logic
diagram.

4.3.15 For the 2-input maxterm list in Fig. 4.32, give
the minterm list.

4.3.16 For the 2-input maxterm list in Fig. 4.32, give
the canonical product of sums (POS) logic
expression.

4.3.17 For the 2-input maxterm list in Fig. 4.32, give
the canonical product of sums (POS) logic
diagram.

4.3.18 For the 2-input maxterm list in Fig. 4.32, give
the truth table.

4.3.19 For the 3-input truth table in Fig. 4.33, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.33
Combinational logic synthesis 4

4.3.20 For the 3-input truth table in Fig. 4.33, give the
canonical sum of products (SOP) logic
diagram.

4.3.21 For the 3-input truth table in Fig. 4.33, give the
minterm list.
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4.3.22 For the 3-input truth table in Fig. 4.33, give the
canonical product of sums (POS) logic
expression.

4.3.23 For the 3-input truth table in Fig. 4.33, give the
canonical product of sums (POS) logic
diagram.

4.3.24 For the 3-input truth table in Fig. 4.33, give the
maxterm list.

4.3.25 For the 3-input minterm list in Fig. 4.34, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.34
Combinational logic synthesis 5

4.3.26 For the 3-input minterm list in Fig. 4.34, give
the canonical sum of products (SOP) logic
diagram.

4.3.27 For the 3-input minterm list in Fig. 4.34, give
the truth table.

4.3.28 For the 3-input minterm list in Fig. 4.34, give
the canonical product of sums (POS) logic
expression.

4.3.29 For the 3-input minterm list in Fig. 4.34, give
the canonical product of sums (POS) logic
diagram.

4.3.30 For the 3-input minterm list in Fig. 4.34, give
the maxterm list.

4.3.31 For the 3-input maxterm list in Fig. 4.35, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.35
Combinational logic synthesis 6

4.3.32 For the 3-input maxterm list in Fig. 4.35, give
the canonical sum of products (SOP) logic
diagram.

4.3.33 For the 3-input maxterm list in Fig. 4.35, give
the minterm list.

4.3.34 For the 3-input maxterm list in Fig. 4.35, give
the canonical product of sums (POS) logic
expression.

4.3.35 For the 3-input maxterm list in Fig. 4.35, give
the canonical product of sums (POS) logic
diagram.

4.3.36 For the 3-input maxterm list in Fig. 4.35, give
the truth table.

4.3.37 For the 4-input truth table in Fig. 4.36, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.36
Combinational logic synthesis 7

4.3.38 For the 4-input truth table in Fig. 4.36, give the
canonical sum of products (SOP) logic
diagram.

4.3.39 For the 4-input truth table in Fig. 4.36, give the
minterm list.

4.3.40 For the 4-input truth table in Fig. 4.36, give the
canonical product of sums (POS) logic
expression.

4.3.41 For the 4-input truth table in Fig. 4.36, give the
canonical product of sums (POS) logic
diagram.

4.3.42 For the 4-input truth table in Fig. 4.36, give the
maxterm list.

4.3.43 For the 4-input minterm list in Fig. 4.37, give
the canonical sum of products (SOP) logic
expression.

Fig. 4.37
Combinational logic synthesis 8

4.3.44 For the 4-input minterm list in Fig. 4.37, give
the canonical sum of products (SOP) logic
diagram.

4.3.45 For the 4-input minterm list in Fig. 4.37, give
the truth Table.

4.3.46 For the 4-input minterm list in Fig. 4.37, give
the canonical product of sums (POS) logic
expression.

4.3.47 For the 4-input minterm list in Fig. 4.37, give
the canonical product of sums (POS) logic
diagram.

4.3.48 For the 4-input minterm list in Fig. 4.37, give
the maxterm list.

4.3.49 For the 4-input maxterm list in Fig. 4.38, give
the canonical sum of products (SOP) logic
expression.
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Fig. 4.38
Combinational logic synthesis 9

4.3.50 For the 4-input maxterm list in Fig. 4.38, give
the canonical sum of products (SOP) logic
diagram.

4.3.51 For the 4-input maxterm list in Fig. 4.38, give
the minterm list.

4.3.52 For the 4-input maxterm list in Fig. 4.38, give
the canonical product of sums (POS) logic
expression.

4.3.53 For the 4-input maxterm list in Fig. 4.38, give
the canonical product of sums (POS) logic
diagram.

4.3.54 For the 4-input maxterm list in Fig. 4.38, give
the truth table.

Section 4.4: Logic Minimization

4.4.1 For the 2-input truth table in Fig. 4.39, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.39
Logic minimization 1

4.4.2 For the 2-input truth table in Fig. 4.39, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.3 For the 2-input truth table in Fig. 4.40, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.40
Logic minimization 2

4.4.4 For the 2-input truth table in Fig. 4.40, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.5 For the 2-input truth table in Fig. 4.41, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.41
Logic minimization 3

4.4.6 For the 2-input truth table in Fig. 4.41, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.7 For the 2-input truth table in Fig. 4.42, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.42
Logic minimization 4

4.4.8 For the 2-input truth table in Fig. 4.42, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.9 For the 3-input truth table in Fig. 4.43, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.43
Logic minimization 5

4.4.10 For the 3-input truth table in Fig. 4.43, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.11 For the 3-input truth table in Fig. 4.44, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.44
Logic minimization 6
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4.4.12 For the 3-input truth table in Fig. 4.44, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.13 For the 3-input truth table in Fig. 4.45, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.45
Logic minimization 7

4.4.14 For the 3-input truth table in Fig. 4.45, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.15 For the 3-input truth table in Fig. 4.46, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.46
Logic minimization 8

4.4.16 For the 3-input truth table in Fig. 4.46, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.17 For the 4-input truth table in Fig. 4.47, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.47
Logic minimization 9

4.4.18 For the 4-input truth table in Fig. 4.47, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.19 For the 4-input truth table in Fig. 4.48, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.48
Logic minimization 10

4.4.20 For the 4-input truth table in Fig. 4.48, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.21 For the 4-input truth table in Fig. 4.49, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.49
Logic minimization 11

4.4.22 For the 4-input truth table in Fig. 4.49, use a
K-map to derive a minimized product of sums
(POS) logic expression.
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4.4.23 For the 4-input truth table in Fig. 4.50, use a
K-map to derive a minimized sum of products
(SOP) logic expression.

Fig. 4.50
Logic minimization 12

4.4.24 For the 4-input truth table in Fig. 4.50, use a
K-map to derive a minimized product of sums
(POS) logic expression.

4.4.25 For the 3-input truth table and K-map in
Fig. 4.51, provide the row number(s) of any
distinguished one-cells.

Fig. 4.51
Logic minimization 13

4.4.26 For the 3-input truth table and K-map in
Fig. 4.51, give the product terms for the essen-
tial prime implicants.

4.4.27 For the 3-input truth table and K-map in
Fig. 4.51, give the minimal sum of products
logic expression.

4.4.28 For the 3-input truth table and K-map in
Fig. 4.51, give the complete sum of products
logic expression.

4.4.29 For the 4-input truth table and K-map in
Fig. 4.52, provide the row number(s) of any
distinguished one-cells.

Fig. 4.52
Logic minimization 14

4.4.30 For the 4-input truth table and K-map in
Fig. 4.52, give the product terms for the essen-
tial prime implicants.

4.4.31 For the 4-input truth table and K-map in
Fig. 4.52, give the minimal sum of products
(SOP) logic expression.

4.4.32 For the 4-input truth table and K-map in
Fig. 4.52, give the complete sum of products
(SOP) logic expression.

4.4.33 For the 4-input truth table and K-map in
Fig. 4.53, give the minimal sum of products
(SOP) logic expression by exploiting “don’t
cares”.

Fig. 4.53
Logic minimization 15

4.4.34 For the 4-input truth table and K-map in
Fig. 4.53, give the minimal product of sums
(POS) logic expression by exploiting “don’t
cares”.

4.4.35 For the 4-input truth table and K-map in
Fig. 4.54, give the minimal sum of products
(SOP) logic expression by exploiting “don’t
cares”.
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Fig. 4.54
Logic minimization 16

4.4.36 For the 4-input truth table and K-map in
Fig. 4.54, give the minimal product of sums
(POS) logic expression by exploiting “don’t
cares”.

Section 4.5: Timing Hazards & Glitches

4.5.1 Describe the situation in which a static-1 timing
hazard may occur.

4.5.2 Describe the situation in which a static-0 timing
hazard may occur.

4.5.3 In which topology will a static-1 timing hazard
occur (SOP, POS, or both)?

4.5.4 In which topology will a static-0 timing hazard
occur (SOP, POS, or both)?

4.5.5 For the 3-input truth table and K-map in
Fig. 4.51, give the product term that helps
eliminate static-1 timing hazards in this circuit.

4.5.6 For the 3-input truth table and K-map in
Fig. 4.51, give the sum term that helps elimi-
nate static-0 timing hazards in this circuit.

4.5.7 For the 4-input truth table and K-map in
Fig. 4.52, give the product term that helps
eliminate static-1 timing hazards in this circuit.

4.5.8 For the 4-input truth table and K-map in
Fig. 4.52, give the sum term that helps elimi-
nate static-0 timing hazards in this circuit.
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Chapter 5: Verilog (Part 1)
Based on the material presented in Chap. 4, there are a few observations about logic design that are

apparent. First, the size of logic circuitry can scale quickly to the point where it is difficult to design by

hand. Second, the process of moving from a high-level description of how a circuit works (e.g., a truth

table) to a form that is ready to be implemented with real circuitry (e.g., a minimized logic diagram) is

straightforward and well-defined. Both of these observations motivate the use of computer aided design

(CAD) tools to accomplish logic design. This chapter introduces hardware description languages (HDLs)

as a means to describe digital circuitry using a text-based language. HDLs provide a means to describe

large digital systems without the need for schematics, which can become impractical in very large

designs. HDLs have evolved to support logic simulation at different levels of abstraction. This provides

designers the ability to begin designing and verifying functionality of large systems at a high level of

abstraction and postpone the details of the circuit implementation until later in the design cycle. This

enables a top-down design approach that is scalable across different logic families. HDLs have also

evolved to support automated synthesis, which allows the CAD tools to take a functional description of a

system (e.g., a truth table) and automatically create the gate level circuitry to be implemented in real

hardware. This allows designers to focus their attention on designing the behavior of a system and not

spend as much time performing the formal logic synthesis steps that were presented in Chap. 4. The

intent of this chapter is to introduce HDLs and their use in the modern digital design flow. This chapter will

cover the basics of designing combinational logic in an HDL and also hierarchical design. The more

advanced concepts of HDLs such as sequential logic design, high level abstraction, and test benches

are covered later so that the reader can get started quickly using HDLs to gain experience with the

languages and design flow.

There are two dominant hardware description languages in use today. They are VHDL and Verilog.

VHDL stands for very high speed integrated circuit hardware description language. Verilog is not an

acronym but rather a trade name. The use of these two HDLs is split nearly equally within the digital

design industry. Once one language is learned it is simple to learn the other language, so the choice of

the HDL to learn first is somewhat arbitrary. In this text, we will use Verilog to learn the concepts of an

HDL. Verilog is more similar to the programming language C and less strict in its type casting than VHDL.

Verilog is also widely used in custom integrated circuit design so there is a great deal of documentation

and examples readily available online. The goal of this chapter is to provide an understanding of the

basic principles of hardware description languages.

Learning Outcomes—After completing this chapter, you will be able to:

5.1 Describe the role of hardware description languages in modern digital design.
5.2 Describe the fundamentals of design abstraction in modern digital design.
5.3 Describe the modern digital design flow based on hardware description languages.
5.4 Describe the fundamental constructs of Verilog.
5.5 Design a Verilog model for a combinational logic circuit using concurrent modeling

techniques (continuous signal assignment with logical operators and continuous signal
assignment with conditional operators).

5.6 Design a Verilog model for a combinational logic circuit using a structural design approach
(gate level primitives and user defined primitives).

5.7 Describe the role of a Verilog test bench.
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5.1 History of Hardware Description Languages

The invention of the integrated circuit is most commonly credited to two individuals who filed patents

on different variations of the same basic concept within six months of each other in 1959. Jack Kilby filed

the first patent on the integrated circuit in February of 1959 titled “Miniaturized Electronic Circuits” while

working for Texas Instruments. Robert Noyce was the second to file a patent on the integrated circuit in

July of 1959 titled “Semiconductor Device and Lead Structure” while at a company he cofounded called

Fairchild Semiconductor. Kilby went on to win the Nobel Prize in Physics in 2000 for his invention, while

Noyce went on to cofound Intel Corporation in 1968 with Gordon Moore. In 1971, Intel introduced the first

single-chip microprocessor using integrated circuit technology, the Intel 4004. This microprocessor IC

contained 2300 transistors. This series of inventions launched the semiconductor industry, which was

the driving force behind the growth of Silicon Valley, and led to 40 years of unprecedented advancement

in technology that has impacted every aspect of the modern world.

Gordon Moore, cofounder of Intel, predicted in 1965 that the number of transistors on an integrated

circuit would double every two years. This prediction, now known asMoore’s Law, has held true since the

invention of the integrated circuit. As the number of transistors on an integrated circuit grew, so did the

size of the design and the functionality that could be implemented. Once the first microprocessor was

invented in 1971, the capability of CAD tools increased rapidly enabling larger designs to be accom-

plished. These larger designs, including newer microprocessors, enabled the CAD tools to become even

more sophisticated and, in turn, yield even larger designs. The rapid expansion of electronic systems

based on digital integrated circuits required that different manufacturers needed to produce designs that

were compatible with each other. The adoption of logic family standards helped manufacturers ensure

their parts would be compatible with other manufacturers at the physical layer (e.g., voltage and current);

however, one challenge that was encountered by the industry was a way to document the complex

behavior of larger systems. The use of schematics to document large digital designs became too

cumbersome and difficult to understand by anyone besides the designer. Word descriptions of the

behavior were easier to understand, but even this form of documentation became too voluminous to

be effective for the size of designs that were emerging. Simultaneously there was a need to begin

simulating the functionality of these large systems prior to fabrication to verify accuracy. Due to the

complexity of these systems and the vast potential for design error, it became impractical to verify design

accuracy through prototyping.

In 1983, the US Department of Defense (DoD) sponsored a program to create a means to document

the behavior of digital systems that could be used across all of its suppliers. This program was motivated

by a lack of adequate documentation for the functionality of application specific integrated circuits

(ASICs) that were being supplied to the DoD. This lack of documentation was becoming a critical

issue as ASICs would come to the end of their life cycle and need to be replaced. With the lack of a

standardized documentation approach, suppliers had difficulty reproducing equivalent parts to those that

had become obsolete. The DoD contracted three companies (Texas Instruments, IBM, and Intermetrics)

to develop a standardized documentation tool that provided detailed information about both the interface

(i.e., inputs and outputs) and the behavior of digital systems. The new tool was to be implemented in a

format similar to a programming language. Due to the nature of this type of language-based tool, it was a

natural extension of the original project scope to include the ability to simulate the behavior of a digital

system. The simulation capability was desired to span multiple levels of abstraction to provide maximum

flexibility. In 1985, the first version of this tool, called VHDL, was released. In order to gain widespread

adoption and ensure consistency of use across the industry, VHDL was turned over to the Institute of

Electrical and Electronic Engineers (IEEE) for standardization. IEEE is a professional association that

defines a broad range of open technology standards. In 1987, IEEE released the first industry standard

version of VHDL. The release was titled IEEE 1076–1987. Feedback from the initial version resulted in a

major revision of the standard in 1993 titled IEEE 1076–1993. While many minor revisions have been
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made to the 1993 release, the 1076–1993 standard contains the vast majority of VHDL functionality in

use today. The most recent VHDL standard is IEEE 1076–2008.

Also in 1983, the Verilog HDL was developed by Automated Integrated Design Systems as a logic

simulation language. The development of Verilog took place completely independent from the VHDL

project. Automated Integrated Design Systems (renamed Gateway Design Automation in 1985) was

acquired by CAD tool vendorCadence Design Systems in 1990. In response to the popularity of Verilog’s

intuitive programming and superior simulation support, and also to stay competitive with the emerging

VHDL standard, Cadence made the Verilog HDL open to the public. IEEE once again developed the

open standard for this HDL, and in 1995 released the Verilog standard titled IEEE 1364–1995. This

release has undergone numerous revisions with the most significant occurring in 2001. It is common to

refer to the major releases as “Verilog 1995” and “Verilog 2001” instead of their official standard numbers.

The development of CAD tools to accomplish automated logic synthesis can be dated back to the

1970’s when IBM began developing a series of practical synthesis engines that were used in the design

of their mainframe computers; however, the main advancement in logic synthesis came with the founding

of a company called Synopsis in 1986. Synopsis was the first company to focus on logic synthesis

directly from HDLs. This was a major contribution because designers were already using HDLs to

describe and simulate their digital systems, and now logic synthesis became integrated in the same

design flow. Due to the complexity of synthesizing highly abstract functional descriptions, only lower-

levels of abstraction that were thoroughly elaborated were initially able to be synthesized. As CAD tool

capability evolved, synthesis of higher levels of abstraction became possible, but even today not all

functionality that can be described in an HDL can be synthesized.

The history of HDLs, their standardization, and the creation of the associated logic synthesis tools is

key to understanding the use and limitations of HDLs. HDLs were originally designed for documentation

and behavioral simulation. Logic synthesis tools were developed independently and modified later to

work with HDLs. This history provides some background into the most common pitfalls that beginning

digital designers encounter, that being that most any type of behavior can be described and simulated in

an HDL, but only a subset of well-described functionality can be synthesized. Beginning digital designers

are often plagued by issues related to designs that simulate perfectly but that will not synthesize

correctly. In this book, an effort is made to introduce Verilog at a level that provides a reasonable amount

of abstraction while preserving the ability to be synthesized. Figure 5.1 shows a timeline of some of the

major technology milestones that have occurred in the past 150 years in the field of digital logic and

HDLs.
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CONCEPT CHECK

CC5.1 Why does Verilog support modeling techniques that aren’t synthesizable?

(A) There wasn’t enough funding available to develop synthesis capability as it all went

to the VHDL project.

(B) At the time Verilog was created, synthesis was deemed too difficult to implement.

(C) To allow Verilog to be used as a generic programming language.

(D) Verilog needs to support all steps in the modern digital design flow, some of which

are unsynthesizable such as test pattern generation and timing verification.

Fig. 5.1
Major milestones in the advancement of Digital Logic and HDLs
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5.2 HDL Abstraction

HDLs were originally defined to be able to model behavior at multiple levels of abstraction.

Abstraction is an important concept in engineering design because it allows us to specify how systems

will operate without getting consumed prematurely with implementation details. Also, by removing the

details of the lower level implementation, simulations can be conducted in reasonable amounts of time to

model the higher-level functionality. If a full computer system was simulated using detailed models for

every MOSFET, it would take an impracticable amount of time to complete. Figure 5.2 shows a graphical

depiction of the different layers of abstraction in digital system design.

The highest level of abstraction is the system level. At this level, behavior of a system is described

by stating a set of broad specifications. An example of a design at this level is a specification such as “the

computer system will perform 10 Tera Floating Point Operations per Second (10 TFLOPS) on double

Fig. 5.2
Levels of design abstraction
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precision data and consume no more than 100 Watts of power”. Notice that these specifications do not

dictate the lower level details such as the type of logic family or the type of computer architecture to use.

One level down from the system level is the algorithmic level. At this level, the specifications begin to be

broken down into sub-systems, each with an associated behavior that will accomplish a part of the

primary task. At this level, the example computer specifications might be broken down into sub-systems

such as a central processing unit (CPU) to perform the computation and random access memory (RAM)

to hold the inputs and outputs of the computation. One level down from the algorithmic level is the

register transfer level (RTL). At this level, the details of how data is moved between and within

sub-systems are described in addition to how the data is manipulated based on system inputs. One

level down from the RTL level is the gate level. At this level, the design is described using basic gates and

registers (or storage elements). The gate level is essentially a schematic (either graphically or text-

based) that contains the components and connections that will implement the functionality from the

above levels of abstraction. One level down from the gate level is the circuit level. The circuit level

describes the operation of the basic gates and registers using transistors, wires and other electrical

components such as resistors and capacitors. Finally, the lowest level of design abstraction is the

material level. This level describes how different materials are combined and shaped in order to

implement the transistors, devices and wires from the circuit level.

HDLs are designed to model behavior at all of these levels with the exception of the material level.

While there is some capability to model circuit level behavior such as MOSFETs as ideal switches and

pull-up/pull-down resistors, HDLs are not typically used at the circuit level. Another graphical depiction of

design abstraction is known as the Gajski and Kuhn’s Y-chart. A Y-chart depicts abstraction across

three different design domains: behavioral, structural and physical. Each of these design domains

contains levels of abstraction (i.e., system, algorithm, RTL, gate, and circuit). An example Y-chart is

shown in Fig. 5.3.
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A Y-chart also depicts how the abstraction levels of different design domains are related to each

other. A top-down design flow can be visualized in a Y-chart by spiraling inward in a clockwise direction.

Moving from the behavioral domain to the structural domain is the process of synthesis. Whenever

synthesis is performed, the resulting system should be compared with the prior behavioral description.

This checking is called verification. The process of creating the physical circuitry corresponding to the

structural description is called implementation. The spiral continues down through the levels of abstrac-

tion until the design is implemented at a level that the geometries representing circuit elements

(transistors, wires, etc.) are ready to be fabricated in silicon. Figure 5.4 shows the top-down design

process depicted as an inward spiral on the Y-chart.

Fig. 5.3
Y-Chart of design abstraction
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The Y-chart represents a formal approach for large digital systems. For large systems that are

designed by teams of engineers, it is critical that a formal, top-down design process is followed to

eliminate potentially costly design errors as the implementation is carried out at lower levels of

abstraction.

CONCEPT CHECK

CC5.2 Why is abstraction an essential part of engineering design?

(A) Without abstraction all schematics would be drawn at the transistor-level.

(B) Abstraction allows computer programs to aid in the design process.

(C) Abstraction allows the details of the implementation to be hidden while the higher-

level systems are designed. Without abstraction, the details of the implementation
would overwhelm the designer.

(D) Abstraction allows analog circuit designers to include digital blocks in their systems.

Fig. 5.4
Y-Chart illustrating top-down design approach
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5.3 The Modern Digital Design Flow

When performing a smaller design or the design of fully-contained sub-systems, the process can be

broken down into individual steps. These steps are shown in Fig. 5.5. This process is given generically

and applies to both classical andmodern digital design. The distinction between classical and modern is

that modern digital design uses HDLs and automated CAD tools for simulation, synthesis, place and

route, and verification.

This generic design process flow can be used across classical and modern digital design, although

modern digital design allows additional verification at each step using automated CAD tools. Figure 5.6

shows how this flow is used in the classical design approach of a combinational logic circuit.

Fig. 5.5
Generic digital design flow
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The modern design flow based on HDLs includes the ability to simulate functionality at each step of

the process. Functional simulations can be performed on the initial behavioral description of the system.

At each step of the design process the functionality is described in more detail, ultimately moving toward

the fabrication step. At each level, the detailed information can be included in the simulation to verify that

the functionality is still correct and that the design is still meeting the original specifications. Figure 5.7

shows the modern digital design flow with the inclusion of simulation capability at each step.

Fig. 5.6
Classical digital design flow
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CONCEPT CHECK

CC5.3 Why did digital designs move from schematic-entry to text-based HDLs?

(A) HDL models could be much larger by describing functionality in text similar to

traditional programming language.

(B) Schematics required sophisticated graphics hardware to display correctly.

(C) Schematics symbols became too small as designs became larger.

(D) Text was easier to understand by a broader range of engineers.

Fig. 5.7
Modern digital design flow
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5.4 Verilog Constructs

Now we begin looking at the details of Verilog. The original Verilog standard (IEEE 1364) has been

updated numerous times since its creation in 1995. The most significant update occurred in 2001, which

was titled IEEE 1394–2001. In 2005 minor corrections and improvements were added to the standard,

which resulted in IEEE 1394–2005. The constructs described in this book reflect the functionality in the

IEEE 1394–2005 standard. The functionality of Verilog (e.g., operators, signal types, functions, etc.) is

defined within the Verilog standard, thus it is not necessary to explicitly state that a design is using the

IEEE 1394 package because it is inherent in the use of Verilog. This chapter gives an overview of the

basic constructs of Verilog in order to model simple combinational logic circuits and begin gaining

experience with logic simulations. The more advanced constructs of Verilog are covered in Chap. 8

with examples given throughout Chaps. 9, 10, 11, 12, and 13.

A Verilog design describes a single system in a single file. The file has the suffix *.v. Within the file,

the system description is contained within a module. The module includes the interface to the system

(i.e., the inputs and outputs) and the description of the behavior. Figure 5.8 shows a graphical depiction

of a Verilog file.

Verilog is case sensitive. Also, each Verilog assignment, definition or declaration is terminated with

a semicolon (;). As such, line wraps are allowed and do not signify the end of an assignment, definition or

declaration. Line wraps can be used to make Verilog more readable. Comments in Verilog are supported

in two ways. The first way is called a line comment and is preceded with two slashes (i.e., //). Everything

after the slashes is considered a comment until the end of the line. The second comment approach is

called a block comment and begins with /* and ends with a */. Everything between /* and */ is considered

a comment. A block comment can span multiple lines. All user-defined names in Verilog must start with

an alphabetic letter, not a number. User-defined names are not allowed to be the same as any Verilog

keyword. This chapter contains many definitions of syntax in Verilog. The following notations will be used

throughout the chapter when introducing new constructs.

bold ¼ Verilog keyword, use as is, case sensitive.

italics ¼ User-defined name, case sensitive.

<> ¼ A required characteristic such as a data type, input/output, etc.

Fig. 5.8
The anatomy of a Verilog file
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5.4.1 Data Types

In Verilog, every signal, constant, variable and function must be assigned a data type. The IEEE

1394–2005 standard provides a variety of pre-defined data types. Some data types are synthesizable,

while others are only for modeling abstract behavior. The following are the most commonly used data

types in the Verilog language.

5.4.1.1 Value Set

Verilog supports four basic values that a signal can take on: 0, 1, X, and Z. Most of the pre-defined

data types in Verilog store these values. A description of each value supported is given below.

Value Description

0 A logic zero, or false condition.

1 A logic one, or true condition.

x or X Unknown or uninitialized.

z or Z High impedance, tri-stated, or floating.

In Verilog, these values also have an associated strength. The strengths are used to resolve the

value of a signal when it is driven by multiple sources. The names, syntax and relative strengths are

given below.

Strength Description Strength level

supply1 Supply drive for VCC 7

supply0 Supply drive for VSS, or GND 7

strong1 Strong drive to logic one 6

strong0 Strong drive to logic zero 6

pull1 Medium drive to logic one 5

pull0 Medium drive to logic zero 5

large Large capacitive 4

weak1 Weak drive to logic one 3

weak0 Weak drive to logic zero 3

medium Medium capacitive 2

small Small capacitive 1

highz1 High impedance with weak pull-up to logic one 0

highz0 High impedance with weak pull-down to logic zero 0

When a signal is driven by multiple drivers, it will take on the value of the driver with the highest

strength. If the two drivers have the same strength, the value will be unknown. If the strength is not

specified, it will default to strong drive, or level 6.

5.4.1.2 Net Data Types

Every signal within Verilog must be associated with a data type. A net data type is one that models

an interconnection (aka., a net) between components and can take on the values 0, 1, X, and Z. A signal

with a net data type must be driven at all times and updates its value when the driver value changes. The

most common synthesizable net data type in Verilog is the wire. The type wire will be used throughout

this text. There are also a variety of other more advanced net data types that model complex digital

systems with multiple drivers for the same net. The syntax and description for all Verilog net data types

are given below.
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Type Description

wire A simple connection between components.

wor Wired-OR. If multiple drivers, their values are OR’d together.

wand Wired-AND’d. If multiple drivers, their values are AND’d together.

supply0 Used to model the VSS, (GND), power supply (supply strength inherent).

supply1 Used to model the VCC power supply (supply strength inherent).

tri Identical to wire. Used for readability for a net driven by multiple sources.

trior Identical to wor. Used for readability for nets driven by multiple sources.

triand Identical to wand. Used for readability for nets driven by multiple sources.

tri1 Pulls up to logic one when tri-stated.

tri0 Pulls down to logic zero when tri-stated.

trireg Holds last value when tri-stated (capacitance strength inherent).

Each of these net types can also have an associated drive strength. The strength is used in

determining the final value of the net when it is connected to multiple drivers.

5.4.1.3 Variable Data Types

Verilog also contains data types that model storage. These are called variable data types. A variable

data type can take on the values 0, 1, X, and Z, but does not have an associated strength. Variable data

types will hold the value assigned to them until their next assignment. The syntax and description for the

Verilog variable data types are given below.

Type Description

reg A variable that models logic storage. Can take on values 0, 1, X, and Z.

integer A 32-bit, 2’s complement variable representing whole numbers between

�2,147,483,64810 to +2,147,483,647.

real A 64-bit, floating point variable representing real numbers between –(2.2x10�308)10
to +(2.2x10308)10.

time An unsigned, 64-bit variable taking on values from 010 to +(9.2x1018).

realtime Same as time. Just used for readability.

5.4.1.4 Vectors

In Verilog, a vector is a one-dimensional array of elements. All of the net data types, in addition to the

variable type reg, can be used to form vectors. The syntax for defining a vector is as follows:

<type> [<MSB_index>:<LSB_index>] vector_name

While any range of indices can be used, it is common practice to have the LSB index start at zero.

Example:

wire [7:0] Sum; // This defines an 8-bit vector called “Sum” of type wire. The
// MSB is given the index 7 while the LSB is given the index 0.

reg [15:0] Q; // This defines a 16-bit vector called “Q” of type reg.

Individual bits within the vector can be addressed using their index. Groups of bits can be accessed

using an index range.

Sum[0]; // This is the least significant bit of the vector “Sum” defined
above.

Q[15:8]; // This is the upper 8-bits of the 16-bit vector “Q” defined
above.
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5.4.1.5 Arrays

An array is a multi-dimensional array of elements. This can also be thought of as a “vector of

vectors”. Vectors within the array all have the same dimensions. To declare an array, the element type

and dimensions are defined first followed by the array name and its dimensions. It is common practice to

place the start index of the array on the left side of the “:” when defining its dimensions. The syntax for the

creation of an array is shown below.

<element_type> [<MSB_index>:<LSB_index>] array_name [<array_start_index>:
<array_end_index>];

Example:

reg[7:0] Mem[0:4095]; // Defines an array of 4096, 8-bit vectors of type reg.
integer A[1:100]; // Defines an array of 100 integers.

When accessing an array, the name of the array is given first, followed by the index of the element. It

is also possible to access an individual bit within an array by adding appending the index of element.

Example:

Mem[2]; // This is the 3rd element within the array named “Mem”.
// This syntax represents an 8-bit vector of type reg.

Mem[2][7]; // This is the MSB of the 3rd element within the array named “Mem”.
// This syntax represents a single bit of type reg.

A[2]; // This is the 2nd element within the array named “A”. Recall
// that A was declared with a starting index of 1.
// This syntax represents a 32-bit, signed integer.

5.4.1.6 Expressing Numbers Using Different Bases

If a number is simply entered into Verilog without identifying syntax, it is treated as an integer.

However, Verilog supports defining numbers in other bases. Verilog also supports an optional bit size

and sign of a number. When defining the value of arrays, the “_” can be inserted between numerals to

improve readability. The “_” is ignored by the Verilog compiler. Values of numbers can be entered in

either upper or lower case (i.e., z or Z, f or F, etc.). The syntax for specifying the base of a number is as

follows:

<size_in_bits>’<base><value>

Note that specifying the size is optional. If it is omitted, the number will default to a 32-bit vector with

leading zeros added as necessary. The supported bases are as follows:

Syntax Description

‘b Unsigned binary

‘o Unsigned octal

‘d Unsigned decimal

‘h Unsigned hexadecimal

‘sb Signed binary

‘so Signed octal

‘sd Signed decimal

‘sh Signed hexadecimal
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Example:

10 // This is treated as decimal 10, which is a 32-bit signed vector.
4’b1111 // A 4-bit number with the value 11112.
8’b1011_0000 // An 8-bit number with the value 101100002.
8’hFF // An 8-bit number with the value 111111112.
8’hff // An 8-bit number with the value 111111112.
6’hA // A 6-bit number with the value 0010102. Note that leading zeros

// were added to make the value 6-bits.
8’d7 // An 8-bit number with the value 000001112.
32’d0 // A 32-bit number with the value 0000_000016.
’b1111 // A 32-bit number with the value 0000_000F16.
8’bZ // An 8-bit number with the value ZZZZ_ZZZZ.

5.4.1.7 Assigning Between Different Types

Verilog is said to be a weakly-typed (or loosely typed) language, meaning that it permits

assignments between different data types. This is as opposed to a strongly-typed language (such as

VHDL) where signal assignments are only permitted between like types. The reason Verilog permits

assignment between different types is because it treats all of its types as just groups of bits. When

assigning between different types, Verilog will automatically truncate or add leading bits as necessary to

make the assignment work. The following examples illustrate how Verilog handles a few assignments

between different types. Assume that a variable called ABC_TB has been declared as type reg[2:0].

Example:

ABC_TB ¼ 2’b00; // ABC_TB will be assigned 3’b000. A leading bit is automatically
added.

ABC_TB ¼ 5; // ABC_TB will be assigned 3’b101. The integer is truncated to
3-bits.

ABC_TB ¼ 8; // ABC_TB will be assigned 3’b000. The integer is truncated to
3-bits.

5.4.2 The Module

All systems in Verilog are encapsulated inside of a module. Modules can include instantiations of

lower-level modules in order to support hierarchical designs. The keywords module and endmodule

signify the beginning and end of the system description. When working on large designs, it is common

practice to place each module in its own file with the same name.

module module_name (port_list); // Pre Verilog-2001
// port_definitions

// module_items

endmodule

or

module module_name (port_list and port_definitions); // Verilog-2001 and after
// module_items

endmodule

5.4.2.1 Port Definitions

The first item within a module is its definition of the inputs and outputs, or ports. Each port needs to

have a user-defined name, a direction, and a type. The user-defined port names are case sensitive and

must begin an alphabetic character. The port directions are declared to be one of the three types: input,

output, and inout. A port can take on any of the previously described data types, but only wires,
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registers, and integers are synthesizable. Port names with the same type and direction can be listed on

the same line separated by commas.

There are two different port definition styles supported in Verilog. Prior to the Verilog-2001 release,

the port names were listed within parentheses after the module name. Then within the module, the

directionality and type of the ports were listed. Starting with the Verilog-2001 release, the port directions

and types could be included alongside the port names within the parenthesis after the module name.

This approach mimicked more of an ANSCI-C approach to passing inputs/outputs to a system. In this

text, the newer approach to port definition will be used. Example 5.1 shows multiple approaches for

defining a module and its ports.

5.4.2.2 Signal Declarations

A signal that is used for internal connections within a system is declared within the module before its

first use. Each signal must be declared by listing its type followed by a user-defined name. Signal names

of like type can be declared on the same line separated with a comma. All of the legal data types

described above can be used for signals; however, only types net, reg, and integer will synthesize

directly. The syntax for a signal declaration is as follows:

<type> name;

Example 5.1
Declaring Verilog module ports
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Example:

wire node1; // declare a signal named “node1” of type wire

reg Q2, Q1, Q0; // declare three signals named “Q2”, “Q1”, and “Q0”, all of
type reg

wire [63:0] bus1; // declare a 64-bit vector named “bus1” with all bits of
type wire

integer i,j; // declare two integers called “i” and “j”

Verilog supports a hierarchical design approach, thus signal names can be the same within a

sub-system as those at a higher level without conflict. Figure 5.9 shows an example of legal signal

naming in a hierarchical design.

5.4.2.3 Parameter Declarations

A parameter, or constant, is useful for representing a quantity that will be used multiple times in the

architecture. The syntax for declaring a parameter is as follows:

parameter <type> constant_name ¼ <value>;

Note that the type is optional and can only be integer, time, real, or realtime. If a type is provided,

the parameter will have the same properties as a variable of the same time. If the type is excluded, the

parameter will take on the type of the value assigned to it.

Example:

parameter BUS_WIDTH ¼ 64;
parameter NICKEL ¼ 8’b0000_0101;

Once declared, the constant name can be used throughout the module. The following example

illustrates how we can use a constant to define the size of a vector. Notice that since we defined the

constant to be the actual width of the vector (i.e., 32-bits), we need to subtract one from its value when

defining the indices (i.e., [31:0]).

Example:

wire [BUS_WIDTH-1:0] BUS_A; // It is acceptable to add a “space”
for readability

Fig. 5.9
Verilog signals and systems
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5.4.2.4 Compiler Directives

A compiler directive provides additional information to the simulation tool on how to interpret the

Verilog model. A compiler directive is placed before the module definition and is preceded with a backtick

(i.e., `). Note that this is not an apostrophe. A few of the most commonly used compiler directives are as

follows:

Syntax Description

`timescale < unit>,<precision> Defines the timescale of the delay unit and its smallest precision

`include < filename> Includes additional files in the compilation

`define < macroname > <value> Declares a global constant

Example:

‘timescale 1ns/1ps // Declares the unit of time is 1 ns with a precision of 1ps.
// The precision is the smallest amount that the time can
// take on. For example, with this directive the number
// 0.001 would be interpreted as 0.001 ns, or 1 ps.
// However, the number 0.0001 would be interpreted as 0 since
// it is smaller than the minimum precision value.

5.4.3 Verilog Operators

There are a variety of pre-defined operators in the Verilog standard. It is important to note that

operators are defined to work on specific data types and that not all operators are synthesizable.

5.4.3.1 Assignment Operator

Verilog uses the equal sign (¼) to denote an assignment. The left-hand side (LHS) of the assign-

ment is the target signal. The right-hand side (RHS) contains the input arguments and can contain both

signals, constants, and operators.

Example:

F1 ¼ A; // F1 is assigned the signal A
F2 ¼ 4’hAA; // F2 is an 8-bit vector and is assigned the value 101010102

5.4.3.2 Bitwise Logical Operators

Bitwise operators perform logic functions on individual bits. The inputs to the operation are single

bits and the output is a single bit. In the case where the inputs are vectors, each bit in the first vector is

operated on by the bit in the same position from the second vector. If the vectors are not the same length,

the shorter vector is padded with leading zeros to make both lengths equal. Verilog contains the following

bitwise operators:

Syntax Operation

~ Negation

& AND

| OR

^ XOR

~^ or ^~ XNOR

<< Logical shift left (fill empty LSB location with zero)

>> Logical shift right (fill empty MSB location with zero)
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Example:

~X // invert each bit in X
X & Y // AND each bit of X with each bit of Y
X | Y // OR each bit of X with each bit of Y
X ^ Y // XOR each bit of X with each bit of Y
X ~^ Y // XNOR each bit of X with each bit of Y
X << 3 // Shift X left 3 times and fill with zeros
Y >> 2 // Shift Y right 2 times and fill with zeros

5.4.3.3 Reduction Logic Operators

A reduction operator is one that uses each bit of a vector as individual inputs into a logic operation

and produces a single bit output. Verilog contains the following reduction logic operators.

Syntax Operation

& AND all bits in the vector together (1-bit result)

~& NAND all bits in the vector together (1-bit result)

| OR all bits in the vector together (1-bit result)

~| NOR all bits in the vector together (1-bit result)

^ XOR all bits in the vector together (1-bit result)

~^ or ^~ XNOR all bits in the vector together (1-bit result)

Example:

&X // AND all bits in vector X together
~&X // NAND all bits in vector X together
|X // OR all bits in vector X together
~|X // NOR all bits in vector X together
^X // XOR all bits in vector X together
~^X // XNOR all bits in vector X together

5.4.3.4 Boolean Logic Operators

A Boolean logic operator is one that returns a value of TRUE (1) or FALSE (0) based on a logic

operation of the input operations. These operations are used in decision statements.

Syntax Operation

! Negation

&& AND

|| OR

Example:

!X // TRUE if all values in X are 0, FALSE otherwise
X && Y // TRUE if the bitwise AND of X and Y results in all ones, FALSE otherwise
X || Y // TRUE if the bitwise OR of X and Y results in all ones, FALSE otherwise

5.4.3.5 Relational Operators

A relational operator is one that returns a value of TRUE (1) or FALSE (0) based on a comparison of

two inputs.
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Syntax Description

¼¼ Equality

!¼ Inequality

< Less than

> Greater than

<¼ Less than or equal

>¼ Greater than or equal

Example:

X ¼¼ Y // TRUE if X is equal to Y, FALSE otherwise
X !¼ Y // TRUE if X is not equal to Y, FALSE otherwise
X < Y // TRUE if X is less than Y, FALSE otherwise
X > Y // TRUE if X is greater than Y, FALSE otherwise
X <¼ Y // TRUE if X is less than or equal to Y, FALSE otherwise
X >¼ Y // TRUE if X is greater than or equal to Y, FALSE otherwise

5.4.3.6 Conditional Operators

Verilog contains a conditional operator that can be used to provide a more intuitive approach to

modeling logic statements. The keyword for the conditional operator is ? with the following syntax:

<target_net> ¼ <Boolean_condition> ? <true_assignment> : <false_assignment>;

This operator specifies a Boolean condition in which if evaluated TRUE, the true_assignment will be

assigned to the target. If the Boolean condition is evaluated FALSE, the false_assignment portion of the

operator will be assigned to the target. The values in this assignment can be signals or logic values. The

Boolean condition can be any combination of the Boolean operators described above. Nested condi-

tional operators can also be implemented by inserting subsequent conditional operators in place of the

false_value.

Example:

F ¼ (A ¼¼ 1’b0) ? 1’b1 : 1’b0; // If A is a zero, F¼1, otherwise F¼0.
This models an inverter.

F ¼ (sel ¼¼ 1’b0) ? A : B; // If sel is a zero, F¼A, otherwise F¼B.
This models a selectable switch.

F ¼ ((A ¼¼ 1’b0) && (B ¼¼ 1’b0)) ? 1’b’0 : // Nested conditional statements.
((A ¼¼ 1’b0) && (B ¼¼ 1’b1)) ? 1’b’1 : // This models an XOR gate.
((A ¼¼ 1’b1) && (B ¼¼ 1’b0)) ? 1’b’1 :
((A ¼¼ 1’b1) && (B ¼¼ 1’b1)) ? 1’b’0;

F ¼ ( !C && (!A || B) ) ? 1’b1 : 1’b0; // This models the logic expression
// F ¼ C’�(A’+B).

5.4.3.7 Concatenation Operator

In Verilog, the curly brackets (i.e., {}) are used to concatenate multiple signals. The target of this

operation must be the same size of the sum of the sizes of the input arguments.
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Example:

Bus1[7:0] ¼ {Bus2[7:4], Bus3[3:0]}; // Assuming Bus1, Bus2, and Bus3 are all 8-bit
// vectors, this operation takes the upper

4-bits of
// Bus2, concatenates them with the lower

4-bits of
// Bus3, and assigns the 8-bit combination

to Bus1.

BusC ¼ {BusA, BusB}; // If BusA and BusB are 4-bits, then BusC
// must be 8-bits.

BusC[7:0] ¼ {4’b0000, BusA}; // This pads the 4-bit vector BusA with 4x
leading

// zeros and assigns to the 8-bit vector
BusC.

5.4.3.8 Replication Operator

Verilog provides the ability to concatenate a vector with itself through the replication operator. This

operator uses double curly brackets (i.e., {{}}) and an integer indicating the number of replications to be

performed. The replication syntax is as follows:

{<number_of_replications>{<vector_name_to_be_replicated>}}

Example:

BusX¼ {4{Bus1}}; // This is equivalent to: BusX¼ {Bus1, Bus1, Bus1, Bus1};
BusY ¼ {2{A,B}}; // This is equivalent to: BusY ¼ {A, B, A, B};
BusZ ¼ {Bus1, {2{Bus2}}}; // This is equivalent to: BusZ ¼ {Bus1, Bus2, Bus2};

5.4.3.9 Numerical Operators

Verilog also provides a set of numerical operators as follows:

Syntax Operation

+ Addition

� Subtraction (when placed between arguments)

� 2’s complement negation (when placed in front of an argument)

* Multiplication

/ Division

% Modulus

** Raise to the power

<<< Shift to the left, fill with zeros

<<< Shift to the right, fill with sign bit

Example:

X + Y // Add X to Y
X - Y // Subtract Y from X
-X // Take the two’s complement negation of X
X * Y // Multiply X by Y
X / Y // Divide X by Y
X % Y // Modulus X/Y
X ** Y // Raise X to the power of Y
X <<< 3 // Shift X left 3 times, fill with zeros
X >>> 2 // Shift X right 2 times, fill with sign bit
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Verilog will allow the use of these operators on arguments of different sizes, types and signs. The

rules of the operations are as follows:

• If two vectors are of different sizes, the smaller vector is expanded to the size of the larger
vector.

– If the smaller vector is unsigned, it is padded with zeros.
– If the smaller vector is signed, it is padded with the sign bit.

• If one of the arguments is real, then the arithmetic will take place using real numbers.

• If one of the arguments is unsigned, then all arguments will be treated as unsigned.

5.4.3.10 Operator Precedence

The following is the order of precedence of the Verilog operators:

Operators Precedence Notes

! ~ + � Highest Bitwise/Unary

{} {{}} Concatenation/Replication

() # No operation, just parenthesis

** Power

* / % Binary Multiply/Divide/Modulo

+ � # Binary Addition/Subtraction

<< >> <<< >>> Shift Operators

< <¼ > > ¼ Greater/Less than Comparisons

¼¼! ¼ # Equality/Inequality Comparisons

& ~ & AND/NAND Operators

^ ~^ XOR/XNOR Operators

| ~| # OR/NOR Operators

&& Boolean AND

|| Boolean OR

?: Lowest Conditional Operator

CONCEPT CHECK

CC5.4(a) What revision of Verilog added the ability to list the port names, types, and directions just

once after the module name?

(A) Verilog-1995.

(B) Verilog-2001.

(C) Verilog-2005.

(D) SystemVerilog.

CC5.4(b) What is the difference between types wire and reg?

(A) They are the same.

(B) The type wire is a simple interconnection while reg will hold the value of its last

assignment.

(C) The type wire is for scalars while the type reg is for vectors.

(D) Only wire is synthesizable.
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5.5 Modeling Concurrent Functionality in Verilog

It is important to remember that Verilog is a hardware description language, not a programming

language. In a programming language, the lines of code are executed sequentially as they appear in the

source file. In Verilog, the lines of code represent the behavior of real hardware. Thus, the assignments

are executed concurrently unless specifically noted otherwise.

5.5.1 Continuous Assignment

Verilog uses the keyword assign to denote a continuous signal assignment. After this keyword, an

assignment is made using the ¼ symbol. The left-hand side (LHS) of the assignment is the target signal

and must be a net type. The right hand side (RHS) contains the input arguments and can contain nets,

regs, constants, and operators. A continuous assignment models combinational logic. Any change to the

RHS of the expression will result in an update to the LHS target net.

Example:

assign F1 ¼ A; // F1 is updated anytime A changes, where A is a signal
assign F2 ¼ 1’b0; // F2 is assigned the value 0
assign F3 ¼ 4’hAA; // F3 is an 8-bit vector and is assigned the value 101010102

Each individual assignment will be executed concurrently and synthesized as separate logic

circuits. Consider the following example.

Example:

assign X ¼ A;
assign Y ¼ B;
assign Z ¼ C;

When simulated, these three lines of Verilog will make three separate signal assignments at the

exact same time. This is different from a programming language that will first assign A to X, then B to Y

and finally C to Z. In Verilog this functionality is identical to three separate wires. This description will be

directly synthesized into three separate wires.

Below is another example of how continuous signal assignments in Verilog differ from a sequentially

executed programming language.

Example:

assign A ¼ B;
assign B ¼ C;

In a Verilog simulation, the signal assignments of C to B and B to A will take place at the same time.

This means during synthesis, the signal B will be eliminated from the design since this functionality

describes two wires in series. Automated synthesis tools will eliminate this unnecessary signal name.

This is not the same functionality that would result if this example was implemented as a sequentially

executed computer program. A computer program would execute the assignment of B to A first, then

assign the value of C to B second. In this way, B represents a storage element that is passed to A before

it is updated with C.

5.5.2 Continuous Assignment with Logical Operators

Each of the logical operators described in Sect. 5.4.3.2 can be used in conjunction with concurrent

signal assignments to create individual combinational logic circuits. Example 5.2 shows how to design a

Verilog model of a combinational logic circuit using this approach.
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5.5.3 Continuous Assignment with Conditional Operators

Logical operators are good for describing the behavior of small circuits; however, in the prior

example we still needed to create the canonical sum of products logic expression by hand before

describing the functionality in Verilog. The true power of an HDL is when the behavior of the system

can be described fully without requiring any hand design. The conditional operator allows us to describe

a continuous assignment using Boolean conditions that effect the values of the result. In this approach,

we use the conditional operator (?) in conjunction with the continuous assignment keyword assign.

Example 5.3 shows how to design a Verilog model of a combinational logic circuit using continuous

assignment with conditional operators. Note that this example uses the same truth table as in

Example 5.2 to illustrate a comparison between approaches.

Example 5.2
Modeling combinational logic using continuous assignment with logical operators
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In the prior example, the conditional operator was based on a truth table. Conditional operators can

also be used to model logic expressions. Example 5.4 shows how to design a Verilog model of a

combinational logic circuit when the logic expression is already known. Note that this example again

uses the same truth table as in Example 5.2 and Example 5.3 to illustrate a comparison between

approaches.

Example 5.3
Modeling combinational logic using continuous assignment with conditional operators (1)
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5.5.4 Continuous Assignment with Delay

Verilog provides the ability to model gate delays when using a continuous assignment. The # is used

to indicate a delayed assignment. For combinational logic circuits, the delay can be specified for all

transitions, for rising and falling transitions separately, and for rising, falling, and transitions to the value

off separately. A transition to off refers to a transition to Z. If only one delay parameter is specified, it is

used to model all delays. If two delay parameters are specified, the first parameter is used for the rise

time delay while the second is used to model the fall time delay. If three parameters are specified, the

third parameter is used to model the transition to off. Parenthesis are optional but recommended when

using multiple delay parameters.

assign #(<del_all>) <target_net> ¼ <RHS_nets, operators, etc. . .>;
assign #(<del_rise, del_fall>) <target_net>¼ <RHS_nets, operators, etc. . .>;
assign #(<del_rise,del_fall,del_off>)<target_net>¼<RHS_nets,operators,etc. . .>;

Example:

assign #1 F ¼ A; // Delay of 1 on all transitions.
assign #(2,3) F ¼ A; // Delay of 2 for rising transitions and 3 for falling.
assign #(2,3,4) F ¼ A; // Delay of 2 for rising, 3 for falling, and 4 for off
transitions.

When using delay, it is typical to include the `timescale directive to provide the units of the delay

being specified. Example 5.5 shows a graphical depiction of using delay with continuous assignments

when modeling combinational logic circuits.

Example 5.4
Modeling combinational logic using continuous assignment with conditional operators (2)
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Verilog also provides amechanism tomodel a range of delays that are selected by a switch set in the

CAD compiler. There are three delays categories that can be specified:minimum, typical, andmaximum.

The delays are separated by a “:”. The following is the syntax of how to use the delay range capability.

assign #(<min>:<typ>:<max>) <target_net> ¼ <RHS_nets, operators, etc.. . .>;

Example:

assign #(1:2:3) F ¼ A; // Specifying a range of delays for all
transitions.

assign #(1:1:2, 2:2:3) F ¼ A; // Specifying a range of delays for rising/
falling.

assign #(1:1:2, 2:2:3, 4:4:5) F ¼ A; //Specifying a range of delays for each
transition.

Example 5.5
Modeling delay in continuous assignments
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The delay modeling capability in continuous assignment is designed to model the behavior of real

combinational logic with respect to short duration pulses. When a pulse is shorter than the delay of the

combinational logic gate, the pulse is ignored. Ignoring brief input pulses on the input accurately models

the behavior of on-chip gates. When the input pulse is faster than the delay of the gate, the output of

the gate does not have time to respond. As a result, there will not be a logic change on the output. This

is called inertial delay modeling and is the default behavior when using continuous assignments.

Example 5.6 shows a graphical depiction of inertial delay behavior in Verilog.

CONCEPT CHECK

CC5.5(a) Why is concurrency such an important concept in HDLs?

(A) Concurrency is a feature of HDLs that can’t be modeled using schematics.

(B) Concurrency allows automated synthesis to be performed.

(C) Concurrency allows logic simulators to display useful system information.

(D) Concurrency is necessary to model real systems that operate in parallel.

CC5.5(b) Why does modeling combinational logic in its canonical form with continuous assignment

with logical operators defeat the purpose of the modern digital design flow?

(A) It requires the designer to first create the circuit using the classical digital design

approach and then enter it into the HDL in a form that is essentially a text-based
netlist. This doesn’t take advantage of the abstraction capabilities and

automated synthesis in the modern flow.

(B) It cannot be synthesized because the order of precedence of the logical

operators in Verilog doesn’t match the precedence defined in Boolean algebra.

(C) The circuit is in its simplest form so there is no work for the synthesizer to do.

(D) It doesn’t allow an else clause to cover the outputs for any remaining input

codes not explicitly listed.

Example 5.6
Inertial delay modeling when using continuous assignment
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5.6 Structural Design and Hierarchy

Structural design in Verilog refers to including lower-level sub-systems within a higher-level module

in order to produce the desired functionality. This is called hierarchy, and is a good design practice

because it enables design partitioning. A purely structural design will not contain any behavioral

constructs in the module such as signal assignments, but instead just contain the instantiation and

interconnections of other sub-systems. A sub-system in Verilog is simply another module that is called by

a higher-level module. Each lower-level module that is called is executed concurrently by the calling

module.

5.6.1 Lower-Level Module Instantiation

The term instantiation refers to the use or inclusion of a lower-level module within a system. In

Verilog, the syntax for instantiating a lower-level module is as follows.

module_name <instance_identifier> (port mapping. . .);

The first portion of the instantiation is the module name that is being called. This must match the

lower level module name exactly, including case. The second portion of the instantiation is an optional

instance identifier. Instance identifier are useful when instantiating multiple instances of the same lower-

level module. The final portion of the instantiation is the port mapping. There are two techniques to

connect signals to the ports of the lower-level module, explicit and positional.

5.6.1.1 Explicit Port Mapping

In explicit port mapping the names of the ports of the lower-level sub-system are provided along with

the signals they are being connected to. The lower-level port name is preceded with a period (.) while the

signal it is being connected is enclosed within parenthesis. The port connections can be listed in any

order since the details of the connection (i.e., port name to signal name) are explicit. Each connection is

separated by a comma. The syntax for explicit port mapping is as follows:

module_name <instance identifier> (.port_name1(signal1), .port_name2(signal2),

etc.);

Example 5.7 shows how to design a Verilog model of a hierarchical system that consists of two

lower-level modules.
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5.6.1.2 Positional Port Mapping

In positional port mapping the names of the ports of the lower-level modules are not explicitly listed.

Instead, the signals to be connected to the lower-level system are listed in the same order in which the

ports were defined in the sub-system. Each signal name is separated by a comma. This approach

requires less text to describe the connection, but can also lead to misconnections due to inadvertent

mistakes in the signal order. The syntax for positional port mapping is as follows:

module_name : <instance_identifier> (signal1, signal2, etc.);

Example 5.8 shows how to create the same structural Verilog model as in Example 5.7, but using

positional port mapping instead.

Example 5.7
Verilog structural design using explicit port mapping
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5.6.2 Gate Level Primitives

Verilog provides the ability to model basic logic functionality through the use of primitives. A primitive

is a logic operation that is simple enough that it doesn’t require explicit modeling. An example of this

behavior can be a basic logic gate or even a truth table. Verilog provides a set of gate level primitives to

model simple logic operations. These gate level primitives are not(), and(), nand(), or(), nor(), xor(), and

xnor(). Each of these primitives are instantiated as lower-level sub-systems with positional port

mapping. The port order for each primitive has the output listed first followed by the input(s). The output

and each of the inputs are scalars. Gate level primitives do not need to explicitly created as they are

provided as part of the Verilog standard. One of the benefits of using gate level primitives is that the

number of inputs is easily scaled as each primitive can accommodate an increasing number of inputs

automatically. Furthermore, modeling using this approach essentially provides a gate-level netlist, so it

represents a very low-level, detailed gate level implementation that is ready for technology mapping.

Example 5.9 shows how to use gate level primitives to model the behavior of a combinational logic

circuit.

Example 5.8
Verilog structural design using positional port mapping

172 • Chapter 5: Verilog (Part 1)



5.6.3 User-Defined Primitives

A user-defined primitive (UDP) is a system that describes the behavior of a low-level component

using a logic table. This is very useful for creating combinational logic functionality that will be used

numerous times. UDPs are also useful for large truth tables where it is more convenient to list the

functionality in table form. UDPs are lower-level sub-systems that are intended to be instantiated in

higher-level modules just like gate-level primitives, with the exception that the UPD needs to be created

in its own file. The syntax for a UDP is as follows:

primitive primitive_name (output output_name,
input input_name1, input_name2, ...);

table

in1_val in2_val ... : out_val;
in1_val in2_val ... : out_val;

:
endtable

endprimitive

A UDPmust list its output(s) first in the port definition. It also does not require types to be defined for

the ports. For combinational logic UDPs, all ports are assumed to be of type wire. Example 5.10 shows

how to design a user-defined primitive to implement a combinational logic circuit.

Example 5.9
Modeling combinational logic circuits using gate level primitives
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5.6.4 Adding Delay to Primitives

Delay can be added to primitives using the same approach as described in Sect. 5.5.4. The delay is

inserted after the primitive name but before the instance name.

Example:

not #2 U0 (An, A); // Gate level primitive for an inverter with delay
of 2.

and #3 U3 (m0, An, Bn, Cn); // Gate level primitive for an AND gate with delay
of 3.

SystemX_UDP #1 U0 (F, A, B, C); // UDP with a delay of 1.

Example 5.10
Modeling combinational logic circuits with a user-defined primitive
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CONCEPT CHECK

CC5.6 Does the use of lower-level sub-modules model concurrent functionality? Why?

(A) No. Since the lower-level behavior of the module being instantiated may contain

non-concurrent behavior, it is not known what functionality will be modeled.

(B) Yes. The modules are treated like independent sub-systems whose behavior runs

in parallel just as if separate parts were placed in a design.

5.7 Overview of Simulation Test Benches

One of the essential components of the modern digital design flow is verifying functionality through

simulation. This simulation takes place at many levels of abstraction. For a system to be tested, there

needs to be a mechanism to generate input patterns to drive the system and then observe the outputs to

verify correct operation. The mechanism to do this in Verilog is called a test bench. A test bench is a file in

Verilog that has no inputs or outputs. The test bench instantiates the system to be tested as a lower-level

module. The test bench generates the input conditions and drives them into the input ports of the system

being tested. Verilog contains numerousmethods to generate stimulus patterns. Since a test benchwill not

be synthesized, very abstract behavioral modeling can be used to generate the inputs. The output of the

system can be viewed as a waveform in a simulation tool. Verilog also has the ability to check the outputs

against expected results and notify the user if differences occur. Figure 5.10 gives an overview of how test

benches are used in Verilog. The techniques to generate the stimulus patterns are covered in Chap. 8.

Fig. 5.10
Overview of Verilog test benches
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CONCEPT CHECK

CC5.7 How can the output of a DUT be verified when it is connected to a signal that does not go

anywhere?

(A) It can’t. The output must be routed to an output port on the test bench.

(B) The values of any dangling signal are automatically written to a text file.

(C) It is viewed in the logic simulator as either a waveform or text listing.

(D) It can’t. A signal that does not go anywhere will cause an error when the Verilog file

is compiled.

Summary

v Themodern digital design flow relies on com-
puter aided engineering (CAE) and computer
aided design (CAD) tools to manage the size
and complexity of today’s digital designs.

v Hardware description languages (HDLs)
allow the functionality of digital systems to
be entered using text. VHDL and Verilog are
the two most common HDLs in use today.

v In the 1980’s, two major HDLs emerged,
VHDL and Verilog. VHDL was sponsored by
the Department of Defense while Verilog was
driven by the commercial industry. Both were
later standardized by IEEE.

v The ability to automatically synthesize a logic
circuit from a Verilog behavioral description
became possible approximately 10 years
after the original definition of Verilog. As
such, only a sub-set of the behavioral
modeling techniques in Verilog can be auto-
matically synthesized.

v HDLs can model digital systems at different
levels of design abstraction. These include
the system, algorithmic, RTL, gate, and cir-
cuit levels. Designing at a higher level of
abstraction allows more complex systems to
be modeled without worrying about the
details of the implementation.

v In a Verilog source file, all functionality is
contained within a module. The first portion
of the module is the port definition. The sec-
ond portion contains declarations of internal
signals/constants/parameters. The third por-
tion contains the description of the behavior.

v A port is an input or output to a system that is
defined as part of the initial module state-
ment. A signal, or net, is an internal connec-
tion within the system that is declared inside
of the module. A signal is not visible outside
of the system.

v Instantiating other modules from within a
higher-level module is how Verilog
implements hierarchy. A lower-level module
can be instantiated as many times as
desired. An instance identifier is useful is
keeping track of each instantiation. The
ports of the component can be connected
using either explicit or positional port
mapping.

v Concurrency is the term that describes
operations being performed in parallel. This
allows real-world system behavior to be
modeled.

v Verilog provides the continuous assignment
operator to support modeling concurrent
systems. Complex logic circuits can be
implemented by using continuous assign-
ment with logical operators or conditional
operators.

v Verilog sub-systems are also treated as con-
current sub-systems.

v Delay can be modeled in Verilog for all
transitions, or for individual transitions (rise,
fall, off). A range of delays can also be
provided (min:typ:max). Delay can be
added to continuous assignments and
sub-system instantiations.

v Gate level primitives are provided in Verilog
to implement basic logic functions (not, and,
nand, or, nor, xor, xnor). These primitives are
instantiated just like any other lower-level
sub-system.

v User Defined Primitives are supported in
Verilog that allow the functionality of a circuit
to be described in table form.

v A simulation test bench is a Verilog file that
drives stimulus into a device under test
(DUT). Test benches do not have inputs or
outputs and are not synthesizable.
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Exercise Problems

Section 5.1: History of HDLs

5.1.1 What was the original purpose of Verilog?

5.1.2 Can all of the functionality that can be
described in Verilog be simulated?

5.1.3 Can all of the functionality that can be
described in Verilog be synthesized?

Section 5.2: HDL Abstraction

5.2.1 Give the level of design abstraction that the
following statement relates to: if there is ever
an error in the system, it should return to the
reset state.

5.2.2 Give the level of design abstraction that the
following statement relates to: once the design
is implemented in a sum of products form,
DeMorgan’s Theorem will be used to convert
it to a NAND-gate only implementation.

5.2.3 Give the level of design abstraction that the
following statement relates to: the design will
be broken down into two sub-systems, one that
will handle data collection and the other that
will control data flow.

5.2.4 Give the level of design abstraction that the
following statement relates to: the interconnect
on the IC should be changed from aluminum to
copper to achieve the performance needed in
this design.

5.2.5 Give the level of design abstraction that the
following statement relates to: the MOSFETs
need to be able to drive at least 8 other loads in
this design.

5.2.6 Give the level of design abstraction that the
following statement relates to: this system will
contain 1 host computer and support up to
1000 client computers.

5.2.7 Give the design domain that the following activ-
ity relates to: drawing the physical layout of the
CPU will require six months of engineering
time.

5.2.8 Give the design domain that the following activ-
ity relates to: the CPU will be connected to
4 banks of memory.

5.2.9 Give the design domain that the following activ-
ity relates to: the fan-in specifications for this
logic family require excessive logic circuitry to
be used.

5.2.10 Give the design domain that the following activ-
ity relates to: the performance specifications
for this system require 1 TFLOP at < 5W.

Section 5.3: The Modern Digital

Design Flow

5.3.1 Which step in the modern digital design flow
does the following statement relate to: a CAD
tool will convert the behavioral model into a
gate-level description of functionality.

5.3.2 Which step in the modern digital design flow
does the following statement relate to: after
realistic gate and wiring delays are determined,
one last simulation should be performed to
make sure the design meets the original timing
requirements.

5.3.3 Which step in the modern digital design flow
does the following statement relate to: if the
memory is distributed around the perimeter of
the CPU, the wiring density will be minimized.

5.3.4 Which step in the modern digital design flow
does the following statement relate to: the
design meets all requirements so now I’m
building the hardware that will be shipped.

5.3.5 Which step in the modern digital design flow
does the following statement relate to: the sys-
tem will be broken down into three
sub-systems with the following behaviors.

5.3.6 Which step in the modern digital design flow
does the following statement relate to: this sys-
tem needs to have 10 Gbytes of memory.

5.3.7 Which step in the modern digital design flow
does the following statement relate to: to meet
the power requirements, the gates will be
implemented in the 74HC logic family.

Section 5.4: Verilog Constructs

5.4.1 What is the name of the main design unit in
Verilog?

5.4.2 What portion of the Verilog module describes
the inputs and outputs.

5.4.3 What step is necessary if a system requires
internal connections?

5.4.4 What are all the possible values that a Verilog
net type can take on?

5.4.5 What is the highest strength that a value can
take on in Verilog.

5.4.6 What is the range of decimal numbers that can
be represented using the type integer in
Verilog?

5.4.7 What is the width of the vector defined using
the type [63:0] wire?

5.4.8 What is the syntax for indexing the most signif-
icant bit in the type [31:0] wire? Assume the
vector is named example.

5.4.9 What is the syntax for indexing the least signif-
icant bit in the type [31:0] wire? Assume the
vector is named example.

5.4.10 What is the difference between a wire and reg
type?

5.4.11 How many bits is the type integer by default?

5.4.12 How many bits is the type real by default?
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Section 5.5: Modeling Concurrent Func-

tionality in Verilog

5.5.1 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 5.11. Use continuous assign-
ment with logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.2 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 5.11. Use continuous assign-
ment with conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.3 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 5.12. Use continuous assign-
ment with logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.4 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 5.12. Use continuous assign-
ment with conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.5 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 5.13. Use continuous assign-
ment with logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.6 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 5.13. Use continuous assign-
ment with conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.7 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 5.14. Use continuous assign-
ment and logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.8 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 5.14. Use continuous assign-
ment and conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.9 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 5.15. Use continuous assign-
ment and logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

Fig. 5.11
System E functionality

Fig. 5.12
System F functionality

Fig. 5.13
System G functionality

Fig. 5.15
System J functionality

Fig. 5.14
System I functionality
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5.5.10 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 5.15. Use continuous assign-
ment and conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.11 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 5.16. Use continuous assign-
ment and logical operators. Declare your mod-
ule and ports to match the block diagram
provided. Use the type wire for your ports.

5.5.12 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 5.16. Use continuous assign-
ment and conditional operators. Declare your
module and ports to match the block diagram
provided. Use the type wire for your ports.

Section 5.6: Structural Design in Verilog

5.6.1 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 5.11. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.2 Design a Verilog model to implement the
behavior described by the 3-input minterm list
shown in Fig. 5.11. Use a structural design
approach based on a user defined primitive.

This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

5.6.3 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 5.12. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.4 Design a Verilog model to implement the
behavior described by the 3-input maxterm
list shown in Fig. 5.12. Use a structural design
approach based on a user defined primitive.
This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

5.6.5 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 5.13. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.6 Design a Verilog model to implement the
behavior described by the 3-input truth table
shown in Fig. 5.13. Use a structural design
approach based on a user defined primitive.
This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

Fig. 5.16
System K functionality
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5.6.7 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 5.14. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.8 Design a Verilog model to implement the
behavior described by the 4-input minterm list
shown in Fig. 5.14. Use a structural design
approach based on a user defined primitive.
This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

5.6.9 Design a Verilog model to implement the
behavior described by the 4-input maxterm
list shown in Fig. 5.15. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.10 Design a Verilog model to implement the
behavior described by the 4-input maxterm

list shown in Fig. 5.15. Use a structural design
approach based on a user defined primitive.
This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

5.6.11 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 5.16. Use a structural design
approach based on gate level primitives. This
is considered structural because you will need
to instantiate the gate level primitives just like a
traditional sub-system; however, you don’t
need to create the gate level modules as they
are already built into the Verilog standard. You
will need to determine a logic expression for
the system prior to connecting the gate level
primitives. You can use whatever approach
you prefer to create the logic expression (i.e.,
canonical SOP/POS, minimized SOP/POS,
etc.). Declare your module and ports to match
the block diagram provided. Use the type wire
for your ports.

5.6.12 Design a Verilog model to implement the
behavior described by the 4-input truth table
shown in Fig. 5.16. Use a structural design
approach based on a user defined primitive.
This is considered structural because you will
need to instantiate the user defined primitive
just like a traditional sub-system. You will need
to create both the upper level module and the
lower-level UDP. Declare your module and
ports to match the block diagram provided.
Use the type wire for your ports.

Section 5.7: Overview of Simulation Test

Benches

5.7.1 What is the purpose of a test bench?

5.7.2 Does a test bench have input and output ports?

5.7.3 Can a test bench be simulated?

5.7.4 Can a test bench be synthesized?
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Chapter 6: MSI Logic
This chapter introduces a group of combinational logic building blocks that are commonly used in

digital design. As we move into systems that are larger than individual gates, there are naming

conventions that are used to describe the size of the logic. Table 6.1 gives these naming conventions.

In this chapter we will look at medium scale integrated circuit (MSI) logic. Each of these building blocks

can be implemented using the combinational logic design steps covered in Chaps. 4 and 5. The goal of

this chapter is to provide an understanding of the basic principles of MSI logic.

Learning Outcomes—After completing this chapter, you will be able to:

6.1 Design a decoder circuit using both the classical digital design approach and the modern
HDL-based approach.

6.2 Design an encoder circuit using both the classical digital design approach and the modern
HDL-based approach.

6.3 Design a multiplexer circuit using both the classical digital design approach and the
modern HDL-based approach.

6.4 Design a demultiplexer circuit using both the classical digital design approach and the
modern HDL-based approach.

6.1 Decoders

A decoder is a circuit that takes in a binary code and has outputs that are asserted for specific values

of that code. The code can be of any type or size (e.g., unsigned, two’s complement, etc.). Each output

will assert for only specific input codes. Since combinational logic circuits only produce a single output,

this means that within a decoder, there will be a separate combinational logic circuit for each output.

6.1.1 Example: One-Hot Decoder

A one-hot decoder is a circuit that has n inputs and 2n outputs. Each output will assert for one and

only one input code. Since there are 2n outputs, there will always be one and only one output asserted at

Table 6.1
Naming convention for the size of digital systems
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any given time. Example 6.1 shows the process of designing a 2-to-4 one-hot decoder by hand

(i.e., using the classical digital design approach).

As decoders get larger, it is necessary to use hardware description languages to model their

behavior. Example 6.2 shows how to model a 3-to-8 one-hot decoder in Verilog with continuous

assignment and logic operators.

Example 6.1
2-to-4 One-hot decoder – logic synthesis by hand
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This description can be further simplified by using vector notation for the ports and describing the

functionality using conditional operators. Example 6.3 shows how to model the 3-to-8 one-hot decoder in

Verilog using continuous assignment with conditional operators.

Example 6.2
3-to-8 One-hot decoder – Verilog modeling using logical Operators
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6.1.2 Example: 7-Segment Display Decoder

A 7-segment display decoder is a circuit used to drive character displays that are commonly found in

applications such as digital clocks and household appliances. A character display is made up of

7 individual LEDs, typically labeled a-g. The input to the decoder is the binary equivalent of the decimal

or Hex character that is to be displayed. The output of the decoder is the arrangement of LEDs that will

form the character. Decoders with 2-inputs can drive characters “0” to “3”. Decoders with 3-inputs can

drive characters “0” to “7”. Decoders with 4-inputs can drive characters “0” to “F” with the case of the Hex

characters being “A, b, c or C, d, E and F”.

Let’s look at an example of how to design a 3-input, 7-segment decoder by hand. The first step in the

process is to create the truth table for the outputs that will drive the LEDs in the display. We’ll call these

outputs Fa, Fb, . . ., Fg. Example 6.4 shows how to construct the truth table for the 7-segment display

decoder. In this table, a logic 1 corresponds to the LED being ON.

Example 6.3
3-to-8 One-hot decoder – Verilog modeling using conditional operators
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If we wish to design this decoder by hand we need to create seven separate combinational logic

circuits. Each of the outputs (Fa – Fg) can be put into a 3-input K-map to find the minimized logic

expression. Example 6.5 shows the design of the decoder from the truth table in Example 6.4 by hand.

Example 6.4
7-Segment display decoder – truth table
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This same functionality can be implemented in Verilog using concurrent modeling techniques.

Example 6.6 shows how to model the 7-segment decoder in Verilog using continuous assignment with

logic operators.

Example 6.5
7-Segment display decoder – logic synthesis by hand
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Again, a more compact description of the decoder can be accomplished if the ports are described

as vectors and a conditional operator is used. Example 6.7 shows how to model the 7-segment decoder

in Verilog using continuous assignment with conditional operators.

Example 6.6
7-Segment display decoder – Verilog modeling using logical operators

Example 6.7
7-Segment display decoder – Verilog modeling using conditional operators
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CONCEPT CHECK

CC6.1 In a decoder, a logic expression is created for each output. Once all of the output logic

expressions are found, how can the decoder logic be further minimized?

(A) By using K-maps to find the output logic expressions.

(B) By buffering the inputs so that they can drive a large number of other gates.

(C) By identifying any logic terms that are used in multiple locations (inversions,

product terms, and sum terms) and sharing the interim results among multiple

circuits in the decoder.

(D) By ignoring fan-out.

6.2 Encoders

An encoder works in the opposite manner as a decoder. An assertion on a specific input port

corresponds to a unique code on the output port.

6.2.1 Example: One-Hot Binary Encoder

A one-hot binary encoder has n outputs and 2n inputs. The output will be an n-bit, binary code which

corresponds to an assertion on one and only one of the inputs. Example 6.8 shows the process of

designing a 4-to-2 binary encoder by hand (i.e., using the classical digital design approach).
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In Verilog, an encoder can be implemented using continuous assignment with either logical or

conditional operators. Example 6.9 shows how to model the encoder in Verilog using these techniques.

Example 6.8
4-to-2 Binary encoder – logic synthesis by hand
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CONCEPT CHECK

CC6.2 If it is desired to have the outputs of an encoder produce 0’s for all input codes not defined in

the truth table, can “don’t cares” be used when deriving the minimized logic expressions?

Why?

(A) No. Don’t cares aren’t used in encoders.

(B) Yes. Don’t cares can always be used in K-maps.

(C) Yes. All that needs to be done is to treat each X as a 0 when forming the most

minimal prime implicant.

(D) No. Each cell in the K-map corresponding to an undefined input code needs to

contain a 0 so don’t cares are not applicable.

6.3 Multiplexers

A multiplexer is a circuit that passes one of its multiple inputs to a single output based on a select

input. This can be thought of as a digital switch. The multiplexer has n select lines, 2n inputs, and one

output. Example 6.10 shows the process of designing a 2-to-1 multiplexer by hand (i.e., using the

classical digital design approach).

Example 6.9
4-to-2 Binary encoder – Verilog modeling using logical and conditional operators
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In Verilog, a multiplexer can be implemented using continuous assignment with either logical or

conditional operators. Example 6.11 shows how to model the multiplexer in Verilog using these

techniques.

Example 6.10
2-to-1 Multiplexer – logic synthesis by hand
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CONCEPT CHECK

CC6.3 How are the product terms in a multiplexer based on the identity theorem?

(A) Only the select product term will pass its input to the final sum term. Since all of the

unselected product terms output 0, the input will be passed through the sum term
because anything OR’d with a 0 is itself.

(B) The select lines are complemented such that they activate only one OR gate.

(C) The select line inputs will produce 1’s on the inputs of the selected product term.

This allows the input signal to pass through the selected AND gate because

anything AND’d with a 1 is itself.

(D) The select line inputs will produce 0’s on the inputs of the selected sum term. This

allows the input signal to pass through the selected OR gate because anything

OR’d with a 0 is itself.

Example 6.11
4-to-1 Multiplexer – Verilog modeling using logical and conditional operators
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6.4 Demultiplexers

A demultiplexer works in a complementary fashion to a multiplexer. A demultiplexer has one input

that is routed to one of its multiple outputs. The output that is active is dictated by a select input. A demux

has n select lines that chooses to route the input to one of its 2n outputs. When an output is not selected,

it outputs a logic 0. Example 6.12 shows the process of designing a 1-to-2 demultiplexer by hand

(i.e., using the classical digital design approach).

In Verilog, a demultiplexer can be implemented using continuous assignment with either logical or

conditional operators. Example 6.13 shows how to model the demultiplexer in Verilog using these

techniques

Example 6.12
1-to-2 Demultiplexer – logic synthesis by hand
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CONCEPT CHECK

CC6.4 How many select lines are needed in a 1-to-64 demultiplexer?

(A) 1 (B) 4 (C) 6 (D) 64

Summary

v The term medium scale integrated circuit
(MSI) logic refers to a set of basic combina-
tional logic circuits that implement simple,
commonly used functions such as decoders,
encoders, multiplexers, and demultiplexers.
MSI logic can also include operations such
as comparators and simple arithmetic
circuits.

v While an MSI logic circuit may have multiple
outputs, each output requires its own unique
logic expression that is based on the system
inputs.

v A decoder is a system that has a greater
number of outputs than inputs. The behavior
of each output is based on each unique
input code.

v An encoder a system that has a greater num-
ber of inputs than outputs. A compressed
output code is produced based on which
input(s) lines are asserted.

v A multiplexer is a system that has one output
and multiple inputs. At any given time, one
and only one input is routed to the output
based on the value on a set of select lines.

Example 6.13
1-to-4 Demultiplexer – Verilog modeling using logical and conditional operators
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For n select lines, amultiplexer can support 2n

inputs.
v A demultiplexer is a system that has one

input and multiple outputs. The input is
routed to one of the outputs depending on
the value on a set of select lines. For n select
lines, a demultiplexer can support 2n outputs.

v HDLs are particularly useful for describing
MSI logic due to their abstract modeling
capability. Through the use of Boolean
conditions and vector assignments, the
behavior of MSI logic can be modeled in a
compact and intuitive manner.

Exercise Problems

Section 6.1: Decoders

6.1.1 Design a 4-to-16 one-hot decoder by hand.
The block diagram and truth table for the
decoder are given in Fig. 6.1. Give the
minimized logic expressions for each output
(i.e., F0, F1, . . ., F15) and the full logic diagram
for the system.

Fig. 6.1
4-to-16 one-hot decoder functionality

6.1.2 Design a Verilog model for a 4-to-16 one-hot
decoder using continuous assignment and
gate level primitives. Use the module port defi-
nition given in Fig. 6.2.

Fig. 6.2
4-to-16 one-hot module definition

6.1.3 Design a Verilog model for a 4-to-16 one-hot
decoder using continuous assignment and
logical operators. Use the module port defi-
nition given in Fig. 6.2.

6.1.4 Design a Verilog model for a 4-to-16 one-hot
decoder using continuous assignment and
conditional operators. Use the module port
definition given in Fig. 6.2.

6.1.5 Design a 4-input, 7-segment HEX character
decoder by hand. The system has four inputs
called A, B, C and D. The system has 7 outputs
called Fa, Fb, Fc, Fd, Fe, Ff, and Fg. These
outputs drive the individual LEDs within the
display. A logic 1 on an output corresponds to
the LED being ON. The display will show the
HEX characters 0–9, A, b, c, d, E, and F
corresponding to the 4-bit input code on A. A
template for creating the truth tables for this
system is provided in Fig. 6.3. Provide the
minimized logic expressions for each of the
seven outputs and the overall logic diagram
for the decoder.
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Fig. 6.3
7-segment display decoder truth table
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6.1.6 Design a Verilog model for a 4-input, 7-seg-
ment HEX character decoder using continuous
assignment and logical operators. Use the
module port definition given in Fig. 6.4 for
your design. The system has a 4-bit input
vector called ABCD and a 7-bit output vector
called F. The individual scalars within the out-
put vector (i.e., F[6:0]) correspond to the char-
acter display segments a, b, c, d, e, f, and g
respectively. A logic 1 on an output
corresponds to the LED being ON. The display
will show the HEX characters 0–9, A, b, c, d, E,
and F corresponding to the 4-bit input code on
A. A template for creating the truth table is
provided in Fig. 6.3. The signals in this table
correspond to the ports in this problem as
follows: Fa ¼ F(6), Fb ¼ F(5), Fc ¼ F(4),
Fd ¼ F(3), Fe ¼ F(2), Ff ¼ F(1), and Fg ¼ F(0).

Fig. 6.4
7-segment display decoder module definition

6.1.7 Design a Verilog model for a 4-input, 7-seg-
ment HEX character decoder using continuous
assignment and conditional operators.Use the
module port definition given in Fig. 6.4 for
your design. The system has a 4-bit input
vector called ABCD and a 7-bit output vector
called F. The individual scalars within the out-
put vector (i.e., F[6:0]) correspond to the char-
acter display segments a, b, c, d, e, f, and g
respectively. A logic 1 on an output
corresponds to the LED being ON. The display
will show the HEX characters 0–9, A, b, c, d, E,
and F corresponding to the 4-bit input code on
A. A template for creating the truth table is
provided in Fig. 6.3. The signals in this table
correspond to the ports in this problem as
follows: Fa ¼ F(6), Fb ¼ F(5), Fc ¼ F(4),
Fd ¼ F(3), Fe ¼ F(2), Ff ¼ F(1), and Fg ¼ F(0).

Section 6.2: Encoders

6.2.1 Design an 8-to-3 binary encoder by hand. The
block diagram and truth table for the encoder
are given in Fig. 6.5. Give the logic expressions

for each output and the full logic diagram for
the system.

6.2.2 Design a Verilog model for an 8-to-3 binary
encoder using continuous assignment and
gate level primitives. Use the module port defi-
nition given in Fig. 6.6.

Fig. 6.6
8-to-3 one-hot encoder module definition

6.2.3 Design a Verilog model for an 8-to-3 binary
encoder using continuous assignment and log-
ical operators. Use the module port definition
given in Fig. 6.6.

6.2.4 Design a Verilog model for an 8-to-3 binary
encoder using continuous assignment and
conditional operators. Use the module port def-
inition given in Fig. 6.6.

Section 6.3: Multiplexers

6.3.1 Design an 8-to-1 multiplexer by hand. The
block diagram and truth table for the multi-
plexer are given in Fig. 6.7. Give the minimized
logic expressions for the output and the full
logic diagram for the system.

Fig. 6.5
8-to-3 one-hot encoder functionality
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Fig. 6.7
8-to-1 multiplexer functionality

6.3.2 Design a Verilog model for an 8-to-1 multi-
plexer using continuous assignment and gate
level primitives. Use the module port definition
given in Fig. 6.8.

Fig. 6.8
8-to-1 multiplexer module definition

6.3.3 Design a Verilog model for an 8-to-1 multi-
plexer using continuous assignment and logi-
cal operators. Use the module port definition
given in Fig. 6.8.

6.3.4 Design a Verilog model for an 8-to-1 multi-
plexer using continuous assignment and con-
ditional operators. Use the module port
definition given in Fig. 6.8.

Section 6.4: Demultiplexers

6.4.1 Design a 1-to-8 demultiplexer by hand. The
block diagram and truth table for the demulti-
plexer are given in Fig. 6.9. Give the minimized
logic expressions for each output and the full
logic diagram for the system.

Fig. 6.9
1-to-8 demultiplexer functionality

6.4.2 Design a Verilog model for a 1-to-8 demulti-
plexer using continuous assignment and gate
level primitives. Use the module port definition
given in Fig. 6.10 for your design.

Fig. 6.10
1-to-8 demultiplexer module definition

6.4.3 Design a Verilog model for a 1-to-8 demulti-
plexer using continuous assignment and logi-
cal operators. Use the module port definition
given in Fig. 6.10 for your design.

6.4.4 Design a Verilog model for a 1-to-8 demulti-
plexer using continuous assignment and con-
ditional operators. Use the module port
definition given in Fig. 6.10 for your design.
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Chapter 7: Sequential Logic Design
In this chapter we begin looking at sequential logic design. Sequential logic design differs from

combinational logic design in that the outputs of the circuit depend not only on the current values of the

inputs but also on the past values of the inputs. This is different from the combinational logic design

where the output of the circuitry depends only on the current values of the inputs. The ability of a

sequential logic circuit to base its outputs on both the current and past inputs allows more sophisticated

and intelligent systems to be created. We begin by looking at sequential logic storage devices, which are

used to hold the past values of a system. This is followed by an investigation of timing considerations of

sequential logic circuits. We then look at some useful circuits that can be created using only sequential

logic storage devices. Finally, we look at one of the most important logic circuits in digital systems, the

finite state machine. The goal of this chapter is to provide an understanding of the basic operation of

sequential logic circuits.

Learning Outcomes—After completing this chapter, you will be able to:

7.1 Describe the operation of a sequential logic storage device.
7.2 Describe sequential logic timing considerations.
7.3 Design a variety of common circuits based on sequential storage devices (toggle flops,

ripple counters, switch debouncers, and shift registers).
7.4 Design a finite state machine using the classical digital design approach.
7.5 Design a counter using the classical digital design approach and using an HDL-based,

structural approach.
7.6 Describe the finite state machine reset condition.
7.7 Analyze a finite state machine to determine its functional operation and maximum clock

frequency.

7.1 Sequential Logic Storage Devices

7.1.1 The Cross-Coupled Inverter Pair

The first thing that is needed in sequential logic is a storage device. The fundamental storage device

in sequential logic is based on a positive feedback configuration. Consider the circuit in Fig. 7.1. This

circuit configuration is called the cross-coupled inverter pair. In this circuit if the input of U1 starts with a

value of 1, it will produce an output of Q¼ 0. This output is fed back to the input of U2, thus producing an

output of Qn ¼ 1. Qn is fed back to the original input of U1, thus reinforcing the initial condition. This

circuit will hold, or store, a logic 0 without being driven by any other inputs. This circuit operates in a

complementary manner when the initial value of U1 is a 0. With this input condition, the circuit will store a

logic 1 without being driven by any other inputs.
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7.1.2 Metastability

The cross-coupled inverter pair in Fig. 7.1 exhibits what is called metastable behavior due to its

positive feedback configuration. Metastability refers to when a system can exist in a state of equilibrium

when undisturbed but can be moved to a different, more stable state of equilibrium when sufficiently

disturbed. Systems that exhibit high levels of metastability have an equilibrium state that is highly

unstable, meaning that if disturbed even slightly the system will move rapidly to a more stable point of

equilibrium. The cross-coupled inverter pair is a highly metastable system. This system actually contains

three equilibrium states. The first is when the input of U1 is exactly between a logic 0 and logic 1 (i.e.,

VCC/2). In this state, the output of U1 is also exactly VCC/2. This voltage is fed back to the input of U2, thus

producing an output of exactly VCC/2 on U2. This in turn is fed back to the original input on U1 reinforcing

the initial state. Despite this system being at equilibrium in this condition, this state is highly unstable.

With minimal disturbance to any of the nodes within the system, it will move rapidly to one of two more

stable states. The two stable states for this system are when Q ¼ 0 or when Q ¼ 1 (see Fig. 7.1). Once

the transition begins between the unstable equilibrium state toward one of the twomore stable states, the

positive feedback in the system continually reinforces the transition until the system reaches its final

state. In electrical systems, this initial disturbance is caused by the presence of noise, or unwanted

voltage in the system. Noise can come from many sources including random thermal motion of charge

carriers in the semiconductor materials, electromagnetic energy, or naturally occurring ionizing particles.

Noise is present in every electrical system so the cross-coupled inverter pair will never be able to stay in

the unstable equilibrium state where all nodes are at VCC/2.

The cross-coupled inverter pair has two stable states, thus it is called a bistable element. In order to

understand the bistable behavior of this circuit, let’s look at its behavior when the initial input value on U1

is set directly between a logic 0 and logic 1 (i.e., VCC/2) and how a small amount of noise will cause the

system to move toward a stable state. Recall that an inverter is designed to have an output that quickly

transitions between a logic LOW and HIGH in order to minimize the time spent in the uncertainty region.

This is accomplished by designing the inverter to have what is called gain. Gain can be thought of as a

multiplying factor that is applied to the input of the circuit when producing the output (i.e., Vout ¼ gain∙Vin).

The gain for an inverter will be negative since the output moves in the opposite direction of the input. The

inverter is designed to have a very high gain such that even the smallest change on the input when in the

transition region will result in a large change on the output. Consider the behavior of this circuit shown in

Fig. 7.2. In this example, let’s represent the gain of the inverter as –g and see how the system responds

when a small positive voltage noise (Vn) is added to the VCC/2 input on U1.

Fig. 7.1
Storage using a cross-coupled inverter pair
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Figure 7.3 shows how the system responds when a small negative voltage noise (�Vn) is added to

the VCC/2 input on U1.

Fig. 7.2
Examining metastability moving toward the state Q ¼ 0
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7.1.3 The SR Latch

While the cross-coupled inverter pair is the fundamental storage concept for sequential logic, there

is no mechanism to set the initial value of Q. All that is guaranteed is that the circuit will store a value in

one of two stable states (Q ¼ 0 or Q ¼ 1). The SR Latch provides a means to control the initial values in

this positive feedback configuration by replacing the inverters with NOR gates. In this circuit, S stands for

set and indicates when the output is forced to a logic 1 (Q¼ 1), and R stands for reset and indicates when

the output is forced to a logic 0 (Q¼ 0). When both S¼ 0 and R¼ 0, the SR Latch is put into a storemode

and it will hold the last value of Q. In all of these input conditions, Qn is the complement of Q. Consider

the behavior of the SR Latch during its store state shown in Fig. 7.4.

Fig. 7.3
Examining metastability moving toward the state Q ¼ 1
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The SR Latch has two input conditions that will force the outputs to known values. The first condition

is called the set state. In this state, the inputs are configured as S ¼ 1 and R¼ 0. This input condition will

force the outputs to Q ¼ 1 (e.g. setting Q) and Qn ¼ 0. The second input condition is called the reset

state. In this state the inputs are configured as S¼ 0 and R¼ 1. This input condition will force the outputs

to Q ¼ 0 (i.e., resetting Q) and Qn ¼ 1. Consider the behavior of the SR Latch during its set and reset

states shown in Fig. 7.5.

Fig. 7.4
SR Latch behavior – store state (S ¼ 0, R ¼ 0)
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The final input condition for the SR Latch leads to potential metastability and should be avoided.

When S¼ 1 and R¼ 1, the outputs of the SR Latch will both go to logic 0’s. The problem with this state is

that if the inputs subsequently change to the store state (S¼ 0, R¼ 0), the outputs will go metastable and

then settle in one of the two stable states (Q ¼ 0 or Q ¼ 1). The reason this state is avoided is because

the final resting state of the SR Latch is random and unknown. Consider this operation shown in Fig. 7.6.

Fig. 7.5
SR Latch behavior – set (S ¼ 1, R ¼ 0) and reset (S ¼ 0, R ¼ 1) states

Fig. 7.6
SR Latch behavior – don’t use state (S ¼ 1 and R ¼ 1)
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Figure 7.7 shows the final truth table for the SR Latch.

The SR Latch has some drawbacks when it comes to implementation with real circuitry. First, it takes

two independent inputs to control the outputs. Second, the state where S ¼ 1 and R ¼ 1 causes

problems when real propagation delays are considered through the gates. Since it is impossible to

match the delays exactly between U1 and U2, the SR Latch may occasionally enter this state and

experience momentary metastable behavior. In order to address these issues, a number of

improvements can be made to this circuit to create two of the most commonly used storage devices in

sequential logic, the D-Latch and the D-Flip-Flop. In order to understand the operation of these storage

devices, two incremental modifications are made to the SR Latch. The first is called the S’R’ Latch and

the second is the SR Latch with enable. These two circuits are rarely implemented and are only

explained to understand how the SR Latch is modified to create a D-Latch and ultimately a D-Flip-Flop.

7.1.4 The S’R’ Latch

The S’R’ Latch operates in a similar manner as the SR Latch with the exception that the input codes

corresponding to the store, set, and reset states are complemented. To accomplish this complementary

behavior, the S’R’ Latch is implemented with NAND gates configured in a positive feedback configura-

tion. In this configuration, the S’R’ Latch will store the last output when S0 ¼ 1, R’¼ 1. It will set the output

(Q ¼ 1) when S0 ¼ 0, R’ ¼ 1. Finally, it will reset the output (Q ¼ 0) when S0 ¼ 1, R’ ¼ 0. Consider the

behavior of the S’R’ Latch during its store state shown in Fig. 7.8.

Fig. 7.7
SR Latch truth table
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Just as with the SR Latch, the S’R’ Latch has two input configurations to control the values of the

outputs. Consider the behavior of the S’R’ Latch during its set and reset states shown in Fig. 7.9.

Fig. 7.8
S’R’ Latch behavior – store state (S0 ¼ 1, R’ ¼ 1)
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And finally, just as with the SR Latch, the S’R’ Latch has a state that leads to potential metastability

and should be avoided. Consider the operation of the S’R’ Latch when the inputs are configured as S0 ¼ 0

and R’ ¼ 0 shown in Fig. 7.10.

Fig. 7.9
S’R’ Latch behavior – set (S00 ¼ 0, R” ¼ 1) and Reset (S00 ¼ 1, R” ¼ 0) states

Fig. 7.10
S’R’ Latch behavior – don’t use state (S00 ¼ 0 and R” ¼ 0)
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The final truth table for the S’R’ Latch is given in Fig. 7.11.

7.1.5 SR Latch with Enable

The next modification that is made in order to move toward a D-Latch and ultimately a D-Flip-Flop is

to add an enable line to the S’R’ Latch. The enable is implemented by adding two NAND gates on the

input stage of the S’R’ Latch. The SR Latch with enable is shown in Fig. 7.12. In this topology, the use of

NAND gates changes the polarity of the inputs so this circuit once again has a set state where S ¼ 1,

R¼ 0 and a reset state of S¼ 0, R¼ 1. The enable line is labeledC, which stands for clock. The rationale

for this will be demonstrated upon moving through the explanation of the D-Latch.

Recall that any time a 0 is present on one of the inputs to a NAND gate, the output will always be a

1 regardless of the value of the other inputs. In the SR Latch with enable configuration, any time C ¼ 0,

the outputs of U3 and U4 will be 1’s and will be fed into the inputs of the cross-coupled NAND gate

configuration (U1 and U2). Recall that the cross-coupled configuration of U1 and U2 is an S’R’ Latch and

will be put into a store state when S0 ¼ 1 and R’¼ 1. This is the store state (C¼ 0). When C¼ 1, it has the

effect of inverting the values of the S and R inputs before they reach U1 and U2. This condition allows the

set state to be entered when S ¼ 1, R ¼ 0, C ¼ 1 and the reset state to be entered when S ¼ 0, R ¼ 1,

C ¼ 1. Consider this operation in Fig. 7.13.

Fig. 7.11
S00R” Latch truth table

Fig. 7.12
SR Latch with enable schematic
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Again, there is a potential metastable state when S ¼ 1, R ¼ 1 and C ¼ 1 that should be avoided.

There is also a second store state when S¼ 0, R¼ 0 and C¼ 1 that is not used because storage is to be

dictated by the C input.

7.1.6 The D-Latch

The SR Latch with enable can be modified to create a new storage device called a D-Latch. Instead

of having two separate input lines to control the outputs of the latch, the R input of the latch is instead

Fig. 7.13
SR Latch with enable behavior – store, set, and reset
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driven with an inverted version of the S input. This prevents the S and R inputs from ever being the same

value and removes the two “Don’t Use” states in the truth table shown in Fig. 7.12. The new, single input

is renamed D to stand for data. This new circuit still has the behavior that it will store the last value of Q

and Qn when C¼ 0. When C¼ 1, the output will be Q¼ 1 when D¼ 1 and will be Q¼ 0 when D¼ 0. The

behavior of the output when C ¼ 1 is called tracking the input. The D-Latch schematic, symbol and truth

table are given in Fig. 7.14.

The timing diagram for the D-Latch is shown in Fig. 7.15.

Fig. 7.14
D-Latch schematic, symbol and truth table

Fig. 7.15
D-Latch timing diagram
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7.1.7 The D-Flip-Flop

The final and most widely used storage device in sequential logic is the D-Flip-Flop. The D-Flip-Flop

is similar in behavior to the D-Latch with the exception that the store mode is triggered by a transition, or

edge on the clock signal instead of a level. This allows the D-Flip-Flop to implement higher frequency

systems since the outputs are updated in a shorter amount of time. The schematic, symbol and truth

table are given in Fig. 7.16 for a rising edge triggered D-Flip-Flop. To indicate that the device is edge

sensitive, the input for the clock is designated with a “>”. The U3 inverter in this schematic creates the

rising edge behavior. If U3 is omitted, this circuit would be a negative edge triggered D-Flip-Flop.

The D-Flip-Flop schematic shown above is called a master/slave configuration because of how the

data is passed through the two D-Latches (U1 and U2). Due to the U4 inverter, the two D-Latches will

always be in complementary modes. When U1 is in hold mode, U2 will be in track mode and vice versa.

When the clock signal transitions HIGH, U1 will store the last value of data. During the time when the

clock is HIGH, U2 will enter track mode and pass this value to Q. In this way, the data is latched into the

storage device on the rising edge of the clock and is present on Q. This is the master operation of the

device because U1, or the first D-Latch, is holding the value, and the second D-Latch (the slave) is simply

passing this value to the output Q. When the clock transitions LOW, U2 will store the output of U1. Since

there is a finite delay through U1, the U2 D-Latch is able to store the value before U1 fully enters track

mode. U2 will drive Q for the duration of the time that the clock is LOW. This is the slave operation of the

device because U2, or the second D-Latch, is holding the value. During the time the clock is LOW, U1 is

in track mode, which passes the input data to the middle of the D-Flip-Flop preparing for the next rising

edge of the clock. The master / slave configuration creates a behavior where the Q output of the D-Flip-

Flop is only updated with the value of D on a rising edge of the clock. At all other times, Q holds the last

value of D. An example timing diagram for the operation of a rising edge D-Flip-Flop is given in Fig. 7.17.

Fig. 7.16
D-Flip-Flop (rising edge triggered) schematic, symbol, and truth table
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D-Flip-Flops often have additional signals that will set the initial conditions of the outputs that are

separate from the clock. A reset input is used to force the outputs to Q¼ 0, Qn¼ 1. A preset input is used

to force the outputs to Q ¼ 1, Qn ¼ 0. In most modern D-Flip-Flops, these inputs are active LOW,

meaning that the line is asserted when the input is a 0. Active LOW inputs are indicated by placing an

inversion bubble on the input pin of the symbol. These lines are typically asynchronous, meaning that

when they are asserted, action is immediately taken to alter the outputs. This is different from a

synchronous input in which action is only taken on the edge of the clock. Fig. 7.18 shows the symbols

and truth tables for two D-Flip-Flop variants, one with an active LOW reset and another with both an

active LOW reset and active LOW preset.

Fig. 7.17
D-Flip-Flop (rising edge triggered) timing diagram
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D-Flip-Flops can also be created with an enable line. An enable line controls whether or not the

output is updated. Enable lines are synchronous, meaning that when they are asserted, the outputs will

be updated on the rising edge of the clock. When de-asserted, the outputs are not updated. This

behavior in effect ignores the clock input when de-asserted. Fig. 7.19 shows the symbol and truth

table for a D-Flip-Flop with a synchronous enable.

The behavior of the D-Flip-Flop allows us to design systems that are synchronous to a clock signal.

A clock signal is a periodic square wave that dictates when events occur in a digital system. A

synchronous system based on D-Flip-Flops will allow the outputs of its storage devices to be updated

upon a rising edge of the clock. This is advantageous because when the Q outputs are storing values

they can be used as inputs for combinational logic circuits. Since combinational logic circuits contain a

certain amount of propagation delay before the final output is calculated, the D-Flip-Flop can hold the

inputs at a steady value while the output is generated. Since the input on a D-Flip-Flop is ignored during

all other times, the output of a combinational logic circuit can be fed back as an input to a D-Flip-Flop.

Fig. 7.18
D-Flip-Flop with asynchronous reset and preset

Fig. 7.19
D-Flip-Flop with synchronous enable
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This gives a system the ability to generate outputs based on the current values of inputs in addition to

past values of the inputs that are being held on the outputs of D-Flip-Flops. This is the definition of

sequential logic. An example synchronous, sequential system is shown in Fig. 7.20.

CONCEPT CHECK

CC7.1(a) What will always cause a digital storage device to come out of metastability and settle in

one of its two stable states? Why?

(A) The power supply. The power supply provides the necessary current for the
device to overcome metastability.

(B) Electrical noise. Noise will always push the storage device toward one state or

another. Once the storage device starts moving toward one of its stable states,

the positive feedback of the storage device will reinforce the transition until the
output eventually comes to rest in a stable state.

(C) A reset. A reset will put the device into a known stable state.

(D) A rising edge of clock. The clock also puts the device into a known stable

state.

CC7.1(b) What was the purpose of replacing the inverters in the cross-coupled inverter pair with

NOR gates to form the SR Latch?

(A) NOR gates are easier to implement in CMOS.

(B) To provide the additional output Qn.

(C) To provide more drive strength for storing.

(D) To provide inputs to explicitly set the value being stored.

7.2 Sequential Logic Timing Considerations

There are a variety of timing specifications that need to be met in order to successfully design

circuits using sequential storage devices. The first specification is called the setup time (tsetup or ts). The

setup time specifies how long the data input needs to be at a steady state before the clock event. The

second specification is called the hold time (thold or th). The hold time specifies how long the data input

Fig. 7.20
An example synchronous system based on a D-Flip-Flop
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needs to be at a steady state after the clock event. If these specifications are violated (i.e., the input

transitions too close to the clock transition), the storage device will not be able to determine whether the

input was a 1 or 0 and will go metastable. The time a storage device will remain metastable is a

deterministic value and is specified by the part manufacturer (tmeta). In general, metastability should be

avoided; however, knowing the maximum duration of metastability for a storage device allows us to

design circuits to overcome potential metastable conditions. During the time the device is metastable,

the output will have random behavior. It may go to a steady state 1, a steady state 0, or toggle between a

0 and 1 uncontrollably. Once the device comes out of metastability, it will come to rest in one of its two

stable states (Q ¼ 0 or Q ¼ 1). The final resting state is random and unknown. Another specification for

sequential storage devices is the delay from the time a clock transition occurs to the point that the data is

present on the Q output. This specification is called the Clock-to-Q delay and is given the notation tCQ.

These specifications are shown in Fig. 7.21.

CONCEPT CHECK

CC7.2 Which D-flop-flop timing specification requires all of combinational logic circuits in the system

to settle on their final output before a triggering clock edge can occur?

(A) tsetup (B) thold (C) tCQ (D) tmeta

Fig. 7.21
Sequential storage device timing specifications
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7.3 Common Circuits Based on Sequential Storage Devices

Sequential logic storage devices give us the ability to create sophisticated circuits that can make

decisions based on the current and past values of the inputs; however, there are a variety of simple, yet

useful circuits that can be created with only these storage devices. This section will introduce a few of

these circuits.

7.3.1 Toggle Flop Clock Divider

AToggle Flop is a circuit that contains a D-Flip-Flop configured with its Qn output wired back to its D

input. This configuration is also commonly referred to as a T-Flip-Flop or T-Flop. In this circuit, the only

input is the clock signal. Let’s examine the behavior of this circuit when its outputs are initialized to Q¼ 0,

Qn¼ 1. Since Qn is wired to the D input, a logic 1 is present on the input before the first clock edge. Upon

a rising edge of the clock, Q is updated with the value of D. This puts the outputs at Q ¼ 1, Qn ¼ 0. With

these outputs, now a logic 0 is present on the input before the next clock edge. Upon the next rising edge

of the clock, Q is updated with the value of D. This time the outputs go to Q ¼ 0, Qn ¼ 1. This behavior

continues indefinitely. The circuit is called a toggle flop because the outputs simply toggle between a

0 and 1 every time there is a rising edge of the clock. This configuration produces outputs that are square

waves with exactly half the frequency of the incoming clock. As a result, this circuit is also called a clock

divider. This circuit can be given its own symbol with a label of “T” indicating it is a toggle flop. The

configuration of a Toggle Flop (T-Flop) and timing diagram are shown in Fig. 7.22.

Fig. 7.22
Toggle flop clock frequency divider
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7.3.2 Ripple Counter

The toggle flop configuration can be used to create a simple binary counter called a ripple counter. In

this configuration, the Qn output of a toggle flop is used as the clock for a subsequent toggle flop. Since

the output of the first toggle flop is a square wave that is ½ the frequency of the incoming clock, this

configuration will produce an output on the second toggle flop that is ¼ the frequency of the incoming

clock. This is by nature the behavior of a binary counter. The output of this counter is present on the Q

pins of each toggle flop. Toggle flops are added until the desired width of the counter is achieved with

each toggle flop representing one bit of the counter. Since each toggle flop produces the clock for the

subsequent latch, the clock is said to ripple through the circuit, hence the name ripple counter. A 3-bit

ripple counter is shown in Fig. 7.23.

7.3.3 Switch Debouncing

Another useful circuit based on sequential storage devices is a switch debouncer. Mechanical

switches have a well-known issue of not producing clean logic transitions on their outputs when pressed.

This becomes problematic when using a switch to create an input for a digital device because it will

cause unwanted logic level transitions on the output of the gate. In the case of a clock input, this

unwanted transition can cause a storage device to unintentionally latch incorrect data.

Fig. 7.23
3-bit ripple counter
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The primary cause of these unclean logic transitions is due to the physical vibrations of the metal

contacts when they collide with each other during a button press or switch actuation. Within a mechanical

switch, there is typically one contact that is fixed and another that is designed to move when the button is

pressed. The contact that is designed to move can be thought of as a beam that is fixed on one side and

free on the other. As the free side of the beammoves toward the fixed contact in order to close the circuit,

it will collide and then vibrate just as a tuning fork does when struck. The vibration will eventually diminish

and the contact will come to rest, thus making a clean electrical connection; however, during the vibration

period the moving contact will bounce up and down on the destination contact. This bouncing causes the

switch to open and close multiple times before coming to rest in the closed position. This phenomenon is

accurately referred to as switch bounce. Switch bounce is present in all mechanical switches and gets

progressively worse as the switches are used more and more.

Figure 7.24 shows some of the common types of switches found in digital systems. The term pole is

used to describe the number of separate circuits controlled by the switch. The term throw is used to

describe the number of separate closed positions the switch can be in.

Let’s look at switch bounce when using a SPST switch to provide an input to a logic gate. A SPST

requires a resistor and can be configured to provide either a logic HIGH or LOW when in the open

position and the opposite logic level when in the closed position. The example configuration in Fig. 7.25

provides a logic LOW when in the open position and a logic HIGH when in the closed position. In the

open position, the input to the gate (SW) is pulled to GND to create a logic LOW. In the closed position,

the input to the gate is pulled to VCC to create a logic HIGH. A resistor is necessary to prevent a short

circuit between VCC and GND when the switch is closed. Since the input current specification for a logic

gate is very small, the voltage developed across the resistor due to the gate input current is negligible.

This means that the resistor can be inserted in the pull-down network without developing a noticeable

voltage. When the switch closes, the free-moving contact will bounce off of the destination contact

numerous times before settling in the closed position. During the time while the switch is bouncing, the

switch will repeatedly toggle between the open (HIGH) and closed (LOW) positions.

Fig. 7.24
Common types of mechanical switches
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A possible solution to eliminate this switch bounce is to instead use a SPDT switch in conjunction

with a sequential storage device. Before looking at this solution, we need to examine an additional

condition introduced by the SPDT switch. The SPDT switch has what is known as break-before-make

behavior. The term break is used to describe when a switch is open while the term make is used to

describe when the switch is closed. When a SPDTswitch is pressed, the input will be floating during the

time when the free-moving contact is transitioning toward the destination contact. During this time, the

output of the switch is unknown and can cause unwanted logic transitions if it is being used to drive the

input of a logic gate.

Let’s look at switch bounce when using a SPDT switch without additional circuitry to handle

bouncing. A SPDT has two positions that the free-moving contact can make a connection to (i.e., double

throw). When using this switch to drive a logic level into a gate, one position is configured as a logic HIGH

and the other a logic LOW. Consider the SPDTswitch configuration in Fig. 7.26. Position 1 of the SPDT

switch is connected to GND, while position 2 is connect to VCC. When unpressed the switch is in position

1. When pressed, the free-moving contact will transition from position 1 to 2. During the transition the

free-moving contact is floating. This creates a condition where the input to the gate (SW) is unknown.

This floating input will cause unpredictable behavior on the output of the gate. Upon reaching position

2, the free-moving contact will bounce off of the destination contact. This will cause the input of the logic

gate to toggle between a logic HIGH and floating repeatedly until the free-moving contact comes to rest

in position 2.

Fig. 7.25
Switch bouncing in a single pole, single throw switch
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The SPDTswitch is ideal for use with an S’R’ Latch in order to produce a clean logic transition. This

is because during the break portion of the transition, an S’R’ Latch can be used to hold the last value of

the switch. This is unique to the SPDTconfiguration. The SPSTswitch in comparison does not have the

break characteristic, rather it always drives a logic level in both of its possible positions. Consider the

debounce circuit for a SPDT switch in Fig. 7.27. This circuit is based on an S’R’ Latch with two pull-up

resistors. Since the S’R’ Latch is created using NAND gates, this circuit is commonly called a NAND-

Debounce circuit. In the unpressed configuration, the switch drives S0 ¼ 0 and the R2 pull-up resistor

drives R’ ¼ 1. This creates a logic 0 on the output of the circuit (Qn ¼ 0). During a switch press, the free-

moving contact is floating, thus it is not driving in a logic level into the S’R’ Latch. Instead, both pull-up

resistors pull S0 and R’ to 1’s. This puts the latch into its hold mode and the output will remain at a logic

0 (Qn ¼ 0). Once the free-moving contact reaches the destination contact, the switch will drive R’ ¼ 0.

Since at this point the R1 pull-up is driving S0 ¼ 1, the latch outputs a logic 1 (Qn ¼ 1). When the free-

moving contact bounces off of the destination contact, it will put the latch back into the hold mode;

however, this time the last value that will be held is Qn ¼ 1. As the switch continues to bounce, the latch

will move between the Qn ¼ 1 and Qn ¼ “Last Qn” states, both of which produce an output of 1. In this

way, the SPDT switch in conjunction with the S’R’ Latch produces a clean 0 to 1 logic transition despite

the break-before-make behavior of the switch and the contact bounce.

Fig. 7.26
Switch bouncing in a single pole, double throw switch
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7.3.4 Shift Registers

A shift register is a chain of D-Flip-Flops that each are connected to a common clock. The output of

the first D-Flip-Flop is connected to the input of the second D-Flip-flop. The output of the second D-Flip-

Flop is connected to the input of the third D-Flip-Flop, and so on. When data is present on the input to the

first D-Flip-Flop, it will be latched upon the first rising edge of the clock. On the second rising edge of the

clock, the same data will be latched into the second D-Flip-Flop. This continues on each rising edge of

the clock until the data has been shifted entirely through the chain of D-Flip-Flops. Shift registers are

Fig. 7.27
NAND debounce circuit for a SPDT switch
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commonly used to convert a serial string of data into a parallel format. If an n-bit, serial sequence of

information is clocked into the shift register, after n clocks the data will be held on each of the D-Flip-Flop

outputs. At this moment, the n-bits can be read as a parallel value. Consider the shift register configura-

tion shown in Fig. 7.28.

CONCEPT CHECK

CC7.3 Which D-flip-flop timing specification is most responsible for the ripple delay in a ripple

counter?

(A) tsetup (B) thold (C) tCQ (D) tmeta

Fig. 7.28
4-bit shift register
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7.4 Finite State Machines

Now we turn our attention to one of the most powerful sequential logic circuits, the finite state

machine (FSM). A FSM, or state machine, is a circuit that contains a pre-defined number of states (i.e., a

finite number of states). The machine can exist in one and only one state at a time. The circuit transitions

between states based on a triggering event, most commonly the edge of a clock, in addition to the values

of any inputs of the machine. The number of states and all possible transitions are pre-defined. Through

the use of states and a pre-defined sequence of transitions, the circuit is able to make decisions on the

next state to transition to based on a history of past states. This allows the circuit to create outputs that

are more intelligent compared to a simple combinational logic circuit that has outputs based only on the

current values of the inputs.

7.4.1 Describing the Functionality of a FSM

The design of a state machine begins with an abstract word description of the desired circuit

behavior. We will use a design example of a push-button motor controller to describe all of the steps

involved in creating a finite state machine. Example 7.1 starts the FSM design process by stating the

word description of the system.

7.4.1.1 State Diagrams

A state diagram is a graphical way to describe the functionality of a finite state machine. A state

diagram is a form of a directed graph, in which each state (or vertex) within the system is denoted as a

circle and given a descriptive name. The names are written inside of the circles. The transitions between

states are denoted using arrows with the input conditions causing the transitions written next to them.

Transitions (or edges) can move to different states upon particular input conditions or remain in the same

state. For a state machine implemented using sequential logic storage, an evaluation of when to

transition states is triggered every time the storage devices update their outputs. For example, if the

system was implemented using rising edge triggered D-flip-Flops, then an evaluation would occur on

every rising edge of the clock.

Example 7.1
Push-button window controller – word description
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There are two different types of output conditions for a state machine. The first is when the output

only depends on the current state of the machine. This type of system is called aMoore Machine. In this

case, the outputs of the system are written inside of the state circles. This indicates the output value that

will be generated for each specific state. The second output condition is when the outputs depend on

both the current state and the system inputs. This type of system is called aMealy Machine. In this case,

the outputs of the system are written next to the state transitions corresponding to the appropriate input

values. Outputs in a state diagram are typically written inside of parentheses. Example 7.2 shows the

construction of the state diagram for our push-button window controller design.

Example 7.2
Push-button window controller – state diagram
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7.4.1.2 State Transition Tables

The state diagram can now be described in a table format that is similar to a truth table. This puts the

state machine behavior in a form that makes logic synthesis straightforward. The table contains the

same information as in the state diagram. The state that the machine exists in is called the current state.

For each current state that the machine can reside in, every possible input condition is listed along with

the destination state of each transition. The destination state for a transition is called the next state. Also

listed in the table are the outputs corresponding to each current state and, in the case of a Mealy

Machine, the output corresponding to each input condition. Example 7.3 shows the construction of the

state transition table for the push-button window controller design. This information is identical to the

state diagram given in Example 7.2.

7.4.2 Logic Synthesis for a FSM

Once the behavior of the state machine has been described, it can be directly synthesized. There

are three main components of a state machine: the state memory; the next state logic; and the output

logic. Figure 7.29 shows a block diagram of a state machine highlighting these three components. The

next state logic block is a group of combinational logic that produces the next state signals based on the

current state and any system inputs. The state memory holds the current state of the system. The current

state is updated with next state on every rising edge of the clock, which is indicated with the “>” symbol

within the block. This behavior is created using D-Flip-Flops where the current state is held on the Q

outputs of the D-Flip-Flops, while the next state is present on the D inputs of the D-Flip-Flops. In this way,

every rising edge of the clock will trigger an evaluation of which state to move to next. This decision is

based on the current state and the current inputs. The output logic block is a group of combinational logic

that creates the outputs of the system. This block always uses the current state as an input and,

depending on the type of machine (Mealy vs. Moore), uses the system inputs. It is useful to keep this

block diagram in mind when synthesizing finite state machines as it will aid in keeping the individual

design steps separate and clear.

Example 7.3
Push-button window xontroller – state transition table
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7.4.2.1 State Memory

The state memory is the circuitry that will hold the current state of the machine. Upon a rising edge of

a clock it will update the current state with the next state. At all other times, the next state input is ignored.

This gives time for the next state logic circuitry to compute the results for the next state. This behavior is

identical to that of a D-Flip-Flop, thus the state memory is simply one or more D-Flip-Flops. The number

of D-Flip-Flops required depends on how the states are encoded. State encoding is the process of

assigning a binary value to the descriptive names of the states from the state diagram and state transition

tables. Once the descriptive names have been converted into representative codes using 1’s and 0’s, the

states can be implemented in real circuitry. The assignment of codes is arbitrary and can be selected in

order to minimize the circuitry needed in the machine.

There are three main styles of state encoding. The first is straight binary encoding. In this approach

the state codes are simply a set of binary counts (i.e., 00, 01, 10, 11. . .). The binary counts are assigned

starting at the beginning of the state diagram and incrementally assigned toward the end. This type of

encoding has the advantage that it is very efficient in minimizing the number of D-Flip-Flops needed for

the state memory. With n D-Flip-Flops, 2n states can be encoded. When a large number of states is

required, the number of D-Flip-Flops can be calculated using the rules of logarithmic math. Example 7.4

shows how to solve for the number of bits needed in the binary state code based on the number of states

in the machine.

Fig. 7.29
Main components of a finite state machine
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The second type of state encoding is called gray code encoding. A gray code is one in which the

value of a code differs by only one bit from any of its neighbors, (i.e., 00, 01, 11, 10. . .). A gray code is

useful for reducing the number of bit transitions on the state codes when the machine has a transition

sequence that is linear. Reducing the number of bit transitions can reduce the amount of power

consumption and noise generated by the circuit. When the state transitions of a machine are highly

non-linear, a gray code encoding approach does not provide any benefit. Gray code is also an efficient

coding approach. With n D-Flip-Flops, 2n states can be encoded just as in binary encoding. Figure 7.30

shows the process of creating n-bit, gray code patterns.

Example 7.4
Solving for the number of bits needed for binary state encoding
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The third common technique to encode states is using one-hot encoding. In this approach, a

separate D-Flip-Flop is asserted for each state in the machine. For an n-state machine, this encoding

approach requires n D-Flip-Flops. For example, if a machine had three states, the one-hot state codes

would be “001”, “010” and “100”. This approach has the advantage that the next state logic circuitry is

very simple; further, there is less chance that the different propagation delays through the next state logic

will cause an inadvertent state to be entered. This approach is not as efficient as binary and gray code in

terms of minimizing the number of D-Flip-Flops because it requires one D-Flip-Flop for each state;

however, in modern digital integrated circuits that have abundant D-Flip-Flops, one-hot encoding is

commonly used.

Figure 7.31 shows the differences between these three state encoding approaches.

Once the codes have been assigned to the state names, each of the bits within the code must be

given a unique signal name. The signal names are necessary because the individual bits within the state

Fig. 7.30
Creating an n-bit gray code pattern

Fig. 7.31
Comparison of different state encoding approaches
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code are going to be implemented with real circuitry so each signal name will correspond to an actual

node in the logic diagram. These individual signal names are called state variables. Unique variable

names are needed for both the current state and next state signals. The current state variables are driven

by the Q outputs of the D-Flip-Flops holding the state codes. The next state variables are driven by the

next state logic circuitry and are connected to the D inputs of the D-Flip-Flops. State variable names are

commonly chosen that are descriptive both in terms of their purpose and connection location. For

example, current state variables are often given the names Q, Q_cur or Q_current to indicate that they

come from the Q outputs of the D-Flip-Flops. Next state variables are given names such as Q*, Q_nxt or

Q_next to indicate that they are the next value of Q and are connected to the D input of the D-Flip-Flops.

Once state codes and state variable names are assigned, the state transition table is updated with the

detailed information.

Returning to our push-button window controller example, let’s encode our states in straight binary

and use the state variable names of Q_cur and Q_nxt. Example 7.5 shows the process of state encoding

and the new state transition table.

7.4.2.2 Next State Logic

The next step in the state machine design is to synthesize the next state logic. The next state logic

will compute the values of the next state variables based on the current state and the system inputs.

Recall that a combinational logic function drives one and only one output bit. This means that every bit

within the next state code needs to have a dedicated combinational logic circuit. The state transition table

contains all of the necessary information to synthesize the next state logic including the exact

output values of each next state variable for each and every input combination of state code and system

input(s).

Example 7.5
Push-button window controller – state encoding
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In our push-button window controller example, we only need to create one combinational logic

circuit because there is only one next state variable (Q_nxt). The inputs to the combinational logic circuit

are Q_cur and Press. Notice that the state transition table was created such that the order of the input

values are listed in a binary count just as in a formal truth table formation. This makes synthesizing the

combinational logic circuit straightforward. Example 7.6 shows the steps to synthesize the next state

logic for this the push-button window controller.

7.4.2.3 Output Logic

The next step in the state machine design is to synthesize the output logic. The output logic will

compute the values of the system outputs based on the current state and, in the case of a Mealy

machine, the system inputs. Each of the output signals will require a dedicated combinational

logic circuit. Again, the state transition table contains all of the necessary information to synthesize the

output logic.

In our push-button window controller example, we need to create one circuit to compute the output

“Open_CW” and one circuit to compute the output “Close_CCW”. In this example, the inputs to these

circuits are the current state (Q_cur) and the system input (Press). Example 7.7 shows the steps to

synthesize the output logic for the push-button window controller.

Example 7.6
Push-button window controller – next state logic
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7.4.2.4 The Final Logic Diagram

The final step is the design of the state machine is to create the logic diagram. It is useful to recall the

block diagram for a state machine from Fig. 7.29. A logic diagram begins by entering the state memory.

Recall that the state memory consists of D-Flip-Flops that hold the current state code. One D-Flip-Flop is

needed for every current state variable. When entering the D-Flip-Flops, it is useful to label them with the

current state variable they will be holding. The next part of the logic diagram is the next state logic. Each

of the combinational logic circuits that compute the next state variables should be drawn to the left of D-

Flip-Flop holding the corresponding current state variable. The output of each next state logic circuit is

connected to the D input of the corresponding D-Flip-Flop. Finally, the output logic is entered with the

inputs to the logic coming from the current state and potentially from the system inputs.

Example 7.7
Push-button window controller – output logic

7.4 Finite State Machines • 231



Example 7.8 shows the process for creating the final logic diagram for our push-button window

controller. Notice that the state memory is implemented with one D-Flip-Flop since there is only 1-bit in

the current state code (Q_cur). The next state logic is a combinational logic circuit that computes Q_nxt

based on the values of Q_cur and Press. Finally, the output logic consists of two separate combinational

logic circuits to compute the system outputs Open_CW and Close_CCW based on Q_cur and Press. In

this diagram the Qn output of the D-Flip-Flop could have been used for the inverted versions of Q_cur;

however, inversion bubbles were used instead in order to make the diagram more readable.

7.4.3 FSM Design Process Overview

The entire finite state machine design process is given in Fig. 7.32.

Example 7.8
Push-button window controller – logic diagram
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7.4.4 FSM Design Examples

7.4.4.1 Serial Bit Sequence Detector

Let’s consider the design of a 3-bit serial sequence detector. Example 7.9 provides the word

description, state diagram, and state transition table for this finite state machine.

Fig. 7.32
Finite state machine design flow
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Example 7.9
Serial bit sequence detector (part 1)
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Example 7.10 provides the state encoding and next state logic synthesis for the 3-bit serial bit

sequence detector.

Example 7.10
Serial bit sequence detector (part 2)
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Example 7.11 shows the output logic synthesis and final logic diagram for the 3-bit serial bit

sequence detector.

7.4.4.2 Vending Machine Controller

Let’s now look at the design of a simple vending machine controller. Example 7.12 provides the word

description, state diagram, and state transition table for this finite state machine.

Example 7.11
Serial bit sequence detector (part 3)
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Example 7.12
Vending machine controller (part 1)
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Example 7.13 provides the state encoding and next state logic synthesis for the simple vending

machine controller.

Example 7.13
Vending machine controller (part 2)
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Example 7.14 shows the output logic synthesis and final logic diagram for the vending machine

controller.

Example 7.14
Vending machine controller (part 3)
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CONCEPT CHECK

CC7.4(a) What allows a finite state machine to make more intelligent decisions about the system

outputs compared to combinational logic alone?

(A) A finite state machine has knowledge about the past inputs.

(B) The D-flip-flops allow the outputs to be generated more rapidly.

(C) The next state and output logic allows the finite state machine to be more

complex and implement larger truth Tables.

(D) A synchronous system is always more intelligent.

CC7.4(b) When designing a finite state machine, many of the details of the implementation can be

abstracted. At what design step do the details of the implementation start being

considered?

(A) The state diagram step.

(B) The state transition table step.

(C) The state memory synthesis step.

(D) The word description.

CC7.4(c) What impact does adding an additional state have on the implementation of the state
memory logic in a finite state machine?

(A) It adds an additional D-flip-flop.

(B) It adds a new state code that must be supported.

(C) It adds more combinational logic to the logic diagram.

(D) It reduces the speed that the machine can run at.

CC7.4(d) Which of the following statements about the next state logic is FALSE?

(A) It is always combinational logic.

(B) It always uses the current state as one of its inputs.

(C) Its outputs are connected to the D inputs of the D-flip-flops in the state memory.

(D) It uses the results of the output logic as part of its inputs.

CC7.4(e) Why does the output logic stage of a finite state machine always use the current state as

one of its inputs?

(A) If it didn’t, it would simply be a separate combinational logic circuit and not be
part of the finite state machine.

(B) To make better decisions about what the system outputs should be.

(C) Because the next state logic is located too far away.

(D) Because the current state is produced on every triggering clock edge.

CC7.4(f) What impact does asserting a reset have on a finite state machine?

(A) It will cause the output logic to produce all zeros.

(B) It will cause the next state logic to produce all zeros.

(C) It will set the current state code to all zeros.

(D) It will start the system clock.

240 • Chapter 7: Sequential Logic Design



7.5 Counters

A counter is a special type of finite state machine. A counter will traverse the states within a state

diagram in a linear fashion continually circling around all states. This behavior allows a special type of

output topology called state-encoded outputs. Since each state in the counter represents a unique

counter output, the states can be encoded with the associated counter output value. In this way, the

current state code of the machine can be used as the output of the entire system.

7.5.1 2-Bit Binary Up Counter

Let’s consider the design of a 2-bit binary up counter. Example 7.15 provides the word description,

state diagram, state transition table, and state encoding for this counter.

Example 7.15
2-bit binary up counter (part 1)
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Example 7.16 shows the next state and output logic synthesis, the final logic diagram, and resultant

representative timing diagram for the 2-bit binary up counter.

7.5.2 2-Bit Binary Up/Down Counter

Let’s now consider a 2-bit binary up/down counter. In this type of counter, there is an input that

dictates whether the counter increments or decrements. This counter can still be implemented as a

Example 7.16
2-bit binary up counter (part 2)
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Moore machine and use state-encoded outputs. Example 7.17 provides the word description, state

diagram, state transition table, and state encoding for this counter.

Example 7.17
2-bit binary up/down counter (part 1)
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Example 7.18 shows the next state and output logic synthesis, the final logic diagram, and resultant

representative timing diagram for the 2-bit binary up/down counter.

Example 7.18
2-bit binary up/down counter (part 2)
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7.5.3 2-Bit Gray Code Up Counter

A gray code counter is one in which the output only differs by one bit from its prior value. This type of

counter can be implemented using state-encoded outputs by simply encoding the states in gray code.

Let’s consider the design of a 2-bit gray code up counter. Example 7.19 provides the word description,

state diagram, state transition table, and state encoding for this counter.

Example 7.19
2-bit gray code up counter (part 1)
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Example 7.20 shows the next state and output logic synthesis, the final logic diagram, and resultant

representative timing diagram for the 2-bit gray code up counter.

Example 7.20
2-bit gray code up counter (part 2)
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7.5.4 2-Bit Gray Code Up/Down Counter

Let’s now consider a 2-bit gray code up/down counter. In this type of counter, there is an input that

dictates whether the counter increments or decrements. This counter can still be implemented as a

Moore machine and use state-encoded outputs. Example 7.21 provides the word description, state

diagram, state transition table, and state encoding for this counter.

Example 7.21
2-bit gray code up/down counter (part 1)

7.5 Counters • 247



Example 7.22 shows the next state and output logic synthesis, the final logic diagram, and resultant

representative timing diagram for the 2-bit gray code up/down counter.

Example 7.22
2-bit gray code up/down counter (part 2)
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7.5.5 3-Bit One-Hot Up Counter

A one-hot counter creates an output in which one and only one bit is asserted at a time. In an up

counter configuration, the assertion is made on the least significant bit first, followed by the next higher

significant bit, and so on (i.e., 001, 010, 100, 001. . .). A one-hot counter can be created using state-

encoded outputs. For a n-bit counter, the machine will require n D-Flip-Flops. Let’s consider a 3-bit

one-hot up counter. Example 7.23 provides the word description, state diagram, state transition table,

and state encoding for this counter.

Example 7.23
3-bit one-hot up counter (part 1)
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Example 7.24 shows the next state and output logic synthesis, the final logic diagram, and resultant

representative timing diagram for the 3-bit one-hot up counter.

7.5.6 3-Bit One-Hot Up/Down Counter

Let’s now consider a 3-bit one-hot up/down counter. In this type of counter, there is an input that

dictates whether the counter increments or decrements. This counter can still be implemented as a

Moore machine and use state-encoded outputs. Example 7.25 provides the word description, state

diagram, state transition table, and state encoding for this counter.

Example 7.24
3-bit one-hot up counter (part 2)
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Example 7.25
3-bit one-hot up/down counter (part 1)
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Example 7.26 shows the next state and output logic synthesis for the 3-bit one-hot up/down counter.

Example 7.26
3-bit one-hot up/down counter (part 2)
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Finally, Example 7.27 shows the logic diagram and resultant representative timing diagram for the

counter.

CONCEPT CHECK

CC7.5 What characteristic of a counter makes it a special case of a finite state machine?

(A) The state transitions are mostly linear, which reduces the implementation
complexity.

(B) The outputs are always a gray code.

(C) The next state logic circuitry is typically just sum terms.

(D) There is never a situation where a counter could be a Mealy machine.

Example 7.27
3-bit one-hot up/down counter (part 3)
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7.6 Finite State Machine’s Reset Condition

The one-hot counter designs in Examples 7.23 and 7.25 where the first FSM examples that had an

initial state that was not encoded with all 0’s. Notice that all of the other FSM examples had initial states

with state codes comprised of all 0’s (e.g., w_closed ¼ 0, S0¼ “00”, C0¼ “00”, GC_0¼ “00, etc.). When

the initial state is encoded with all 0’s, the FSM can be put into this state by asserting the reset line of all of

the D-Flip-Flops in the state memory. By asserting the reset line, the Q outputs of all of the D-Flip-Flips

are forced to 0’s. This sets the initial current state value to whatever state is encoded with all 0’s. The

initial state of a machine is often referred to as the reset state. The circuitry to initialize state machines is

often omitted from the logic diagram as it is assumed that the necessary circuitry will exist in order to put

the state machine into the reset state. If the reset state is encoded with all 0’s, then the reset line can be

used alone; however, if the reset state code contains 1’s, then both the reset and preset lines must be

used to put the machine into the reset state upon start up. Let’s look at the behavior of the one-hot up

counter again. Figure 7.33 shows how using the reset lines of the D-Flip-Flops alone will cause the circuit

to operate incorrectly. Instead, a combination of the reset and preset lines must be used to get the

one-hot counter into its initial state of Hot_0 ¼ “00100.

Fig. 7.33
Finite state machine reset state
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Resets are most often asynchronous so that they can immediately alter the state of the FSM. If a

reset was implemented in a synchronous manner and there was a clock failure, the system could not be

reset since there would be no more subsequent clock edges that would recognize that the reset line was

asserted. An asynchronous reset allows the system to be fully restarted even in the event of a clock

failure.’

CONCEPT CHECK

CC7.6 What is the downside of using D-flip-flops that do not have preset capability in a finite state

machine?

(A) The finite state machine will run slower.

(B) The next state logic will be more complex.

(C) The output logic will not be able to support both Mealy and Moore type machine

architectures.

(D) The start-up state can never have a 1 in its state code.

7.7 Sequential Logic Analysis

Sequential logic analysis refers to the act of deciphering the operation of a circuit from its final logic

diagram. This is similar to combinational logic analysis with the exception that the storage capability of

the D-flip-flops must be considered. This analysis is also used to understand the timing of a sequential

logic circuit and can be used to predict the maximum clock rate that can be used.

7.7.1 Finding the State Equations and Output Logic Expressions of a FSM

When given the logic diagram for a finite state machine and it is desired to reverse-engineer its

behavior, the first step is to determine the next state logic and output logic expressions. This can be

accomplished by first labeling the current and next state variables on the inputs and outputs of the D-flip-

flops that are implementing the state memory of the FSM. The outputs of the D-flip-flops are labeled with

arbitrary current state variable names (e.g., Q1_cur, Q0_cur, etc.) and the inputs are labeled with

arbitrary next state variable names (e.g., Q1_nxt, Q0_nxt, etc.). The numbering of the state variables

can be assigned to the D-flip-flops arbitrarily as long as the current and next state bit numbering is

matched. For example, if a D-flip-flop is labeled to hold bit 0 of the state code, its output should be labeled

Q0_cur and its input should be labeled Q0_nxt.

Once the current state variable nets are labeled in the logic diagram, the expressions for the next

state logic can be found by analyzing the combinational logic circuity driving the next state variables

(e.g., Q1_nxt, Q0_nxt). The next state logic expressions will be in terms of the current state variables

(e.g., Q1_cur, Q0_cur) and any inputs to the FSM.

The output logic expressions can also be found by analyzing the combinational logic driving the

outputs of the FSM. Again, these will be in terms of the current state variables and potentially the inputs

to the FSM. When analyzing the output logic, the type of machine can be determined. If the output logic

only depends on combinational logic that is driven by the current state variables, the FSM is a Moore

machine. If the output logic depends on both the current state variables and the FSM inputs, the FSM is a

Mealy machine. An example of this analysis approach is given in Example 7.28.
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7.7.2 Finding the State Transition Table of a FSM

Once the next state logic and output logic expressions are known, the state transition table can be

created. It is useful to assign more descriptive names to all possible state codes in the FSM. The number

of unique states possible depends on how many D-flip-flops are used in the state memory of the FSM.

For example, if the FSM uses two D-flip-flops there are four unique state codes (i.e., 00, 01, 10, 11). We

can assign descriptive names such as S0 ¼ 00, S1 ¼ 01, S2 ¼ 10, S3 ¼ 11. When first creating the

transition table, we assign labels and list each possible state code. If a particular code is not used, it can

be removed from the transition table at the end of the analysis. The state code that the machine will start

in can be found by analyzing its reset and preset connections. This code is typically listed first in the

table. The transition table is then populated with all possible combinations of current states and inputs.

Example 7.28
Determining the next state logic and output logic expression of a FSM
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The next state codes and output logic values can then be populated by evaluating the next state logic

and output logic expressions found earlier. An example of this analysis is shown in Example 7.29.

7.7.3 Finding the State Diagram of a FSM

Once the state transition table is found, creating the state diagram becomes possible. We start the

diagram with the state corresponding to the reset state. We then draw how the FSM transitions between

each of its possible states based on the inputs to the machine and list the corresponding outputs. An

example of this analysis is shown in Example 7.30.

Example 7.29
Determining the state transition table of a FSM
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7.7.4 Determining the Maximum Clock Frequency of a FSM

The maximum clock frequency is often one of the banner specifications for a digital system. The

clock frequency of a FSM depends on a variety of timing specifications within the sequential circuit

including the setup and hold time of the D-flip-flop, the clock-to-Q delay of the D-flip-flop, the combina-

tional logic delay driving the input of the D-flip-flop, the delay of the interconnect that wires the circuit

together, and the desired margin for the circuit. The basic concept of analyzing the timing of FSM is to

determine how long we must wait after a rising (assuming a rising edge triggered D-flip-flop) clock edge

occurs until the subsequent rising clock edge can occur. The amount of time that must be allowed

between rising clock edges depends on howmuch delay exists in the system. A sufficient amount of time

Example 7.30
Determining the state diagram of a FSM

258 • Chapter 7: Sequential Logic Design



must exist between clock edges to allow the logic computations to settle so that on the next clock edge

the D-flip-flops can latch in a new value on their inputs.

Let’s examine all of the sources of delay in a FSM. Let’s begin by assuming that all logic values are

at a stable value and we experience a rising clock edge. The value present on the D input of the D-flip-

flop is latched into the storage device and will appear on the Q output after one clock-to-Q delay of the

device (tCQ). Once the new value is produced on the output of the D-flip-flop, it is then used by a variety of

combinational logic circuits to produce the next state codes and the outputs of the FSM. The next state

code computation is typically longer than the output computation so let’s examine that path. The new

value on Q propagates through the combinational logic circuitry and produces the next state code at the

D input of the D-flip-flop. The delay to produce this next state code includes wiring delay in addition to

gate delay. When analyzing the delay of the combinational logic circuitry (tcmb) and the delay of the

interconnect (tint), the worst case path is always considered. Once the new logic value is produced by the

next state logic circuitry, it must remain stable for a certain amount of time in order to meet the D-flip-flop’s

setup specification (tsetup). Once this specification is met, the D-flip-flop could be clocked with the next

clock edge; however, this represents a scenario without any margin in the timing. This means that if

anything in the system caused the delay to increase even slightly, the D-flip-flop could go metastable. To

avoid this situation, margin is included in the delay (tmargin). This provides some padding so that the

system can reliably operate. A margin of 10% is typical in digital systems. The time that must exist

between rising clock edges is then simply the sum of all of these sources of delay

(tCQ + tcmb + tint + tsetup + tmargin). Since the time between rising clock edges is defined as the period of

the signal (T), this value is also the definition of the period of the fastest clock. Since the frequency of a

signal is simply f ¼ 1/T, the maximum clock frequency for the FSM is the reciprocal of the sum of the

delay.

One specification that is not discussed in the above description is the hold time of the D-flip-flop

(thold). The hold specification is the amount of time that the input to the D-flip-flop must remain constant

after the clock edge. In modern storage devices, this time is typically very small and considerably less

than the tCQ specification. If the hold specification is less than tCQ it can be ignored because the output of

the D-flip-flop will not change until after one tCQ anyway. This means that the hold requirements are

inherently met. This is the situation with the majority of modern D-flip-flops. In the rare case that the hold

time is greater than tCQ, then it is used in place of tCQ in the summation of delays. Figure 7.34 gives the

summary of the maximum clock frequency calculation when analyzing a FSM.
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Let’s take a look at an example of how to use this analysis. Example 7.31 shows this analysis for the

FSM analyzed in prior sections but this time considering the delay specifications of each device.

Fig. 7.34
Timing analysis of a finite state machine
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CONCEPT CHECK

CC7.7 What is the risk of running the clock above its maximum allowable frequency in a finite state
machine?

(A) The power consumption may drop below the recommended level.

(B) The setup and hold specifications of the D-flip-flops may be violated, which may

put the machine into an unwanted state.

(C) The states may transition too quickly to be usable.

(D) The crystal generating the clock may become unstable.

Example 7.31
Determining the maximum clock frequency of a FSM
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Summary

v Sequential logic refers to a circuit that bases
its outputs on both the present and past
values of the inputs. Past values are held in
sequential logic storage device.

v All sequential logic storage devices are
based on a cross-coupled feedback loop.
The positive feedback loop formed in this
configuration will hold either a 1 or a 0. This
is known as a bistable device.

v If the inputs of the feedback loop in a sequen-
tial logic storage device are driven to exactly
between a 1 and a 0 (i.e., Vcc/2) and then
released, the device will go metastable.
Metastability refers to the behavior where
the device will ultimately be pushed toward
one of the two stable states in the system,
typically by electrical noise. Once the device
begins moving toward one of the stable
states, the positive feedback will reinforce
the transition until it reaches the stable
state. The stable state that the device will
move toward is random and unknown.

v Cross-coupled inverters are the most basic
form of the positive feedback loop configura-
tion. To give the ability to drive the outputs of
the storage device to known values, the
inverters are replaced with NOR gates to
form the SR Latch. A variety of other
modifications can be made to the loop con-
figuration to ultimately produce a D-latch and
D-flip-flop.

v A D-flip-flop will update its Q output with the
value on its D input on every triggering edge
of a clock. The amount of time that it takes for
the Q output to update after a triggering clock
edge is called the “t-clock-to-Q” (tCQ)
specification.

v The setup and hold times of a D-flip-flop
describe how long before (tsetup) and after
(thold) the triggering clock edge that the data
on the D input of the device must be stable. If
the D input transitions too close to the trigger-
ing clock edge (i.e., violating a setup or hold
specification) then the device will go meta-
stable and the ultimate value on Q is
unknown.

v A synchronous system is one in which all
logic transitions occur based on a single
timing event. The timing event is typically
the triggering edge of a clock.

v There are a variety of common circuits that
can be accomplished using just sequential
storage devices. Examples of these circuits
include switch debouncing, toggle-flops, rip-
ple counters, and shift registers.

v A finite state machine (FSM) is a system that
produces outputs based on the current value
of the inputs and a history of past inputs. The
history of inputs are recordedas states that the
machine has been in. As the machine
responds to new inputs, it transitions between
states. This allows a finite state machine to
make more sophisticated decisions about
what outputs to produce by knowing its history.

v A state diagram is a graphical way to
describe the behavior of a FSM. States are
represented using circles and transitions are
represented using arrows. Outputs are listed
either inside of the state circle or next to the
transition arrow.

v A state transition table contains the same
information as a state diagram, but in tabular
format. This allows the system to be more
easily synthesized because the information
is in a form similar to a truth table.

v The first step in FSM synthesis is creating the
state memory. The state memory consists of
a set of D-flip-flops that hold the current state
of the FSM. Each state in the FSM must be
assigned a binary code. The type of
encoding is arbitrary; however, there are cer-
tain encoding types that are commonly used
such as binary, gray code, and one-hot.
Once the codes are assigned, state variables
need to be defined for each bit position for
both the current state and the next state
codes. The state variables for the current
state represent the Q outputs of the D-flip-
flops, which hold the current state code. The
state variables for the next state code repre-
sent the D inputs of the D-flip-flops. A D-flip-
flop is needed for each bit in the state code.
On the triggering edge of a clock, the current
state will be updated with the next state code.

v The second step in FSM synthesis is creating
the next state logic. The next state logic is
combinational logic circuitry that produces
the next state codes based on the current
state variables and any system inputs. The
next state logic drives the D inputs of the D-
flip-flops in the state memory.

v The third step in FSM synthesis is creating
the output logic. The output logic is combina-
tional logic circuitry that produces the system
outputs based on the current state, and
potentially, the system inputs.

v The output logic always depends on the cur-
rent state of a FSM. If the output logic also
depends on the system inputs, the machine
is a Mealy machine. If the output logic does
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not depend on the system inputs, the
machine is a Moore machine.

v A counter is a special type of finite state
machine in which the states are traversed
linearly. The linear progression of states
allows the next state logic to be simplified.
The complexity of the output logic in a counter
can also be reduced by encoding the states
with the desired counter output for that state.
This technique, known as state-encoded
outputs, allows the system outputs to simply
be the current state of the FSM.

v The reset state of a FSM is the state that the
machine will go to when it begins operation.
The state code for the reset state must be
configured using the reset and/or preset lines
of the D-flip-flops. If only reset lines are used
on the D-flip-flops, the reset state must be
encoded using only zeros.

v Given the logic diagram for a state machine,
the logic expression for the next statememory
and the output logic can be determined by
analyzing the combinational logic driving the
D inputs of the state memory (i.e., the next
state logic) and the combinational logic driving
the system outputs (i.e., the output logic).

v Given the logic diagram for a state diagram,
the state diagram can be determined by first
finding the logic expressions for the next
state and output logic. The number of D-flip-
flops in the logic diagram can then be used to

calculate the possible number of state codes
that the machine has. The state codes are
then used to calculate the next state logic
and output values. From this information a
state transition table can be created and in
turn, the state diagram.

v The maximum frequency of a FSM is found
by summing all sources of time delay that
must be accounted for before the next trig-
gering edge of the clock can occur. These
sources include tCQ, the worst case combina-
tional logic path, the worst case interconnect
delay path, the setup/hold time of the D-flip-
flops, and any margin that is to be included.
The sum of these timing delays represents
the smallest period (T) that the clock can
have. This is then converted to frequency.

v If the tCQ time is greater than or equal to the
hold time, the hold time can be ignored in the
maximum frequency calculation. This is
because the outputs of the D-flip-flops are
inherently held while the D-flip-flops are pro-
ducing the next output value. The time it
takes to change the outputs after a triggering
clock edge is defined as tCQ. This means as
long as tCQ � thold, the hold time specification
is inherently met since the logic driving the
next state codes uses the Q outputs of the
D-flip-flops.

Exercise Problems

For some of the following exercise problems

you will be asked to design a Verilog model

and perform a functional simulation. You will

be provided with a test bench for each of

these problems. The details of how to create

your ownVerilog test bench are provided later

in Chap. 8. For some of the following exercise

problems you will be asked to use D-Flip-

Flops as part of a Verilog design. You will be

provided with the model of the D-Flip-Flop

and can declare it as a component in your

design. The Verilog module port definitions

for a D-Flip-Flop is given in Fig. 7.35. Keep

in mind that this D-Flip-Flop has an active

LOW reset. This means that when the reset

line is pulled to a 0, the outputs will go to

Q ¼ 0, Qn ¼ 1. When the reset line is LOW,

the incoming clock is ignored. Once the reset

line goes HIGH, the D-Flip-Flop resumes

normal behavior. The details of how to create

your ownmodel of a D-Flip-Flop are provided

later in Chap. 8.

Fig. 7.35
D-Flip-Flop module definition
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Section 7.1: Sequential Logic Storage

Devices

7.1.1 What does the term metastability refer to in a
sequential storage device?

7.1.2 What does the term bistable refer to in a
sequential storage device?

7.1.3 You are given a cross-coupled inverter pair in
which all nodes are set to Vcc/2. Why will this
configuration always move to a more stable
state?

7.1.4 An SR Latch essentially implements the same
cross-coupled feedback loop to store informa-
tion as in a cross-coupled inverter pair. What is
the purpose of using NOR gates instead of
inverters in the SR Latch configuration?

7.1.5 Why isn’t the input condition S ¼ R ¼ 1 used in
an SR Latch?

7.1.6 How will the output Q behave in an SR Latch if
the inputs continuously switch between S ¼ 0,
R ¼ 1 and S ¼ 1, R ¼ 1 every 10 ns?

7.1.7 How do D-flip-flops enable synchronous
systems?

7.1.8 What signal in the D-flip-flop in Fig. 7.35 has
the highest priority?

7.1.9 For the timing diagram shown in Fig. 7.36,
draw the outputs Q and Qn for a rising edge
triggered D-flip-flop with active LOW.

Fig. 7.36
D-Flip-Flop timing diagram exercise 1

7.1.10 For the timing diagram shown in Fig. 7.37,
draw the outputs Q and Qn for a rising edge
triggered D-flip-flop with active LOW.

Fig. 7.37
D-Flip-Flop timing diagram exercise 2

7.1.11 For the timing diagram shown in Fig. 7.38,
draw the outputs Q and Qn for a rising edge
triggered D-flip-flop with active LOW.

Fig. 7.38
D-Flip-Flop timing diagram exercise 3

Section 7.2: Sequential Logic Timing

Considerations

7.2.1 What timing specification is violated in a D-flip-
flop when the data is not held long enough
before the triggering clock edge occurs?

7.2.2 What timing specification is violated in a D-flip-
flop when the data is not held long enough after
the triggering clock edge occurs?

7.2.3 What is the timing specification for a D-flip-flop
that describes how long after the triggering
clock edge occurs that the new data will be
present on the Q output?

7.2.4 What is the timing specification for a D-flip-flop
that describes how long after the device goes
metastable that the outputs will settle to known
states.

7.2.5 If the Q output of a D-flip-flop is driving the D
input of another D-flip-flop from the same logic
family, can the hold time be ignored if it is less
than the clock-to-Q delay? Provide an expla-
nation as to why or why not.

Section 7.3: Common Circuits Based on

Sequential Storage Devices

7.3.1 In a Toggle Flop (T-flop) configuration, the Qn
output of the D-flip-flop is routed back to the D
input. This can lead to a hold time violation if
the output arrives on the input too quickly.
Under what condition(s) is a hold time violate
not an issue?

7.3.2 In a Toggle Flop (T-flop) configuration, what
timing specifications dictate how quickly the
next edge of the incoming clock can occur?

7.3.3 One drawback of a ripple counter is that the
delay through the cascade of D-flip-flops can
become considerable for large counters. At
what point does the delay of a ripple counter
prevent it from being useful?

7.3.4 A common use of a ripple counter is in the
creation of a 2n programmable clock divider.
In a ripple counter, bit(0) has a frequency that
is exactly 1/2 of the incoming clock, bit(1) has a
frequency that is exactly 1/4 of the incoming
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clock, bit(2) has a frequency that is exactly 1/8
of the incoming clock, etc. This behavior can
be exploited to create a divided down output
clock that is divided by multiples of 2n by
selecting a particular bit of the counter. The
typical configuration of this programmable
clock divider is to route each bit of the counter
to an input of a multiplexer. The select lines
going to the multiplexer choose which bit of
the counter are used as the divided down
clock output. This architecture is shown in
Fig. 7.39. Design a Verilog model to implement
the programmable clock divider shown in this
figure. Use the module port definition provided
in this figure for your design. Use a 4-bit ripple
counter to produce four divided versions of the
clock (1/2, 1/4, 1/8, and 1/16). Your system will
take in two select lines that will choose which
version of the clock is to be routed to the out-
put. Instantiate the D-flip-flop model provided
to implement the ripple counter. Implement the
4-to-1 multiplexer using continuous assign-
ment. The multiplexer does not need to be its
own sub-system.

Fig. 7.39
Programmable clock module definition

7.3.5 What phenomenon causes switch bounce in a
SPSTswitch?

7.3.6 What two phenomena causes switch bounce in
a SPDTswitch?

Section 7.4: Finite State Machines

7.4.1 For the state diagram in Fig. 7.40, answer the
following questions regarding the number of
D-Flip-Flops needed to implement the state
memory of the finite state machine.

(a) Howmany D-Flip-Flops will this machine
take if the states are encoded in binary?

(b) Howmany D-Flip-Flops will this machine
take if the states are encoded in gray
code?

(c) Howmany D-Flip-Flops will this machine
take if the states are encoded in one-
hot?

7.4.2 For the state diagram in Fig. 7.40, is this a
Mealy or Moore machine?

7.4.3 Design the finite state machine circuitry by
hand to implement the behavior described by
the state diagram in Fig. 7.40. Name the cur-
rent state variables Q1_cur and Q0_cur and
name the next state variables Q1_nxt and
Q0_nxt. Use the following state codes:

Start ¼ “00”

Midway ¼ “01”

Done ¼ “10”

(a) What is the next state logic expression
for Q1_nxt?

(b) What is the next state logic expression
for Q0_nxt?

(c) What is the output logic expression for
Dout?

(d) Draw the final logic diagram for this
machine.

7.4.4 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.40. Use the module port definition
provided in Fig. 7.41 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use continuous assignment with logi-
cal operators for the implementation of your
next state and output logic.

(a) Howmany D-Flip-Flops will this machine
take if the states are encoded in binary?

Fig. 7.40
FSM 1 state diagram
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(b) Howmany D-Flip-Flops will this machine
take if the states are encoded in gray
code?

(c) Howmany D-Flip-Flops will this machine
take if the states are encoded in one-
hot?

7.4.5 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.40. Use the module port definition
provided in Fig. 7.41 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use continuous assignment with con-
ditional operators for the implementation of
your next state and output logic.

7.4.6 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.40. Use the module port definition
provided in Fig. 7.41 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use User-Defined Primitives for the
implementation of your next state and output
logic.

7.4.7 For the state diagram in Fig. 7.42, answer the
following questions regarding the number of D-
Flip-Flops needed to implement the state
memory of the finite state machine.

(a) Howmany D-Flip-Flops will this machine
take if the states are encoded in binary?

(b) Howmany D-Flip-Flops will this machine
take if the states are encoded in gray
code?

(c) Howmany D-Flip-Flops will this machine
take if the states are encoded in one-
hot?

7.4.8 For the state diagram in Fig. 7.42, is this a
Mealy or Moore machine?

7.4.9 Design the finite state machine circuitry by
hand to implement the behavior described by
the state diagram in Fig. 7.42. Name the cur-
rent state variables Q1_cur and Q0_cur and
name the next state variables Q1_nxt and
Q0_nxt. Also, use the following state codes:

S0 ¼ “00”

S1 ¼ “01”

S2 ¼ “10”

S3 ¼ “11”

(a) What is the next state logic expression
for Q1_nxt?

(b) What is the next state logic expression
for Q0_nxt?

(c) What is the output logic expression for
Dout?

(d) Draw the final logic diagram for this
machine.

7.4.10 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.42. Use the module port definition
provided in Fig. 7.43 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use continuous assignment with logi-
cal operators for the implementation of your
next state and output logic.

Fig. 7.42
FSM 2 state diagram

Fig. 7.41
FSM 1 module definition

266 • Chapter 7: Sequential Logic Design



Fig. 7.43
FSM 2 module definition

7.4.11 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.42. Use the module port definition
provided in Fig. 7.43 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use continuous assignment with logi-
cal operators for the implementation of your
next state and output logic.

7.4.12 Design a Verilog model to implement the
behavior described by the state diagram in
Fig. 7.42. Use the module port definition
provided in Fig. 7.43 for your design. Name
the current state variables Q1_cur and
Q0_cur and name the next state variables
Q1_nxt and Q0_nxt. Instantiate the D-Flip-
Flop model provided to implement your state
memory. Use User-Defined Primitives for the
implementation of your next state and output
logic.

7.4.13 Design a 4-bit serial bit sequence detector by
hand similar to the one described in Example
7.9. The input to your state detector is called
DIN and the output is called FOUND. Your
detector will assert FOUND anytime there is a
4-bit sequence of “0101”. For all other input
sequences the output is not asserted.

(a) Provide the state diagram for this FSM.

(b) Encode your states using binary
encoding. How many D-Flip-Flops does
it take to implement the state memory for
this FSM?

(c) Provide the state transition table for
this FSM.

(d) Synthesize the combinational logic
expressions for the next state logic.

(e) Synthesize the combinational logic
expression for the output logic.

(f) Is this machine a Mealy or Moore
machine?

(g) Draw the logic diagram for this FSM.

7.4.14 Design a 20 cent vending machine controller
by hand similar to the one described in Exam-
ple 7.12. Your controller will take in nickels and

dimes and dispense a product anytime the
customer has entered 20 cents. Your FSM
has two inputs, Nin and Din. Nin is asserted
whenever the customer enters a nickel while
Din is asserted anytime the customer enters a
dime. Your FSM has two outputs, Dispense
and Change. Dispense is asserted anytime
the customer has entered at least 20 cents
and Change is asserted anytime the customer
has entered more than 20 cents and needs a
nickel in change.

(a) Provide the state diagram for this FSM.

(b) Encode your states using binary
encoding. How many D-Flip-Flops does
it take to implement the state memory for
this FSM?

(c) Provide the state transition table for
this FSM.

(d) Synthesize the combinational logic
expressions for the next state logic.

(e) Synthesize the combinational logic
expressions for the output logic.

(f) Is this machine a Mealy or Moore
machine?

(g) Draw the logic diagram for this FSM.

7.4.15 Design a finite state machine by hand that
controls a traffic light at the intersection of a
busy highway and a seldom used side road.
You will be designing the control signals for just
the red, yellow, and green lights facing the
highway. Under normal conditions, the high-
way has a green light. The side road has a
car detector that indicates when a car pulls up
by asserting a signal called CAR.When CAR is
asserted, you will change the highway traffic
light from green to yellow. Once yellow, you will
always go to red. Once in the red position, a
built in timer will begin a countdown and pro-
vide your controller a signal called TIMEOUT
when 15 s has passed. Once TIMEOUT is
asserted, you will change the highway traffic
light back to green. Your system will have three
outputs GRN, YLW, and RED that control when
the highway facing traffic lights are on (1¼ON,
0 ¼ OFF).

(a) Provide the state diagram for this FSM.

(b) Encode your states using binary
encoding. How many D-Flip-Flops does
it take to implement the state memory for
this FSM?

(c) Provide the state transition table for
this FSM.

(d) Synthesize the combinational logic
expressions for the next state logic.

(e) Synthesize the combinational logic
expressions for the output logic.

(f) Is this machine a Mealy or Moore
machine?

(g) Draw the logic diagram for this FSM.
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Section 7.5: Counters

7.5.1 Design a 3-bit binary up counter by hand. This
state machine will need eight states and
require three bits for the state variable codes.
Name the current state variables Q2_cur,
Q1_cur, and Q0_cur and the next state
variables Q2_nxt, Q1_nxt, and Q0_nxt. The
output of your counter will be a 3-bit vector
called Count.

(a) What is the next state logic expression
for Q2_nxt?

(b) What is the next state logic expression
for Q1_nxt?

(c) What is the next state logic expression
for Q0_nxt?

(d) What is the output logic expression for
Count(2)?

(e) What is the output logic expression for
Count(1)?

(f) What is the output logic expression for
Count(0)?

(g) Draw the logic diagram for this counter.

7.5.2 Design a Verilog model for a 3-bit binary up
counter. Instantiate the D-Flip-Flop model
provided to implement your state memory.
Use whatever concurrent modeling approach
you wish to model the next state and output
logic. Use the module port definition provided
in Fig. 7.44 for your design.

Fig. 7.44
3-Bit binary up counter module definition

7.5.3 Design a 3-bit binary up/down counter by hand.
The counter will have an input called “Up” that
will dictate the direction of the counter. When
Up¼ 1, the counter should increment andwhen
Up¼ 0 it should decrement. This state machine
will need eight states and require three bits for
the state variable codes. Name the current state
variables Q2_cur, Q1_cur, and Q0_cur and the
next state variables Q2_nxt, Q1_nxt, and
Q0_nxt. The output of your counter will be a
3-bit vector called Count.

(a) What is the next state logic expression
for Q2_nxt?

(b) What is the next state logic expression
for Q1_nxt?

(c) What is the next state logic expression
for Q0_nxt?

(d) What is the output logic expression for
Count(2)?

(e) What is the output logic expression for
Count(1)?

(f) What is the output logic expression for
Count(0)?

(g) Draw the logic diagram for this counter.

7.5.4 Design a Verilog model for a 3-bit binary
up/down counter. Instantiate the D-Flip-Flop
model provided to implement your state mem-
ory. Use whatever concurrent modeling
approach you wish to model the next state
and output logic. Use the module port definition
provided in Fig. 7.45 for your design.

Fig. 7.45
3-Bit binary up/down counter module definition

7.5.5 Design a 3-bit gray code up counter by hand.
This state machine will need eight states and
require three bits for the state variable codes.
Name the current state variables Q2_cur,
Q1_cur, andQ0_cur and thenext state variables
Q2_nxt, Q1_nxt, andQ0_nxt. The output of your
counter will be a 3-bit vector called Count.

(a) What is the next state logic expression
for Q2_nxt?

(b) What is the next state logic expression
for Q1_nxt?

(c) What is the next state logic expression
for Q0_nxt?

(d) What is the output logic expression for
Count(2)?

(e) What is the output logic expression for
Count(1)?

(f) What is the output logic expression for
Count(0)?

(g) Draw the logic diagram for this counter.

7.5.6 Design a Verilog model for a 3-bit gray code up
counter. Instantiate the D-Flip-Flop model
provided to implement your state memory.
Use whatever concurrent modeling approach
you wish to model the next state and output
logic. Use the module port definition provided
in Fig. 7.46 for your design.

Fig. 7.46
3-Bit gray code up counter module definition
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7.5.7 Design a 3-bit gray code up/down counter by
hand. The counter will have an input called
“Up” that will dictate the direction of the
counter. When Up ¼ 1, the counter should
increment and when Up ¼ 0 it should decre-
ment. This state machine will need eight states
and require three bits for the state variable
codes. Name the current state variables
Q2_cur, Q1_cur, and Q0_cur and the next
state variables Q2_nxt, Q1_nxt, and Q0_nxt.
The output of your counter will be a 3-bit vector
called Count.

(a) What is the next state logic expression
for Q2_nxt?

(b) What is the next state logic expression
for Q1_nxt?

(c) What is the next state logic expression
for Q0_nxt?

(d) What is the output logic expression for
Count(2)?

(e) What is the output logic expression for
Count(1)?

(f) What is the output logic expression for
Count(0)?

(g) Draw the logic diagram for this counter.

7.5.8 Design a Verilog model for a 3-bit gray code
up/down counter. Instantiate the D-Flip-Flop
model provided to implement your state mem-
ory. Use whatever concurrent modeling
approach you wish to model the next state
and output logic. Use the module port definition
provided in Fig. 7.47 for your design.

Fig. 7.47
3-Bit gray code up/down counter module
definition

Section 7.6: Finite State Machine’s Reset

Condition

7.6.1 Are resets typically synchronous or
asynchronous?

7.6.2 Why is it necessary to have a reset/preset
condition in a finite state machine?

7.6.3 How does the reset/preset condition corre-
spond to the behavior described in the state
diagram?

7.6.4 When is it necessary to also use the preset line
(s) of a D-flip-flop instead of just the reset line
(s) when implementing the state memory of a
finite state machine?

7.6.5 If a finite state machine has eight unique states
that are encoded in binary and all D-flip-flops
used for the state memory use their reset lines,
what is the state code that the machine will go
to upon reset?

Section 7.7: Sequential Logic Analysis

7.7.1 For the finite state machine logic diagram in
Fig. 7.48, give the next state logic expression
for Q_nxt.

Fig. 7.48
Sequential logic analysis 1

7.7.2 For the finite state machine logic diagram in
Fig. 7.48, give the output logic expression
for Tout.

7.7.3 For the finite state machine logic diagram in
Fig. 7.48, give the state transition table.

7.7.4 For the finite state machine logic diagram in
Fig. 7.48, give the state diagram.

7.7.5 For the finite state machine logic diagram in
Fig. 7.48, give the maximum clock frequency.

7.7.6 For the finite state machine logic diagram in
Fig. 7.49, give the next state logic expression
for Q_nxt.

Fig. 7.49
Sequential logic analysis 2

7.7.7 For the finite state machine logic diagram in
Fig. 7.49, give the output logic expression for F.

7.7.8 For the finite state machine logic diagram in
Fig. 7.49, give the state transition table.

7.7.9 For the finite state machine logic diagram in
Fig. 7.49, give the state diagram.

7.7.10 For the finite state machine logic diagram in
Fig. 7.49, give the maximum clock frequency.

7.7.11 For the finite state machine logic diagram in
Fig. 7.50, give the next state logic expressions
for Q1_nxt and Q0_nxt.
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Fig. 7.50
Sequential logic analysis 3

7.7.12 For the finite state machine logic diagram in
Fig. 7.50, give the output logic expression for
Return.

7.7.13 For the finite state machine logic diagram in
Fig. 7.50, give the state transition table.

7.7.14 For the finite state machine logic diagram in
Fig. 7.50, give the state diagram.

7.7.15 For the finite state machine logic diagram in
Fig. 7.50, give the maximum clock frequency.
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Chapter 8: Verilog (Part 2)
In Chap. 5 Verilog was presented as a way to describe the behavior of concurrent systems. The

modeling techniques presented were appropriate for combinational logic because these types of circuits

have outputs dependent only on the current values of their inputs. This means a model that continuously

performs signal assignments provides an accurate model of this circuit behavior. In Chap. 7 sequential

logic storage devices were presented that did not continuously update their outputs based on the

instantaneous values of their inputs. Instead, sequential storage devices only update their outputs

based upon an event, most often the edge of a clock signal. The modeling techniques presented in

Chap. 5 are unable to accurately describe this type of behavior. In this chapter, we describe the Verilog

constructs to model signal assignments that are triggered by an event in order to accurately model

sequential logic. We can then use these techniques to describe more complex sequential logic circuits

such as finite state machines and register transfer level systems. This chapter will also present how to

create test benches and look at more advanced features that are commonly used in Verilog to model

modern systems. The goal of this chapter is to give an understanding of the full capability of hardware

description languages.

Learning Outcomes—After completing this chapter, you will be able to:

8.1 Describe the behavior of Verilog procedural assignment and how they are used to model
sequential logic circuits.

8.2 Model combinational logic circuits using a Verilog procedural assignment and conditional
programming constructs.

8.3 Describe the functionality of common Verilog system tasks.
8.4 Design a Verilog test bench to verify the functional operation of a system.

8.1 Procedural Assignment

Verilog uses procedural assignment to model signal assignments that are based on an event. An

event is most commonly a transition of a signal. This provides the ability to model sequential logic circuits

such as D-flip-flops and finite state machines by triggering assignments off of a clock edge. Procedural

assignments can only drive variable data types (i.e., reg, integer, real, and time), thus they are ideal for

modeling storage devices. Procedural signal assignments can be evaluated in the order they are listed,

thus they are able to model sequential assignments.

A procedural assignment can also be used to model combinational logic circuits by making signal

assignments when any of the inputs to the model change. Despite the left-hand-side of the assignment

not being able to be of type wire in procedural assignment, modern synthesizers will recognize properly

designed combinational logic models and produce the correct circuit implementation. Procedural assign-

ment also supports standard programming constructs such as if-else decisions, case statements, and

loops. This makes procedural assignment a powerful modeling approach in Verilog and is the most

common technique for designing digital systems and creating test benches.

8.1.1 Procedural Blocks

All procedural signal assignments must be enclosed within a procedural block. Verilog has two types

of procedural blocks, initial and always.
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8.1.1.1 Initial Blocks

An initial block will execute all of the statements embedded within it one time at the beginning of the

simulation. An initial block is not used to model synthesizable behavior. It is instead used within test

benches to either set the initial values of repetitive signals or to model the behavior of a signal that only

has a single set of transitions. The following is the syntax for an initial block.

initial

begin // an optional “: name” can be added after the begin keyword

signal_assignment_1

signal_assignment_2

:

end

Let’s look at a simple model of how an initial block is used to model the reset line in a test bench. In

the following example, the signal “Reset_TB” is being driven into a DUT. At the beginning of the

simulation, the initial value of Reset_TB is set to a logic zero. The second assignment will take place

after a delay of 15 time units. The second assignment statement sets Reset_TB to a logic one. The

assignments in this example are evaluated in sequence in the order they are listed due to the delay

operator. Since the initial block executes only once, Reset_TB will stay at the value of its last assignment

for the remainder of the simulation.

Example:

initial

begin

Reset_TB ¼ 1’b0;

#15 Reset_TB ¼ 1’b1;

end

8.1.1.2 Always Blocks

An always block will execute forever, or for the duration of the simulation. An always block can be

used to model synthesizable circuits in addition to non-synthesizable behavior in test benches. The

following is the syntax for an always block.

always

begin

signal_assignment_1

signal_assignment_2

:

end

Let’s look at a simple model of how an always block can be used to model a clock line in a test

bench. In the following example, the value of the signal Clock_TB will continuously change its logic value

every 10 time units.

Example:

always

begin

#10 Clock_TB ¼ ~Clock_TB;

end

By itself, the above always block will not work because when the simulation begins, Clock_TB does

not have an initial value so the simulator will not know what the value of Clock_TB is at time zero. It

will also not know what the output of the negation operation (~) will be at time unit 10. The following

example shows the correct way of modeling a clock signal using a combination of initial and always
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blocks. Verilog allows assignments to the same variable frommultiple procedural blocks, so the following

example is valid. Note that when the simulation begins, Clock_TB is assigned a logic zero. This provides

a known value for the signal at time zero and also allows the always block negation to have a

deterministic value. The example below will create a clock signal that will toggle every 10 time units.

Example:

initial

begin

Clock_TB ¼ 1’b0;

end

always

begin

#10 Clock_TB ¼ ~Clock_TB;

end

8.1.1.3 Sensitivity Lists

A sensitivity list is used in conjunction with a procedural block to trigger when the assignments within

the block are executed. The symbol @ is used to indicate a sensitivity list. Signals can then be listed

within parenthesis after the @ symbol that will trigger the procedural block. The following is the base

syntax for a sensitivity list.

always @ (signal1, signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

In this syntax, any transition on any of the signals listed within the parenthesis will cause the always

block to trigger and all of its assignments to take place one time. After the always block ends, it will await

the next signal transition in the sensitivity list to trigger again. The following example shows how to model

a simple 3-input AND gate. In this example, any transition on inputs A, B, or C will cause the block to

trigger and the assignment to F to occur.

Example:

always @ (A, B, C)

begin

F ¼ A & B & C;

end

Verilog also supports keywords to limit triggering of the block to only rising edge or falling edge

transitions. The keywords are posedge and negedge. The following is the base syntax for an edge

sensitive block. In this syntax, only rising edge transitions on signal1 or falling edge transitions on signal2

will cause the block to trigger.

always @ (posedge signal1, negedge signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

Sensitivity lists can also contain Boolean operators to more explicitly describe behavior. The

following syntax is identical to the syntax above.
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always @ (posedge signal1 or negedge signal2)

begin

signal_assignment_1

signal_assignment_2

:

end

The ability to model edge sensitivity allows us to model sequential circuits. The following example

shows how to model a simple D-flip-flop.

Example:

always @ (posedge Clock)

begin

Q ¼ D; // Note: This model does not include a reset.

end

In Verilog-2001, the syntax to support sensitivity lists that will trigger based on any signal listed on

the right-hand-side of any assignment within the block was added. This syntax is @*. The following

example how to use this modeling approach to model a 3-input AND gate.

Example:

always @*

begin

F ¼ A & B & C;

end

8.1.2 Procedural Statements

There are two kinds of signal assignments that can be used within a procedural block, blocking and

non-blocking.

8.1.2.1 Blocking Assignments

A blocking assignment is denoted with the = symbol and the evaluation and assignment of each

statement takes place immediately. Each assignment within the block is executed in parallel. When this

behavior is coupled with a sensitivity list that contains all of the inputs to the system, this approach can

model synthesizable combinational logic circuits. This approach provides the same functionality as

continuous assignments outside of a procedural block. The reason that designers use blocking

assignments instead of continuous assignment is that more advanced programming constructs are

supported within Verilog procedural blocks. These will be covered in the next section. Example 8.1

shows how to use blocking assignments within a procedural block to model a combinational logic circuit.
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8.1.2.2 Non-blocking Assignments

A non-blocking assignment is denoted with the <= symbol. When using non-blocking assignments,

the assignment to the target signal is deferred until the end of the procedural block. This allows the

assignments to be executed in the order they are listed in the block without cascading interim

assignments through the list. When this behavior is coupled with triggering the block off of a clock signal,

this approach canmodel synthesizable sequential logic circuits. Example 8.2 shows an example of using

non-blocking assignments to model a sequential logic circuit.

The difference between blocking and non-blocking assignments is subtle and is often one of the

most difficult concepts to grasp when first learning Verilog. One source of confusion comes from the fact

that blocking and non-blocking assignments can produce the same results when they either contains a

Example 8.1
Using blocking assignments to model combinational logic

Example 8.2
Using non-blocking assignments to model sequential logic
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single assignment or a list of assignments that don’t have any signal interdependencies. A signal

interdependency refers to when a signal that is the target of an assignment (i.e., on the LHS of an

assignment) is used as an argument (i.e., on the RHS of an assignment) in subsequent statements.

Example 8.3 shows two models that produce the same results regardless of whether a blocking or

non-blocking assignment is used.

When a list of statements within a procedural block does have signal interdependencies, blocking

and non-blocking assignments will have different behavior. Example 8.4 shows how signal

interdependencies will cause different behavior between blocking and non-blocking assignments. In

this example, all inputs are listed in the sensitivity list with the intent of modeling combinational logic.

Example 8.3
Identical behavior when using blocking vs. non-blocking assignments
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Example 8.5 shows another case where signal interdependencies will cause different behavior

between blocking and non-blocking assignments. In this example, the procedural block is triggered by

the rising edge of a clock signal with the intent of modeling two stages of sequential logic.

Example 8.4
Different behavior when using blocking vs. non-blocking assignments (1)
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While the behavior of these procedural assignments can be confusing, there are two design

guidelines that can make creating accurate, synthesizable models straightforward. They are:

1. When modeling combinational logic, use blocking assignments and list every input in the
sensitivity list.

2. When modeling sequential logic, use non-blocking assignments and only list the clock and
reset lines (if applicable) in the sensitivity list.

Example 8.5
Different behavior when using blocking vs. non-blocking assignments (2)
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8.1.3 Statement Groups

A statement group refers to how the statements in a block are processed. Verilog supports two types

of statement groups: begin/end and fork/join. When using begin/end, all statements enclosed within the

group will be evaluated in the order they are listed. When using a fork/join, all statements enclosed within

the group will be evaluated in parallel. When there is only one statement within procedural block, a

statement group is not needed. For multiple statements in a procedural block, a statement group is

required. Statement groups can contain an optional name that is appended after the first keyword

preceded by a “:”. Example 8.6 shows a graphical depiction of the difference between begin/end and

fork/join groups. Note that this example also shows the syntax for naming the statement groups.

8.1.4 Local Variables

Local variables can be declared within a procedural block. The statement group must be named and

the variables will not be visible outside of the block. Variables can only be of variable type.

Example:

initial

begin: stim_block // it is required to name the block when declaring

local variables

integer i; // local variables can only be of variable type

i¼2;

end

Example 8.6
Behavior of statement groups begin/end vs. fork/join
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CONCEPT CHECK

CC8.1 If a model of a combinational logic circuit excludes one of its inputs from the sensitivity list,
what is the implied behavior?

(A) A storage element because the output will be held at its last value when the
unlisted input transitions.

(B) An infinite loop.

(C) A don’t care will be used to form the minimal logic expression.

(D) Not applicable because this syntax will not compile.

8.2 Conditional Programming Constructs

One of the more powerful features that procedural blocks provide in Verilog is the ability to use

conditional programming constructs such as if-else decisions, case statements, and loops. These

constructs are only available within a procedural block and can be used to model both combinational

and sequential logic.

8.2.1 if-else Statements

An if-else statement provides a way to make conditional signal assignments based on Boolean

conditions. The if portion of statement is followed by a Boolean condition that if evaluated TRUE will

cause the signal assignment listed after it to be performed. If the Boolean condition is evaluated FALSE,

the statements listed after the else portion are executed. If multiple statements are to be executed in

either the if or else portion, then the statement group keywords begin/end need to be used. If only one

statement is to be executed, then the statement group keywords are not needed. The else portion of the

statement is not required and if omitted, no assignment will take place when the Boolean condition is

evaluated FALSE. The syntax for an if-else statement is as follows:

if (<boolean_condition>)

true_statement

else

false_statement

The syntax for an if-else statement with multiple true/false statements is as follows:

if (<boolean_condition>)

begin

true_statement_1

true_statement_2

end

else

begin

false_statement_1

false_statement_2

end

If more than one Boolean condition is required, additional if-else statements can be embedded

within the else clause of the preceding if statement. The following shows an example of if-else

statements implementing two Boolean conditions.
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if (<boolean_condition_1>)

true_statement_1

else if (<boolean_condition_2>)

true_statement_2

else

false_statement

Let’s look at using an if-else statement to describe the behavior of a combinational logic circuit.

Recall that a combinational logic circuit is one in which the output depends on the instantaneous values

of the inputs. This behavior can bemodeled by placing all of the inputs to the circuit in the sensitivity list of

an always block and using blocking assignments. Using this approach, a change on any of the inputs in

the sensitivity list will trigger the block and the assignments will take place immediately. Example 8.7

shows how to model a 3-input combinational logic circuit using if-else statements within a procedural

always block.

8.2.2 case Statements

A case statement is another technique to model signal assignments based on Boolean conditions.

As with the if-else statement, a case statement can only be used inside of a procedural block. The

statement begins with the keyword case followed by the input signal name that assignments will be

based off of enclosed within parenthesis. The case statement can be based on multiple input signal

names by concatenating the signals within the parenthesis. Then a series of input codes followed by the

corresponding assignment is listed. The keyword default can be used to provide the desired signal

assignment for any input codes not explicitly listed. When multiple input conditions have the same

assignment statement, they can be listed on the same line comma-delimited to save space. The keyword

endcase is used to denote the end of the case statement. The following is the syntax for a case

statement.

Example 8.7
Using if-else statements to model combinational logic
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case (<input_name>)

input_val_1 : statement_1

input_val_2 : statement_2

:

input_val_n : statement_n

default : default_statement

endcase

Example 8.8 shows how to model a 3-input combinational logic circuit using a case statement within

a procedural block. Note in this example the inputs are scalars so they must be concatenated so that the

input values can be listed as 3-bit vectors. In this example, there are three versions of the model

provided. The first explicitly lists out all binary input codes. This approach is more readable because it

mirrors a truth table form. The second approach only lists the input codes corresponding to an output of

one and uses the default clause to handle all other input codes. The third approach shows how to list

multiple input codes with the same assignment on the same line using a comma-delimited series.

Example 8.8
Using case statements to model combinational logic
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If-else statements can be embedded within a case statement and, conversely, case statements can

be embedded within an if-else statement.

8.2.3 casez and casex Statements

Verilog provides two additional case statements that support don’t cares in the input conditions. The

casez statement allows the symbols? and Z to represent a don’t care. The casex statement extends the

casez statement by also interpreting X as a don’t care. Care should be taken when using the casez and

casex statement as it is easy to create unintended logic when using don’t cares in the input codes.

8.2.4 forever Loops

A loop within Verilog provides a mechanism to perform repetitive assignments infinitely. This is

useful in test benches for creating stimulus such as clocks or other periodic signals. We have already

covered a looping construct in the form of an always block. An always block provides a loop with a

starting condition. Verilog provides additional looping constructs to model more sophisticated behavior.

All looping constructs must reside with a procedural block.

The simplest looping construct is the forever loop. As with other conditional programming

constructs, if multiple statements are associated with the forever loop they must be enclosed within a

statement group. If only one statement is used the statement group is not needed. A forever loop within

an initial block provides identical behavior as an always loop without a sensitivity loop. It is important to

provide a time step event or delay within a forever loop or it will cause a simulation to hang. The following

is the syntax for a forever loop in Verilog.

forever

begin

statement_1

statement_2

:

statement_n

end

Consider the following example of a forever loop that generates a clock signal (CLK) with a period of

10 time units. In this example, the forever loop is embedded within an initial block. This allows the initial

value of CLK to be set to zero upon the beginning of the simulation. Once the forever loop is entered, it

will execute indefinitely. Notice that since there is only one statement after the forever keyword, a

statement group (i.e., begin/end) is not needed.

Example:

initial

begin

CLK ¼ 0;

forever

#10 CLK ¼ ~CLK;

end

8.2.5 while Loops

A while loop provides a looping structure with a Boolean condition that controls its execution. The

loop will only execute as long as the Boolean condition is evaluated true. The following is the syntax for a

Verilog while loop.
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while (<boolean_condition>)

begin

statement_1

statement_2

:

statement_n

end

Let’s implement the previous example of a loop that generates a clock signal (CLK) with a period of

10 time units as long as EN¼ 1. The TRUE Boolean condition for the while loop is EN¼ 1. When EN¼ 0,

the while loop will be skipped. When the loop becomes inactive, CLK will hold its last assigned value.

Example:

initial

begin

CLK ¼ 0;

while (EN ¼¼ 1)

#10 CLK ¼ ~CLK;

end

8.2.6 repeat Loops

A repeat loop provides a looping structure that will execute a fixed number of times. The following is

the syntax for a Verilog repeat loop.

repeat (<number_of_loops>)

begin

statement_1

statement_2

:

statement_n

end

Let’s implement the previous example of a loop that generates a clock signal (CLK) with a period of

10 time units, except this time we’ll use a repeat loop to only produce 10 clock transitions, or 5 full periods

of CLK.

Example:

initial

begin

CLK ¼ 0;

repeat (10)

#10 CLK ¼ ~CLK;

end

8.2.7 for Loops

A for loop provides the ability to create a loop that can automatically update an internal variable.

A loop variablewithin a for loop is altered each time through the loop according to a step assignment. The

starting value of the loop variable is provided using an initial assignment. The loop will execute as long as

a Boolean condition associated with the loop variable is TRUE. The following is the syntax for a Verilog

for loop:

284 • Chapter 8: Verilog (Part 2)



for (<initial_assignment>; <Boolean_condition>; <step_assignment>)

begin

statement_1

statement_2

:

statement_n

end

The following is an example of creating a simple counter using the loop variable. The loop variable

i was declared as an integer prior to this block. The signal Count is also of type integer. The loop variable

will start at 0 and increment by 1 each time through the loop. The loop will execute as long as i < 15, or

16 times total. For loops allow the loop variable to be used in signal assignments within the block.

Example:

initial

begin

for (i¼0; i<15; i¼i+1)

#10 Count ¼ i;

end

8.2.8 disable

Verilog provides the ability to stop a loop using the keyword disable. The disable function only works

on named statement groups. The disable function is typically used after a certain fixed amount of time or

within a conditional construct such as an if-else or case statement that is triggered by a control signal.

Consider the following forever loop example that will generate a clock signal (CLK), but only when an

enable (EN) is asserted. When EN ¼ 0, the loop will disable and the simulation will end.

Example:

initial

begin

CLK ¼ 0;

forever

begin: loop_ex

if (EN ¼¼ 1)

#10 CLK ¼ ~CLK;

else

disable loop_ex; // The group name to be disabled comes after the

keyword

end

end

CONCEPT CHECK

CC8.2 When using an if-else statement to model a combinational logic circuit, is using the else

clause the same as using don’t cares when minimizing a logic expression with a K-map?

(A) Yes. The else clause allows the synthesizer to assign whatever output values are
necessary in order to create the most minimal circuit.

(B) No. The else clause explicitly states the output values for all input codes not listed
in the if portion of the statement. This is the same as filling in the truth table with
specific values for all input codes covered by the else clause and the synthesizer
will create the logic expression accordingly.
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8.3 System Tasks

A system task in Verilog is one that is used to insert additional functionality into a model that is not

associated with real circuitry. There are three main groups of system tasks in Verilog: (1) text output;

(2) file input/output; and (3) simulation control. All system tasks begin with a $ and are only used during

simulation. These tasks are ignored by synthesizers so they can be included in real circuit models. All

system tasks must reside within procedural blocks.

8.3.1 Text Output

Text output system tasks are used to print strings and variable values to the console or transcript of a

simulation tool. The syntax follows ANSI C where double quotes (“”) are used denote the text string to be

printed. Standard text can be entered within the string in addition to variables. Variable can be printed in

two ways. The first is to simply list the variable in the system task function outside of the double quotes. In

this usage, the default format to be printed will be decimal unless a task is used with a different default

format. The second way to print a variable is within a text string. In this usage, a unique code is inserted

into the string indicating the format of how to print the value. After the string, a comma separated list of

the variable name(s) is listed that corresponds positionally to the codes within the string. The following

are the most commonly used text output system tasks.

Task Description

$display() Print text string when statement is encountered and append a newline.

$displayb() Same as $display, but default format of any arguments is binary.

$displayo() Same as $display, but default format of any arguments is octal.

$displayh() Same as $display, but default format of any arguments is hexadecimal.

$write() Same as $display, but the string is printed without a newline.

$writeb() Same as $write, but default format of any arguments is binary.

$writeo() Same as $write, but default format of any arguments is octal.

$writeh() Same as $write, but default format of any arguments is hexadecimal.

$strobe() Same as $display, but printing occurs after all simulation events are executed.

$strobeb() Same as $strobe, but default format of any arguments is binary.

$strobeo() Same as $strobe, but default format of any arguments is octal.

$strobeh() Same as $strobe, but default format of any arguments is hexadecimal.

$monitor() Same as $display, but printing occurs when the value of an argument changes.

$monitorb() Same as $monitor, but default format of any arguments is binary.

$monitoro() Same as $monitor, but default format of any arguments is octal.

$monitoron Begin tracking argument changes in subsequent $monitor tasks.

$monitoroff Stop tracking argument changes in subsequent $monitor tasks.

The following is a list of the most common text formatting codes for printing variables within a string.

Code Format

%b Binary values

%o Octal values

%d Decimal values

%h Hexadecimal values

%f Real values using decimal form

%e Real values using exponential form

%t Time values

%s Character strings

%m Hierarchical name of scope (no argument required when printing)

%l Configuration library binding (no argument required when printing)
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The format letters in these codes are not case sensitive (i.e., %d and %D are equivalent). Each of

these formatting codes can also contain information about truncation of leading and trailing digits.

Rounding will take place when numbers are truncated. The formatting syntax is as follows:

% < number_of_leading_digits > . < number_of_trailing_digits > <format_code_

letter>

There are also a set of string formatting and character escapes that are supported for use with the

text output system tasks.

Code Description

\n Print a new line.

\t Print a tab.

\” Print a quote (“).

\\ Print a backslash (\).

%% Print a percent sign (%).

The following is a set of examples using common text output system tasks. For these examples,

assume two variables have been declared and initialized as follow: A ¼ 3 (integer) and B ¼ 45.6789

(real). Recall that Verilog uses 32-bit codes to represent type integer and real.

Example:

$display("Hello World"); // Will print: Hello World

$display("A¼%b",A); //Thiswillprint:A¼00000000000000000000000000000011

$display("A ¼ %o", A); // This will print: A ¼ 00000000003

$display("A ¼ %d", A); // This will print: A ¼ 3

$display("A ¼ %h", A); // This will print: A ¼ 00000003

$display("A ¼ %4.0b", A); // This will print: A ¼ 0011

$display("B ¼ %f", B); // This will print: B ¼ 45.678900

$display("B ¼ %2.0f", B); // This will print: B ¼ 46

$display("B ¼ %2.1f", B); // This will print: B ¼ 45.7

$display("B ¼ %2.2f", B); // This will print: B ¼ 45.68

$display("B ¼ %e", B); // This will print: B ¼ 4.567890e+001

$display("B ¼ %1.0e", B); // This will print: B ¼ 5e+001

$display("B ¼ %1.1e", B); // This will print: B ¼ 4.6e+001

$display("B ¼ %2.2e", B); // This will print: B ¼ 4.57e+001

$write("A is ", A, "\n"); // This will print: A is 3

$writeb("Ais",A,"\n"); //Thiswillprint:Ais00000000000000000000000000000011

$writeo("A is ", A, "\n"); // Will print: A is 00000000003

$writeh("A is ", A, "\n"); // Will print: A is 00000003

8.3.2 File Input/Output

File I/O system tasks allow a Verilog module to create and/or access data files is the same way files

are handled in ANSI C. This is useful when the results of a simulation are a large and need to be stored in

a file as opposed to viewing in a waveform or transcript window. This is also useful when complex

stimulus vectors are to be read from an external file and driven into a device under test. Verilog supports

the following file I/O system task functions:
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Task Description

$fopen() Opens a file and returns a unique file descriptor.

$fclose() Closes the file associated with the descriptor.

$fdisplay() Same as $display but statements are directed to the file descriptor.

$fwrite() Same as $write but statements are directed to the file descriptor.

$fstrobe() Same as $strobe but statements are directed to the file descriptor.

$fmonitor() Same as $monitor but statements are directed to the file descriptor.

$readmemb() Read binary data from file and insert into previously defined memory array.

$readmemh() Read hexadecimal data from file and insert into previously defined memory array.

The $fopen() function will either create and open, or open an existing file. Each file that is opened is

given a unique integer called a file descriptor that is used to identify the file in other I/O functions. The

integer must be declared prior to the first use of $fopen. A file name argument is required and provided

within double quotes. By default, the file is opened for writing. If the file name doesn’t exist, it will be

created. If the file name does exist, it will be overwritten. An optional file_type can be provided that gives

specific action for the file opening including opening an existing file and appending to a file. The following

are the supported codes for $fopen().

$fopen types Description

“r” or “rb” Open file for reading.

“w” or “wb” Create for writing.

“a” or “ab” Open for writing and append to the end of file.

“r+” or “r + b” or “rb+” Open for update, reading or writing file.

“w+” or “w + b” or “wb+” Create for update.

“a+” or “a + b” or “ab+” Open or create for update, append to the end of file.

Once a fie is open, data can be written to it using the $fdisplay(), $fwrite(), $fstrobe(), and

$fmonitor() tasks. These functions require two arguments. The first argument is the file descriptor and

the second is the information to be written. The information follows the same syntax as the I/O system

tasks. The following example shows how to create a file and write data to it. This example will create a

new file called “Data_out.txt” and write two lines of text to it with the values of variables A and B.

Example:

integer A ¼ 3;

real B ¼ 45.6789;

integer FILE_1;

initial

begin

FILE_1 ¼ $fopen("Data_out.txt", "w");

$fdisplay(FILE_1, "A is %d", A);

$fdisplay(FILE_1, "B is %f", B);

$fclose(FILE_1);

end

When reading data from a file, the functions $readmemb() and $readmemh() can be used. These

tasks require that a storage array be declared that the contents of the file can be read into. These tasks

have two arguments, the first being the name of the file and the second being the name of the storage

array to store the file contents into. The following example shows how to read the contents of a file into a

storage array called “memory”. Assume the file contains eight lines, each containing a 3-bit vector. The

vectors start at 000 and increment to 111 and each symbol will be interpreted as binary using the

$readmemb() task. The storage array “memory” is declared to be an 8x3 array of type reg. The
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$readmemb() task will insert each line of the file into each 3-bit vector location within “memory”. To

illustrate how the data is stored, this example also contains a second procedural block that will print the

contents of the storage element to the transcript.

Example:

reg[2:0] memory[7:0];

initial

begin: Read_Block

$readmemb("Data_in.txt", memory);

end

initial

begin: Print_Block

$display("printing memory %b", memory[0]); // This will print “000”

$display("printing memory %b", memory[1]); // This will print “001”

$display("printing memory %b", memory[2]); // This will print “010”

$display("printing memory %b", memory[3]); // This will print “011”

$display("printing memory %b", memory[4]); // This will print “100”

$display("printing memory %b", memory[5]); // This will print “101”

$display("printing memory %b", memory[6]); // This will print “110”

$display("printing memory %b", memory[7]); // This will print “111”

end

8.3.3 Simulation Control and Monitoring

Verilog also provides a set of simulation control and monitoring tasks. The following are the most

commonly used tasks in this group.

Task Description

$finish() Finishes simulation and exits.

$stop() Halts the simulation and enters an interactive debug mode.

$time() Returns the current simulation time as a 64-bit vector.

$stime() Returns the current simulation time as a 32-bit integer.

$realtime() Returns the current simulation time as a 32-bit real number.

$timeformat() Controls the format used by the %t code in print statements.

The arguments are: (<unit>, <precision>, <suffix>, <min_field_width>)

where:

<unit> 0 ¼ 1 sec

-1 ¼ 100 ms

-2 ¼ 10 ms

-3 ¼ 1 ms

-4 ¼ 100us

-5 ¼ 10us

-6 ¼ 1us

-7 ¼ 100 ns

-8 ¼ 10 ns

-9 ¼ 1 ns

-10 ¼ 100 ps

-11 ¼ 10 ps

-12 ¼ 1 ps

-13 ¼ 100 fs

-14 ¼ 10 fs

15 ¼ 1 fs
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<precision > ¼ The number of decimal points to display.

<suffix > ¼ A string to be appended to time to indicate units.

<min_field_width > ¼ The minimum number of characters to display.

The following shows an example of how these tasks can be used.

Example:

initial

begin

$timeformat (-9, 2, "ns", 10);

$display("Stimulus starting at time: %t", $time);

#10 A_TB¼0; B_TB¼0; C_TB¼0;

#10 A_TB¼0; B_TB¼0; C_TB¼1;

#10 A_TB¼0; B_TB¼1; C_TB¼0;

#10 A_TB¼0; B_TB¼1; C_TB¼1;

#10 A_TB¼1; B_TB¼0; C_TB¼0;

#10 A_TB¼1; B_TB¼0; C_TB¼1;

#10 A_TB¼1; B_TB¼1; C_TB¼0;

#10 A_TB¼1; B_TB¼1; C_TB¼1;

$display("Simulation stopping at time: %t", $time);

end

This example will result in the following statements printed to the simulator transcript:

Stimulus starting at time: 0.00 ns

Simulation stopping at time: 80.00 ns

CONCEPT CHECK

CC8.3 How can Verilog system tasks be included in synthesizable circuit models when they provide
inherently unsynthesizable functionality?

(A) They can’t. System tasks can only be used in test benches.

(B) The “$” symbol tells the CAD tool that the task can be ignored during synthesis.

(C) The designer must only use system tasks that model sequential logic.

8.4 Test Benches

The functional verification of Verilog designs is accomplished through simulation using a test bench.

A test bench is a Verilog model that instantiates the system to be tested as a sub-system, generates the

input patterns to drive into the sub-system, and observes the outputs. The system being tested is often

called a device under test (DUT) or unit under test (UUT). Test benches are only used for simulation so

they can use abstract modeling techniques that are unsynthesizable to generate the stimulus patterns.

Verilog conditional programming constructions and system tasks can also be used to report on the status

of a test and also automatically check that the outputs are correct.
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8.4.1 Common Stimulus Generation Techniques

When creating stimulus for combinational logic circuits, it is common to use a procedural block to

generate all possible input patterns to drive the DUTand especially any transitions that may cause timing

errors. Example 8.9 shows a test bench for a combinational logic circuit where an initial block contains a

series of delayed assignments to provide the stimulus to the DUT. This block creates every possible input

pattern, delayed by a fixed amount. Note that the initial block will only execute once. If the patterns were

desired to repeat indefinitely, an always block without a sensitivity list could be used instead.

Multiple procedural blocks can be used within a Verilog module to provide parallel functionality.

Using both initial and always blocks allows the test bench to drive both repetitive and aperiodic signals.

Initial and always blocks can also be used to drive the same signal in order to provide a starting value and

a repetitive pattern. Example 8.10 shows a test bench for a rising edge triggered D-flip-flop with an

asynchronous, active LOW reset in which multiple procedural blocks are used to generate the stimulus

patterns for the DUT.

Example 8.9
Test bench for a combinational logic circuit
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8.4.2 Printing Results to the Simulator Transcript

In the past test bench examples, the input and output values are observed using either the

waveform or listing tool within the simulator tool. It is also useful to print the values of the simulation to

a transcript window to track the simulation as each statement is processed. Messages can be printed

that show the status of the simulation in addition to the inputs and outputs of the DUT using the text

output system tasks. Example 8.11 shows a test bench that prints the inputs and output to the transcript

of the simulation tool. Note that the test bench must wait some amount of delay before evaluating the

output, even if the DUT does not contain any delay.

Example 8.10
Test bench for a sequential logic circuit
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8.4.3 Automatic Result Checking

Test benches can also perform automated checking of the results using the conditional program-

ming constructs described earlier in this chapter. Example 8.12 shows an example of a test bench that

uses if-else statements to check the output of the DUTand print a PASS/FAIL message to the transcript.

Example 8.11
Printing test bench results to the transcript
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Example 8.12
Test bench with automatic output checking
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8.4.4 Using Loops to Generate Stimulus

When creating stimulus that follow regular patterns such as counting, loops can be an effective way

to produce the input vectors. A for loop is especially useful for generating exhaustive stimulus patterns

for combinational logic circuits. An integer loop variable can increment within the for loop and then be

assigned to the DUT inputs as type reg. Recall that in Verilog, when an integer is assigned to a variable of

type reg, it is truncated to matched the size of the reg. This allows a binary count to be created for an

input stimulus pattern by using an integer loop variable that increments within a for loop. Example 8.13

shows how the stimulus for a combinational logic circuit can be produced with a for loop.

Example 8.13
Using a loop to generate stimulus in a test bench
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8.4.5 Using External Files in Test Benches

There are often cases where the results of a test bench need to be written to an external file, either

because they are too verbose or because there needs to be a stored record. Verilog allows writing to

external files via the file I/O system tasks (i.e., $fdisplay(), $fwrite(), $fstrong(), and $fmonitor()). Example

8.14 shows a test bench in which the input vectors and the output of the DUTare written to an external file

using the $fdisplay() system task.

Example 8.14
Printing test bench results to an external file
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It is often the case that the input vectors are either too large to enter manually or were created by a

separate program. In either case, a useful technique in test benches is to read input vectors from an

external file. Example 8.15 shows an example where the input stimulus vectors for a DUTare read from

an external file using the $readmemb() system task.

Example 8.15
Reading test bench stimulus vectors from an external file
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CONCEPT CHECK

CC8.4 Could a test bench ever use always blocks and sensitivity lists exclusively to create its
stimulus? Why or why not?

(A) Yes. The signal assignments will simply be made when the block ends.

(B) No. Since a sensitivity list triggers when there is a change on one or more of the
signals listed, the blocks in the test bench would never trigger because there is no
method to make the initial signal transition.

Summary

v To model sequential logic, an HDL needs to
be able to trigger signal assignments based
on an event. This is accomplished in Verilog
using procedural assignment.

v There are two types of procedural blocks in
Verilog, initial and always. An initial block
executes one time. An always block runs
continually.

v A sensitivity list is a way to control when a
Verilog procedural block is triggered. A sen-
sitivity list contains a list of signals. If any of
the signals in the sensitivity list transitions it
will cause the block to trigger. If a sensitivity
list is omitted, the block will trigger immedi-
ately. Sensitivity lists are most commonly
used with always blocks.

v Sensitivity lists and always blocks are used
to model synthesizable logic. Initial blocks
are typically only used in test benches.
Always blocks are also used in test benches.

v There are two types of signal assignments
that can be used within a procedural block,
blocking and non-blocking.

v A blocking assignment is denoted with the ¼

symbol. All blocking assignments are made
immediately within the procedural block.
Blocking assignments are used to model
combinational logic. Combinational logic
models list all input to the circuit in the
sensitivity list.

v A non-blocking assignment is denoted with
the <¼ symbol. All non-blocking
assignments are made when the procedural
block ends and are evaluated in the order
they appeared in the block. Blocking
assignments are used to model sequential
logic. Sequential logic models list only the
clock and reset in the sensitivity list.

v Variables can be defined within a procedural
block as long as the block is named.

v Procedural blocks allow more advanced
modeling constructs in Verilog. These
include if-else statements, case statements,
and loops.

v Verilog provides numerous looping
constructs including forever, while, repeat,
and for. Loops can be terminated using the
disable keyword.

v System Tasks provide additional functionality
to Verilog models. Tasks begin with the $
symbol and are omitted from synthesis. Sys-
tem tasks can be included in synthesizable
logic models.

v There are three groups of system tasks: text
output, file input/output, and simulation con-
trol and monitoring.

v System tasks that perform printing functions
can output strings in addition to variable
values. Verilog provides a mechanism to
print the variable values in a variety of format.

v A test bench is a way to simulate a device
under test (DUT) by instantiating it as a
sub-system, driving in stimulus, and observ-
ing the outputs. Test benches do not have
inputs or outputs and are unsynthesizable.

v Test benches for combinational logic typically
exercise the DUT under an exhaustive set of
stimulus vectors. These include all possible
logic inputs in addition to critical transitions
that could cause timing errors.

v Text I/O system tasks provide a way to print
the results of a test bench to the simulation
tool transcript.

v File I/O system tasks provide a way to print
the results of a test bench to an external file
and also to read in stimulus vectors from an
external file.
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v Conditional programming constructs can be
used within a test bench to perform automatic
checking of the outputs of a DUTwithin a test
bench.

v Loops can be used in test benches to auto-
matically generate stimulus patterns. A for
loop is a convenient technique to produce a
counting pattern.

v Assignment from an integer to a reg in a for
loop is allowed. The binary value of the inte-
ger is truncated to fit the size of the reg
vector.

Exercise Problems

Section 8.1: Procedural Assignment

8.1.1 When using a sensitivity list with a procedural
block, what will cause the block to trigger?

8.1.2 When a sensitivity list is not used with a proce-
dural block, when will the block trigger?

8.1.3 When are statements executed when using
blocking assignments?

8.1.4 When are statements executed when using
non-blocking assignments?

8.1.5 When is it possible to exclude statement groups
from a procedural block?

8.1.6 What is the difference between a begin/end and
fork/join group when each contain multiple
statements?

8.1.7 What is the difference between a begin/end and
fork/join group when each contain only a single
statements?

8.1.8 What type of procedural assignment is used
when modeling combinational logic?

8.1.9 What type of procedural assignment is used
when modeling sequential logic?

8.1.10 What signals should be listed in the sensitivity
list when modeling combinational logic?

8.1.11 What signals should be listed in the sensitivity
list when modeling sequential logic?

Section 8.2: Conditional Programming
Constructs

8.2.1 Design a Verilog model to implement the behav-
ior described by the 4-input truth table in Fig. 8.1.
Use procedural assignment and an if-else state-
ment. Declare the module to match the block
diagram provided. Use the type wire for the
inputs and type reg for the output. Hint: Notice
that there are far more input codes producing
F ¼ 0 than producing F ¼ 1. Can you use this
to your advantage to make your if-else statement
simpler?

8.2.2 Design a Verilog model to implement the behav-
ior described by the 4-input truth table in Fig. 8.1.
Use procedural assignment and a case state-
ment. Declare the module to match the block
diagram provided. Use the type wire for the
inputs and type reg for the output.

8.2.3 Design a Verilog model to implement the behav-
ior described by the 4-input minterm list in
Fig. 8.2. Use procedural assignment and an
if-else statement. Declare the module to match
the block diagram provided. Use the type wire for
the inputs and type reg for the output.

Fig. 8.2
System J functionality

Fig. 8.1
System I functionality
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8.2.4 Design a Verilog model to implement the behav-
ior described by the 4-input minterm list in
Fig. 8.2. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

8.2.5 Design a Verilog model to implement the behav-
ior described by the 4-input maxterm list in
Fig. 8.3. Use procedural assignment and an
if-then statement. Declare the module to match
the block diagram provided. Use the type wire for
the inputs and type reg for the output.

8.2.6 Design a Verilog model to implement the behav-
ior described by the 4-input maxterm list in
Fig. 8.3. Use procedural assignment and a
case statement. Declare the module to match
the block diagram provided. Use the type wire
for the inputs and type reg for the output.

8.2.7 Design a Verilog model to implement the behav-
ior described by the 4-input truth table in Fig. 8.4.
Use procedural assignment and an if-else state-
ment. Declare the module to match the block
diagram provided. Use the type wire for the
inputs and type reg for the output. Hint: Notice
that there are far more input codes producing
F ¼ 1 than producing F ¼ 0. Can you use this
to your advantage to make your if-else statement
simpler?

8.2.8 Design a Verilog model to implement the behav-
ior described by the 4-input truth table in Fig. 8.4.
Use procedural assignment and a case state-
ment. Declare the module to match the block
diagram provided. Use the type wire for the
inputs and type reg for the output.

8.2.9 Fig. 8.5 shows the topology of a 4-bit shift regis-
ter when implemented structurally using D-Flip-
Flops. Design a Verilog model to describe this
functionality using a single procedural block and
non-blocking assignments instead of
instantiating D-Flip-Flops. The figure also
provides the block diagram for the module port
definition. Use the type wire for the inputs and
type reg for the outputs.

8.2.10 Design a Verilog model for a counter using a for
loop with an output type of integer. Fig. 8.6
shows the block diagram for the module defini-
tion. The counter should increment from 0 to
31 and then start over. Use delay in your loop to
update the counter value every 10 ns. Consider
using the loop variable of the for loop to gener-
ate your counter value.

8.2.11 Design a Verilog model for a counter using a for
loop with an output type of reg[4:0]. Fig. 8.7
shows the block diagram for the module defini-
tion. The counter should increment from
000002 to 111,112 and then start over. Use
delay in your loop to update the counter value
every 10 ns. Consider using the loop variable of
the for loop to generate an integer version of

Fig. 8.6
Integer counter block diagram

Fig. 8.3
System K functionality

Fig. 8.4
System L functionality

Fig. 8.5
4-bit shift register functionality
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your count value, and then assign it to the out-
put variable of type reg[4:0].

Section 8.3: System Tasks

8.3.1 Are system tasks synthesizable? Why or why
not?

8.3.2 What is the difference between the tasks $dis-
play() and $write()?

8.3.3 What is the difference between the tasks $dis-
play() and $monitor()?

8.3.4 What is the data type returned by the task
$fopen()?

Section 8.4: Test Benches

8.4.1 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.1. Your
test bench should drive in every possible input
code for the vector ABCD (i.e., “0000”, “0001”,
“0010”, . . ., “1111”). Have your test bench change
the input pattern every 10 ns using delay within
your procedural block.

8.4.2 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.1 with
automatic checking. Your test bench should
drive in every possible input code for the vector
ABCD (i.e., “0000”, “0001”, “0010”, . . ., “1111”).
Have your test bench change the input pattern
every 10 ns using delay within your procedural
block. Use conditional statements to check
whether the output of the DUT is correct. For
each input vector, print a message using $dis-
play() that indicates the current input vector
being tested, the resulting output of your DUT,
and whether the DUToutput is correct.

8.4.3 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.2. Your
test bench should drive in every possible input
code for the vector ABCD (i.e., “0000”, “0001”,
“0010”, . . ., “1111”). Have your test bench change
the input pattern every 10 ns using delay within
your procedural block.

8.4.4 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.2 with
automatic checking. Your test bench should
drive in every possible input code for the vector
ABCD (i.e., “0000”, “0001”, “0010”, . . ., “1111”).
Have your test bench change the input pattern
every 10 ns using delay within your procedural
block. Use conditional statements to check

whether the output of the DUT is correct. For
each input vector, print a message using $dis-
play() that indicates the current input vector
being tested, the resulting output of your DUT,
and whether the DUToutput is correct.

8.4.5 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.3. Your
test bench should drive in every possible input
code for the vector ABCD (i.e., “0000”, “0001”,
“0010”, . . ., “1111”). Have your test bench change
the input pattern every 10 ns using delay within
your procedural block.

8.4.6 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.3 with
automatic checking. Your test bench should
drive in every possible input code for the vector
ABCD (i.e., “0000”, “0001”, “0010”, . . ., “1111”).
Have your test bench change the input pattern
every 10 ns using delay within your procedural
block. Use conditional statements to check
whether the output of the DUT is correct. For
each input vector, print a message using $dis-
play() that indicates the current input vector
being tested, the resulting output of your DUT,
and whether the DUToutput is correct.

8.4.7 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.4. Your
test bench should drive in every possible input
code for the vector ABCD (i.e., “0000”, “0001”,
“0010”, . . ., “1111”). Have your test bench change
the input pattern every 10 ns using delay within
your procedural block.

8.4.8 Design a Verilog test bench to verify the func-
tional operation of the system in Fig. 8.4 with
automatic checking. Your test bench should
drive in every possible input code for the vector
ABCD (i.e., “0000”, “0001”, “0010”, . . ., “1111”).
Have your test bench change the input pattern
every 10 ns using delay within your procedural
block. Use conditional statements to check
whether the output of the DUT is correct. For
each input vector, print a message using $dis-
play() that indicates the current input vector
being tested, the resulting output of your DUT,
and whether the DUToutput is correct.

8.5.9 Design a Verilog test bench to verify the functional
operation of the system inFig. 8.4. Your test bench
should drive in every possible input code for the
vector ABCD (i.e., “0000”, “0001”, “0010”, . . .,
“1111”). Have your test bench change the input
pattern every 10 ns using delay within your proce-
dural block. Print the results to an external file
named “output_vectors.txt” using $fdisplay().

8.5.10 Design a Verilog test bench that reads in test
vectors from an external file to verify the func-
tional operation of the system in Fig. 8.4. Create
an input text file called “input_vectors.txt” that
contains each input code for the vector ABCD
(i.e., “0000”, “0001”, “0010”, . . ., “1111”), each on
a separate line in the file. Your test bench should
read in the vectors using $readmemb(), drive
each code into the DUT, and print the results to
the transcript using $display().

Fig. 8.7
5-bit binary counter block diagram
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Chapter 9: Behavioral Modeling

of Sequential Logic
In this chapter, we will look at modeling sequential logic using the more sophisticated behavioral

modeling techniques presented in Chap. 8. We will begin by looking at modeling sequential storage

devices. Next, we will look at the behavioral modeling of finite state machines. Finally, we will look at

register transfer level, or RTL modeling. The goal of this chapter is to provide an understanding of how

hardware description languages can be used to create behavioral models of synchronous digital

systems.

Learning Outcomes—After completing this chapter, you will be able to:

9.1 Design a Verilog behavioral model for a sequential logic storage device.
9.2 Describe the process for creating a Verilog behavioral model for a finite state

machine.
9.3 Design a Verilog behavioral model for a finite state machine.
9.4 Design a Verilog behavioral model for a counter.
9.5 Design a Verilog register transfer level (RTL) model of a synchronous digital system.

9.1 Modeling Sequential Storage Devices in Verilog

9.1.1 D-Latch

Let’s begin with the model of a simple D-Latch. Since the outputs of this sequential storage device

are not updated continuously, its behavior is modeled using a procedural assignment. Since we want to

create a synthesizable model of sequential logic, non-blocking assignments are used. In the sensitivity

list, we need to include the C input since it controls when the D-Latch is in track or store mode. We also

need to include the D input in the sensitivity list because during the track mode, the output Q will be

assigned the value of D so any change on D needs to trigger the procedural assignments. The use of an

if-else statement is used to model the behavior during track mode (C ¼ 1). Since the behavior is not

explicitly stated for when C ¼ 0, the outputs will hold their last value, which allows us to simply omit the

else portion of the if statement to complete the model. Example 9.1 shows the behavioral model for a

D-Latch.

Example 9.1
Behavioral model of a D-latch in Verilog

# Springer International Publishing AG 2017

B.J. LaMeres, Introduction to Logic Circuits & Logic Design with Verilog,

DOI 10.1007/978-3-319-53883-9_9
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9.1.2 D-Flip-Flop

The rising edge behavior of a D-Flip-Flop is modeled using a (posedge Clock) Boolean condition in

the sensitivity list of a procedural block. Example 9.2 shows the behavioral model for a rising edge

triggered D-Flip-Flop with both Q and Qn outputs.

9.1.3 D-Flip-Flop with Asynchronous Reset

D-Flip-Flops typically have a reset line to initialize their outputs to known states (e.g., Q¼ 0, Qn¼ 1).

Resets are asynchronous, meaning whenever they are asserted, assignments to the outputs takes place

immediately. If a reset was synchronous, the outputs would only update on the next rising edge of the

clock. This behavior is undesirable because if there is a system failure, there is no guarantee that a clock

edge will ever occur. Thus, the reset may never take place. Asynchronous resets are more desirable not

only to put the D-Flip-Flops into a known state at startup, but also to recover from a system failure that

may have impacted the clock signal. In order to model this asynchronous behavior, the reset signal is

included in the sensitivity list. This allows both clock and the reset transitions to trigger the procedural

block. The edge sensitivity of the reset can be specified using posedge (active HIGH) or negedge (active

LOW). Within the block an if-else statement is used to determine whether the reset has been asserted or

a rising edge of the clock has occurred. The if-else statement first checks whether the reset input has

been asserted since it has the highest priority. If it has, it makes the appropriate assignments to the

outputs (Q ¼ 0, Qn ¼ 1). If the reset has not been asserted, the else clause is executed, which

corresponds to a rising edge of clock (Q < ¼ D, Qn < ¼ ~ D). No other assignments are listed in the

block, thus the outputs are only updated on a transition of the reset or clock. At all other times the outputs

remain at their current value, thus modeling the store behavior of the D-Flip-Flop. Example 9.3 shows the

behavioral model for a rising edge triggered D-Flip-Flop with an asynchronous, active LOW reset.

Example 9.2
Behavioral model of a D-flip-flop in Verilog
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9.1.4 D-Flip-Flop with Asynchronous Reset and Preset

A D-Flip-Flop with both an asynchronous reset and asynchronous preset is handled in a similar

manner as the D-Flip-Flop in the prior section. The preset input is included in the sensitivity list in order to

trigger the block whenever a transition occurs on either the clock, reset, or preset inputs. The edge

sensitivity keywords are used to dictated whether the preset is active HIGH or LOW. Nested if-else

statements are used to first check whether a reset has occurred; then whether a preset has occurred;

and finally, whether a rising edge of the clock has occurred. Example 9.4 shows the model for a rising

edge triggered D-Flip-Flop with asynchronous, active LOW reset and preset.

Example 9.3
Behavioral model of a D-flip-flop with asynchronous reset in Verilog
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9.1.5 D-Flip-Flop with Synchronous Enable

An enable input is also a common feature of modern D-Flip-Flops. Enable inputs are synchronous,

meaning that when they are asserted, action is only taken on the rising edge of the clock. This means

that the enable input is not included in the sensitivity list of the always block. Since enable is only

considered when there is a rising edge of the clock, the logic for the enable is handled in a nested if-else

statement that is included in the section that models the behavior for when a rising edge of clock is

detected. Example 9.5 shows the model for a D-Flip-Flop with a synchronous enable (EN) input. When

EN ¼ 1, the D-Flip-Flop is enabled and assignments are made to the outputs only on the rising edge of

the clock. When EN¼ 0, the D-Flip-Flop is disabled and assignments to the outputs are not made. When

disabled, the D-Flip-Flop effectively ignores rising edges on the clock and the outputs remain at their last

values.

Example 9.4
Behavioral model of a D-flip-flop with asynchronous reset and preset in Verilog
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CONCEPT CHECK

CC9.1 Why is the D input not listed in the sensitivity list of a D-flip-flop?

(A) To simplify the behavioral model.

(B) To avoid a setup time violation if D transitions too closely to the clock.

(C) Because a rising edge of clock is needed to make the assignment.

(D) Because the outputs of the D-flip-flop are not updated when D changes.

9.2 Modeling Finite State Machines in Verilog

Finite state machines can be easily modeled using the behavioral constructs from Chap. 8. The

most common modeling practice for FSMs is to declare two signals of type reg that are called

current_state and next_state. Then a parameter is declared for each descriptive state name in the

state diagram. A parameter also requires a value, so the state encoding can be accomplished during the

parameter declaration. Once the signals and parameters are created, all of the procedural assignments

in the state machine model can use the descriptive state names in their signal assignments. Within the

Verilog state machine model, three separate procedural blocks are used to describe each of the

functional blocks, state memory, next state logic, and output logic. In order to examine how to model a

Example 9.5
Behavioral model of a D-flip-flop with synchronous enable in Verilog
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finite state machine using this approach, let”s use the push-button window controller example from

Chap. 7. Example 9.6 gives the overview of the design objectives for this example and the state diagram

describing the behavior to be modeled in Verilog.

Let”s begin by defining the ports of the module. The system has an input called Press and two

outputs called Open_CW and Close_CCW. The system also has clock and reset inputs. We will design

the system to update on the rising edge of the clock and have an asynchronous, active LOW, reset.

Example 9.7 shows the port definitions for this example. Note that outputs are declared as type reg while

inputs are declared as type wire.

Example 9.6
Push-button window controller in Verilog – design description

Example 9.7
Push-button window controller in Verilog – port definition
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9.2.1 Modeling the States

Now we begin designing the finite state machine in Verilog using behavioral modeling constructs.

The first step is to create two signals that will be used for the state variables. In this text we will always

name these signals current_state and next_state. The signal current_state will represent the outputs of

the D-flip-flops forming the state memory and will hold the current state code. The signal next_state will

represent the D inputs to the D-flip-flops forming the state memory and will receive the value from the

next state logic circuitry. Since the FSM will be modeled using procedural assignment, both of these

signals will be declared of type reg. The width of the reg vector depends on the number of states in the

machine and the encoding technique chosen. The next step is to declare parameters for each of the

descriptive state names in the state diagram. The state encoding must be decided at this point. The

following syntax shows how to declare the current_state and next_state signals and the parameters.

Note that since this machine only has two states, the width of these signals is only 1-bit.

reg current_state, next_state;

parameter w_closed ¼ 1’b0,

w_open ¼ 1’b1;

9.2.2 The State Memory Block

Now that we have variables and parameters for the states of the FSM, we can create the model for

the state memory. State memory is modeled using its own procedural block. This block models the

behavior of the D-Flip-Flops in the FSM that are holding the current state on their Q outputs. Each time

there is a rising edge of the clock, the current state is updated with the next state value present on the D

inputs of the D-Flip-Flops. This block must also model the reset condition. For this example, we will have

the state machine go to the w_closed state when Reset is asserted. At all other times, the block will

simply update current_state with next_state on every rising edge of the clock. The block model is very

similar to the model of a D-Flip-Flop. This is as expected since this block will synthesize into one or more

D-Flip-Flops to hold the current state. The sensitivity list contains only Clock and Reset and assignments

are only made to the signal current_state. The following syntax shows how to model the state memory of

this FSM example.

always @ (posedge Clock or negedge Reset)

begin: STATE_MEMORY

if (!Reset)

current_state <¼ w_closed;

else

current_state <¼ next_state;

end

9.2.3 The Next State Logic Block

Now we model the next state logic of the FSM using a second procedural block. Recall that the next

state logic is combinational logic, thus we need to include all of the input signals that the circuit considers

in the next state calculation in the sensitivity list. The current_state signal will always be included in the

sensitivity list of the next state logic block in addition to any inputs to the system. For this example, the

system has one other input called Press. This block makes assignments to the next_state signal. It is

common to use a case statement to separate out the assignments that occur at each state. At each state

within the case statement, an if-else statement is used to model the assignments for different input

conditions on Press. The following syntax shows how to model the next state logic of this FSM example.

Notice that we include a default clause in the case statement to ensure that the state machine has a path

back to the reset state in the case of an unexpected fault.
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always @ (current_state or Press)

begin: NEXT_STATE_LOGIC

case (current_state)

w_closed : if (Press ¼¼ 1’b1) next_state ¼ w_open; else next_state ¼

w_closed;

w_open : if (Press ¼¼ 1’b1) next_state ¼ w_closed; else next_state ¼

w_open;

default : next_state ¼ w_closed;

endcase

end

9.2.4 The Output Logic Block

Now we model the output logic of the FSM using a third procedural block. Recall that output logic is

combinational logic, thus we need to include all of the input signals that this circuit considers in the output

assignments. The current_state will always be included in the sensitivity list. If the FSM is a Mealy

machine, then the system inputs will also be included in the sensitivity list. If the machine is a Moore

machine, then only the current_state will be present in the sensitivity list. For this example, the FSM is a

Mealy machine so the input Press needs to be included in the sensitivity list. Note that this block only

makes assignments to the outputs of the machine (Open_CW and Close_CCW). The following syntax

shows how to model the output logic of this FSM example. Again, we include a default clause to ensure

that the state machine has explicit output behavior in the case of a fault.

always @ (current_state or Press)

begin: OUTPUT_LOGIC

case (current_state)

w_closed : if (Press ¼¼ 1’b1)

begin

Open_CW ¼ 1’b1;

Close_CCW ¼ 1’b0;

end

else

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

w_open : if (Press ¼¼ 1’b1)

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b1;

end

else

begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

default : begin

Open_CW ¼ 1’b0;

Close_CCW ¼ 1’b0;

end

endcase

end

Putting this all together yields a behavioral model for the FSM that can be simulated and

synthesized. Example 9.8 shows the entire model for this example.
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Example 9.9 shows the simulation waveform for this state machine. This functional simulation was

performed using ModelSim-Altera Starter Edition 10.1d. A macro file was used to display the current and

next state variables using their parameter names instead of their state codes. This allows the functional-

ity of the FSM to be more easily observed. This approach will be used for the rest of the FSM examples in

this book.

Example 9.8
Push-button window controller in Verilog – full model

9.2 Modeling Finite State Machines in Verilog • 311



9.2.5 Changing the State Encoding Approach

In the prior example we only had two states and they were encoded as: w_closed ¼1’b0;

w_open_1’b1. This encoding technique is considered binary; however, a gray code approach would

yield the same codes since the width of the variables were only one bit. The way that state variables and

state codes are assigned in Verilog makes is straightforward to change the state codes. The only

consideration that must be made is expanding the size of the current_state and next_state variables

to accommodate the new state codes. The following example shows how the state encoding would look

if a one-hot approach was used (w_closed ¼2’b01; w_open_2’b10). Note that the state variables now

must be two bits wide. This means the state variables need to be declared as type reg[1:0]. Example 9.10

shows the resulting simulation waveforms. The simulation waveform shows the value of the state codes

instead of the state names.

reg [1:0] current_state, next_state;

parameter w_closed ¼ 2’b01,

w_open ¼ 2’b10;

Example 9.9
Push-button window controller in Verilog – simulation waveform

Example 9.10
Push-button window controller in Verilog – changing state codes
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CONCEPT CHECK

CC9.2 Why is it always a good design approach to model a generic finite state machine using three

processes?

(A) For readability.

(B) So that it is easy to identify whether the machine is a Mealy or Moore.

(C) So that the state memory process can be re-used in other FSMs.

(D) Because each of the three sub-systems of a FSM has unique inputs and outputs

that should be handled using dedicated processes.

9.3 FSM Design Examples in Verilog

This section presents a set of example finite state machine designs using the behavioral modeling

constructs of Verilog. These examples are the same state machines that were presented in Chap. 7.

9.3.1 Serial Bit Sequence Detector in Verilog

Let’s look at the design of the serial bit sequence detector finite state machine from Chap. 7 using

the behavioral modeling constructs of Verilog. Example 9.11 shows the design description and port

definition for this state machine.

Example 9.11
Serial bit sequence detector in Verilog – design description and port definition
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Example 9.12 shows the full model for the serial bit sequence detector. Notice that the states are

encoded in binary, which requires three bits for the variables current_state and next_state.

Example 9.12
Serial bit sequence detector in Verilog – full model
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Example 9.13 shows the functional simulation waveform for this design.

9.3.2 Vending Machine Controller in Verilog

Let’s now look at the design of the vending machine controller from Chap. 7 using the behavioral

modeling constructs of Verilog. Example 9.14 shows the design description and port definition.

Example 9.13
Serial bit sequence detector in Verilog – simulation waveform

Example 9.14
Vending machine controller in Verilog – design description and port definition
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Example 9.15 shows the full model for the vending machine controller. In this model, the descriptive

state names Wait, 25¢, and 50¢ cannot be used directly. This is because Verilog user-defined names

cannot begin with a number. Instead, the letter “s” is placed in front of the state names in order to make

them legal Verilog names (i.e., sWait, s25, s50).

Example 9.15
Vending machine controller in Verilog – full model
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Example 9.16 shows the resulting simulation waveform for this design.

9.3.3 2-Bit, Binary Up/Down Counter in Verilog

Let’s now look at how a simple counter can be implemented using the three-block behavioral

modeling approach in Verilog. Example 9.17 shows the design description and port definition for the

2-bit, binary up/down counter FSM from Chap. 7.

Example 9.18 shows the full model for the 2-bit up/down counter using the three-block modeling

approach. Since a counter’s outputs only depend on the current state, counters are Moore machines.

This simplifies the output logic block since it only needs to contain the current state in its sensitivity list.

Example 9.16
Vending machine controller in Verilog – simulation waveform

Example 9.17
2-bit up/down counter in Verilog – design description and port definition
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Example 9.19 shows the resulting simulation waveform for this counter finite state machine.

Example 9.18
2-bit up/down counter in Verilog – full model (three block approach)

Example 9.19
2-bit up/down counter in Verilog – simulation waveform
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CONCEPT CHECK

CC9.3 The procedural block for the state memory is nearly identical for all finite state machines with

one exception. What is it?

(A) The sensitivity list may need to include a preset signal.

(B) Sometimes it is modeled using an SR latch storage approach instead of with D-flip-

flop behavior.

(C) The name of the reset state will be different.

(D) The current_state and next_state signals are often swapped.

9.4 Modeling Counters in Verilog

Counters are a special case of finite state machines because they move linearly through their

discrete states (either forward or backwards) and typically are implemented with state-encoded outputs.

Due to this simplified structure and wide spread use in digital systems, Verilog allows counters to be

modeled using a single procedural block with arithmetic operators (i.e., + and �). This enables a more

compact model and allows much wider counters to be implemented in a practical manner.

9.4.1 Counters in Verilog Using a Single Procedural Block

Let’s look at how we can model a 4-bit, binary up counter with an output called CNT. We want to

model this counter using the “+” operator to avoid having to explicitly define a state code for each state as

in the three-block modeling approach to FSMs. The “+” operator works on the type reg so the counting

behavior can simply be modeled using CNT<¼CNT + 1. The procedural block also needs to handle the

reset condition. Both the Clock and Reset signals are listed in the sensitivity list. Within the block, an

if-else statement is used to handle both the reset and increment behaviors. Example 9.20 shows the

Verilog model and simulation waveform for this counter. When the counter reaches its maximum value of

“1111”, it rolls over to “0000” and continues counting because it is declared to only contain 4-bits.

Example 9.20
Binary counter using a single procedural block in Verilog
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9.4.2 Counters with Range Checking

When a counter needs to have a maximum range that is different from the maximum binary value of

the count vector (i.e., <2n � 1), then the procedural block needs to contain range checking logic. This

can be modeled by inserting a nested if-else statement beneath of the else clause that handles the

behavior for when the counter receives a rising clock edge. This nested if-else first checks whether the

count has reached its maximum value. If it has, it is reset back to it minimum value. If it hasn’t, the counter

is incremented as usual. Example 9.21 shows the Verilog model and simulation waveform for a counter

with a minimum count value of 010 and amaximum count value of 1010. This counter still requires 4-bits to

be able to encode 1010.

9.4.3 Counters with Enables in Verilog

Including an enable in a counter is a common technique to prevent the counter from running

continuously. When the enable is asserted, the counter will increment on the rising edge of the clock

as usual. When the enable is de-asserted, the counter will simply hold its last value. Enable lines are

synchronous, meaning that they are only evaluated on the rising edge of the clock. As such, they are

modeled using a nested if-else statement within the main if-else statement checking for a rising edge of

the clock. Example 9.22 shows an example model for a 4-bit counter with enable.

Example 9.21
Binary counter with range checking in Verilog
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9.4.4 Counters with Loads

A counter with a load has the ability to set the counter to a specified value. The specified value is

provided on an input port (i.e., CNT_in) with the same width as the counter output (CNT). A synchronous

load input signal (i.e., Load) is used to indicate when the counter should set its value to the value present

on CNT_in. Example 9.23 shows an example model for a 4-bit counter with load capability.

Example 9.22
Binary counter with enable in Verilog
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CONCEPT CHECK

CC9.4 If a counter is modeled using only one procedural block in Verilog, is it still a finite state
machine? Why or why not?

(A) Yes. It is just a special case of a FSM that can easily be modeled using one block.

Synthesizers will recognize the single block model as a FSM.

(B) No. Using only one block will synthesize into combinational logic. Without the
ability to store a state, it is not a finite state machine.

9.5 RTL Modeling

Register Transfer Level modeling refers to a level of design abstraction in which vector data is

moved and operated on in a synchronous manner. This design methodology is widely used in data path

modeling and computer system design.

9.5.1 Modeling Registers in Verilog

The term register describes a group of D-Flip-Flops running off of the same clock, reset, and enable

inputs. Data is moved in and out of the bank of D-flip-flops as a vector. Logic operations can be made on

the vectors and are latched into the register on a clock edge. A register is a higher level of abstraction that

Example 9.23
Binary counter with load in Verilog
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allows vector data to be stored without getting into the details of the lower level implementation of the D-

Flip-Flops and combinational logic. Example 9.24 shows an RTLmodel of an 8-bit, synchronous register.

This circuit has an active LOW, asynchronous reset that will cause the 8-bit output Reg_Out to go to

0 when it is asserted. When the reset is not asserted, the output will be updated with the 8-bit input

Reg_In if the system is enabled (EN¼ 1) and there is a rising edge on the clock. If the register is disabled

(EN ¼ 0), the input clock is ignored. At all other times, the output holds its last value.

9.5.2 Registers as Agents on a Data Bus

One of the powerful topologies that registers can easily model is a multi-drop bus. In this topology,

multiple registers are connected to a data bus as receivers, or agents. Each agent has an enable line that

controls when it latches information from the data bus into its storage elements. This topology is

synchronous, meaning that each agent and the driver of the data bus is connected to the same clock

signal. Each agent has a dedicated, synchronous enable line that is provided by a system controller

elsewhere in the design. Example 9.25 shows this multi-drop bus topology. In this example system, three

registers (A, B, and C) are connected to a data bus as receivers. Each register is connected to the same

clock and reset signals. Each register has its own dedicated enable line (A_EN, B_EN, and C_EN).

Example 9.24
RTL model of an 8-bit register in Verilog
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This topology can be modeled using RTL abstraction by treating each register as a separate

procedural block. Example 9.26 shows how to describe this topology with an RTL model in Verilog.

Notice that the three procedural blocks modeling the A, B, and C registers are nearly identical to each

other except for the signal names they use.

Example 9.25
Registers as agents on a data bus – system topology

Example 9.26
Registers as agents on a data bus – RTL model in Verilog
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Example 9.27 shows the resulting simulation waveform for this system. Each register is updated

with the value on the data bus whenever its dedicated enable line is asserted.

9.5.3 Shift Registers in Verilog

A shift register is a circuit which consists of multiple registers connected in series. Data is shifted

from one register to another on the rising edge of the clock. This type of circuit is often used in serial-to-

parallel data converters. Example 9.28 shows an RTL model for a 4-stage, 8-bit shift register.

Example 9.27
Registers as agents on a data bus – simulation waveform
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CONCEPT CHECK

CC9.5 Does RTL modeling synthesize as combinational logic, sequential logic, or both? Why?

(A) Combinational logic. Since only one process is used for each register, it will be

synthesized using basic gates.

(B) Sequential logic. Since the sensitivity list contains clock and reset, it will synthesize

into only D-flip-flops.

(C) Both. The model has a sensitivity list containing clock and reset and uses an if-else

statement indicative of a D-flip-flop. This will synthesize a D-flip-flop to hold the
value for each bit in the register. In addition, the ability to manipulate the inputs into

the register (using either logical operators, arithmetic operators, or choosing dif-

ferent signals to latch) will synthesize into combinational logic in front of the D input

to each D-flip-flop.

Example 9.28
RTL model of a 4-stage, 8-bit shift register in Verilog
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Summary

v A synchronous system is modeled with a
procedural block and a sensitivity list. The
clock and reset signals are always listed by
themselves in the sensitivity list. Within the
block is an if-else statement. The if clause of
the statement handles the asynchronous
reset condition while the else clause handles
the synchronous signal assignments.

v Edge sensitivity is modeled within a proce-
dural block using the (posedge Clock or
negedge reset) syntax in the sensitivity lists.

v Most D-flip-flops and registers contain a syn-
chronous enable line. This is modeled using
a nested if-else statement within the main
procedural block’s if-else statement. The
nested if-else goes beneath the clause for
the synchronous signal assignments.

v Generic finite state machines are modeled
using three separate procedural blocks that
describe the behavior of the next state logic,
the state memory, and the output logic. Sep-
arate blocks are used because each of the
three functions in a FSM are dependent on
different input signals.

v In Verilog, descriptive state names can be
created for a FSM using parameters. Two

signals are first declared called current_state
and next_state of type reg. Then a parameter
is defined for each unique state in the
machine with the state name and desired
state code. Throughout the rest of the
model, the unique state names can be used
as both assignments to current_state/
next_state and as inputs in case and if-else
statements. This approach allows the model
to be designed using readable syntax while
providing a synthesizable design.

v Counters are a special type of finite state
machine that can be modeled using a single
procedural block. Only the clock and reset
signals are listed in the sensitivity list of the
counter block.

v Registers are modeled in Verilog in a similar
manner to a D-flip-flop with a synchronous
enable. The only difference is that the inputs
and outputs are vectors.

v Register Transfer Level, or RTL, modeling
provides a higher level of abstraction for
moving and manipulating vectors of data in
a synchronous manner.

Exercise Problems

Section 9.1: Modeling Sequential Storage
Devices in Verilog

9.1.1 How does a Verilog model for a D-flip-flop han-
dle treating reset as the highest priority input?

9.1.2 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), why isn’t EN listed in
the sensitivity list?

9.1.3 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), what is the impact of
listing EN in the sensitivity list?

9.1.4 For a Verilog model of a D-flip-flop with a syn-
chronous enable (EN), why is the behavior of
the enable modeled using a nested if-else
statement under the else clause handling the
logic for the clock edge input?

Section 9.2: Modeling Finite State Machines
in Verilog

9.2.1 What is the advantage of using parameters for
the state when modeling a finite state
machine?

9.2.2 What is the advantage of having to assign the
state codes during the parameter declaration
for the state names when modeling a finite
state machine?

9.2.3 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, does the next state logic block
model combinational or sequential logic?

9.2.4 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, does the state memory block
model combinational or sequential logic?

9.2.5 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, does the output logic block model
combinational or sequential logic?

9.2.6 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, what inputs are listed in the sensi-
tivity list of the next state logic block?

9.2.7 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, what inputs are listed in the sensi-
tivity list of the state memory block?

9.2.8 When using the three-procedural block behav-
ioral modeling approach for finite state
machines, what inputs are listed in the sensi-
tivity list of the output logic block?

9.2.9 When using the three-procedural block behav-
ioral modeling approach for finite state
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machines, how can the signals listed in the
sensitivity list of the output logic block immedi-
ately indicate whether the FSM is a Mealy or a
Moore machine?

9.2.10 Why is it not a good design approach to com-
bine the next state logic and output logic
behavior into a single procedural block?

Section 9.3: FSM Design Examples in Verilog

9.3.1 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 9.1. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in binary using the fol-
lowing state codes: Start¼ “00”, Midway¼ “01”,
Done ¼ “10”.

Fig. 9.1
FSM 1 state diagram and module definition

9.3.2 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 9.1. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in one-hot using the
following state codes: Start ¼ “001”, Mid-
way ¼ “010”, Done ¼ “100”.

9.3.3 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 9.2. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in binary using the fol-
lowing state codes: S0 ¼ “00”, S1 ¼ “01”,
S2 ¼ “10”, and S3 ¼ “11”.

Fig. 9.2
FSM 2 state diagram and module definition

9.3.4 Design a Verilog behavioral model to imple-
ment the finite state machine described by
the state diagram in Fig. 9.2. Use the port
definition provided in this figure for your design.
Use the three-block approach to modeling
FSMs described in this chapter for your design.
Model the state variables using parameters
and encode the states in one-hot using the
following state codes: S0 ¼ “0001”,
S1 ¼ “0010”, S2 ¼ “0100”, and S3 ¼ “1000”.

9.3.5 Design a Verilog behavioral model for a 4-bit
serial bit sequence detector similar to Example
9.11. Use the port definition provided in
Fig. 9.3. Use the three-block approach to
modeling FSMs described in this chapter for
your design. The input to your sequence detec-
tor is called DIN and the output is called
FOUND. Your detector will assert FOUND any-
time there is a 4-bit sequence of “0101”. Model
the states in this machine with parameters.
Choose any state encoding approach
you wish.

Fig. 9.3
Sequence detector module definition

9.3.6 Design a Verilog behavioral model for a
20-cent vending machine controller similar to
Example 9.14. Use the port definition provided
in Fig. 9.4. Use the three-block approach to
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modeling FSMs described in this chapter for
your design. Your controller will take in nickels
and dimes and dispense a product anytime the
customer has entered 20 cents. Your FSM has
two inputs, Nin and Din. Nin is asserted when-
ever the customer enters a nickel while Din is
asserted anytime the customer enters a dime.
Your FSM has two outputs, Dispense and
Change. Dispense is asserted anytime the
customer has entered at least 20 cents and
Change is asserted anytime the customer has
entered more than 20 cents and needs a nickel
in change. Model the states in this machine
with parameters. Choose any state encoding
approach you wish.

Fig. 9.4
Vending machine module definition

9.3.7 Design a Verilog behavioral model for a finite
state machine for a traffic light controller. Use
the port definition provided in Fig. 9.5. This is
the same problem description as in exercise
7.4.15. This time, you will implement the func-
tionality using the behavioral modeling
techniques presented in this chapter. Your
FSMwill control a traffic light at the intersection
of a busy highway and a seldom used side
road. You will be designing the control signals
for just the red, yellow, and green lights facing
the highway. Under normal conditions, the
highway has a green light. The side road has
car detector that indicates when car pulls up by
asserting a signal called CAR. When CAR is
asserted, you will change the highway traffic
light from green to yellow, and then from yellow
to red. Once in the red position, a built-in timer
will begin a countdown and provide your con-
troller a signal called TIMEOUT when
15 seconds has passed. Once TIMEOUT is
asserted, you will change the highway traffic
light back to green. Your system will have three
outputs GRN, YLW, and RED, which control
when the highway facing traffic lights are on
(1 ¼ ON, 0 ¼ OFF). Model the states in this
machine with parameters. Choose any state
encoding approach you wish.

Fig. 9.5
Traffic light controller module definition

Section 9.4: Modeling Counters in Verilog

9.4.1 Design a Verilog behavioral model for a 16-bit,
binary up counter using a single procedural
block. The block diagram for the port definition
is shown in Fig. 9.6.

Fig. 9.6
16-bit binary up counter block diagram

9.4.2 Design a Verilog behavioral model for a 16-bit,
binary up counter with range checking using a
single procedural block. The block diagram for
the port definition is shown in Fig. 9.6. Your
counter should count up to 60,000 and then
start over at 0.

9.4.3 Design a Verilog behavioral model for a 16-bit,
binary up counter with enable using a single
procedural block. The block diagram for the
port definition is shown in Fig. 9.7.

Fig. 9.7
16-bit binary counter with enable block diagram

9.4.4 Design a Verilog behavioral model for a 16-bit,
binary up counter with enable and load using a
single procedural block. The block diagram for
the port definition is shown in Fig. 9.8.

Fig. 9.8
16-bit binary counter with load block diagram

9.4.5 Design a Verilog behavioral model for a 16-bit,
binary up/down counter using a single proce-
dural block. The block diagram for the port
definition is shown in Fig. 9.9. When Up ¼ 1,
the counter will increment. When Up ¼ 0, the
counter will decrement.
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Fig. 9.9
16-bit binary up/down counter block diagram

Section 9.5: RTL Modeling

9.5.1 In register transfer level modeling, how does
the width of the register relate to the number of
D-flip-flops that will be synthesized?

9.5.2 In register transfer level modeling, how is the
synchronous data movement managed if all
registers are using the same clock?

9.5.3 Design a Verilog RTL model of a 32-bit, syn-
chronous register. The block diagram for the
port definition is shown in Fig. 9.10. The register
has a synchronous enable. The register should
be modeled using a single procedural block.

Fig. 9.10
32-bit register block diagram

9.5.4 Design a Verilog RTL model of an 8-stage,
16-bit shift register. The block diagram for the
port definition is shown in Fig. 9.11. Each stage
of the shift register will be provided as an out-
put of the system (A, B, C, D, E, F, G, and H).
The shift register should be modeled using a
single procedural block.

Fig. 9.11
16-bit shift register block diagram

9.5.5 Design a Verilog RTL model of the multi-drop
bus topology in Fig. 9.12. Each of the 16-bit
registers (RegA, RegB, RegC, and RegD) will
latch the contents of the 16-bit data bus if their
enable line is asserted. Each register should
be modeled using an individual procedural
block.

Fig. 9.12
Agents on a bus block diagram

330 • Chapter 9: Behavioral Modeling of Sequential Logic



Chapter 10: Memory
This chapter introduces the basic concepts, terminology, and roles of memory in digital systems.

The material presented here will not delve into the details of the device physics or low-level theory of

operation. Instead, the intent of this chapter is to give a general overview of memory technology and its

use in computer systems in addition to how to model memory in Verilog. The goal of this chapter is to give

an understanding of the basic principles of semiconductor-based memory systems.

Learning Outcomes—After completing this chapter, you will be able to:

10.1 Describe the basic architecture and terminology for semiconductor-based memory
systems.

10.2 Describe the basic architecture of non-volatile memory systems.
10.3 Describe the basic architecture of volatile memory systems.
10.4 Design a Verilog behavioral model of a memory system.

10.1 Memory Architecture and Terminology

The termmemory is used to describe a system with the ability to store digital information. The term

semiconductor memory refers to systems that are implemented using integrated circuit technology.

These types of systems store the digital information using transistors, fuses, and/or capacitors on a

single semiconductor substrate. Memory can also be implemented using technology other than

semiconductors. Disk drives store information by altering the polarity of magnetic fields on a circular

substrate. The two magnetic polarities (north and south) are used to represent different logic values

(i.e., 0 or 1). Optical disks use lasers to burn pits into reflective substrates. The binary information is

represented by light either being reflected (no pit) or not reflected (pit present). Semiconductor memory

does not have any moving parts, so it is called solid state memory and can hold more information per unit

area than disk memory. Regardless of the technology used to store the binary data, all memory has

common attributes and terminology that are discussed in this chapter.

10.1.1 Memory Map Model

The information stored in memory is called the data. When information is placed into memory, it is

called a write. When information is retrieved from memory, it is called a read. In order to access data in

memory, an address is used. While data can be accessed as individual bits, in order to reduce the

number of address locations needed, data is typically grouped into N-bit words. If a memory system has

N ¼ 8, this means that 8-bits of data are stored at each address. The number of address locations is

described using the variableM. The overall size of the memory is typically stated by saying “M � N”. For

example, if we had a 16 � 8 memory system, that means that there are 16 address locations, each

capable of storing a byte of data. This memory would have a capacity of 16 � 8 ¼ 128 bits. Since the

address is implemented as a binary code, the number of lines in the address bus (n) will dictate the

number of address locations that the memory system will have (M ¼ 2n). Figure 10.1 shows a graphical

depiction of how data resides in memory. This type of graphic is called a memory map model.

# Springer International Publishing AG 2017
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10.1.2 Volatile Versus Non-volatile Memory

Memory is classified into two categories depending on whether it can store information when power

is removed or not. The term non-volatile is used to describe memory that holds information when the

power is removed, while the term volatile is used to describe memory that loses its information when

power is removed. Historically, volatile memory is able to run at faster speeds compared to non-volatile

memory, so it is used as the primary storage mechanism while a digital system is running. Non-volatile

memory is necessary in order to hold critical operation information for a digital system such as start-up

instructions, operations systems, and applications.

10.1.3 Read Only Versus Read/Write Memory

Memory can also be classified into two categories with respect to how data is accessed. Read Only

Memory (ROM) is a device that cannot be written to during normal operation. This type of memory is

useful for holding critical system information or programs that should not be altered while the system is

running. Read/Write memory refers to memory that can be read and written to during normal operation

and is used to hold temporary data and variables.

10.1.4 Random Access Versus Sequential Access

Random Access Memory (RAM) describes memory in which any location in the system can be

accessed at any time. The opposite of this is sequential access memory, in which not all address

locations are immediately available. An example of a sequential access memory system is a tape drive.

In order to access the desired address in this system, the tape spool must be spun until the address is in

a position that can be observed. Most semiconductor memory in modern systems is random access. The

terms RAM and ROM have been adopted, somewhat inaccurately, to also describe groups of memory

with particular behavior. While the term ROM technically describes a system that cannot be written to, it

has taken on the additional association of being the term to describe non-volatile memory. While the term

RAM technically describes how data is accessed, it has taken on the additional association of being the

term to describe volatile memory. When describing modern memory systems, the terms RAM and ROM

are used most commonly to describe the characteristics of the memory being used; however, modern

memory systems can be both read/write and non-volatile, and the majority of memory is random access.

CONCEPT CHECK

CC10.1 An 8-bit wide memory has eight address lines. What is its capacity in bits?

(A) 64 (B) 256 (C) 1024 (D) 2048

Fig. 10.1
Memory map model
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10.2 Non-volatile Memory Technology

10.2.1 ROM Architecture

This section describes some of the most common non-volatile memory technologies used to store

digital information. An address decoder is used to access individual data words within the memory

system. The address decoder asserts one and only one word line (WL) for each unique binary address

that is present on its input. This operation is identical to a binary-to-one-hot decoder. For an n-bit

address, the decoder can access 2n, or M words in memory. The word lines historically run horizontally

across the memory array, thus they are often called row lines and the word line decoder is often called

the row decoder.Bit lines (BL) run perpendicular to the word lines in order to provide individual bit storage

access at the intersection of the bit and word lines. These lines typically run vertically through the

memory array, thus they are often called column lines. The output of the memory system (i.e., Data_Out)

is obtained by providing an address and then reading the word from buffered versions of the bit lines.

When a system provides individual bit access to a row, or access to multiple data words sharing a row

line, a column decoder is used to route the appropriate bit line(s) to the data out port.

In a traditional ROM array, each bit line contains a pull-up network to VCC. This provides the ability to

store a logic 1 at all locations within the array. If a logic 0 is desired at a particular location, an NMOS pull-

down transistor is inserted. The gate of the NMOS is connected to the appropriate word line and the drain

of the NMOS is connected to the bit line. When reading, the word line is asserted and turns on the NMOS

transistor. This pulls the bit line to GND and produces a logic 0 on the output. When the NMOS transistor

is excluded, the bit line remains at a logic 1 due to the pull-up network. Figure 10.2 shows the basic

architecture of a ROM.
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Figure 10.3 shows the operation of a ROM when information is being read.

Fig. 10.2
Basic architecture of read only memory (ROM)
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Memory can be designed to be either asynchronous or synchronous. Asynchronous memory

updates its data outputs immediately upon receiving an address. Synchronous memory only updates

its data outputs on the rising edge of a clock. The term latency is used to describe the delay between

when a signal is sent to the memory (either the address in an asynchronous system or the clock in a

synchronous system) and when the data is available. Figure 10.4 shows a comparison of the timing

diagrams between asynchronous and synchronous ROM systems during a read cycle.

Fig. 10.3
ROM operation during a read
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10.2.2 Mask Read Only Memory (MROM)

A Mask Read Only Memory (MROM) is a non-volatile device that is programmed during fabrication.

The termmask refers to a transparent plate that contains patterns to create the features of the devices on

an integrated circuit using a process called photolithography. An MROM is fabricated with all of the

features necessary for the memory device with the exception of the final connections between the NMOS

transistors and the word and bit lines. This allows the majority of the device to be created prior to knowing

what the final information to be stored is. Once the desired information to be stored is provided by the

customer, the fabrication process is completed by adding connections between certain NMOS

transistors and the word/bit lines in order to create logic 0’s. Figure 10.5 shows an overview of the

MROM programming process.

Fig. 10.4
Asynchronous vs. synchronous ROM operation during a read cycle
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10.2.3 Programmable Read Only Memory (PROM)

A Programmable Read Only Memory (PROM) is created in a similar manner as an MROM except

that the programming is accomplished post-fabrication through the use of fuses or anti-fuses. A fuse is

an electrical connection that is normally conductive. When a certain amount of current is passed through

the fuse it will melt, or blow, and create an open circuit. The amount of current necessary to open the fuse

is much larger than the current the fuse would conduct during normal operation. An anti-fuse operates in

the opposite manner as a fuse. An anti-fuse is normally an open circuit. When a certain amount of current

is forced into the anti-fuse, the insulating material breaks down and creates a conduction path. This turns

the anti-fuse from an open circuit into a wire. Again, the amount of current necessary to close the anti-

fuse is much larger than the current the anti-fuse would experience during normal operation. A PROM

uses fuses or anti-fuses in order to connect/disconnect the NMOS transistors in the ROM array to the

word/bit lines. A PROM programmer is used to burn the fuses or anti-fuses. A PROM can only be

programmed once in this manner, thus it is a read only memory and non-volatile. A PROM has the

advantage that programming can take place quickly as opposed to an MROM that must be programmed

through device fabrication. Figure 10.6 shows an example PROM device based on fuses.

Fig. 10.5
MROM overview
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10.2.4 Erasable Programmable Read Only Memory (EPROM)

As an improvement to the one-time programming characteristic of PROMs, an electrically program-

mable ROM with the ability to be erased with ultra-violet (UV) light was created. The Erasable Program-

mable Read Only Memory (EPROM) is based on a floating-gate transistor. In a floating-gate transistor,

an additional metal-oxide structure is added to the gate of an NMOS. This has the effect of increasing the

threshold voltage. The geometry of the second metal-oxide is designed such that the threshold voltage is

high enough that normal CMOS logic levels are not able to turn the transistor on (i.e., VT1 � VCC). This

threshold can be changed by applying a large electric field across the two metal structures in the gate.

This causes charge to tunnel into the secondary oxide, ultimately changing it into a conductor. This

phenomenon is called Fowler–Nordheim tunneling. The new threshold voltage is low enough that normal

CMOS logic levels are not able to turn the transistors off (i.e., VT2 � GND). This process is how the

device is programmed. This process is accomplished using a dedicated programmer, thus the EPROM

must be removed from its system to program. Figure 10.7 shows an overview of a floating-gate transistor

and how it is programmed.

Fig. 10.6
PROM overview
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In order to change the floating-gate transistor back into its normal state, the device is exposed to a

strong ultra-violet light source. When the UV light strikes the trapped charge in the secondary oxide, it

transfers enough energy to the charge particles that they can move back into the metal plates in the gate.

This, in effect, erases the device and restores it back to a state with a high threshold voltage. EPROMs

contain a transparent window on the top of their package that allows the UV light to strike the devices.

The EPROMmust be removed from its system to perform the erase procedure. When the UV light erase

procedure is performed, every device in the memory array is erased. EPROMs are a significant

improvement over PROMs because they can be programmed multiple times; however, the programming

and erase procedures are manually intensive and require an external programmer and external eraser.

Figure 10.8 shows the erase procedure for a floating-gate transistor using UV light.

Fig. 10.7
Floating-gate transistor – programming
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An EPROM array is created in the exact same manner as in a PROM array with the exception that

additional programming circuitry is placed on the IC and a transparent window is included on the

package to facilitate erasing. An EPROM is non-volatile and read only since the programming procedure

takes place outside of its destination system.

10.2.5 Electrically Erasable Programmable Read Only Memory (EEPROM)

In order to address the inconvenient programming and erasing procedures associated with

EPROMs, the Electrically Erasable Programmable ROM (EEPROM) was created. In this type of circuit,

the floating-gate transistor is erased by applying a large electric field across the secondary oxide. This

electric field provides the energy to move the trapped charge from the secondary oxide back into the

metal plates of the gate. The advantage of this approach is that the circuitry to provide the large electric

field can be generated using circuitry on the same substrate as the memory array, thus eliminating the

need for an external UV light eraser. In addition, since the circuitry exists to generate large on-chip

voltages, the device can also be programmed without the need for an external programmer. This allows

an EEPROM to be programmed and erased while it resides in its target environment. Figure 10.9 shows

the procedure for erasing a floating-gate transistor using an electric field.

Fig. 10.9
Floating-gate transistor – erasing with electricity

Fig. 10.8
Floating-gate transistor – erasing with UV light
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Early EEPROMs were very slow and had a limited number of program/erase cycles, thus they were

classified into the category of non-volatile, read only memory. Modern floating-gate transistors are now

capable of access times on scale with other volatile memory systems, thus they have evolved into one of

the few non-volatile, read/write memory technologies used in computer systems today.

10.2.6 FLASH Memory

One of the early drawbacks of EEPROM was that the circuitry that provided the capability to

program and erase individual bits also added to the size of each individual storage element. FLASH

EEPROM was a technology that attempted to improve the density of floating-gate memory by program-

ming and erasing in large groups of data, known as blocks. This allowed the individual storage cells to

shrink and provided higher density memory parts. This new architecture was called NAND FLASH and

provided faster write and erase times coupled with higher density storage elements. The limitation of

NAND FLASH was that reading and writing could only be accomplished in a block-by-block basis. This

characteristic precluded the use of NAND FLASH for run-time variables and data storage, but was well

suited for streaming applications such as audio/video and program loading. As NAND FLASH technol-

ogy advanced, the block size began to shrink and software adapted to accommodate the block-by-block

data access. This expanded the applications that NAND FLASH could be deployed in. Today, NAND

FLASH memory is used in nearly all portable devices (e.g., smart phones, tablets, etc.) and its use in

solid state hard drives is on pace to replace hard disk drives and optical disks as the primary non-volatile

storage medium in modern computers.

In order to provide individual word access, NOR FLASH was introduced. In NOR FLASH, circuitry is

added to provide individual access to data words. This architecture provided faster read times than

NAND FLASH, but the additional circuitry causes the write and erase times to be slower and the

individual storage cell size to be larger. Due to NAND FLASH having faster write times and higher

density, it is seeing broader scale adoption compared to NOR FLASH despite only being able to access

information in blocks. NOR FLASH is considered random access memory while NAND FLASH is

typically not; however, as the block size of NAND FLASH is continually reduced, its use for variable

storage is becoming more attractive. All FLASH memory is non-volatile and read/write.

CONCEPT CHECK

CC10.2 Which of the following is suitable for implementation in a read only memory?

(A) Variables that a computer program needs to continuously update.

(B) Information captured by a digital camera.

(C) A computer program on a spacecraft.

(D) Incoming digitized sound from a microphone.
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10.3 Volatile Memory Technology

This section describes some common volatile memory technologies used to store digital

information.

10.3.1 Static Random Access Memory (SRAM)

Static Random Access Memory (SRAM) is a semiconductor technology that stores information

using a cross-coupled inverter feedback loop. Figure 10.10 shows the schematic for the basic SRAM

storage cell. In this configuration, two access transistors (M1 and M2) are used to read and write from the

storage cell. The cell has two complementary ports called Bit Line (BL) and Bit Line’ (BLn). Due to the

inverting functionality of the feedback loop, these two ports will always be the complement of each other.

This behavior is advantageous because the two lines can be compared to each other to determine the

data value. This allows the voltage levels used in the cell to be lowered while still being able to detect the

stored data value. Word Lines are used to control the access transistors. This storage element takes six

CMOS transistors to implement and is often called a 6Tconfiguration. The advantage of this memory cell

is that it has very fast performance compared to other sub-systems because of its underlying technology

being simple CMOS transistors. SRAM cells are commonly implemented on the same IC substrate as

the rest of the system, thus allowing a fully integrated system to be realized. SRAM cells are used for

cache memory in computer systems.

To build an SRAM memory system, cells are arranged in an array pattern. Figure 10.11 shows a

4 � 4 SRAM array topology. In this configuration, word lines are shared horizontally across the array in

order to provide addressing capability. An address decoder is used to convert the binary encoded

address into the appropriate word line assertions. N storage cells are attached to the word line to provide

the desired data word width. Bit lines are shared vertically across the array in order to provide data

access (either read or write). A data line controller handles whether data is read from or written to the

cells based on an external write enable (WE) signal. When WE is asserted (WE ¼ 1), data will be written

to the cells. When WE is de-asserted (WE ¼ 0), data will be read from the cells. The data line controller

also handles determining the correct logic value read from the cells by comparing BL to BLn. As more

cells are added to the bit lines, the signal magnitude being driven by the storage cells diminishes due to

the additional loading of the other cells. This is where having complementary data signals (BL and BLn)

Fig. 10.10
SRAM storage element (6T)
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is advantageous because this effectively doubles the magnitude of the storage cell outputs. The

comparison of BL to BLn is handled using a differential amplifier that produces a full logic level output

even when the incoming signals are very small.

SRAM is volatile memory because when the power is removed, the cross-coupled inverters are not

able to drive the feedback loop and the data is lost. SRAM is also read/write memory because the

storage cells can be easily read from or written to during normal operation.

Let’s look at the operation of the SRAM array when writing the 4-bit word “0111” to address “01”.

Figure 10.12 shows a graphical depiction of this operation. In this write cycle, the row address decoder

observes the address input “01” and asserts WL1. Asserting this word line enables all of the access

transistors (i.e., M1 and M2 in Fig. 10.10) of the storage cells in this row. The line drivers are designed to

have a stronger drive strength than the inverters in the storage cells so that they can override their values

during a write. The information “0111” is present on the Data_In bus and the write enable control line is

Fig. 10.11
4 � 4 SRAM array topology
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asserted (WE ¼ 1) to indicate a write. The data line controller passes the information to be stored to the

line drivers, which in turn converts each input into complementary signals and drives the bit lines. This

overrides the information in each storage cell connected to WL1. The address decoder then de-asserts

WL1 and the information is stored.

Now let’s look at the operation of the SRAM array when reading a 4-bit word from address “10”. Let’s

assume that this row was storing the value “1010”. Figure 10.13 shows a graphical depiction of this

operation. In this read cycle, the row address decoder asserts WL2, which allows the SRAM cells to drive

their respective bit lines. Note that each cell drives a complementary version of its stored value. The input

control line is de-asserted (WE ¼ 0), which indicates that the sense amps will read the BL and BLn lines

in order to determine the full logic value stored in each cell. This logic value is then routed to the

Data_Out port of the array. In an SRAM array, reading from the cell does not impact the contents of

the cell. Once the read is complete, WL2 is de-asserted and the read cycle is complete.

Fig. 10.12
SRAM operation during a write cycle – storing “0111” to address “01”
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10.3.2 Dynamic Random Access Memory (DRAM)

Dynamic Random Access Memory (DRAM) is a semiconductor technology that stores information

using a capacitor. A capacitor is a fundamental electrical device that stores charge. Figure 10.14 shows

the schematic for the basic DRAM storage cell. The capacitor is accessed through a transistor (M1).

Since this storage element takes one transistor and one capacitor, it is often referred to as a 1T1C

configuration. Just as in SRAM memory, word lines are used to access the storage elements. The term

digit line is used to describe the vertical connection to the storage cells. DRAM has an advantage over

SRAM in that the storage element requires less area to implement. This allows DRAM memory to have

much higher density compared to SRAM.

Fig. 10.13
SRAM operation during a read cycle – reading “0101” from address “10”
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There are a variety of considerations that must be accounted for when using DRAM. First, the

charge in the capacitor will slowly dissipate over time due to the capacitors being non-ideal. If left

unchecked, eventually the data held in the capacitor will be lost. In order to overcome this issue,

DRAM has a dedicated circuit to refresh the contents of the storage cell. A refresh cycle involves

periodically reading the value stored on the capacitor and then writing the same value back again at

full signal strength. This behavior also means that that DRAM is volatile because when the power is

removed and the refresh cycle cannot be performed, the stored data is lost. DRAM is also considered

read/write memory because the storage cells can be easily read from or written to during normal

operation.

Another consideration when using DRAM is that the voltage of the word line must be larger than VCC

in order to turn on the access transistor. In order to turn on an NMOS transistor, the gate terminal must be

larger than the source terminal by at least a threshold voltage (VT). In traditional CMOS circuit design, the

source terminal is typically connected to ground (0 v). This means the transistor can be easily turned on

by driving the gate with a logic 1 (i.e., VCC) since this creates a VGS voltage much larger than VT. This is

not always the case in DRAM. In DRAM, the source terminal is not connected to ground, but rather to the

storage capacitor. In the worst-case situation, the capacitor could be storing a logic 1 (i.e., VCC). This

means that in order for the word line to be able to turn on the access transistor, it must be equal to or

larger than (VCC + VT). This is an issue because the highest voltage that the DRAM device has access to

is VCC. In DRAM, a charge pump is used to create a voltage larger than VCC + VT that is driven on the

word lines. Once this voltage is used, the charge is lost so the line must be pumped up again before its

next use. The process of “pumping up” takes time that must be considered when calculating the

maximum speed of DRAM. Figure 10.15 shows a graphical depiction of this consideration.

Fig. 10.14
DRAM storage element (1T 1C)

Fig. 10.15
DRAM charge pumping of word lines
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Another consideration when using DRAM is how the charge in the capacitor develops into an actual

voltage on the digital line when the access transistor is closed. Consider the simple 4� 4 array of DRAM

cells shown in Fig. 10.16. In this topology, the DRAM cells are accessed using the same approach as in

the SRAM array from Fig. 10.11.

One of the limitations of this simple configuration is that the charge stored in the capacitors cannot

develop a full voltage level across the digit line when the access transistor is closed. This is because the

digit line itself has capacitance that impacts how much voltage will be developed. In practice, the

capacitance of the digit line (CDL) is much larger than the capacitance of the storage cell (CS) due to

having significantly more area and being connected to numerous other storage cells. This becomes an

issue because when the storage capacitor is connected to the digit line, the resulting voltage on the digit

line (VDL) is much less than the original voltage on the storage cell (VS). This behavior is known as

charge sharing because when the access transistor is closed, the charge on both capacitors is

distributed across both devices and results in a final voltage that depends on the initial charge in the

system and the values of the two capacitors. Example 10.1 shows an example of how to calculate the

final digit line voltage when the storage cell is connected.

Fig. 10.16
Simple 4 � 4 DRAM array topology
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The issue with the charge sharing behavior of a DRAM cell is that the final voltage on the word line is

not large enough to be detected by a standard logic gate or latch. In order to overcome this issue, modern

DRAM arrays use complementary storage cells and sense amplifiers. The complementary cells store

the original data and its complement. Two digit lines (DL and DLn) are used to read the contents of the

storage cells. DL and DLn are initially pre-charged to exactly VCC/2. When the access transistors are

closed, the storage cells will share their charge with the digit lines and move them slightly away from

VCC/2 in different directions. This allows twice the voltage difference to be developed during a read.

Example 10.1
Calculating the final digit line voltage in a DRAM based on charge sharing
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A sense amplifier is then used to boost this small voltage difference into a full logic level that can be read

by a standard logic gate or latch. Figure 10.17 shows the modern DRAM array topology based on

complementary storage cells.

The sense amplifier is designed to boost small voltage deviations from VCC/2 on DL and DLn to full

logic levels. The sense amplifier sits in-between DL and DLn and has two complementary networks, the

N-sense amplifier and the P-sense amplifier. The N-sense amplifier is used to pull a signal that is below

VCC/2 (either DL or DLn) down to GND. A control signal (N-Latch or NLATn) is used to turn on this

network. The P-sense amplifier is used to pull a signal that is above VCC/2 (either DL or DLn) up to VCC. A

control signal (Active Pull-Up or ACT) is used to turn on this network. The two networks are activated in a

sequence with the N-sense network activating first. Figure 10.18 shows an overview of the operation of a

DRAM sense amplifier.

Fig. 10.17
Modern DRAM array topology based on complementary storage cells
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Let’s now put everything together and look at the operation of a DRAM system during a read

operation. Figure 10.19 shows a simplified timing diagram of a DRAM read cycle. This diagram shows

the critical signals and their values when reading a logic 1. Notice that there is a sequence of steps that

must be accomplished before the information in the storage cells can be retrieved.

Fig. 10.18
DRAM sense amplifier
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A DRAM write operation is accomplished by opening the access transistors to the complementary

storage cells using WL, disabling the pre-charge drivers and then writing full logic level signals to the

storage cells using the Data_In line driver.

CONCEPT CHECK

CC10.3 Which of the following is suitable for implementation in a read/write memory?

(A) A look up table containing the values of sine.

(B) Information captured by a digital camera.

(C) The boot up code for a computer.

(D) A computer program on a spacecraft.

Fig. 10.19
DRAM operation during a read cycle – reading a 1 from a storage cell

10.3 Volatile Memory Technology • 351



10.4 Modeling Memory with Verilog

10.4.1 Read-Only Memory in Verilog

A read-only memory in Verilog can be defined in two ways. The first is to simply use a case

statement to define the contents of each location in memory based on the incoming address. A second

approach is to declare an array and then initialize its contents. When using an array, a separate

procedural block handles assigning the contents of the array to the output based on the incoming

address. The array can be initialized using either an initial block or through the file I/O system tasks

$readmemb() or $readmemh(). Example 10.2 shows two approaches for modeling a 4 � 4 ROM

memory. In this example the memory is asynchronous, meaning that as soon as the address changes

the data from the ROM will appear immediately. To model this asynchronous behavior the procedural

blocks are sensitive to the incoming address. In the simulation, each possible address is provided (i.e.,

“00”, “01”, “10”, and “11”) to verify that the ROM was initialized correctly.

Example 10.2
Behavioral models of a 4 � 4 asynchronous read only memory in Verilog
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A synchronous ROM can be created in a similar manner as in the asynchronous approach. The

only difference is that in a synchronous ROM, a clock edge is used to trigger the procedural block

that updates data_out. A sensitivity list is used that contains the clock to trigger the assignment. Example

10.3 shows two Verilog models for a synchronous ROM. Notice that prior to the first clock edge, the

simulator does not know what to assign to data_out so it lists the value as unknown (X).

10.4.2 Read/Write Memory in Verilog

In a simple read/write memory model, there is an output port that provides data when reading

(data_out) and an input port that receives data when writing (data_in). Within the module, an array signal

is declared with elements of type reg. To write to the array, signal assignment are made from the data_in

port to the element within the array corresponding to the incoming address. To read from the array, the

data_out port is assigned the element within the array corresponding to the incoming address. A write

enable (WE) signal tells the system when to write to the array (WE ¼ 1) or when to read from the array

(WE ¼ 0). In an asynchronous R/W memory, data is immediately written to the array when WE ¼ 1 and

data is immediately read from the array when WE ¼ 0. This is modeled using a procedural block with a

Example 10.3
Behavioral models of a 4 � 4 synchronous read only memory in Verilog
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sensitivity list containing every input to the system. Example 10.4 shows an asynchronous R/W 4 � 4

memory system and functional simulation results. In the simulation, each address is initially read from to

verify that it does not contain data. The data_out port produces unknown (X) for the initial set of read

operations. Each address in the array is then written to. Finally, the array is read from verifying that the

data that was written can be successfully retrieved.

A synchronous read/write memory is made in a similar manner with the exception that a clock is

used to trigger the procedural block managing the signal assignments. In this case, the WE signal acts

as a synchronous control signal indicating whether assignments are read from or written to the RWarray.

Example 10.5 shows the Verilog model for a synchronous read/write memory and the simulation

waveform showing both read and write cycles.

Example 10.4
Behavioral model of a 4 � 4 asynchronous read/write memory in Verilog
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CONCEPT CHECK

CC10.4 Explain the advantage of modeling memory in Verilog without going into the details of the
storage cell operation.

(A) It allows the details of the storage cell to be abstracted from the functional
operation of the memory system.

(B) It is too difficult to model the analog behavior of the storage cell.

(C) There are too many cells to model so the simulation would take too long.

(D) It lets both ROM and R/W memory to be modeled in a similar manner.

Example 10.5
Behavioral model of a 4 � 4 synchronous read/write memory in Verilog
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Summary

v The term memory refers to large arrays of
digital storage. The technology used in mem-
ory is typically optimized for storage density
at the expense of control capability. This is
different from a D-flip-flop, which is optimized
for complete control at the bit level.

v A memory device always contains an
address bus input. The number of bits in the
address bus dictates how many storage
locations can be accessed. An n-bit address
bus can access 2n (or M) storage locations.

v The width of each storage location (N) allows
the density of the memory array to be
increased by reading and writing vectors of
data instead of individual bits.

v A memory map is a graphical depiction of a
memory array. A memory map is useful to
give an overview of the capacity of the array
and how different address ranges of the array
are used.

v A read is an operation in which data is
retrieved from memory. A write is an opera-
tion in which data is stored to memory.

v An asynchronous memory array responds
immediately to its control inputs. A synchro-
nous memory array only responds on the
triggering edge of clock.

v Volatile memory will lose its data when the
power is removed. Non-volatile memory will
retain its data when the power is removed.

v Read Only Memory (ROM) is a memory type
that cannot be written to during normal oper-
ation. Read/Write (R/W) memory is a mem-
ory type that can be written to during normal
operation. Both ROM and R/W memory can
be read from during normal operation.

v Random Access Memory (RAM) is a memory
type in which any location in memory can be
accessed at any time. In Sequential Access
Memory the data can only be retrieved in a
linear sequence. This means that in sequen-
tial memory the data cannot be accessed
arbitrarily.

v The basic architecture of a ROM consists of
intersecting bit lines (vertical) and word lines
(horizontal) that contain storage cells at their
crossing points. The data is read out of the
ROM array using the bit lines. Each bit line
contains a pull-up resistor to initially store a
logic 1 at each location. If a logic 0 is desired
at a certain location, a pull-down transistor is
placed on a particular bit line with its gate
connected to the appropriate word line.
When the storage cell is addressed, the
word line will assert and turn on the pull-
down transistor producing a logic 0 on the
output.

v There are a variety of technologies to imple-
ment the pull-down transistor in a ROM. Dif-
ferent ROM architectures include MROMs,
PROMs, EPROMs, and EEPROMs. These
memory types are non-volatile.

v A R/W memory requires a storage cell that
can be both read from and written to during
normal operation. A DRAM (dynamic RAM)
cell is a storage element that uses a capaci-
tor to hold charge corresponding to a logic
value. An SRAM (static RAM) cell is a stor-
age element that uses a cross-coupled
inverter pair to hold the value being stored
in the positive feedback loop formed by the
inverters. Both DRAM and SRAM and vola-
tile and random access.

v The floating-gate transistor enables memory
that is both non-volatile and R/W. Modern
memory systems based on floating-gate
transistor technology allow writing to take
place using the existing system power supply
levels. This type of R/W memory is called
FLASH. In FLASH memory, the information
is read out in blocks, thus it is not technically
random access.

v Memory can be modeled in Verilog using an
array data type consisting of elements of
type reg.

Exercise Problems

Section 10.1: Memory Architecture

and Terminology

10.1.1 For a 512 k � 32 memory system, how many
unique address locations are there? Give the
exact number.

10.1.2 For a 512 k � 32 memory system, what is the
data width at each address location?

10.1.3 For a 512 k � 32 memory system, what is the
capacity in bits?

10.1.4 For a 512 k � 32-bit memory system, what is
the capacity in bytes?

10.1.5 For a 512 k � 32 memory system, how wide
does the incoming address bus need to be in
order to access every unique address
location?

10.1.6 Name the type of memory with the following
characteristic: when power is removed, the
data is lost.
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10.1.7 Name the type of memory with the following
characteristic: when power is removed, the
memory still holds its information.

10.1.8 Name the type of memory with the following
characteristic: it can only be read from during
normal operation.

10.1.9 Name the type of memory with the following
characteristic: during normal operation, it can
be read and written to.

10.1.10 Name the type of memory with the following
characteristic: data can be accessed from any
address location at any time.

10.1.11 Name the type of memory with the following
characteristic: data can only be accessed in
consecutive order, thus not every location of
memory is available instantaneously.

Section 10.2: Non-volatile Memory

Technology

10.2.1 Name the type of memory with the following
characteristic: this memory is non-volatile,
read/write, and only provides data access in
blocks.

10.2.2 Name the type of memory with the following
characteristic: this memory uses a floating gate
transistor, can be erased with electricity, and
provides individual bit access.

10.2.3 Name the type of memory with the following
characteristic: this memory is non-volatile, read/
write, and provides word-level data access.

10.2.4 Name the type of memory with the following
characteristic: this memory uses a floating-
gate transistor that is erased with UV light.

10.2.5 Name the type of memory with the following
characteristic: this memory is programmed by
blowing fuses or anti-fuses.

10.2.6 Name the type of memory with the following
characteristic: this memory is partially
fabricated prior to knowing the information to
be stored.

Section 10.3: Volatile Memory

Technology

10.3.1 How many transistors does it take to imple-
ment an SRAM cell?

10.3.2 Why doesn’t an SRAM cell require a refresh
cycle?

10.3.3 Design a Verilog model for the SRAM system
shown in Fig. 10.20. Your storage cell should
be designed such that its contents can be
overwritten by the line driver. Consider using
signal strengths for this behavior (e.g., strong1
will overwrite a weak0). You will need to create
a system for the differential line driver with
enable. This driver will need to contain a high
impedance state when disabled. Both your line
driver (Din) and receiver (Dout) are differential.
These systems can be modeled using simple
if-else statements. Create a test bench for your

system that will write a 0 to the cell, then read it
back to verify the 0 was stored and then repeat
the write/read cycles for a 1.

Fig. 10.20
SRAM cell block diagram

10.3.4 Why is a DRAM cell referred to as a 1T 1C
configuration?

10.3.5 Why is a charge pump necessary on the word
lines of a DRAM array?

10.3.6 Why does a DRAM cell require a refresh cycle?

10.3.7 For the DRAM storage cell shown in Fig. 10.21,
solve for the final voltage on the digit line after
the access transistor (M1) closes if initially
VS ¼ VCC (i.e., the cell is storing a 1). In this
system, CS ¼ 5 pF, CDL ¼ 10 pF, and
VCC ¼ +3.4 v. Prior to the access transistor
closing, the digit line is pre-charged to VCC/2.

Fig. 10.21
DRAM charge sharing exercise

10.3.8 For the DRAM storage cell shown in Fig. 10.21,
solve for the final voltage on the digit line after
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the access transistor (M1) closes if initially
VS ¼ GND (i.e., the cell is storing a 0). In this
system, CS ¼ 5 pF, CDL ¼ 10 pF, and
VCC ¼ +3.4 v. Prior to the access transistor
closing, the digit line is pre-charged to VCC/2.

Section 10.4: Modeling Memory

with Verilog

10.4.1 Design a Verilog model for the 16 � 8, asyn-
chronous, read only memory system shown in
Fig. 10.22. The system should contain the
information provided in the memory map. Cre-
ate a test bench to simulate your model by
reading from each of the 16 unique addresses
and observing data_out to verify it contains the
information in the memory map.

Fig. 10.22
16 � 8 asynchronous ROM block diagram

10.4.2 Design a Verilog model for the 16� 8, synchro-
nous, read only memory system shown in
Fig. 10.23. The system should contain the
information provided in the memory map. Cre-
ate a test bench to simulate your model by
reading from each of the 16 unique addresses
and observing data_out to verify it contains the
information in the memory map.

Fig. 10.23
16 � 8 synchronous ROM block diagram

10.4.3 Design a Verilog model for the 16 � 8, asyn-
chronous, read/write memory system shown in
Fig. 10.24. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

Fig. 10.24
16� 8 asynchronous R/Wmemory block diagram

10.4.4 Design a Verilog model for the 16� 8, synchro-
nous, read/write memory system shown in
Fig. 10.25. Create a test bench to simulate
your model. Your test bench should first read
from all of the address locations to verify they
are uninitialized. Next, your test bench should
write unique information to each of the address
locations. Finally, your test bench should read
from each address location to verify that the
information that was written was stored and
can be successfully retrieved.

Fig. 10.25
16 � 8 synchronous R/W memory block diagram
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Chapter 11: Programmable Logic
This chapter provides an overview of programmable logic devices (PLDs). The term PLD is used as

a generic description for any circuit that can be programmed to implement digital logic. The technology

and architectures of PLDs have advanced over time. A historical perspective is given on how the first

programmable devices evolved into the programmable technologies that are prevalent today. The goal of

this chapter is to provide a basic understanding of the principles of programmable logic devices.

Learning Outcomes—After completing this chapter, you will be able to:

11.1 Describe the basic architecture and evolution of programmable logic devices.
11.2 Describe the basic architecture of Field Programmable Gate Arrays (FPGAs).

11.1 Programmable Arrays

11.1.1 Programmable Logic Array (PLA)

One of the first commercial PLDs developed using modern integrated circuit technology was the

programmable logic array (PLA). In 1970, Texas Instrument introduced the PLA with an architecture

that supported the implementation of arbitrary, sum of products logic expressions. The PLA was

fabricated with a dense array of AND gates, called an AND plane, and a dense array of OR gates,

called anOR plane. Inputs to the PLA each had an inverter in order to provide the original variable and its

complement. Arbitrary SOP logic expressions could be implemented by creating connections between

the inputs, the AND plane, and the OR plane. The original PLAs were fabricated with all of the necessary

features except the final connections to implement the SOP functions. When a customer provided the

desired SOP expression, the connections were added as the final step of fabrication. This configuration

technique was similar to an MROM approach. Figure 11.1 shows the basic architecture of a PLA.

Fig. 11.1
Programmable logic array (PLA) architecture
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A more compact schematic for the PLA is drawn by representing all of the inputs into the AND and

OR gates with a single wire. Connections are indicated by inserting X’s at the intersections of wires.

Figue 11.2 shows this simplified PLA schematic implementing two different SOP logic expressions.

11.1.2 Programmable Array Logic (PAL)

One of the drawbacks of the original PLA was that the programmability of the OR plane caused

significant propagation delays through the combinational logic circuits. In order to improve on the

performance of PLAs, the programmable array logic (PAL) was introduced in 1978 by the company

Monolithic Memories, Inc. The PAL contained a programmable AND-plane and a fixed-OR plane. The

fixed-OR plane improved the performance of this programmable architecture. While not having a

programmable OR-plane reduced the flexibility of the device, most SOP expressions could be

manipulated to work with a PAL. Another contribution of the PAL was that the AND-plane could be

programmed using fuses. Initially, all connections were present in the AND-plane. An external program-

mer was used to blow fuses in order to disconnect the inputs from the AND gates. While the fuse

approach provided one-time-only programming, the ability to configure the logic post-fabrication was a

significant advancement over the PLA, which had to be programmed at the manufacturer. Figure 11.3

shows the architecture of a PAL.

Fig. 11.2
Simplified PLA schematic
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11.1.3 Generic Array Logic (GAL)

As the popularity of the PAL grew, additional functionality was implemented to support more

sophisticated designs. One of the most significant improvements was the addition of an output logic

macrocell (OLMC). An OLMC provided a D-Flip-Flop and a selectable mux so that the output of the SOP

circuit from the PAL could be used either as the system output or the input to a D-Flip-Flop. This enabled

the implementation of sequential logic and finite state machines. The OLMC also could be used to route

the I/O pin back into the PAL to increase the number of inputs possible in the SOP expressions. Finally,

the OLMC provided a multiplexer to allow feedback from either the PAL output or the output of the D-Flip-

Flop. This architecture was named a generic array logic (GAL) to distinguish its features from a

standard PAL. Figure 11.4 shows the architecture of a GAL consisting of a PAL and an OLMC.

Fig. 11.3
Programmable array logic (PAL) architecture

11.1 Programmable Arrays • 361



11.1.4 Hard Array Logic (HAL)

For mature designs, PALs and GALs could be implemented as a hard array logic (HAL) device.

A HAL was a version of a PAL or GAL that had the AND plane connections implemented during

fabrication instead of through blowing fuses. This architecture was more efficient for high volume

applications as it eliminated the programming step post-fabrication and the device did not need to

contain the additional programming circuitry.

In 1983, Altera Inc., was founded as a programmable logic device company. In 1984, Altera

released its first version of a PAL with a unique feature that it could be programmed and erased multiple

times using a programmer and an UV light source similar to an EEPROM.

11.1.5 Complex Programmable Logic Devices (CPLD)

As the demand for larger programmable devices grew, the PAL”s architecture was not able to scale

efficiently due to a number of reasons: first, as the size of combinational logic circuits increased, the PAL

encountered fan-in issues in its AND plane; secondly, for each input that was added to the PAL, the

amount of circuitry needed on the chip grew geometrically due to requiring a connection to each AND

gate in addition to the area associated with the additional OLMC. This led to a new PLD architecture in

which the on-chip interconnect was partitioned across multiple PALs on a single chip. This partitioning

meant that not all inputs to the device could be used by each PAL so the design complexity increased;

however, the additional programmable resources outweighed this drawback and this architecture was

broadly adopted. This new architecture was called a complex programmable logic device (CPLD).

Fig. 11.4
Generic array logic (GAL) architecture
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The term simple programmable logic device (SPLD) was created to describe all of the previous PLD

architectures (i.e., PLA, PAL, GAL, and HAL). Figure 11.5 shows the architecture of the CPLD.

CONCEPT CHECK

CC11.1 What is the only source of delay mismatch from the inputs to the outputs in a programmable

array?

(A) The AND gates will have different delays due to having different numbers of

inputs.

(B) The OR gates will have different delays due to having different numbers of inputs.

(C) An input may or may not go through an inverter before reaching the AND gates.

(D) None. All paths through the programmable array have identical delay.

11.2 Field Programmable Gate Arrays (FPGAs)

To address the need for even more programmable resources, a new architecture was developed by

Xilinx Inc. in 1985. This new architecture was called a field programmable gate array (FPGA). An

FPGA consists of an array of programmable logic blocks (or logic elements) and a network of program-

mable interconnect that can be used to connect any logic element to any other logic element. Each logic

block contained circuitry to implement arbitrary combinational logic circuits in addition to a D-Flip-Flop

and a multiplexer for signal steering. This architecture effectively implemented an OLMC within each

block, thus providing ultimate flexibility and providing significantly more resources for sequential logic.

Fig. 11.5
Complex PLD (CPLD) architecture
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Today, FPGAs are the most commonly used programmable logic device with Altera Inc. and Xilinx Inc.

being the two largest manufacturers. Figure 11.6 shows the generic architecture of an FPGA.

11.2.1 Configurable Logic Block (or Logic Element)

The primary reconfigurable structure in the FPGA is the configurable logic block (CLB) or Logic

Element (LE). Xilinx Inc. uses the term CLB while Altera uses LE. Combinational logic is implemented

using a circuit called a Look-Up Table (LUT), which can implement any arbitrary truth table. The details

of a LUT are given in the next section. The CLB/LE also contains a D-Flip-Flop for sequential logic. A

signal steering multiplexer is used to select whether the output of the CLB/LE comes from the LUT or

from the D-Flip-Flop. The LUT can be used to drive a combinational logic expression into the D input of

Fig. 11.6
Field programmable gate array (FPGA) architecture
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the D-Flip-Flop, thus creating a highly efficient topology for finite state machines. A global routing

network is used to provide common signals to the CLB/LE such as clock, reset and enable. This global

routing network can provide these common signals to the entire FPGA or local groups of CLB/LEs.

Figure 11.7 shows the topology of a simple CLB/LE.

CLB/LEs have evolved to include numerous other features such as carry in/carry out signals so that

arithmetic operations can be cascaded between multiple blocks in addition to signal feedback and D-flip-

Flop initialization.

11.2.2 Look-Up Tables (LUTs)

A look-up table is the primary circuit used to implement combinational logic in FPGAs. This topology

has also been adopted in modern CPLDs. In a LUT, the desired outputs of a truth table are loaded into a

local configuration SRAM memory. The SRAM memory provides these values to the inputs of a

multiplexer. The inputs to the combinational logic circuit are then used as the select lines to the

multiplexer. For an arbitrary input to the combinational logic circuit, the multiplexer selects the appropri-

ate value held in the SRAM and routes it to the output of the circuit. In this way, the multiplexer looks up

the appropriate output value based on the input code. This architecture has the advantage that any logic

function can be created without creating a custom logic circuit. Also, the delay through the LUT is

identical regardless of what logic function is being implemented. Figure 11.8 shows a 2-input combina-

tional logic circuit implemented with a 4-input multiplexer.

Fig. 11.7
Simple FPGA configurable logic block (or logic element)
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Fan-in limitations can be encountered quickly in LUTs as the number of inputs of the combinational

logic circuit being implemented grows. Recall that multiplexers are implemented with an SOP topology in

which each product term in the first level of logic has a number of inputs equal to the number of select

lines plus one. Also recall that the sum term in the second level of logic in the SOP topology has a

number of inputs equal to the total number of inputs to the multiplexer. In the example circuit shown in

Fig. 11.8, each product term in the multiplexer will have three inputs and the sum term will have four

inputs. As an illustration of how quickly fan-in limitations are encountered, consider the implication of

increasing the number of inputs in Fig. 11.8 from two to three. In this new configuration, the number of

inputs in the product terms will increase from three to four and the number of inputs in the sum term will

increase to from four to eight. Eight inputs is often beyond the fan-in specifications of modern devices,

meaning that even a 3-input combinational logic circuit will encounter fan-in issues when implemented

using a LUT topology.

To address this issue, multiplexer functionality in LUTs is typically implemented as a series of

smaller, cascaded multiplexers. Each of the smaller multiplexers progressively choose which row of

the truth table to route to the output of the LUT. This eliminates fan-in issues at the expense of adding

additional levels of logic to the circuit. While cascading multiplexers increases the overall circuit delay,

this approach achieves a highly consistent delay because regardless of the truth table output value, the

number of levels of logic through the multiplexers is always the same. Figure 11.9 shows how the 2-input

truth table from Fig. 11.8 can be implemented using a 2-level cascade of 2-input multiplexers.

Fig. 11.8
2-input LUT implemented with a 4-input multiplexer
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If more inputs are needed in the LUT, additional MUX levels are added. Figure 11.10 shows the

architecture for a 3-input LUT implemented with a 3-level cascade of 2-input multiplexers.

Fig. 11.9
2-input LUT implemented with a 2-level cascade of 2-input multiplexers
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Modern FPGAs can have LUTs with up to 6 inputs. If even more inputs are needed in a combina-

tional logic expression, then multiple CLB/LEs are used that form even larger LUTs.

11.2.3 Programmable Interconnect Points (PIPs)

The configurable routing network on an FPGA is accomplished using programmable switches.

A simple model for these switches is to use an NMOS transistor. A configuration SRAM bit stores

whether the switch is opened or closed. On the FPGA, interconnect is routed vertically and horizontally

between the CLB/LEs with switching points placed throughout the FPGA to facilitate any arbitrary routing

configuration. Figure 11.11 shows how the routing can be configured into a full cross-point configuration

using programmable switches.

Fig. 11.10
3-Input LUT implemented with a 3-level cascade of 2-input multiplexers
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11.2.4 Input/Output Block (IOBs)

FPGAs also contain Input/Output Blocks (IOB) that provide programmable functionality for inter-

facing to external circuitry. The IOBs contain both driver and receiver circuitry so that they can be

programmed to be either inputs or outputs. D-Flip-Flops are included in both the input and output

circuitry to support synchronous logic. Figure 11.12 shows the architecture of an FPGA IOB.

Fig. 11.11
FPGA programmable interconnect
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11.2.5 Configuration Memory

All of the programming information for an FPGA is contained within configuration SRAM that is

distributed across the IC. Since this memory is volatile, the FPGA will lose its configuration when power

is removed. Upon power-up, the FPGA must be programmed with its configuration data. This data is

typically held in a non-volatile memory such as FLASH. The “FP” in FPGA refers to the ability to program

the device in the field, or post-fabrication. The “GA” in FPGA refers to the array topology of the

programmable logic blocks or elements.

CONCEPT CHECK

CC11.2 What is the primary difference between an FPGA and a CPLD?

(A) The ability to create arbitrary SOP logic expressions.

(B) The abundance of configurable routing.

(C) The inclusion of D-flip-flops.

(D) The inclusion of programmable I/O pins.

Fig. 11.12
FPGA input/output block (IOB)
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Summary

v A programmable logic device (PLD) is a
generic term for a circuit that can be
configured to implement arbitrary logic
functions.

v There are a variety of PLD architectures that
have been used to implement combinational
logic. These include the PLA and PAL. These
devices contain an AND-plane and an
OR-plane. The AND-plane is configured to
implement the product terms of a SOP
expression. The OR-plane is configured to
implement the sum term of a SOP
expression.

v A GAL increases the complexity of logic
arrays by adding sequential logic storage
and programmable I/O capability.

v A CPLD significantly increases the density of
PLDs by connecting an array of PALs
together and surrounding the logic with I/O
drivers.

v FPGAs contain an array of programmable
logic elements that each consist of combina-
tional logic capability and sequential logic
storage. FPGAs also contain a programma-
ble interconnect network that provides the
highest level of flexibility in programmable
logic.

v A look-up-table (LUT) is a simple method to
create a programmable combinational logic
circuit. A LUT is simply a multiplexer with the
inputs to the circuit connected to the select
lines of the MUX. The desired outputs of the
truth table are connected to the MUX inputs.
As different input codes arrive on the select
lines of the MUX, they select the
corresponding logic value to be routed to
the system output.

Exercise Problems

Section 11.1: Programmable Arrays

11.1.1 Name the type of programmable logic
described by the characteristic: this device
adds an output logic macrocell to a traditional
PAL.

11.1.2 Name the type of programmable logic
described by the characteristic: this device
combines multiple PALs on a single chip with
a partitioned interconnect system.

11.1.3 Name the type of programmable logic
described by the characteristic: this device
has a programmable AND-plane and program-
mable OR-plane.

11.1.4 Name the type of programmable logic
described by the characteristic: this device
has a programmable AND-plane and fixed
OR-plane.

11.1.5 Name the type of programmable logic
described by the characteristic: this device is
a PAL or GAL that is programmed during
manufacturing.

11.1.6 For the following unconfigured PAL schematic
in Fig. 11.13, draw in the connection points
(i.e., the X’s) to implement the two SOP logic
expressions shown on the outputs.

Fig. 11.13
Blank PAL Schematic

Section 11.2: Field Programmable Gate

Arrays (FPGAs)

11.2.1 Give a general description of a Field Program-
mable Gate Array that differentiates it from
other programmable logic devices.
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11.2.2 Which part of an FPGA is described by the
following characteristic: this is used to interface
between the internal logic and external
circuitry.

11.2.3 Which part of an FPGA is described by the
following characteristic: this is used to config-
ure the on-chip routing.

11.2.4 Which part of an FPGA is described by the
following characteristic: this is the primary pro-
grammable element that makes up the array.

11.2.5 Which part of an FPGA is described by the
following characteristic: this part is used to
implement the combinational logic within the
array.

11.2.6 Draw the logic diagram of a 4-Input Look-Up
Table (LUT) to implement the truth table
provided in Fig. 11.14. Implement the LUT
with only 2-input multiplexers. Be sure to label
the exact location of the inputs (A, B, C, and D),
the desired value for each row of the truth
table, and the output (F) in the diagram.

Fig. 11.14
4-input LUT exercise

372 • Chapter 11: Programmable Logic



Chapter 12: Arithmetic Circuits
This chapter presents the design and timing considerations of circuits to perform basic arithmetic

operations including addition, subtraction, multiplication, and division. A discussion is also presented on

how to model arithmetic circuits in Verilog. The goal of this chapter is to provide an understanding of the

basic principles of binary arithmetic circuits.

Learning Outcomes—After completing this chapter, you will be able to:

12.1 Design a binary adder using both the classical digital design approach and the modern
HDL-based approach.

12.2 Design a binary subtractor using both the classical digital design approach and the modern
HDL-based approach.

12.3 Design a binary multiplier using both the classical digital design approach and the modern
HDL-based approach.

12.4 Design a binary divider using both the classical digital design approach and the modern
HDL-based approach.

12.1 Addition

Binary addition is performed in a similar manner to performing decimal addition by hand. The

addition begins in the least significant position of the number (p ¼ 0). The addition produces the sum

for this position. In the event that this positional sum cannot be represented by a single symbol, then the

higher order symbol is carried to the subsequent position (p ¼ 1). The addition in the next higher

position must include the number that was carried in from the lower positional sum. This process

continues until all of the symbols in the number have been operated on. The final positional sum can

also produce a carry, which needs to be accounted for in a separate system.

Designing a binary adder involves creating a combinational logic circuit to perform the positional

additions. Since a combinational logic circuit can only produce a scalar output, circuitry is needed to

produce the sum and the carry at each position. The binary adder size is pre-determined and fixed prior

to implementing the logic (i.e., an n-bit adder). Both inputs to the adder must adhere to the fixed size,

regardless of their value. Smaller numbers simply contain leading zeros in their higher order positions.

For an n-bit adder, the largest sum that can be produced will require n + 1 bits. To illustrate this, consider

a 4-bit adder. The largest numbers that the adder will operate on are 11112 + 11112. (or 1510 + 1510). The

result of this addition is 111102 (or 3010). Notice that the largest sum produced fits within 5 bits, or n + 1.

When constructing an adder circuit, the sum is always recorded using n-bits with a separate carry out bit.

In our 4-bit example, the sum would be expressed as “1110” with a carry out. The carry out bit can be

used in multiple word additions, used as part of the number when being decoded for a display, or simply

discarded as in the case when using two’s complement numbers.

12.1.1 Half Adders

When creating an adder, it is desirable to design incremental sub-systems that can be re-used. This

reduces design effort and minimizes troubleshooting complexity. The most basic component in the adder

is called a half adder. This circuit computes the sum and carry out on two input arguments. The reason it

is called a half adder instead of a full adder is because it does not accommodate a carry in during the

computation, thus it does not provide all of the necessary functionality required for the positional adder.

Example 12.1 shows the design of a half adder. Notice that two combinational logic circuits are required
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in order to produce the sum (the XOR gate) and the carry out (the AND gate). These two gates are in

parallel to each other, thus the delay through the half adder is due to only one level of logic.

12.1.2 Full Adders

A full adder is a circuit that still produces a sum and carry out, but considers three inputs in the

computations (A, B, and Cin). Example 12.2 shows the design of a full adder.

Example 12.1
Design of a half adder

Example 12.2
Design of a full adder
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As mentioned before, it is desirable to re-use design components as we construct more complex

systems. One such design re-use approach is to create a full adder using two half adders. This is

straightforward for the sumoutput since the logic is simply two cascadedXORgates (Sum¼A�B�Cin).

The carry out is not as straightforward. Notice that the expression for Cout derived in Example 12.2

contains the term (A + B). If this term could be manipulated to use an XOR gate instead, it would allow the

full adder to take advantage of existing circuitry in the system. Fig. 12.1 shows a derivation of an

equivalency that allows (A + B) to be replaced with (A � B) in the Cout logic expression.

The ability to implement the carry out logic using the expression Cout¼ A�B + (A� B)�Cin allows us to

implement a full adder with two half adders and the addition of a single OR gate. Example 12.3 shows

this approach. In this new configuration, the sum is produced in two levels of logic while the carry out is

produced in three levels of logic.

Fig. 12.1
A useful logic equivalency that can be exploited in arithmetic circuits
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12.1.3 Ripple Carry Adder (RCA)

The full adder can now be used in the creation of multi-bit adders. The simplest topology exploiting

the full adder is called a ripple carry adder (RCA). In this approach, full adders are used to create the sum

and carry out of each bit position. The carry out of each full adder is used as the carry in for the next

higher position. Since each subsequent full adder needs to wait for the carry to be produced by the

preceding stage, the carry is said to ripple through the circuit, thus giving this approach its name.

Example 12.4 shows how to design a 4-bit ripple carry adder using a chain of full adders. Notice that

the carry in for the full adder in position 0 is tied to a logic 0. The 0 input has no impact on the result of the

sum but enables a full adder to be used in the 0th position.

Example 12.3
Design of a full adder out of half adders
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While the ripple carry adder provides a simple architecture based on design re-use, its delay can

become considerable when scaling to larger inputs sizes (e.g., n¼ 32 or n¼ 64). A simple analysis of the

timing can be stated such that if the time for a full adder to complete its positional sum is tFA, then the time

for an n-bit ripple carry adder to complete its computation is tRCA ¼ n�tFA.

If we examine the RCA in more detail, we can break down the delay in terms of the levels of logic

necessary for the computation. Example 12.5 shows the timing analysis of the 4-bit RCA. This analysis

determines the number of logic levels in the adder. The actual gate delays can then be plugged in to find

the final delay. The inputs to the adder are A, B and Cin and are always assumed to update at the same

time. The first full adder requires two levels of logic to produce its sum and three levels to produce its

carry out. Since the timing of a circuit is always stated as its worst case delay, we say that the first full

adder takes three levels of logic. When the carry (C1) ripples to the next full adder (FA1), it must

propagate through two additional levels of logic in order to produce C2. Notice that the first half adder

in FA1 only depends on A1 and B1, thus it is able to perform this computation immediately. This half adder

can be considered as first level logic. More importantly, it means that when the carry in arrives (C1),

only two additional levels of logic are needed, not three. The levels of logic for the RCA can be expressed

as 3 + 2�(n � 1). If each level of logic has a delay of tgate, then a more accurate expression for the RCA

delay is tRCA ¼ (3 + 2�(n � 1))�tgate.

Example 12.4
Design of a 4-bit ripple carry adder (RCA)
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12.1.4 Carry Look Ahead Adder (CLA)

In order to address the potentially significant delay of a ripple carry adder, a carry look ahead (CLA)

adder was created. In this approach, additional circuitry is included that produces the intermediate carry

in signals immediately instead of waiting for them to be created by the preceding full adder stage. This

allows the adder to complete in a fixed amount of time instead of one that scales with the number of bits in

the adder. Example 12.6 shows an overview of the design approach for a CLA.

Example 12.5
Timing analysis of a 4-bit ripple carry adder
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For the CLA architecture to be effective, the look ahead circuitry needs to be dependent only on the

system inputs A, B, and Cin (i.e., C0). A secondary characteristic of the CLA is that it should exploit as

much design re-use as possible. In order to examine the design re-use aspects of a multi-bit adder, the

concepts of carry generation (g) and propagation (p) are used. A full adder is said to generate a carry if

its inputs A and B result in Cout ¼ 1 when Cin ¼ 0. A full adder is said to propagate a carry if its inputs A

and B result in Cout ¼ 1 when Cin ¼ 1. These simple statements can be used to derive logic expressions

for each stage of the adder that can take advantage of existing logic terms from prior stages. Example

12.7 shows the derivation of these terms and how algebraic substitutions can be exploited to create look

ahead circuitry for each full adder that is only dependent on the system inputs. In these derivations, the

variable i is used to represent position since p is used to represent the propagate term.

Example 12.6
Design of a 4-bit carry look ahead adder (CLA) – overview
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Example 12.8 shows a timing analysis of the 4-bit carry look ahead adder. Notice that the full adders

are modified to add the logic for the generate and propagate bits in addition to removing the unnecessary

gates associated with creating the carry out.

Example 12.7
Design of a 4-bit carry look ahead adder (CLA) – algebraic formation
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The 4-bit CLA can produce the sum in four levels of logic as long as fan-in specifications are met. As

the CLA width increases, the look ahead circuitry will become fan-in limited and additional stages will be

required to address the fan-in. Regardless, the CLA has considerably less delay than a RCA as the width

of the adder is increased.

12.1.5 Adders in Verilog

12.1.5.1 Structural Model of a Ripple Carry Adder in Verilog

A structural model of a ripple carry adder is useful to visualize the propagation delay of the circuit in

addition to the impact of the carry rippling through the chain. Example 12.9 shows the structural model for

a full adder in Verilog consisting of two half adders. The half adders are created using two gate-level

primitives for the XOR and AND operations, each with a delay of 1 ns. The full adder is created by

instantiating two versions of the half adder as sub-systems plus one additional gate-level primitive for the

OR gate.

Example 12.8
Timing analysis of a 4-bit carry look ahead adder
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Example 12.10 shows the structural model of a 4-bit ripple carry adder in Verilog. The RCA is

created by instantiating four full adders. Notice that a logic 1’b0 can be directly inserted into the port map

of the first full adder to model the behavior of C0 ¼ 0.

Example 12.9
Structural model of a full adder using two half adders in Verilog
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When creating arithmetic circuitry, testing under all input conditions is necessary to verify function-

ality. Testing under each and every input condition can require a large number of input conditions. To test

an n-bit adder under each and every numeric input condition will take (2n)2 test vectors. For our simple

4-bit adder example, this equates to 256 input patterns. The large number of input patterns precludes the

use of manual signal assignments in the test bench to stimulate the circuit. One approach to generating

the input test patterns is to use nested for loops. Example 12.11 shows a test bench that uses two nested

for loops to generate the 256 unique input conditions for the 4-bit ripple carry adder. Note that the loop

variables i and j are declared as type integer and then automatically incremented within the for loops.

Within the loops, the loop variables i and j are assigned to the DUT inputs A_TB and B_TB. The

truncation to 4-bits is automatically handled in Verilog. The simulation waveform illustrates how the

ripple carry adder has a noticeable delay before the output sum is produced. During the time the carry is

rippling through the adder chain, glitches can appear on each of the sum bits in addition to the carry out

signal. The values in this waveform are displayed as unsigned decimal symbols to make the results

easier to interpret.

Example 12.10
Structural model of a 4-bit ripple carry adder in Verilog
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12.1.5.2 Structural Model of a Carry Look Ahead Adder in Verilog

A carry look ahead adder can also be modeled using procedural assignments and modified full

adder sub-systems. Example 12.12 shows a structural model for a 4-bit CLA in Verilog. In this example,

the gate delay is modeled at 1 ns. The delay due to multiple levels of logic is entered manually to simplify

the model. The two cascaded XOR gates in the modified full adder are modeled using a single, 3-input

gate primitive with 2 ns of delay.

Example 12.11
Test bench for a 4-bit ripple carry adder using nested for loops in Verilog
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Example 12.13 shows the simulation waveform for the 4-bit carry look ahead adder. The outputs still

have intermediate transitions while the combinational logic is computing the results; however, the overall

delay of the adder is bound to �4*tgate.

Example 12.12
Structural model of a 4-bit carry look ahead adder in Verilog

Example 12.13
4-bit carry look ahead adder – simulation waveform
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12.1.5.3 Behavior Model of an Adder using Arithmetic Operators in Verilog

Verilog also supports adder models at a higher level of abstraction using the “+” operator. Note that

when adding two n-bit arguments the sum produced will be n + 1 bits. This can be handled in Verilog by

concatenating the Cout and Sum outputs on the LHS of the assignment. The entire add operation can be

accomplished in a single continuous assignment that contains both the concatenation and addition

operators. When using continuous assignment, the LHSmust be a net data type. This means the outputs

Cout and Sum need to be declared as type wire. If it was desired to have the outputs declared of type reg,

a procedural assignment could be used instead. Example 12.14 shows the behavioral model for a 4-bit

adder in Verilog.

CONCEPT CHECK

CC12.1 Does a binary adder behave differently when it’s operating on unsigned vs. two’s comple-

ment numbers? Why or why not?

(A) Yes. The adder needs to keep track of the sign bit, thus extra circuitry is needed.

(B) No. The binary addition is identical. It is up to the designer to handle how the two’s
complement codes are interpreted and whether two’s complement overflow

occurred using a separate system.

12.2 Subtraction

Binary subtraction can be accomplished by building a dedicated circuit using a similar design

approach as just described for adders. A more effective approach is to take advantage of two’s

complement representation in order to re-use existing adder circuitry. Recall that taking the two’s

complement of a number will produce an equivalent magnitude number, but with the opposite sign

(i.e., positive to negative or negative to positive). This means that all that is required to create a subtractor

from an adder is to first take the two’s complement of the subtrahend input. Since the steps to take the

two’s complement of a number involve complementing each of the bits in the number and then adding

Example 12.14
Behavioral model of a 4-bit adder in Verilog
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1, the logic required is relatively simple. Example 12.15 shows a 4-bit subtractor using full adders. The

subtrahend B is inverted prior to entering the full adders. Also, the carry in bit C0 is set to 1. This handles

the “adding 1” step of the two’s complement. All of the carries in the circuit are now treated as borrows

and the sum is now treated as the difference.

A programmable adder/subtractor can be created with the use of a programmable inverter and a

control signal. The control signal will selectively invert B and also change the C0 bit between a 0 (for

adding) and a 1 (for subtracting). Example 12.16 shows how an XOR gate can be used to create a

programmable inverter for use in a programmable adder/subtractor circuit.

Example 12.15
Design of a 4-bit subtractor using full adders

Example 12.16
Creating a programmable inverter using an XOR gate
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We can now define a control signal called (ADDn/SUB) that will control whether the circuit performs

addition or subtraction. Example 12.17 shows the architecture of a 4-bit programmable adder/subtractor.

It should be noted that this programmability adds another level of logic to the circuit, thus increasing its

delay. The programmable architecture in Example 12.17 is shown for a ripple carry adder; however, this

approach works equally well for a carry look ahead adder architecture.

When using two’s complement representation in arithmetic, care must be taken to monitor for two’s

complement overflow. Recall that when using two’s complement representation, the number of bits of the

numbers is fixed (e.g., 4-bits) and if a carry/borrow out is generated, it is ignored. This means that the

Cout bit does not indicate whether two’s complement overflow occurred. Instead, we must construct

additional circuitry to monitor the arithmetic operations for overflow. Recall from Chap. 2 that two’s

complement overflow occurs in any of these situations:

• The sum of like signs results in an answer with opposite sign

(i.e., Positive + Positive ¼ Negative or Negative + Negative ¼ Positive).
• The subtraction of a positive number from a negative number results in a positive number

(i.e., Negative – Positive ¼ Positive).
• The subtraction of a negative number from a positive number results in a negative number

(i.e., Positive – Negative ¼ Negative).

The construction of circuitry for these conditions is straightforward since the sign bit of all numbers

involved in the operation indicates whether the number is positive or negative. The sign bits of the input

arguments and the output are fed into combinational logic circuitry that will assert for any of the above

conditions. These signals are then logically combined to create two’s complement overflow signal.

Example 12.17
Design of a 4-bit programmable adder/subtractor
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CONCEPT CHECK

CC12.2 What modifications can be made to the programmable adder/subtractor architecture so that

it can be used to take the 2’s complement of a number?

(A) Remove the input A.

(B) Add an additional control signal that will cause the circuit to ignore A and just

perform a complement on B and then add 1.

(C) Add an additional 1 to the original number using an OR gate on Cin.

(D) Set A to 0, put the number to be manipulated on B, and put the system into

subtraction mode. The system will then complement the bits on B and then add
1, thus performing two’s complement negation.

12.3 Multiplication

12.3.1 Unsigned Multiplication

Binary multiplication is performed in a similar manner to performing decimal multiplication by hand.

Recall the process for long multiplication. First, the two numbers are placed vertically over one another

with their least significant digits aligned. The upper number is called the multiplicand and the lower

number is called the multiplier. Next, we multiply each individual digit within multiplier with the entire

multiplicand, starting with the least position. The result of this interim multiplication is called the partial

product. The partial product is recorded with its least significant digit aligned with the corresponding

position of the multiplier digit. Finally, all partial products are summed to create the final product of the

multiplication. This process is often called the shift and add approach. Example 12.18 shows the process

for performing long multiplication on decimal numbers highlighting the individual steps.

Example 12.18
Performing long multiplication on decimal numbers
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Binary multiplication follows this same process. Example 12.19 shows the process for performing

long multiplication on binary numbers. Note that the inputs represent the largest unsigned numbers

possible using 4-bits, thus producing the largest possible product. The largest product will require 8-bits

to be represented. This means that for anymultiplication of n-bit inputs, the product will require 2�n bits for

the result.

The first step in designing a binary multiplier is to create circuitry that can compute the product on

individual bits. Example 12.20 shows the design of a single-bit multiplier.

We can create all of the partial products in one level of logic by placing an AND gate between each

bit pairing in the two input numbers. This will require n2 AND gates. The next step involves creating

adders that can perform the sum of the columns of bits within the partial products. This step is not as

straightforward. Notice that in our 4-bit example in Example 12.19 that the number of input bits in the

column addition can reach up to 6 (in position 3). It would be desirable to re-use the full adders previously

Example 12.19
Performing long multiplication on binary numbers

Example 12.20
Design of a single-bit multiplier
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created; however, the existing full adders could only accommodate 3 inputs (A, B, Cin). We can take

advantage of the associative property of addition to form the final sum incrementally. Example 12.21

shows the architecture of this multiplier. This approach implements a shift and add process to compute

the product and is known as a combinational multiplier because it is implemented using only combina-

tional logic. Note that this multiplier only handles unsigned numbers.

This multiplier can have a significant delay, which is caused by the cascaded full adders. Example

12.22 shows the timing analysis of the combinational multiplier highlighting the worst case path through

the circuit.

Example 12.21
Design of a 4-bit unsigned multiplier
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12.3.2 A Simple Circuit to Multiply by Powers of Two

In digital systems, a common operation is to multiply numbers by powers of two. For unsigned

numbers, multiplying by two can be accomplished by performing a logical shift left. In this operation, all

bits are moved to the next higher position (i.e., left) by one position and filling the 0th position with a zero.

This has the effect of doubling the value of the number. This can be repeated to achieve higher powers of

two. This process works as long as the resulting product fits within the number of bits available. Example

12.23 shows this procedure.

Example 12.22
Timing analysis of a 4-bit unsigned multiplier

Example 12.23
Multiplying an unsigned binary number by two using a logical shift left
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12.3.3 Signed Multiplication

When performing multiplication on signed numbers, it is desirable to re-use the unsigned multiplier

in Example 12.21. Let’s examine if this is possible. Recall in decimal multiplication that the inputs are

multiplied together independent of their sign. The sign of the product is handled separately following

these rules:

• A positive number times a positive number produces a positive number.

• A negative number times a negative number produces a positive number.

• A positive number times a negative number produces a negative number.

This process does not work properly in binary due to the way that negative numbers are represented

with two’s complement. Example 12.24 illustrates how an unsigned multiplier incorrectly handles signed

numbers.

Instead of building a dedicated multiplier for signed numbers, we can add functionality to the

unsigned multiplier previously presented to handle negative numbers. The process involves first

identifying any negative numbers. If a negative number is present, the two’s complement is taken on it

to produce its equivalent magnitude, positive representation. The multiplication is then performed on the

positive values. The final step is to apply the correct sign to the product. If the product should be negative

due to one of the inputs being negative, the sign is applied by taking the two’s complement on the final

result. This creates a number that is now in 2�n two’s complement format. Example 12.25 shows an

illustration of the process to correctly handle signed numbers using an unsigned multiplier.

Example 12.24
Illustrating how an unsigned multiplier incorrectly handles signed numbers
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CONCEPT CHECK

CC12.3 Will the AND gates used to compute the partial products in a binary multiplier ever experi-

ence an issue with fan-in as the size of the multiplier increases?

(A) Yes. When the number of bits of the multiplier arguments exceed the fan-in

specification of the AND gates used for the partial products, a fan-in issue has
occurred.

(B) No. The number of inputs of the AND gates performing the partial products will

always be two, regardless of the size of the input arguments to the multiplier.

Example 12.25
Process to correctly handle signed numbers using an unsigned multiplier
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12.4 Division

12.4.1 Unsigned Division

There are a variety of methods to perform division, each with trade-offs between area, delay, and

accuracy. To understand the general approach to building a divider circuit, let’s focus on how a simple

iterative divider can be built. Basic division yields a quotient and a remainder. The process begins by

checking whether the divisor goes into the highest position digit in the dividend. The number of times this

dividend digit can be divided is recorded as the highest position value of the quotient. Note that when

performing division by hand, we typically skip over the condition when the result of these initial operations

are zero, but when breaking down the process into steps that can be built with logic circuits, each step

needs to be highlighted. The first quotient digit is then multiplied with the divisor and recorded below the

original dividend. The next lower position digit of the dividend is brought down and joined with the product

from the prior multiplication. This forms a new number to be divided by the divisor to create the next

quotient value. This process is repeated until each of the quotient digits have been created. Any value

that remains after the last subtraction is recorded as the remainder. Example 12.26 shows the long

division process on decimal numbers highlight each incremental step.

Long division in binary follows this same process. Example 12.27 shows the long division process

on two 4-bit, unsigned numbers. This division results in a 4-bit quotient and a 4-bit remainder.

Example 12.26
Performing long division on decimal numbers
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When building a divider circuit using combinational logic, we can accomplish the computation using

a series of iterative subtractors. Performing division is equivalent to subtracting the divisor from the

interim dividend. If the subtraction is positive, then the divisor went into the dividend and the quotient is a

1. If the subtraction yields a negative number, then the divisor did not go into the interim dividend and the

quotient is 0. We can use the borrow out of a subtraction chain to provide the quotient. This has the

advantage that the difference has already been calculated for the next subtraction. A multiplexer is used

to select whether the difference is used in the next subtraction (Q ¼ 0), or if the interim divisor is simply

brought down (Q¼ 1). This inherently provides the functionality of the multiplication step in long division.

Example 12.28 shows the architecture of a 4-bit, unsigned divider based on the iterative subtraction

approach. Notice that when the borrow out of the 4-bit subtractor chain is a 0, it indicates that the

subtraction yielded a positive number. This means that the divisor went into the interim dividend once. In

this case, the quotient for this position is a 1. An inverter is required to produce the correct polarity of the

quotient. The borrow out is also fed into the multiplexer stage as the select line to pass the difference to

the next stage of subtractors. If the borrow out of the 4-bit subtractor chain is a 1, it indicates that the

subtraction yielded a negative number. In this case, the quotient is a 0. This also means that the

difference calculated is garbage and should not be used. The multiplexer stage instead selects the

interim dividend as the input to the next stage of subtractors.

Example 12.27
Performing long multiplication on binary numbers
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To illustrate how this architecture works, Example 12.29 walks through each step in the process

where 11112 (1510) is divided by 01112 (710). In this example, the calculations propagate through the logic

stages from top to bottom in the diagram.

Example 12.28
Design of a 4-bit unsigned divider using a series of iterative subtractors
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12.4.2 A Simple Circuit to Divide by Powers of Two

For unsigned numbers, dividing by two can be accomplished by performing a logical shift right. In

this operation, all bits are moved to the next lower position (i.e., right) by one position and then filling the

highest position with a zero. This has the effect of halving the value of the number. This can be repeated

to achieve higher powers of two. This process works until no more ones exist in the number and the result

is simply all zeros. Example 12.30 shows this process.

Example 12.29
Dividing 11112 (1510) by 01112 (710) using the iterative subtraction architecture
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12.4.3 Signed Division

When performing division on signed numbers, a similar strategy as in signed multiplication is used.

The process involves first identifying any negative numbers. If a negative number is present, the two’s

complement is taken on it to produce its equivalent magnitude, positive representation. The division is

then performed on the positive values. The final step is to apply the correct sign to the divisor and

quotient. This is accomplished by taking the two’s complement if a negative number is required. The

rules governing the polarities of the quotient and remainders are:

• The quotient will be negative if the input signs are different (i.e., pos/neg or neg/pos).

• The remainder has the same sign as the dividend.

CONCEPT CHECK

CC12.4 Could a shift register help reduce the complexity of a combinational divider circuit? How?

(A) Yes. Instead of having redundant circuits holding the different shifted versions of

the divisor, a shift register could be used to hold and shift the divisor after each

subtraction.

(B) No. A state machine would then be needed to control the divisor shifting, which

would make the system even more complex.

Summary

v Binary arithmetic is accomplished using
combinational logic circuitry. These circuits
tend to be the largest circuits in a system
and have the longest delay. Arithmetic
circuits are often broken up into interim
calculations in order to reduce the overall
delay of the computation.

v A ripple carry adder performs addition by
reusing lower level components that each
performs a small part of the computation. A
full adder is made from two half adders and a
ripple carry adder is made from a chain of full
adders. This approach simplifies the design
of the adder but leads to long delay times
since the carry from each sum must ripple

Example 12.30
Dividing an unsigned binary numbers by two using a logical shift right
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to the next higher position’s addition before it
can complete.

v A carry look ahead adder attempts to elimi-
nate the linear dependence of delay on the
number of bits that exists in a ripple carry
adder. The carry look ahead adder contains
dedicated circuitry that calculates the carry
bits for each position of the addition. This
leads to a more constant delay as the width
of the adder increases.

v A binary multiplier can be created in a
similar manner to the way multiplication is

accomplished by hand using the shift and
add approach. The partial products of the
multiplication can be performed using
2-input AND gates. The sum of the partial
products can have more inputs than the typi-
cal ripple carry adder can accommodate. To
handle this, the additions are performed two
bits at a time using a series of adders.

v Division can be accomplished using an itera-
tive subtractor architecture.

Exercise Problems

Section 12.1 – Addition

12.1.1 Give the total delay of the full adder shown in
Fig. 12.2 if all gates have a delay of 1 ns.

Fig. 12.2
Full Adder Timing Exercise

12.1.2 Give the total delay of the full adder shown in
Fig. 12.2 if the XOR gates have delays of 5 ns
while the AND and OR gates have delays of
1 ns.

12.1.3 Give the total delay of the 4-bit ripple carry
adder shown in Fig. 12.3 if all gates have a
delay of 2 ns.

Fig. 12.3
4-Bit RCA Timing Exercise

12.1.4 Give the total delay of the 4-bit ripple carry
adder shown in Fig. 12.3 if the XOR gates
have delays of 10 ns while the AND and OR
gates have delays of 2 ns.

12.1.5 Design a Verilog model for an 8-bit Ripple
Carry Adder (RCA) using a structural design
approach. This involves creating a half adder
(half_adder.v), full adder (full_adder.v), and
then finally a top-level adder (rca.v) by
instantiating eight full adder sub-systems.
Model the logic operations using gate level
primitives. Give each gate primitive a delay of
1 ns. The general topology and module defini-
tion for the design are shown in Fig. 12.4. Cre-
ate a test bench to exhaustively verify your
design under all input conditions. The test
bench should drive in different values every
30 ns in order to give sufficient time for the
results to ripple through the adder.

Fig. 12.4
4-Bit RCA Module Definition

12.1.6 Give the total delay of the 4-bit carry look
ahead adder shown in Fig. 12.5 if all gates
have a delay of 2 ns.

12.1.7 Give the total delay of the 4-bit carry look
ahead adder shown in Fig. 12.5 if the XOR
gates have delays of 10 ns while the AND
and OR gates have delays of 2 ns.

Fig. 12.5
4-Bit CLA Timing Exercise
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12.1.8 Design a Verilog model for an 8-bit Carry Look
Ahead Adder (cla.v). The model should instan-
tiate eight instances of a modified full adder
(mod_full_adder.v), which is implemented
with gate-level primitives. The carry look
ahead logic should be implemented using con-
tinuous assignment with logical operators
within the cla.v module. All logic operations
should have 1 ns of delay. The topology and
port definition for the design are shown in
Fig. 12.6. Create a test bench to exhaustively
verify this design under all input conditions.
The test bench should drive in different values
every 30 ns in order to give sufficient time for
the signals to propagate through the adder.

Fig. 12.6
4-Bit CLA Module Definition

Section 12.2 – Subtraction

12.2.1 How is the programmable add/subtract topol-
ogy shown in Fig. 12.7 analogous to 2’s com-
plement arithmetic?

Fig. 12.7
Programmable Adder/Subtractor Block Diagram

12.2.2 Will the programmable adder/subtractor archi-
tecture shown in Fig. 12.7 work for negative
numbers encoded using signed magnitude or
1’s complement?

12.2.3 When calculating the delay of the programma-
ble adder/subtractor architecture shown in
Fig. 12.7 does the delay of the XOR gate that
acts as the programmable inverter need to be
considered?

12.2.4 Design a Verilog model for an 8-bit, program-
mable adder/subtractor. The design will have
an input called “ADDn_SUB” that will control
whether the system behaves as an adder (0) or
as a subtractor (1). The design should operate
on two’s complement signed numbers. The
result of the operation(s) will appear on the

port called “Sum_Diff”. The model should
assert the output “Cout_Bout” when an addi-
tion creates a carry or when a subtraction
creates a borrow. The circuit will also assert
the output Vout when either operation results in
two’s complement overflow. The port definition
and block diagram for the system is shown in
Fig. 12.8. Create a test bench to exhaustively
verify this design under all input conditions.

Fig. 12.8
Programmable Adder/Subtractor Module
Definition

Section 12.3 – Multiplication

12.3.1 Give the total delay of the 4-bit unsigned multi-
plier shown in Fig. 12.9 if all gates have a delay
of 1 ns. The addition is performed using a ripple
carry adder.

Fig. 12.9
4-Bit Unsigned Multiplier Block Diagram

12.3.2 For the 4-bit unsigned multiplier shown in
Fig. 12.9, how many levels of logic does it
take to compute all of the partial products?

12.3.3 For the 4-bit unsigned multiplier shown in
Fig. 12.9, how many AND gates are needed
to compute the partial products?

12.3.4 For the 4-bit unsigned multiplier shown in
Fig. 12.9, how many total AND gates are
used if the additions are implemented using
full adders made of half adders?

12.3.5 Based on the architecture of a unsigned multi-
plier in Fig. 12.9, how many AND gates are
needed to compute the partial products if the
inputs are increased to 8-bits?
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12.3.6 For an 8-bit multiplier, how many bits are
needed to represent the product?

12.3.7 For an 8-bit unsigned multiplier, what is the
largest value that the product can ever take
on? Give your answer in decimal.

12.3.8 For an 8-bit signed multiplier, what is the larg-
est value that the product can ever take on?
Give your answer in decimal.

12.3.9 For an 8-bit signed multiplier, what is the
smallest value that the product can ever take
on? Give your answer in decimal.

12.3.10 What is the maximum number of times that a
4-bit unsigned multiplicand can be multiplied
by two using the logical shift left approach
before the product is too large to be
represented by an 8-bit-product? Hint: The
maximum number of times this operation can
be performed corresponds to when the multi-
plicand starts at its lowest possible non-zero
value (i.e., 1).

12.3.11 Design a Verilog model for an 8-bit unsigned
multiplier using whatever modeling approach
you wish. Create a test bench to exhaustively
verify this design under all input conditions.
The port definition for this multiplier is given in
Fig. 12.10.

Fig. 12.10
8-Bit Unsigned Multiplier Module Definition

12.3.12 Design a Verilog model for an 8-bit signed
multiplier using whatever modeling approach
you wish. Create a test bench to exhaustively
verify this design under all input conditions.
The port definition for this multiplier is given in
Fig. 12.11.

Fig. 12.11
8-Bit Signed Multiplier Module Definition

Section 12.4 – Division

12.4.1 For a 4-bit divider, how many bits are needed
for the quotient?

12.4.2 For a 4-bit divider, how many bits are needed
for the remainder?

12.4.2 Explain the basic concept of the iterative-
subtractor approach to division.

12.4.4 For the 4-bit divider shown in Example 12.28,
estimate the total delay assuming all gates
have a delay of 1 ns.
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Chapter 13: Computer System Design
One of the most common digital systems in use today is the computer. A computer accomplishes

tasks through an architecture that uses both hardware and software. The hardware in a computer

consists of many of the elements that we have covered so far. These include registers, arithmetic and

logic circuits, finite state machines, and memory. What makes a computer so useful is that the hardware

is designed to accomplish a predetermined set of instructions. These instructions are relatively simple,

such as moving data between memory and a register or performing arithmetic on two numbers. The

instructions are comprised of binary codes that are stored in a memory device and represent the

sequence of operations that the hardware will perform to accomplish a task. This sequence of

instructions is called a computer program. What makes this architecture so useful is that the preexisting

hardware can be programmed to perform an almost unlimited number of tasks by simply defining the

sequence of instructions to be executed. The process of designing the sequence of instructions, or

program, is called software development or software engineering.

The idea of a general purpose computing machine dates back to the 19th century. The first

computing machines were implemented with mechanical systems and were typically analog in nature.

As technology advanced, computer hardware evolved from electromechanical switches to vacuum

tubes and ultimately to integrated circuits. These newer technologies enabled switching circuits and

provided the capability to build binary computers. Today’s computers are built exclusively with semicon-

ductor materials and integrated circuit technology. The term microcomputer is used to describe a

computer that has its processing hardware implemented with integrated circuitry. Nearly all modern

computers are binary. Binary computers are designed to operate on a fixed set of bits. For example, an

8-bit computer would perform operations on 8-bits at a time. This means it moves data between registers

and memory and performs arithmetic and logic operations in groups of 8-bits.

This chapter will cover the basics of a simple computer system and present the design of an 8-bit

system to illustrate the details of instruction execution. The goal of this chapter is to provide an

understanding of the basic principles of computer systems.

Learning Outcomes—After completing this chapter, you will be able to:

13.1 Describe the basic components and operation of computer hardware.
13.2 Describe the basic components and operation of computer software.
13.3 Design a fully operational computer system using Verilog.
13.4 Describe the difference between the Von Neumann and Harvard computer architectures.

13.1 Computer Hardware

Computer hardware refers to all of the physical components within the system. This hardware

includes all circuit components in a computer such as the memory devices, registers, and finite state

machines. Figure 13.1 shows a block diagram of the basic hardware components in a computer.
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13.1.1 Program Memory

The instructions that are executed by a computer are held in program memory. Program memory is

treated as read only memory during execution in order to prevent the instructions from being overwritten

by the computer. Some computer systems will implement the program memory on a true ROM device

(MROM or PROM), while others will use a EEPROM that can be read from during normal operation but

can only be written to using a dedicated write procedure. Programs are typically held in non-volatile

memory so that the computer system does not lose its program when power is removed. Modern

computers will often copy a program from non-volatile memory (e.g., a hard disk drive) to volatile memory

after startup in order to speed up instruction execution. In this case, care must be taken that the program

does not overwrite itself.

13.1.2 Data Memory

Computers also require data memory, which can be written to and read from during normal

operation. This memory is used to hold temporary variables that are created by the software program.

This memory expands the capability of the computer system by allowing large amounts of information to

be created and stored by the program. Additionally, computations can be performed that are larger than

the width of the computer system by holding interim portions of the calculation (e.g., performing a 128-bit

addition on a 32-bit computer). Data memory is implemented with R/W memory, most often SRAM or

DRAM.

13.1.3 Input/Output Ports

The term port is used to describe the mechanism to get information from the output world into or out

of the computer. Ports can be input, output, or bidirectional. I/O ports can be designed to pass information

in a serial or parallel format.

Fig. 13.1
Hardware components of a computer system
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13.1.4 Central Processing Unit

The central processing unit (CPU) is considered the brains of the computer. The CPU handles

reading instructions from memory, decoding them to understand which instruction is being performed,

and executing the necessary steps to complete the instruction. The CPU also contains a set of registers

that are used for general purpose data storage, operational information, and system status. Finally, the

CPU contains circuitry to perform arithmetic and logic operations on data.

13.1.4.1 Control Unit

The control unit is a finite state machine that controls the operation of the computer. This FSM has

states that perform fetching the instruction (i.e., reading it from program memory), decoding the instruc-

tion, and executing the appropriate steps to accomplish the instruction. This process is known as fetch,

decode, and execute and is repeated each time an instruction is performed by the CPU. As the control

unit state machine traverses through its states, it asserts control signals that move and manipulate data

in order to achieve the desired functionality of the instruction.

13.1.4.2 Data Path – Registers

The CPU groups its registers and ALU into a sub-system called the data path. The data path refers

to the fast storage and data manipulations within the CPU. All of these operations are initiated and

managed by the control unit state machine. The CPU contains a variety of registers that are necessary to

execute instructions and hold status information about the system. Basic computers have the following

registers in their CPU:

• Instruction Register (IR) – The instruction register holds the current binary code of the
instruction being executed. This code is read from program memory as the first part of
instruction execution. The IR is used by the control unit to decide which states in its FSM to
traverse in order to execute the instruction.

• Memory Address Register (MAR) – The memory address register is used to hold the current
address being used to access memory. The MAR can be loaded with addresses in order to
fetch instructions from program memory or with addresses to access data memory and/or I/O
ports.

• Program Counter (PC) – The program counter holds the address of the current instruction
being executed in program memory. The program counter will increment sequentially through
the program memory reading instructions until a dedicated instruction is used to set it to a new
location.

• General Purpose Registers – These registers are available for temporary storage by the
program. Instructions exist to move information from memory into these registers and to move
information from these registers into memory. Instructions also exist to perform arithmetic and
logic operations on the information held in these registers.

• Condition Code Register (CCR) – The condition code register holds status flags that provide
information about the arithmetic and logic operations performed in the CPU. The most common
flags are negative (N), zero (Z), two’s complement overflow (V), and carry (C). This register can
also contain flags that indicate the status of the computer, such as if an interrupt has occurred
or if the computer has been put into a low-power mode.

13.1.4.3 Data Path – Arithmetic Logic Unit (ALU)

The arithmetic logic unit is the system that performs all mathematical (i.e., addition, subtraction,

multiplication, and division) and logic operations (i.e., and, or, not, shifts, etc.). This system operates on

data being held in CPU registers. The ALU has a unique symbol associated with it to distinguish it from

other functional units in the CPU.
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Figure 13.2 shows the typical organization of a CPU. The registers and ALU are grouped into the

data path. In this example, the computer system has two general purpose registers called A and B. This

CPU organization will be used throughout this chapter to illustrate the detailed execution of instructions.

13.1.5 A Memory Mapped System

A common way to simplify moving data in or out of the CPU is to assign a unique address to all

hardware components in the memory system. Each input/output port and each location in both program

and data memory are assigned a unique address. This allows the CPU to access everything in the

memory system with a dedicated address. This reduces the number of lines that must pass into the CPU.

A bus system facilitates transferring information within the computer system. An address bus is driven by

the CPU to identify which location in the memory system is being accessed. A data bus is used to

transfer information to/from the CPU and the memory system. Finally, a control bus is used to provide

other required information about the transactions such as read or write lines. Figure 13.3 shows the

computer hardware in a memory mapped architecture.

Fig. 13.2
Typical CPU organization
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To help visualize how the memory addresses are assigned, a memory map is used. This is a

graphical depiction of the memory system. In the memory map, the ranges of addresses are provided for

each of the main subsections of memory. This gives the programmer a quick overview of the available

resources in the computer system. Example 13.1 shows a representative memory map for a computer

system with an address bus with a width of 8-bits. This address bus can provide 256 unique locations.

For this example, the memory system is also 8-bits wide, thus the entire memory system is 256 � 8 in

size. In this example 128 bytes are allocated for program memory; 96 bytes are allocated for data

memory; 16 bytes are allocated for output ports; and 16 bytes are allocated for input ports.

Fig. 13.3
Computer hardware in a memory mapped configuration
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CONCEPT CHECK

CC13.1 Is the hardware of a computer programmed in a similar way to a programmable logic
device?

(A) Yes. The control unit is reconfigured to produce the correct logic for each
unique instruction just like a logic element in an FPGA is reconfigured to
produce the desired logic expression.

(B) No. The instruction code from program memory simply tells the state
machine in the control unit which path to traverse in order to accomplish the
desired task.

13.2 Computer Software

Computer software refers to the instructions that the computer can execute and how they are

designed to accomplish various tasks. The specific group of instructions that a computer can execute

is known as its instruction set. The instruction set of a computer needs to be defined first before the

computer hardware can be implemented. Some computer systems have a very small number of

instructions in order to reduce the physical size of the circuitry needed in the CPU. This allows the

CPU to execute the instructions very quickly, but requires a large number of operations to accomplish a

Example 13.1
Memory map for a 256 � 8 memory system
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given task. This architectural approach is called a reduced instruction set computer (RISC). The

alternative to this approach is to make an instruction set with a large number of dedicated instructions

that can accomplish a given task in fewer CPU operations. The drawback of this approach is that the

physical size of the CPU must be larger in order to accommodate the various instructions. This

architectural approach is called a complex instruction set computer (CISC).

13.2.1 Opcodes and Operands

A computer instruction consists of two fields, an opcode and an operand. The opcode is a unique

binary code given to each instruction in the set. The CPU decodes the opcode in order to know which

instruction is being executed and then takes the appropriate steps to complete the instruction. Each

opcode is assigned a mnemonic, which is a descriptive name for the opcode that can be used when

discussing the instruction functionally. An operand is additional information for the instruction that may be

required. An instruction may have any number of operands including zero. Figure 13.4 shows an

example of how the instruction opcodes and operands are placed into program memory.

13.2.2 Addressing Modes

An addressing mode describes the way in which the operand of an instruction is used. While modern

computer systems may contain numerous addressing modes with varying complexities, we will focus on

just a subset of basic addressing modes. These modes are immediate, direct, inherent, and indexed.

13.2.2.1 Immediate Addressing (IMM)

Immediate addressing is when the operand of an instruction is the information to be used by the

instruction. For example, if an instruction existed to put a constant into a register within the CPU using

Fig. 13.4
Anatomy of a computer instruction
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immediate addressing, the operand would be the constant. When the CPU reads the operand, it simply

inserts the contents into the CPU register and the instruction is complete.

13.2.2.2 Direct Addressing (DIR)

Direct addressing is when the operand of an instruction contains the address of where the informa-

tion to be used is located. For example, if an instruction existed to put a constant into a register within the

CPU using direct addressing, the operand would contain the address of where the constant was located

in memory. When the CPU reads the operand, it puts this value out on the address bus and performs an

additional read to retrieve the contents located at that address. The value read is then put into the CPU

register and the instruction is complete.

13.2.2.3 Inherent Addressing (INH)

Inherent addressing refers to an instruction that does not require an operand because the opcode

itself contains all of the necessary information for the instruction to complete. This type of addressing is

used on instructions that performmanipulations on data held in CPU registers without the need to access

the memory system. For example, if an instruction existed to increment the contents of a register (A),

then once the opcode is read by the CPU, it knows everything it needs to know in order to accomplish the

task. The CPU simply asserts a series of control signals in order to increment the contents of A and then

the instruction is complete. Notice that no operand is needed for this task. Instead, the location of the

register to be manipulated (i.e., A) is inherent within the opcode.

13.2.2.4 Indexed Addressing (IND)

Indexed addressing refers to instructions that will access information at an address in memory to

complete the instruction, but the address to be accessed is held in another CPU register. In this type of

addressing, the operand of the instruction is used as an offset that can be applied to the address located

in the CPU register. For example, let’s say an instruction existed to put a constant into a register

(A) within the CPU using indexed addressing. Let’s also say that the instruction was designed to use

the contents of another register (B) as part of the address of where the constant was located. When the

CPU reads the opcode, it understands what the instruction is and that B holds part of the address to be

accessed. It also knows that the operand is applied to B to form the actual address to be accessed.When

the CPU reads the operand, it adds the value to the contents of B and then puts this new value out on the

address bus and performs an additional read. The value read is then put into the CPU register A and the

instruction is complete.

13.2.3 Classes of Instructions

There are three general classes of instructions: (1) loads and stores; (2) data manipulations; and

(3) branches. To illustrate how these instructions are executed, examples will be given based on the

computer architecture shown in Fig. 13.3.

13.2.3.1 Loads and Stores

This class of instructions accomplishes moving information between the CPU and memory. A load

is an instruction that moves information from memory into a CPU register. When a load instruction uses

immediate addressing, the operand of the instruction is the data to be loaded into the CPU register. As an

example, let’s look at an instruction to load the general purpose register A using immediate addressing.

Let’s say that the opcode of the instruction is x008600, has a mnemonic LDA_IMM, and is inserted into

program memory starting at x000000. Example 13.2 shows the steps involved in executing the LDA_IMM

instruction.
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Now let’s look at a load instruction using direct addressing. In direct addressing, the operand of the

instruction is the address of where the data to be loaded resides. As an example, let’s look at an

instruction to load the general purpose register A. Let’s say that the opcode of the instruction is x008700,

has a mnemonic LDA_DIR, and is inserted into program memory starting at x000800. The value to be

loaded into A resides at address x008000, which has already been initialized with x00AA00 before this

instruction. Example 13.3 shows the steps involved in executing the LDA_DIR instruction.

Example 13.2
Execution of an instruction to “Load Register A Using Immediate Addressing”
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A store is an instruction that moves information from a CPU register intomemory. The operand of a

store instruction indicates the address of where the contents of the CPU register will be written. As an

example, let’s look at an instruction to store the general purpose register A into memory address x00E000.

Let’s say that the opcode of the instruction is x009600, has a mnemonic STA_DIR, and is inserted into

program memory starting at x000400. The initial value of A is x00CC00 before the instruction is executed.

Example 13.4 shows the steps involved in executing the STA_DIR instruction.

Example 13.3
Execution of an instruction to “Load Register A Using Direct Addressing”
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13.2.3.2 Data Manipulations

This class of instructions refers to ALU operations. These operations take action on data that

resides in the CPU registers. These instructions include arithmetic, logic operators, shifts and rotates,

and tests and compares. Data manipulation instructions typically use inherent addressing because the

operations are conducted on the contents of CPU registers and don’t require additional memory access.

As an example, let’s look at an instruction to perform addition on registers A and B. The sum will be

placed back in A. Let’s say that the opcode of the instruction is x004200, has a mnemonic ADD_AB, and is

inserted into programmemory starting at x000400. Example 13.5 shows the steps involved in executing the

ADD_AB instruction.

Example 13.4
Execution of an instruction to “Store Register A Using Direct Addressing”
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13.2.3.3 Branches

In the previous examples the program counter was always incremented to point to the address of

the next instruction in programmemory. This behavior only supports a linear execution of instructions. To

provide the ability to specifically set the value of the program counter, instructions called branches are

used. There are two types of branches: unconditional and conditional. In an unconditional branch, the

program counter is always loaded with the value provided in the operand. As an example, let’s look at an

instruction to branch always to a specific address. This allows the program to perform loops. Let’s say

that the opcode of the instruction is x002000, has a mnemonic BRA, and is inserted into program memory

starting at x000600. Example 13.6 shows the steps involved in executing the BRA instruction.

Example 13.5
Execution of an instruction to “Add Registers A and B”
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In a conditional branch, the program counter is only updated if a particular condition is true. The

conditions come from the status flags in the condition code register (NZVC). This allows a program to

selectively execute instructions based on the result of a prior operation. Let’s look at an example

instruction that will branch only if the Z flag is asserted. This instruction is called a branch if equal to

zero. Let’s say that the opcode of the instruction is x002300, has a mnemonic BEQ, and is inserted into

program memory starting at x000500. Example 13.7 shows the steps involved in executing the BEQ

instruction.

Example 13.6
Execution of an instruction to “Branch Always”
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Conditional branches allow computer programs to make decisions about which instructions to

execute based on the results of previous instructions. This gives computers the ability to react to input

signals or take action based on the results of arithmetic or logic operations. Computer instruction sets

typically contain conditional branches based on the NZVC flags in the condition code registers. The

following instructions are based on the values of the NZVC flags.

• BMI – Branch if minus (N ¼ 1)

• BPL – Branch if plus (N ¼ 0)

• BEQ – Branch if equal to Zero (Z ¼ 1)

Example 13.7
Execution of an instruction to “Branch if Equal to Zero”
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• BNE – Branch if not equal to Zero (Z ¼ 0)

• BVS – Branch if two’s complement overflow occurred, or V is set (V ¼ 1)

• BVC – Branch if two’s complement overflow did not occur, or V is clear (V ¼ 0)

• BCS – Branch if a carry occurred, or C is set (C ¼ 1)

• BCC – Branch if a carry did not occur, or C is clear (C ¼ 0)

Combinations of these flags can be used to create more conditional branches.

• BHI – Branch if higher (C ¼ 1 and Z ¼ 0)

• BLS – Branch if lower or the same (C ¼ 0 and Z ¼ 1)

• BGE – Branch if greater than or equal ((N ¼ 0 and V ¼ 0) or (N ¼ 1 and V ¼ 1)), only valid for
signed numbers

• BLT – Branch if less than ((N ¼ 1 and V ¼ 0) or (N ¼ 0 and V ¼ 1)), only valid for signed
numbers

• BGT – Branch if greater than ((N¼ 0 and V¼ 0 and Z¼ 0) or (N¼ 1 and V¼ 1 and Z¼ 0)), only
valid for signed numbers

• BLE – Branch if less than or equal ((N¼ 1 and V¼ 0) or (N¼ 0 and V¼ 1) or (Z¼ 1)), only valid
for signed numbers

CONCEPT CHECK

CC13.2 Software development consists of choosing which instructions, and in what order, will
be executed to accomplish a certain task. The group of instructions is called the
program and is inserted into program memory. Which of the following might a software
developer care about?

(A) Minimizing the number of instructions that need to be executed to accom-
plish the task in order to increase the computation rate.

(B) Minimizing the number of registers used in the CPU to save power.

(C) Minimizing the overall size of the program to reduce the amount of program
memory needed.

(D) Both A and C.

13.3 Computer Implementation – An 8-Bit Computer Example

13.3.1 Top Level Block Diagram

Let’s now look at the detailed implementation and instruction execution of a computer system.

In order to illustrate the detailed operation, we will use a simple 8-bit computer system design.

Example 13.8 shows the block diagram for the 8-bit computer system. This block diagram also contains

the Verilog file and module names, which will be used when the behavioral model is implemented.
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We will use the memory map shown in Example 13.1 for our example computer system. This

mapping provides 128 bytes of program memory, 96 bytes of data memory, 16x output ports, and 16x

input ports. To simplify the operation of this example computer, the address bus is limited to 8-bits. This

only provides 256 locations of memory access, but allows an entire address to be loaded into the CPU as

a single operand of an instruction.

13.3.2 Instruction Set Design

Example 13.9 shows a basic instruction set for our example computer system. This set provides a

variety of loads and stores, data manipulations, and branch instructions that will allow the computer to be

programmed to perform more complex tasks through software development. These instructions are

sufficient to provide a baseline of functionality in order to get the computer system operational. Additional

instructions can be added as desired to increase the complexity of the system.

Example 13.8
Top level block diagram for the 8-Bit computer system
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13.3.3 Memory System Implementation

Let’s now look at the memory system details. The memory system contains program memory, data

memory, and input/output ports. Example 13.10 shows the block diagram of the memory system. The

program and data memory will be implemented using lower level components (rom_128x8_sync.v and

rw_96x8_sync.v), while the input and output ports can be modeled using a combination of RTL blocks

and combinational logic. The program and data memory sub-systems contain dedicated circuitry to

handle their addressing ranges. Each output port also contains dedicated circuitry to handle its unique

address. A multiplexer is used to handle the signal routing back to the CPU based on the address

provided.

Example 13.9
Instruction set for the 8-Bit computer system
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13.3.3.1 Program Memory Implementation in Verilog

The program memory can be implemented in Verilog using the modeling techniques presented in

Chapter 12. To make the Verilog more readable, the instruction mnemonics can be declared as

parameters. This allows the mnemonic to be used when populating the program memory array.

The following Verilog shows how the mnemonics for our basic instruction set can be defined as

parameters.

Example 13.10
Memory system block diagram for the 8-Bit computer system
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parameter LDA_IMM ¼ 8’h86; //-- Load Register A with Immediate Addressing
parameter LDA_DIR ¼ 8’h87; //-- Load Register A with Direct Addressing
parameter LDB_IMM ¼ 8’h88; //-- Load Register B with Immediate Addressing
parameter LDB_DIR ¼ 8’h89; //-- Load Register B with Direct Addressing
parameter STA_DIR ¼ 8’h96; //-- Store Register A to memory (RAM or IO)
parameter STB_DIR ¼ 8’h97; //-- Store Register B to memory (RAM or IO)
parameter ADD_AB ¼ 8’h42; //-- A <¼ A + B
parameter SUB_AB ¼ 8’h43; //-- A <¼ A - B
parameter AND_AB ¼ 8’h44; //-- A <¼ A and B
parameter OR_AB ¼ 8’h45; //-- A <¼ A or B
parameter INCA ¼ 8’h46; //-- A <¼ A + 1
parameter INCB ¼ 8’h47; //-- B <¼ B + 1
parameter DECA ¼ 8’h48; //-- A <¼ A - 1
parameter DECB ¼ 8’h49; //-- B <¼ B - 1
parameter BRA ¼ 8’h20; //-- Branch Always
parameter BMI ¼ 8’h21; //-- Branch if N¼1
parameter BPL ¼ 8’h22; //-- Branch if N¼0
parameter BEQ ¼ 8’h23; //-- Branch if Z¼1
parameter BNE ¼ 8’h24; //-- Branch if Z¼0
parameter BVS ¼ 8’h25; //-- Branch if V¼1
parameter BVC ¼ 8’h26; //-- Branch if V¼0
parameter BCS ¼ 8’h27; //-- Branch if C¼1
parameter BCC ¼ 8’h28; //-- Branch if C¼0

Now the program memory can be declared as an array type with initial values to define the program.

The following Verilog shows how to declare the program memory and an example program to perform a

load, store, and a branch always. This program will continually write x00AA” to port_out_00.

reg[7:0] ROM[0:127];

initial
begin

ROM[0] ¼ LDA_IMM;
ROM[1] ¼ 8’hAA;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ BRA;
ROM[5] ¼ 8’h00;

end

The address mapping for the program memory is handled in two ways. First, notice that the array

type defined above uses indices from 0 to 127. This provides the appropriate addresses for each location

in the memory. The second step is to create an internal enable line that will only allow assignments from

ROM to data_out when a valid address is entered. Consider the following Verilog to create an internal

enable (EN) that will only be asserted when the address falls within the valid program memory range of

0 to 127.

always @ (address)
begin

if ( (address >¼ 0) && (address <¼ 127) )
EN ¼ 1’b1;

else
EN ¼ 1’b0;

end

If this enable signal is not created, the simulation and synthesis will fail because data_out

assignments will be attempted for addresses outside of the defined range of the ROM array. This enable

line can now be used in the behavioral model for the ROM as follows:

always @ (posedge clock)
begin

if (EN)
data_out ¼ ROM[address];

end
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13.3.3.2 Data Memory Implementation in Verilog

The data memory is created using a similar strategy as the program memory. An array signal is

declared with an address range corresponding to the memory map for the computer system (i.e., 128 to

223). An internal enable is again created that will prevent data_out assignments for addresses outside

of this valid range. The following is the Verilog to declare the R/W memory array:

reg[7:0] RW[128:223];

The following is the Verilog to model the local enable and signal assignments for the R/W memory:

always @ (address)
begin

if ( (address >¼ 128) && (address <¼ 223) )
EN ¼ 1’b1;

else
EN ¼ 1’b0;

end

always @ (posedge clock)
begin

if (write && EN)
RW[address] ¼ data_in;

else if (!write && EN)
data_out ¼ RW[address];

end

13.3.3.3 Implementation of Output Ports in Verilog

Each output port in the computer system is assigned a unique address. Each output port also

contains storage capability. This allows the CPU to update an output port by writing to its specific

address. Once the CPU is done storing to the output port address and moves to the next instruction in

the program, the output port holds its information until it is written to again. This behavior can be modeled

using an RTL procedural block that uses the address bus and the write signal to create a synchronous

enable condition. Each output port is modeled with its own block. The following Verilog shows how the

output ports at x00E000 and x00E100 are modeled using address specific procedural blocks.

//-- port_out_00 (address E0)
always @ (posedge clock or negedge reset)

begin
if (!reset)

port_out_00 <¼ 8’h00;
else

if ((address ¼¼ 8’hE0) && (write))
port_out_00 <¼ data_in;

end

//-- port_out_01 (address E1)
always @ (posedge clock or negedge reset)

begin
if (!reset)

port_out_01 <¼ 8’h00;
else

if ((address ¼¼ 8’hE1) && (write))
port_out_01 <¼ data_in;

end

:
“the rest of the output port models go here. . .”

:
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13.3.3.4 Implementation of Input Ports in Verilog

The input ports do not contain storage, but do require a mechanism to selectively route their

information to the data_out port of the memory system. This is accomplished using the multiplexer

shown in Example 13.10. The only functionality that is required for the input ports is connecting their

ports to the multiplexer.

13.3.3.5 Memory data_out Bus Implementation in Verilog

Now that all of the memory functionality has been designed, the final step is to implement the

multiplexer that handles routing the appropriate information to the CPU on the data_out bus based on the

incoming address. The following Verilog provides a model for this behavior. Recall that a multiplexer is

combinational logic, so if the behavior is to be modeled using a procedural block, all inputs must be listed

in the sensitivity list and blocking assignments are used. These inputs include the outputs from the

program and data memory in addition to all of the input ports. The sensitivity list must also include the

address bus as it acts as the select input to the multiplexer. Within the block, an if-else statement is used

to determine which sub-system drives data_out. Programmemory will drive data_out when the incoming

address is in the range of 0 to 127 (x000000 to x007F00). Data memory will drive data_out when the address is

in the range of 128 to 223 (x008000 to x00DF00). An input port will drive data_out when the address is in the

range of 240 to 255 (x00F000 to x00FF00). Each input port has a unique address so the specific addresses are

listed as nested if-else clauses.

always @ (address, rom_data_out, rw_data_out,
port_in_00, port_in_01, port_in_02, port_in_03,
port_in_04, port_in_05, port_in_06, port_in_07,
port_in_08, port_in_09, port_in_10, port_in_11,
port_in_12, port_in_13, port_in_14, port_in_15)

begin: MUX1

if ( (address >¼ 0) && (address <¼ 127) )
data_out ¼ rom_data_out;

else if ( (address >¼ 128) && (address <¼ 223) )
data_out ¼ rw_data_out;

else if (address ¼¼ 8’hF0) data_out ¼ port_in_00;
else if (address ¼¼ 8’hF1) data_out ¼ port_in_01;
else if (address ¼¼ 8’hF2) data_out ¼ port_in_02;
else if (address ¼¼ 8’hF3) data_out ¼ port_in_03;
else if (address ¼¼ 8’hF4) data_out ¼ port_in_04;
else if (address ¼¼ 8’hF5) data_out ¼ port_in_05;
else if (address ¼¼ 8’hF6) data_out ¼ port_in_06;
else if (address ¼¼ 8’hF7) data_out ¼ port_in_07;
else if (address ¼¼ 8’hF8) data_out ¼ port_in_08;
else if (address ¼¼ 8’hF9) data_out ¼ port_in_09;
else if (address ¼¼ 8’hFA) data_out ¼ port_in_10;
else if (address ¼¼ 8’hFB) data_out ¼ port_in_11;
else if (address ¼¼ 8’hFC) data_out ¼ port_in_12;
else if (address ¼¼ 8’hFD) data_out ¼ port_in_13;
else if (address ¼¼ 8’hFE) data_out ¼ port_in_14;
else if (address ¼¼ 8’hFF) data_out ¼ port_in_15;

end

13.3.4 CPU Implementation

Let’s now look at the central processing unit details. The CPU contains two components, the control

unit (control_unit.v) and the data path (data_path.v). The data path contains all of the registers and the

ALU. The ALU is implemented as a sub-system within the data path (alu.v). The data path also contains
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a bus system in order to facilitate data movement between the registers and memory. The bus system is

implemented with two multiplexers that are controlled by the control unit. The control unit contains the

finite state machine that generates all control signals for the data path as it performs the fetch-decode-

execute steps of each instruction. Example 13.11 shows the block diagram of the CPU in our 8-bit

microcomputer example.

13.3.4.1 Data Path Implementation in Verilog

Let’s first look at the data path bus system that handles internal signal routing. The system consists

of two 8-bit busses (Bus1 and Bus2) and two multiplexers. Bus1 is used as the destination of the PC, A,

and B register outputs, while Bus2 is used as the input to the IR, MAR, PC, A, and B registers. Bus1 is

Example 13.11
CPU block diagram for the 8-Bit computer system
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connected directly to the to_memory port of the CPU to allow registers to write data to the memory

system. Bus2 can be driven by the from_memory port of the CPU to allow the memory system to provide

data for the CPU registers. The two multiplexers handle all signal routing and have their select lines

(Bus1_Sel and Bus2_Sel) driven by the control unit. The following Verilog shows how the multiplexers

are implemented. Again, a multiplexer is combinational logic so all inputs must be listed in the sensitivity

list of its procedural block and blocking assignments are used. Two additional signal assignments are

also required to connect the MAR to the address port and to connect Bus1 to the to_memory port.

always @ (Bus1_Sel, PC, A, B)
begin: MUX_BUS1

case (Bus1_Sel)
2’b00 : Bus1 ¼ PC;
2’b01 : Bus1 ¼ A;
2’b10 : Bus1 ¼ B;
default : Bus1 ¼ 8’hXX;

endcase
end

always @ (Bus2_Sel, ALU_Result, Bus1, from_memory)
begin: MUX_BUS2

case (Bus2_Sel)
2’b00 : Bus2 ¼ ALU_Result;
2’b01 : Bus2 ¼ Bus1;
2’b10 : Bus2 ¼ from_memory;
default : Bus1 ¼ 8’hXX;

endcase
end

always @ (Bus1, MAR)
begin

to_memory ¼ Bus1;
address ¼ MAR;

end

Next, let’s look at implementing the registers in the data path. Each register is implemented using a

dedicated procedural block that is sensitive to clock and reset. This models the behavior of synchronous

latches, or registers. Each register has a synchronous enable line that dictates when the register is

updated. The register output is only updated when the enable line is asserted and a rising edge of the

clock is detected. The following Verilog shows how to model the instruction register (IR). Notice that the

signal IR is only updated if IR_Load is asserted and there is a rising edge of the clock. In this case, IR is

loaded with the value that resides on Bus2.

always @ (posedge clock or negedge reset)
begin: INSTRUCTION_REGISTER

if (!reset)
IR <¼ 8’h00;

else
if (IR_Load)

IR <¼ Bus2;
end

A nearly identical block is used to model the memory address register. A unique signal is declared

called MAR in order to make the Verilog more readable. MAR is always assigned to address in this

system.

always @ (posedge clock or negedge reset)
begin: MEMORY_ADDRESS_REGISTER

if (!reset)
MAR <¼ 8’h00;

else
if (MAR_Load)

MAR <¼ Bus2;
end
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Now let’s look at the program counter block. This register contains additional functionality beyond

simply latching in the value of Bus2. The program counter also has an increment feature that will take

place synchronously when the signal PC_Inc coming from the control unit is asserted. This is handled

using an additional nested if-else clause under the portion of the block handling the rising edge of clock

condition.

always @ (posedge clock or negedge reset)
begin: PROGRAM_COUNTER

if (!reset)
PC <¼ 8’h00;

else
if (PC_Load)

PC <¼ Bus2;
else if (PC_Inc)

PC <¼ MAR + 1;
end

The two general purpose registers A and B are modeled using individual procedural blocks as

follows:

always @ (posedge clock or negedge reset)
begin: A_REGISTER

if (!reset)
A <¼ 8’h00;

else
if (A_Load)

A <¼ Bus2;
end

always @ (posedge clock or negedge reset)
begin: B_REGISTER

if (!reset)
B <¼ 8’h00;

else
if (B_Load)

B <¼ Bus2;
end

The condition code register latches in the status flags from the ALU (NZVC) when the CCR_Load

line is asserted. This behavior is modeled using a similar approach as follows:

always @ (posedge clock or negedge reset)
begin: CONDITION_CODE_REGISTER

if (!reset)
CCR_Result <¼ 8’h00;

else
if (CCR_Load)

CCR_Result <¼ NZVC;
end

13.3.4.2 ALU Implementation in Verilog

The ALU is a set of combinational logic circuitry that performs arithmetic and logic operations. The

output of the ALU operation is called Result. The ALU also outputs 4 status flags as a 4-bit bus called

NZVC. The ALU behavior can be modeled using case and if-else statements that decide which operation

to perform based on the input control signal ALU_Sel. The following Verilog shows an example of how to

implement the ALU addition functionality. A case statement is used to decide which operation is being

performed based on the ALU_Sel input. Under each operation clause, a series of procedural statements

are used to compute the result and update the NZVC flags. Each of these flags is updated individually.

The N flag can be simply driven with position 7 of the ALU result since this bit is the sign bit for signed
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numbers. The Z flag can be driven using an if-else condition that checks whether the result was x000000.

The V flag is updated based on the type of the operation. For the addition operation, the V flag will be

asserted if a POS + POS ¼ NEG or a NEG + NEG ¼ POS. These conditions can be checked by looking

at the sign bits of the inputs and the sign bit of the result. Finally, the C flag can be computed as the 8th bit

in the addition of A + B.

always @ (A, B, ALU_Sel)
begin

case (ALU_Sel)
3’b000 : begin //-- Addition

//-- Sum and Carry Flag
{NZVC[0], Result} ¼ A + B;

//-- Negative Flag
NZVC[3] ¼ Result[7];

//-- Zero Flag
if (Result ¼¼ 0)

NZVC[2] ¼ 1;
else

NZVC[2] ¼ 0;

//-- Two’s Comp Overflow Flag
if ( ((A[7]¼¼0) && (B[7]¼¼0) && (Result[7] ¼¼ 1)) ||

((A[7]¼¼1) && (B[7]¼¼1) && (Result[7] ¼¼ 0)) )
NZVC[1] ¼ 1;

else
NZVC[1] ¼ 0;

end

:
//-- other ALU operations go here...

:

default : begin
Result ¼ 8’hXX;
NZVC ¼ 4’hX;

end
endcase

end

13.3.4.3 Control Unit Implementation in Verilog

Let’s now look at how to implement the control unit state machine. We’ll first look at the formation of

the Verilog to model the FSM and then turn to the detailed state transitions in order to accomplish a

variety of the most common instructions. The control unit sends signals to the data path in order to move

data in and out of registers and into the ALU to perform data manipulations. The finite state machine is

implemented with the behavioral modeling techniques presented in Chapter 9. The model contains three

processes in order to implement the state memory, next state logic, and output logic of the FSM.

Parameters are created for each of the states defined in the state diagram of the FSM. The states

associated with fetching (S_FETCH_0, S_FETCH_1, S_FETCH_2) and decoding the opcode

(S_DECODE_3) are performed each time an instruction is executed. A unique path is then added

after the decode state to perform the steps associated with executing each individual instruction. The

FSM can be created one instruction at a time by adding additional state paths after the decode state. The
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following Verilog code shows how the user-defined state names are created for nine basic instructions

(LDA_IMM, LDA_DIR, STA_DIR, LDB_IMM, LDB_DIR, STB_DIR, ADD_AB, BRA and BEQ). Eight bit

state variables are created for current_state and next_state to accommodate future state codes. The

state codes are assigned in binary using integer format to allow additional states to be easily added.

reg [7:0] current_state, next_state;
parameter S_FETCH_0 ¼ 0, //-- Opcode fetch states

S_FETCH_1 ¼ 1,
S_FETCH_2 ¼ 2,

S_DECODE_3 ¼ 3, //-- Opcode decode state

S_LDA_IMM_4 ¼ 4, //-- Load A (Immediate) states
S_LDA_IMM_5 ¼ 5,
S_LDA_IMM_6 ¼ 6,

S_LDA_DIR_4 ¼ 7, //-- Load A (Direct) states
S_LDA_DIR_5 ¼ 8,
S_LDA_DIR_6 ¼ 9,
S_LDA_DIR_7 ¼ 10,
S_LDA_DIR_8 ¼ 11,

S_STA_DIR_4 ¼ 12, //-- Store A (Direct) States
S_STA_DIR_5 ¼ 13,
S_STA_DIR_6 ¼ 14,
S_STA_DIR_7 ¼ 15,

S_LDB_IMM_4 ¼ 16, //-- Load B (Immediate) states
S_LDB_IMM_5 ¼ 17,
S_LDB_IMM_6 ¼ 18,

S_LDB_DIR_4 ¼ 19, //-- Load B (Direct) states
S_LDB_DIR_5 ¼ 20,
S_LDB_DIR_6 ¼ 21,
S_LDB_DIR_7 ¼ 22,
S_LDB_DIR_8 ¼ 23,

S_STB_DIR_4 ¼ 24, //-- Store B (Direct) States
S_STB_DIR_5 ¼ 25,
S_STB_DIR_6 ¼ 26,
S_STB_DIR_7 ¼ 27,

S_BRA_4 ¼ 28, //-- Branch Always States
S_BRA_5 ¼ 29,
S_BRA_6 ¼ 30,

S_BEQ_4 ¼ 31, //-- Branch if Equal States
S_BEQ_5 ¼ 32,
S_BEQ_6 ¼ 33,
S_BEQ_7 ¼ 34,

S_ADD_AB_4 ¼ 35; //-- Addition States

Within the control unit module, the state memory is implemented as a separate procedural block that

will update the current state with the next state on each rising edge of the clock. The reset state will be the

first fetch state in the FSM (i.e., S_FETCH_0). The following Verilog shows how the state memory in the

control unit can be modeled. Note that this block models sequential logic so non-blocking assignments

are used.
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always @ (posedge clock or negedge reset)
begin: STATE_MEMORY

if (!reset)
current_state <¼ S_FETCH_0;

else
current_state <¼ next_state;

end

The next state logic is also implemented as a separate procedural block. The next state logic depends

on the current state, instruction register (IR), and the condition code register (CCR_Result). The following

Verilog gives a portion of the next state logic process showing how the state transitions can be modeled.

always @ (current_state, IR, CCR_Result)
begin: NEXT_STATE_LOGIC

case (current_state)
S_FETCH_0 : next_state ¼ S_FETCH_1; //-- Path for FETCH instruction
S_FETCH_1 : next_state ¼ S_FETCH_2;
S_FETCH_2 : next_state ¼ S_DECODE_3;

S_DECODE_3 : if (IR ¼¼ LDA_IMM) next_state ¼ S_LDA_IMM_4;
//-- Register A

else if (IR ¼¼ LDA_DIR) next_state ¼ S_LDA_DIR_4;
else if (IR ¼¼ STA_DIR) next_state ¼ S_STA_DIR_4;
else if (IR ¼¼ LDB_IMM) next_state ¼ S_LDB_IMM_4;

//-- Register B
else if (IR ¼¼ LDB_DIR) next_state ¼ S_LDB_DIR_4;
else if (IR ¼¼ STB_DIR) next_state ¼ S_STB_DIR_4;
else if (IR ¼¼ BRA) next_state ¼ S_BRA_4;

//-- Branch Always
else if (IR ¼¼ ADD_AB) next_state ¼ S_ADD_AB_4; //-- ADD
else next_state ¼ S_FETCH_0;

//-- others go here

S_LDA_IMM_4 : next_state ¼ S_LDA_IMM_5; //-- Path for LDA_IMM instruction
S_LDA_IMM_5 : next_state ¼ S_LDA_IMM_6;
S_LDA_IMM_6 : next_state ¼ S_FETCH_0;

:
Next state logic for other states goes here. . .

:
endcase

end

Finally, the output logic is modeled as a third, separate procedural block. It is useful to explicitly state

the outputs of the control unit for each state in the machine to allow easy debugging and avoid

synthesizing latches. Our example computer system has Moore type outputs so the process only

depends on the current state. The following Verilog shows a portion of the output logic process.

always @ (current_state)
begin: OUTPUT_LOGIC

case (current_state)

S_FETCH_0 : begin //-- Put PC onto MAR to provide address
of Opcode

IR_Load ¼ 0;
MAR_Load ¼ 1;
PC_Load ¼ 0;
PC_Inc ¼ 0;
A_Load ¼ 0;
B_Load ¼ 0;
ALU_Sel ¼ 3’b000;
CCR_Load ¼ 0;
Bus1_Sel ¼ 2’b00; //-- "00"¼PC, "01"¼A, "10"¼B
Bus2_Sel ¼ 2’b01; //-- "00"¼ALU, "01"¼Bus1,
"10"¼from_memory
write ¼ 0;

end
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S_FETCH_1 : begin //-- Increment PC, Opcode will be available next state
IR_Load ¼ 0;
MAR_Load ¼ 0;
PC_Load ¼ 0;
PC_Inc ¼ 1;
A_Load ¼ 0;
B_Load ¼ 0;
ALU_Sel ¼ 3’b000;
CCR_Load ¼ 0;
Bus1_Sel ¼ 2’b00; //-- "00"¼PC, "01"¼A, "10"¼B
Bus2_Sel ¼ 2’b00; //-- "00"¼ALU, "01"¼Bus1, "10"¼from_memory
write ¼ 0;

end;

:
Output logic for other states goes here. . .

:

endcase
end

13.3.4.3.1 Detailed Execution of LDA_IMM

Now let’s look at the details of the state transitions and output signals in the control unit FSM when

executing a few of the most common instructions. Let’s begin with the instruction to load register A using

immediate addressing (LDA_IMM). Example 13.12 shows the state diagram for this instruction. The first

three states (S_FETCH_0, S_FETCH_1, S_FETCH_2) handle fetching the opcode. The purpose of

these states is to read the opcode from the address being held by the program counter and put it into the

instruction register. Multiple states are needed to handle putting PC into MAR to provide the address of

the opcode, waiting for the memory system to provide the opcode, latching the opcode into IR, and

incrementing PC to the next location in program memory. Another state is used to decode the opcode

(S_DECODE_3) in order to decide which path to take in the state diagram based on the instruction being

executed. After the decode state, a series of three more states are needed (S_LDA_IMM_4,

S_LDA_IMM_5, S_LDA_IMM_6) to execute the instruction. The purpose of these states is to read the

operand from the address being held by the program counter and put it into A. Multiple states are needed

to handle putting PC into MAR to provide the address of the operand, waiting for the memory system to

provide the operand, latching the operand into A, and incrementing PC to the next location in program

memory. When the instruction completes, the value of the operand resides in A and PC is pointing to the

next location in program memory, which is the opcode of the next instruction to be executed.
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Example 13.12
State diagram for LDA_IMM
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Example 13.13 shows the simulation waveform for executing LDA_IMM. In this example, register A

is loaded with the operand of the instruction, which holds the value x00AA00.

13.3.4.3.2 Detailed Execution of LDA_DIR

Now let’s look at the details of the instruction to load register A using direct addressing (LDA_DIR).

Example 13.14 shows the state diagram for this instruction. The first four states to fetch and decode the

opcode are the same states as in the previous instruction and are performed each time a new instruction

is executed. Once the opcode is decoded, the state machine traverses five new states to execute the

instruction (S_LDA_DIR_4, S_LDA_DIR_5, S_LDA_DIR_6, S_LDA_DIR_7, S_LDA_DIR_8). The pur-

pose of these states is to read the operand and then use it as the address of where to read the contents to

put into A.

Example 13.13
Simulation waveform for LDA_IMM
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Example 13.15 shows the simulation waveform for executing LDA_DIR. In this example, register A

is loaded with the contents located at address x008000, which has already been initialized to x00AA00.

Example 13.14
State diagram for LDA_DIR
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13.3.4.3.3 Detailed Execution of STA_DIR

Now let’s look at the details of the instruction to store register A to memory using direct addressing

(STA_DIR). Example 13.16 shows the state diagram for this instruction. The first four states are again the

same as prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the

state machine traverses four new states to execute the instruction (S_STA_DIR_4, S_STA_DIR_5,

S_STA_DIR_6, S_STA_DIR_7). The purpose of these states is to read the operand and then use it as

the address of where to write the contents of A to.

Example 13.15
Simulation waveform for LDA_DIR
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Example 13.17 shows the simulation waveform for executing STA_DIR. In this example, register A

already contains the value x00CC00 and will be stored to address x00E000. The address x00E000 is an output

port (port_out_00) in our example computer system.

Example 13.16
State diagram for STA_DIR
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13.3.4.3.4 Detailed Execution of ADD_AB

Now let’s look at the details of the instruction to add A to B and store the sum back in A (ADD_AB).

Example 13.18 shows the state diagram for this instruction. The first four states are again the same as

prior instructions in order to fetch and decode the opcode. Once the opcode is decoded, the state

machine only requires one more state to complete the operation (S_ADD_AB_4). The ALU is combina-

tional logic so it will begin to compute the sum immediately as soon as the inputs are updated. The inputs

to the ALU are Bus1 and register B. Since B is directly connected to the ALU, all that is required to start

the addition is to put A onto Bus1. The output of the ALU is put on Bus2 so that it can be latched into A on

the next clock edge. The ALU also outputs the status flags NZVC, which are directly connected to the

condition code register. A_Load and CCR_Load are asserted in this state. A and CCR_Result will be

updated in the next state (i.e., S_FETCH_0).

Example 13.17
Simulation waveform for STA_DIR
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Example 13.19 shows the simulation waveform for executing ADD_AB. In this example, two load

immediate instructions were used to initialize the general purpose registers to A ¼ x00FF00 and B ¼ x000100

prior to the addition. The addition of these values will result in a sum of x000000 and assert the carry (C) and

zero (Z) flags in the condition code register.

Example 13.18
State diagram for ADD_AB
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13.3.4.3.5 Detailed Execution of BRA

Now let’s look at the details of the instruction to branch always (BRA). Example 13.20 shows the

state diagram for this instruction. The first four states are again the same as prior instructions in order to

fetch and decode the opcode. Once the opcode is decoded, the state machine traverses four new states

to execute the instruction (S_BRA_4, S_BRA_5, S_BRA_6). The purpose of these states is to read the

operand and put its value into PC to set the new location in program memory to execute instructions.

Example 13.19
Simulation waveform for ADD_AB
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Example 13.20
State diagram for BRA
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Example 13.21 shows the simulation waveform for executing BRA. In this example, PC is set back

to address x000000.

13.3.4.3.6 Detailed Execution of BEQ

Now let’s look at the branch if equal to zero (BEQ) instruction. Example 13.22 shows the state

diagram for this instruction. Notice that in this conditional branch, the path that is taken through the FSM

depends on both IR and CCR. In the case that Z ¼ 1, the branch is taken, meaning that the operand is

loaded into PC. In the case that Z¼ 0, the branch is not taken, meaning that PC is simply incremented to

bypass the operand and point to the beginning of the next instruction in program memory.

Example 13.21
Simulation waveform for BRA
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Example 13.23 shows the simulation waveform for executing BEQwhen the branch is taken. Prior to

this instruction, an addition was performed on x00FF00 and x000100. This resulted in a sum of x000000, which

asserted the Z and C flags in the condition code register. Since Z¼ 1 when BEQ is executed, the branch

is taken.

Example 13.22
State diagram for BEQ

13.3 Computer Implementation – An 8-Bit Computer Example • 441



Example 13.24 shows the simulation waveform for executing BEQ when the branch is not taken.

Prior to this instruction, an addition was performed on x00FE00 and x000100. This resulted in a sum of x00FF00,

which did not assert the Z flag. Since Z ¼ 0 when BEQ is executed, the branch is not taken. When not

taking the branch, PC must be incremented again in order to bypass the operand and point to the next

location in program memory.

Example 13.23
Simulation waveform for BEQ when taking the branch (Z ¼ 1)
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Example 13.24
Simulation waveform for BEQ when the branch is not taken (Z ¼ 0)
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CONCEPT CHECK

CC13.3 The 8-bit microcomputer example presented in this section is a very simple architec-
ture used to illustrate the basic concepts of a computer. If we wanted to keep this
computer an 8-bit system but increase the depth of the memory, it would require
adding more address lines to the address bus. What changes to the computer system
would need to be made to accommodate the wider address bus?

(A) The width of the program counter would need to be increased to support the
wider address bus.

(B) The size of the memory address register would need to be increased to
support the wider address bus.

(C) Instructions that use direct addressing would need additional bytes of
operand to pass the wider address into the CPU 8-bits at a time.

(D) All of the above.

13.4 Architecture Considerations

13.4.1 Von Neumann Architecture

The computer system just presented represents a very simple architecture in which all memory

devices (i.e., program, data, and I/O) are grouped into a single memory map. This approach is known as

the Von Neumann architecture, named after the 19th century mathematician that first described this

structure in 1945. The advantage of this approach is in the simplicity of the CPU interface. The CPU can

be constructed based on a single bus system that executes everything in a linear progression of states,

regardless of whether memory is being accessed for an instruction or a variable. One of the drawbacks of

this approach is that an instruction and variable data cannot be read at the same time. This creates a

latency in data manipulation since the system needed to be constantly switching between reading

instructions and accessing data. This latency became known as the Von Neumann bottleneck.

13.4.2 Harvard Architecture

As computer systems evolved and larger data sets in memory were being manipulated, it became

apparent that it was advantageous to be able to access data in parallel with reading the next instruction.

The Harvard architecture was proposed to address the Von Neumann bottleneck by separating the

program and data memory and using two distinct bus systems for the CPU interface. This approach

allows data and program information to be accessed in parallel and leads to performance improvement

when large numbers of data manipulations in memory need to be performed. Figure 13.5 shows a

comparison between the two architectures.
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CONCEPT CHECK

CC13.4 Does a computer with a Harvard architecture require two control unit state machines?

(A) Yes. It has two bus systems that need to be managed separately so two finite
state machines are required.

(B) No. A single state machine is still used to fetch, decode, and execute the
instruction. The only difference is that if data is required for the execute
stage, it can be retrieved from data memory at the same time the state
machine fetches the opcode of the next instruction from program memory.

Fig. 13.5
Von Neumann vs. Harvard Architecture
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Summary

v A computer is a collection of hardware
components that are constructed to perform
a specific set of instructions to process and
store data. The main hardware components
of a computer are the central processing unit
(CPU), program memory, data memory, and
input/output ports.

v TheCPUconsists of registers for fast storage,
an arithmetic logic unit (ALU) for data manip-
ulation, and a control state machine that
directs all activity to execute an instruction.

v A CPU is typically organized into a data path
and a control unit. The data path contains all
circuitry used to store andprocess information.
The data path includes the registers and the
ALU. The control unit is a large state machine
that sends control signals to the data path in
order to facilitate instruction execution.

v The control unit continuously performs a
fetch-decode-execute cycle in order to com-
plete instructions.

v The instructions that a computer is designed
to execute is called its instruction set.

v Instructions are inserted into program mem-
ory in a sequence that when executed will
accomplish a particular task. This sequence
of instructions is called a computer program.

v An instruction consists of an opcode and a
potential operand. The opcode is the unique
binary code that tells the control state
machine which instruction is being executed.
An operand is additional information that may
be needed for the instruction.

v An addressing mode refers to the way that
the operand is treated. In immediate
addressing the operand is the actual data to
be used. In direct addressing the operand is
the address of where the data is to be
retrieved or stored. In inherent addressing
all of the information needed to complete
the instruction is contained within the opcode
so no operand is needed.

v A computer also contains data memory to
hold temporary variables during run time.

v A computer also contains input and output
ports to interface with the outside world.

v A memory mapped system is one in which
the program memory, data memory, and I/O
ports are all assigned a unique address. This
allows the CPU to simply process information
as data and addresses and allows the pro-
gram to handle where the information is
being sent to. A memory map is a graphical
representation of what address ranges vari-
ous components are mapped to.

v There are three primary classes of
instructions. These are loads and stores,
data manipulations, and branches.

v Load instructions move information from
memory into a CPU register. A load instruc-
tion takes multiple read cycles. Store
instructions move information from a CPU
register into memory. A store instruction
takes multiple read cycles and at least one
write cycle.

v Data manipulation instructions operate on
information being held in CPU registers.
Data manipulation instructions often use
inherent addressing.

v Branch instructions alter the flow of instruc-
tion execution. Unconditional branches
always change the location in memory of
where the CPU is executing instructions.
Conditional branches only change the loca-
tion of instruction execution if a status flag is
asserted.

v Status flags are held in the condition code
register and are updated by certain
instructions. The most commonly used flags
are the negative flag (N), zero flag (Z), two’s
complement overflow flag (V), and carry
flag (C).

Exercise Problems

Section 13.1: Computer Hardware

13.1.1 What computer hardware sub-system holds
the temporary variables used by the program?

13.1.2 What computer hardware sub-system contains
fast storage for holding and/or manipulating
data and addresses?

13.1.3 What computer hardware sub-system allows
the computer to interface to the outside world?

13.1.4 What computer hardware sub-system contains
the state machine that orchestrates the fetch-
decode-execute process?

13.1.5 What computer hardware sub-system contains
the circuitry that performs mathematical and
logic operations?

13.1.6 What computer hardware sub-system holds
the instructions being executed?
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Section 13.2: Computer Software

13.2.1 In computer software, what are the names of
the most basic operations that a computer can
perform?

13.2.2 Which element of computer software is the
binary code that tells the CPUwhich instruction
is being executed?

13.2.3 Which element of computer software is a col-
lection of instructions that perform a desired
task?

13.2.4 Which element of computer software is the
supplementary information required by an
instruction such as constants or which
registers to use?

13.2.5 Which class of instructions handles moving
information between memory and CPU
registers?

13.2.6 Which class of instructions alters the flow of
program execution?

13.2.7 Which class of instructions alters data using
either arithmetic or logical operations?

Section 13.3: Computer Implementation –

An 8-bit Computer Example

13.3.1 Design the example 8-bit computer system
presented in this chapter in Verilog with the
ability to execute the three instructions
LDA_IMM, STA_DIR, and BRA. Simulate your
computer system using the following program
that will continually write the patterns x00AA”
and x00BB00 to output ports port_out_00 and
port_out_01:

initial
begin

ROM[0] ¼ LDA_IMM;
ROM[1] ¼ 8’hAA;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ STA_DIR;
ROM[5] ¼ 8’hE1;
ROM[6] ¼ LDB_IMM;
ROM[7] ¼ 8’hBB;
ROM[8] ¼ STB_DIR;
ROM[9] ¼ 8’hE0;
ROM[10] ¼ STB_DIR;
ROM[11] ¼ 8’hE1;
ROM[12] ¼ BRA;
ROM[13] ¼ 8’h00;

end

13.3.2 Add the functionality to the computer model
from 13.3.1 the ability to perform the LDA_DIR
instruction. Simulate your computer system
using the following program that will continually
read from port_in_00 and write its contents to
port_out_00:

initial
begin

ROM[0] ¼ LDA_DIR;

ROM[1] ¼ 8’hF0;
ROM[2] ¼ STA_DIR;
ROM[3] ¼ 8’hE0;
ROM[4] ¼ BRA;
ROM[5] ¼ 8’h00;

End

13.3.3 Add the functionality to the computer model
from 13.3.2 the ability to perform the
instructions LDB_IMM, LDB_DIR, and
STB_DIR. Modify the example programs
given in exercise 13.3.1 and 13.3.2 to use
register B in order to simulate your
implementation.

13.3.4 Add the functionality to the computer model
from 13.3.3 the ability to perform the addition
instruction ADD_AB. Test your addition instruc-
tion by simulating the following program. The
first addition instruction will perform
x00FE00 + x000100 ¼ x00FF00 and assert the negative
(N) flag. The second addition instruction will
perform x000100 + x00FF00

¼ x000000 and assert
the carry (C) and zero (Z) flags. The third addi-
tion instruction will perform
x007F00 + x007F00

¼ x00FE00 and assert the two’s
complement overflow (V) and negative
(N) flags.

initial
begin

ROM[0] ¼ LDA_IMM; //-- test 1
ROM[1] ¼ 8’hFE;
ROM[2] ¼ LDB_IMM;
ROM[3] ¼ 8’h01;
ROM[4] ¼ ADD_AB;
ROM[5] ¼ LDA_IMM; //-- test 2
ROM[6] ¼ 8’h01;
ROM[7] ¼ LDB_IMM;
ROM[8] ¼ 8’hFF;
ROM[9] ¼ ADD_AB;
ROM[10] ¼ LDA_IMM; //-- test 3
ROM[11] ¼ 8’h7F;
ROM[12] ¼ LDB_IMM;
ROM[13] ¼ 8’h7F;
ROM[14] ¼ ADD_AB;
ROM[15] ¼ BRA;
ROM[16] ¼ 8’h00;

end

13.3.5 Add the functionality to the computer model
from 13.3.4 the ability to perform the branch if
equal to zero instruction BEQ. Simulate your
implementation using the following program.
The first addition in this program will perform
x00FE00 + x000100 ¼ x00FF00 (Z ¼ 0). The
subsequent BEQ instruction should NOT take
the branch. The second addition in this pro-
gram will perform x00FF00 + x000100 ¼ x000000

(Z ¼ 1) and SHOULD take the branch. The
final instruction in this program is a BRA that
is inserted for safety. In the event that the BEQ
is not operating properly, the BRA will set the
program counter back to x000000 and prevent the
program from running away.
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initial
begin

ROM[0] ¼ LDA_IMM; //-- test 1
ROM[1] ¼ 8’hFE;
ROM[2] ¼ LDB_IMM;
ROM[3] ¼ 8’h01;
ROM[4] ¼ ADD_AB;
ROM[5] ¼ BEQ; //--NO branch
ROM[6] ¼ 8’h00;

ROM[7] ¼ LDA_IMM; //-- test 2
ROM[8] ¼ 8’h01;
ROM[9] ¼ LDB_IMM;
ROM[10] ¼ 8’hFF;
ROM[11] ¼ ADD_AB;
ROM[12] ¼ BEQ; //-- Branch
ROM[13] ¼ 8’h00;

ROM[14] ¼ BRA;
ROM[15] ¼ 8’h00;

end

13.3.6 Add the functionality to the computer model
from 13.3.4 all of the remaining instructions in
the set shown in Example 13.9. You will need
to create test programs to verify the execution
of each instruction.

Section 13.4: Architectural

Considerations

13.4.1 Would the instruction set need to be different
between a Von Neumann versus a Harvard
architecture? Why or why not?

13.4.2 Which of the three classes of computer
instructions (loads/stores, data manipulations,
and branches) are sped up by moving from the
Von Neumann architecture to the Harvard
architecture.

13.4.3 In a memory mapped, Harvard architecture,
would the I/O system be placed in the program
memory or data memory block?

13.4.4 A Harvard architecture requires two memory
address registers to handle two separate mem-
ory systems. Does it also require two instruc-
tion registers? Why or why not?

13.4.5 A Harvard architecture requires two memory
address registers to handle two separate mem-
ory systems. Does it also require two program
counters? Why or why not?
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TTL operation, 65
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