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PREFACE

This book covers the syllabuses in Applied Heat for all classes of
the Marine Engineers’ Certificates of Competency of the Depart-
ment of Transport (DTp). The examinations are now administered
by the Scottish Vocational Educational Council (SCOTVEQ). It is
a useful aid to students on Business and Technician Education
Council (BTEC) and SCOTVEC engineering courses.

Basic principles are dealt with commencing at a fairly elemen-
tary stage. Each chapter has fully worked examples interwoven into
the text, test examples are set at the end of each chapter for the
student to work out, and finally there are some typical examination
questions included. The prefix ‘f” is used to indicate those parts of
the text, and some test examples, of Class 1 standard.

The author has gone beyond the normal practice of merely
supplying bare answers to the test examples and examination ques-
tions by providing fully worked step by step solutions leading to the
final answers.

This latest revision is a major update in the subject so taking
the material for study through the 1990s.
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CHAPTER 1
UNITS AND COMMON TERMS

MASS is the quantity of matter possessed by a body and is
proportional to the volume and the density of the body. It is a
constant quantity, that is, the mass of a body can only be changed
by adding more matter to it or taking matter away from it.

The abbreviation for mass is m and the unit is the kilogramme
(kg]. For very large or small quantities, multiples or submultiples
of the gramme [g] are used. Large masses are common in engineer-
ing and these are measured in megagrammes [Mg]. One mega-
gramme ig equal to 10° kilogrammes and called a tonne [t].

Mass is proportionally accelerated or retarded by an applied
force. To maintain a coherent system of units, a unit of force is
chosen which will given unit acceleration to unit mass. This unit of
force is called the newton [N). Hence, one newton of force acting
on one kilogramme of mass will give it an acceleration of one metre
per second per second, therefore:

Accelerating force [N] = mass [kg] X acceleration [m/s?]. In
symbols:

F=ma

FORCE OF GRAVITY. All bodies are attracted towards each
other, the force of attraction depending upon the masses of the
bodies and their distances apart. Newton’s law of gravitation states
that this force of attraction is proportional to the product of the
masses of the bodies and inversely proportional to the square of the
distance apart.

An important example of this is the mass of the earth which
attracts all cémparatively smaller bodies towards its, the attractive
force by which a body tends to be drawn towards the centre of the
earth is the force of gravity and is called the weight of the body.

If a body is allowed to fall freely, it will fall with an acceleration
of 9-81 m/s2, this is termed gravitational acceleration and is repre-
sented by g. Since one newton is the force which will give one
kilogramme of mass an acceleration of one m/s?, then the force in
newtons to give m kg of mass an acceleration of 9-81 m/s? is m X
9.81. Hence, at the earth’s surface, the gravitational force on a mass
of m kg is mg newtons, or in other words:

Weight [N] = mass [kg] x g [m/s?].
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The further the distance between the centre of gravity of the
mass and the centre of gravity of the earth, the less is the attractive
force between them. Thus, the weight of a mass measured by a
spring balance (not a pair of scales which is merely a means of
comparing the weight of one mass with another) will-vary slightly
at different parts of the earth’s surface due to the earth not being a
perfect sphere.

If a body is projected in a space-rocket, the attractive force of
the earth on the body becomes less as its distance from the earth
increases until, in complete outer-space, it becomes nil, that is, it is
then weightless. The mass of the body of course remains unchanged.

WORK is done when a force applied on a body causes it to move
and is measured by the product of the force and the distance through
which the force moves.

The unit of work is the joule [J] which is defined as the work
done when the point of application of a force of one newton moves
through a distance of one metre in the direction in which the force

is applied. Hence, one joule is equal to one newton-metre. In
symbols, J = Nm.

Work done [J] = force [N] x distance moved [m].

The joule is a small unit. Moderate quantities of work may be
expressed in kilojoules [1 kJ = 10° J] and larger quantities in
megajoules [1 MJ = 106 J].

POWER is the rate of doing work, that is, the quantity of work
done in a given time. The unit of power is the warr [W] which is
equal to the rate of one joule of work beirig done every second. In
symbols, W =J/s = Nm/s.

_ work done [J]
Power [W] = Gonisd
The wati is a small unit and only suitable for small powers. For

normal powers in engineering, the kilowatt [1 kW = 10> W] and
megawatt [1 MW = 10¢ W] are usually more convenient units.

ENERGY is the capacity for doing work and it is measured by
the amount of work done. Energy is therefore expressed in the same
units as work, that is, joules, kilojoules and megajoules.

Another useful unit of energy is the kilowatt-hour [kWh]. This,
as its name implies, represents the energy used or the work done
when one kilowatt of power is exerted continually for 3600 seconds,
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i.e. one hour.
Energy = power X time
1 kWh = 1000 watts x 3600 seconds
= 1000 [J/s] x 3600 [s] _
= 3-6x10°7 ’
= 3-6 MJ

EFFICIENCY is the ratio of the work got outof a mz}c}.une to $e
work put into it, and, as this is done in the same time, itis alsp le
ratio of the output power to the input power. Since no-mflchme 13
perfect, the output is always less than ghe input, due to fncthnal an
other losses, therefore the efficiency 1s alyvays less than unity.

The symbol for efficiency is 1 and it may be expressed as a
fraction or as a percentage.

__ outputpower
" inputpower

is li inch through a
Example. A mass of 1600 kg is letefi by a winc gh
height of I2)5 m in 30 seconds. Calculate g) the _work done, §nd, \g
the efficiency of the winch is 60%, find (ii) the input power in k
and (iii) the energy consumed in kWh.

Force [N] to lift mass against gravity
= weight of mass = mg
= 1600 x 9-81 newtons
force [N] x distance [m]
= 1600% 9-81 X 25 .
= 392400] = 392-4kJAms. (i)
work done [kJ]
time [s]
_ 3924
~ 30
output power
input power
13-08

= =—— = 21.8kW Ans. (ii)
Input power 06

]

Work done [J = Nm]

Output power [kW =kJ/s] =

= 13-08kW

Efficiency =
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3924

Energy consumed = 06 - 654KkJ
1kWh=3-6 MJ
654K = —0—_5?%& = 0-1817kW h Ans. (iii)
Alternatively,
Energy (kW h] = power [kW] X time [h]
; - 21.8x 290
= 2183600
= 0-1817kWh.

PRESSURE is expressed as the intensity of force, that is, the
force acting on unit area. The unit of force is the newton [N] and
the unit of area is the square metre [m?], therefore the funddmental
unit of pressure is newton per square metre [N/m?]. The symbol
repres\enting pressure is usually p. ¢

Pressures of liquids and gases reach high values which are
expressed in multiples of the basic unit of force. For example, the
steam pressure in low pressure boilers is often in the region of 8 X
105 N/m? and in high pressure boilers it could be 6 x 106 N/m?, the
former can be conveniently written 800 k/Nm? and the latter 600
kN/m? or 6 MN/m?2. Another very convenient unit of pressure
commonly used is the bar, this has the advantage of being easy to
“think” in these units since one bar is approximately equal to one

atmosphere of pressure (1 atm = 1-013 bar). One bar is 10° N/m?, -

which is 100 kN/m?, hence the working pressure of the boilers given
as an example above would be stated as 8 bar and 60 bar, respec-
tively. :

Pressures in internal combustion engines vary from a little
above or below one bar during the air charging period to about 100
bar (= 100 x 10° N/m?2 = 10 000 kN/m?) during combustion.

Low pressures and vacua are usually measured in millimetres
of mercury [mmHg], very small pressures in millimetres of water
[mm water]. The instrument used is the manometer. This is a glass
U-tube partially filled with mercury or water, one end is connected
to the source of pressure and the other end is open to the atmosphere.
The difference between the levels of liquid in the two legs indicates
the difference in pressure between the source and the atmosphere.
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The difference between the levels of liquid in the two legs indicates
the difference in pressure between the source and the atmosphere.

Considering the manometer containing mercury, if we take the
density of mercury as 13-6 X 10° kg/m> and the force of gravity on
a mass of one kilogramme as 9-80665 newtons (a more accurate
figure for the standard value of gravitational acceleration than 9-81
which is usually acceptable in engineering), then the weight of one
cubic metre of mercury is 13-6 X 10® x 9-80665 newtons = 133-3
kN. Hence a column of mercury one metre high exerts a pressure
of 133-3 kN on one square metre, or a column of mercury one
millimetre high is equivalent to a pressure of 133-3 N/m?2.

Similarly, each millimetre of water pressure is equal to 9-80665
N/m? which is usually taken as 9-81 N/m?.

Small pressures may also be expressed in millibars [mbar]: One
mbar = 1 bar x 10-3 = 105 x 103 N/m? = 100 N/m?2.

The mercurial barometer works on the principle of the atmos-
pheric pressure supporting a column of mercury. The vertical col-
umn of mercury left standing up the tube, perfect vacuum above, is
supported by the outside atmospheric pressure and is therefore a
measure of the pressure of the atmosphere. As the atmospheric
pressure rises and falls, the level of the supported column of mer-
cury rises and falls accordingly.

For example, if the column of mercury supported by the atmos-
pheric pressure is 760 mm, then the atmospheric pressure will be:

760 x 133-3 = 1.013 X 105 N/m? = 1-013 bar or 101-3 kN/m?

GAUGE PRESSURE AND ABSOLUTE PRESSURE. Most pressure
recording instruments, including the ordinary pressure gauge and
the open-ended manometer, measure the pressure from the level of
atmospheric pressure. The pressure so recorded is termed the gauge
pressure and the word “gauge” should follow the units of pressure.
Thus, if a préssure gauge reads 2000 kN/m? the pressure should be
stated as 2000 kN/m? gauge, meaning that this is the pressure over
and above the atmospheric pressure.

The true pressure is measured above a perfect vacuum and
called the absolute pressure and this is the value which is used in
calculations. The absolute pressure is therefore obtained by adding
the atmospheric pressure to the gauge pressure, the gauge pressure
being read from the pressure gauge and the atmospheric pressure
obtained from the barometric reading.

As an example, if the pressure of a fluid is 550 kN/m? gauge,
and the barometer stands at 758 mmHg then:
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Atmospheric pressure = 758 x 133-3
= 1-01 x 10° N/m? = 101 kN/m?
Absolute pressure = gauge pressure + atmospheric pressure
= 550 + 101
= 651 kN/m?

This could be written 651 kN/m? absolute. However it is usual
to omit the word absolute and take it for granted that if the word
gauge does not follow the value of the pressure then it means that
g is an absolute pressure. This will be the practice throughout this

ook.

Pressure gatiges are not always perfectly accurate and, in any
case, it is difficult to read to an accuracy of one or two kN/m?. It is
therefore quite common when exact accuracy is not essential to
assume the atmospheric pressure to be 100 kN/m?.

In the above example, if the barometer reading was not known,
the absolute pressure would be taken as:

550 + 100 = 650 kN/m?
with very little difference in the final result of a calculation.

If the manometer was to be used as a vacuum gauge, say for a
steam condenser, the level of the mercury in the leg connected to
the condenser will be higher than the level in the leg open to

atmosphere. The difference in level indicates the pressure below -

atmospheric and is written “mmHg vacuum”.
For example, if the gauge reads 600 mmHg on vacuum and the
barometer stands at 758 mmHg then: '
Pressure below atmospheric
= 600 x 133-3 = 8 x 10* N/m?
Atmospheric pressure '
= 758 x 133-3 = 1-01 x 10° N/m? = 101 kN/m?
Therefore absolute pressure in condenser is 80 kN/m? below
101 kN/m? which is 21 kN/m? or, more simply calculated:
Abs. press. (barometer mmHg — vacuum gauge mmHg) x 133-3
(758 - 600) x i33-3
158x 1333
2-1 x 10* kN/m? = 21 kN/m?

nwon i

VOL.UMF: has the basic unit of the cubic metre [m?]. A common
sub{nultlple is the litre (1) and this is equal in volume to one cubic
decimetre and is used only for fluid measure.

1 m3 = 10° dm3 therefore 10° litres = 1 m?

UNITS AND COMMON TERMS 7
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The millilitre [ml] is 1 x 10-2 litre and therefore equal in volume
to one cubic centimetre. Whereas the basic unit of density is kilo-
gramme per cubic metre [kg/m?], densities of liquids are sometimes
expressed in grammes per millilitre [g/ml] and densities of solids in
grammes per cubic centimetre [g/cm®].

SPECIFIC VOLUME is the volume occupied by unit mass and
the basic unit is cubic metre per kilogramme [m3/kg] thus, the
specific volume is the reciprocal of density. In certain cases, spe-
cific volume may be expressed in cubic metres per tonne [m3/t] and
litres per kilogramme [I/kg].

TEMPERATURE is an indication of hotness or coldness and
therefore is a measure of the intensity of heat.

The most common temperature measuring instrument is the
mercurial thermometer. This consists of a glass tube of very fine
bore with a bulb at its lower end, the bulb and tube are exhausted
of air, partially filled with mercury and hermetically sealed at the
top end. When the thermometer is placed in a substance whose
temperature is to be measured, the mercury takes up the same.
temperature and expands (if heated) or contracts (if cooled) and the
level, which rises or falls in consequence indicates on the ter-
mometer scale the degree of heat intensity.

The Celsius scale (formerly known as Centigrade) is used in the
SI system of measuring and specifying temperatures. The point at
which pure water freezes into ice is marked zero on the Celsius scale
and that point at which pure water boils into steam at atmospheric
pressure is assigned the number 100. The former is sometimes
referred to as the lower fixed point or ice point, the latter as the upper
fixed point or steam point. The unit representing a temperature
reading on the Celsius scale is °C and the symbol for temperature
is ©.

The advantages of mercury are that it does not wet the bore of
the glass and therefore none sticks to the glass as the temperature
falls. It can be used over a wide useful range of temperature as its
freezing point is low, about —38°C, and boiling point high, about
358°C.

Alcohol is sometimes used but requires to be coloured. Al-
though its freezing point is in the region of -115°C and can be useful
for measuring very low temperature, its boiling point is also low,
about 78°C, and therefore has a limited use.

The Farenheit scale was used in the past and to convert a
temperature interval from Farenheit to Celsius:
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Interval on Celsius scale = % X interval on Farenheit scale.
For example, if a body is heated through 153°F, this is

153 x % =85°C 1

To convert a temperature reading from Farenheit to Celsius:
Reading on the Celsius scale = (F -32) X %
For example, a temperature of 77 °F is equivalent to

(77 = 32) x % ~25°C

ABSOLUTE TEMPERATURE. All gases expand at practically the
same rate when heated through the same range of temperature, and
contract at the same rate when cooled.

The rate of expansion or contraction of a perfect gas is (very
nearly) Y273 of its volume at 0°C when heated or cooled at constant
pressure through one degree Celsius. Hence, if a gas initially at 0°C
could be cooled at constant pressure until its temperature is 273
Celsius degrees below 0°C, the volume would contract until there
was nothing left and no further reduction of temperature would be

possible, that is, the gas would then have reached its absolute zero

of temperature. In practice of course, it is not possible to cool a gas
down to the absolute zero. As the absolute zero of temperature is
approached the gas will change into a liquid and the laws of gases
are then no longer applicable. ' :

From the above, temperatures can be expressed as absolute
quantities, that is, stating the degrees of temperature above the level

of Absolute Zero, by adding 273 to the ordinary Celsius thet-

mometer reading.

Absolute temperature is often referred to as thermodynamic
temperature, the symbol for this is T and the unit is the kelvin which
is represented by K (often °K), thus: E

Thermodynamic temperature = Celsius temperature + 273.
In symbols,

T[K]=6["C] + 273

VOLUME FLOW is the volume of a fluid flowing past a given
point in unit time. The basic unit is cubic metres per second [m3/s],
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other convenient units are cubic metres per hour [m*/h], cubic
metres per minute [m?/min] and litres per hour [1/h].

For example, if a fluid is flowing at a velocity of v metres per
second full bore through a pipe of internal diameter d metres, the
quantity flowing in cubic metres per second is:

Volume flow [m3/s] = area [m?] x velocity [m/s]

= 078542 xv

V is used to indicate volume flow rate

MASS FLOW is the mass of fluid flowing past a given point in
unit time, the basic unit being kilogrammes per second [kg/s]. Since
density is the mass per unit volume, then:

Mass flow [kg/s] = volume flow [m?/s] x density [kg/m’].

Mass flow may also be expressed in other convenient units such
as tonnes per hour [t/h] and kilogrammes per hour [kg/hl;
m is used to indicate mass flow rate.

SWEPT VOLUME OR STROKE VOLUME is the volume swept
through by a piston in the cylinder of a reciprocating engine, pump,
compressor, etc., it is the product of the piston area [m?] and the
stroke of the piston [m].

The space left between the piston at its inner dead centre (top
of its stroke) and the cylinder head is termed the clearance volume.
This may be expressed as the actual volume of the clearance space,
or as a fraction of the stroke volume.

SYSTEM. A system is the term given to the collection of matter
under consideration enclosed within a boundary, the region outside
the boundary is termed the surroundings. The boundary may be an
imaginary enclosure, or it may be real such as the cylinder wall,
cylinder head and piston of an internal combustion engine which
encloses the mixture of gases within. Energy is transferred across a
boundary from one system to another.

If there is no transfer of matter across the boundary, that is, if
no substance can enter the system or leave it during investigation,
it is a closed system, energy only being transferred across the
boundary, and whatever changes take place to the substance, is
termed a non-flow process because no matter flows into or out of
it.

If there is a flow of matter through the boundary, it is an open
system. If the mass flow entering the system is equal to the mass




10 REED’S APPLIED HEAT

=

flow leaving so that at any time the quantity of matter within the
system is constant, the series of changes to the matter is referred to
as a steady-flow process.

An example of a closed system within which a non-flow process
takes place is in the cylinder of an air compressor and.an IC engine.

A turbine is an example of an open system in which a steady-
flow process takes place, as is a nozzle and a uniformly cycling
reciprocating unit.

A CYCLE is a recurrent period of a complete set of a series of
connected proce$ses which a system undergoes, the final state of
the system at the end of the cycle being exactly as it was at the
beginning of the cycle. ‘

UNITS AND COMMON TERMS 11
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TEST EXAMPLES 1

1. A pump discharges 50 tonne of water per hour to a height of 8
m the overall efficiency of the pumping system being 69%. Calcu-
late the output power and the input power. Calculate also the energy
consumed by the pump in 2 hours, expressed in kWh and in MJ!
2.(a) Express a pressure of 20 mm water in N/m? and mbars.

(b) Express a pressure of 750 mmHg in kN/m? and bars.

3. A condenser vacuum gauge reads 715 mmHg when the bar-
ometer stands at 757 mmHg. State the absolute pressure in the
condenser in kN/m? and bars.

4. Convert the following temperature readings from °F to °C:
140 °F 5°F -31°F —40°F

5. /Qil flows full bore at a velocity of 2 m/s through a nest of 16
tubes in a single pass cooler. The internal diameter of the tubes is
30 mm and the density of the oil is 0-85 g/ml. Find the volume flow
in litres per second and the mass flow in kilogrammes per minute.




CHAPTER 2
HEAT

Heat is a form of energy associated with the movement of the
molecules which constitute the heated body. Heat is transferred
from one substance to another by temperature difference between
the two substances, it is interchangeable with other forms of energy
and can be made available for doing work and producing mechan-
ical and electrical power.

The basic unit of all energy, including heat, is the joule [J].
Thus, units of heat are expressed in joules or multiples of the joule,
the commonest being kilojoules [kJ] and megajoules {MJ]. The
symbol representing quantity of heat is Q.

SPECIFIC HEAT (or specific heat capacity) of a substance is the
quantity of heat required to raise the temperature of unit mass of the
substance by one degree. The units of specific heat are therefore
heat units per unit mass per unit temperature. The symbol for
specific heat is c. In most cases involving specific heat the kilojoule
is the most convenient size of heat unit for unit mass of one
kilogramme, hence the specific heat is usually expressed in kilo-
joules per kilogramme per kelvin, in symbols this is kJ/kgK. Note
also that one Celsius degree of temperature interval on the ther-
mometer scale is the same as one kelvin degree of temperature
interval on the absolute scale, the above units could therefore be
written kJ/kg°C, but rarely are.

It follows from the above definition of specific heat that the
quantity of heat energy transferred to a substance to raise its tem-

perature is the product of the mass of the substance, its specific heat,
and its rise in temperature.
In symbols:

Q[kJ] = m [kg] x ¢ [kI/kgK] x (T, - T}) [K]

Different substances have different specific heat values. Also,
the specific heat of any one particular substance is not always a
constant value over a large range of temperature, the variation in
specific heat however, is small, and an average value over the
temperature range under consideration may be taken for most prac-
tical purposes. For example, the specific heat of water decreases
from 4-21 kJ/kgK at 0°C to 4-178 kJ/kgK at 35°C and increases
thereafter with rise in temperature, being 4-219 kJ/kgK at 100°C.

HEAT 13
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Between 0°C and 100°C a mean value is usually taken as 4-2.

Example. Calculate the quantity of heat to be transferred to 225
kg of brass to raise its temperature from 20°C to 240°C, taking the
specific heat of the brass as 0-394 kJ/kgK,

240-20=220°C= 220K

m [kg) % ¢ [KI/kgK] x (T, - Ty) [K]
2-25 % 0:394 x 220

195kJ Ans.

Temperature increase

Q [kJ]

o uwn

The characteristics of gases vary considerably at different tem-
peratures and pressures, and heat may be transferred under an
infinite number of different conditions, consequently the specific
heat can have an infinite number of different values. Two important
conditions are transferring heat to or from a gas which is at constant
pressure, and transferring heat while its volume is constant. The
specific heat of a gas at constant pressure is repres.ented by ¢, and
at constant volume by c,. This is dealt with in detail later.

Note: (T, - Ty) [K] = (8, - 6,) ['C].

MECHANICAL EQUIVALENT OF HEAT is the relationship be-
tween mechanical energy and heat energy. This was determined by
Joule, one of the first scientists to demonstrate that heat was a f_orm
of energy, using apparatus which generated heat by the cx-pe.ndlture
of mechanical work. When work is done in overcoming friction, the
mechanical energy expended is converted into heat energy. Tt%e
force required to overcome sliding friction between two bodies is
the product of the coefficient. of friction (i) and the normal force
between the surfaces of the bodies.

Example. A shaft runs at a rotational speed of 50 rev/s in
oil-cooled bearings 178 mm diameter. The force between the sur-
faces of the shaft journals and bearings is 2-67 kN and the coeffi-

- cient of friction is 0-04. Find (i) the friction force at the surface of

the journals, (ii) the mechanical energy expended in friction per
revolution, (iii) the power loss due to friction, (iv) the temperature
rise of the oil if the volume flow through the bearings is 18 litre/min,
the specific heat of the oil being 2 kJ/kgK and its density 0-9 g/ml.

Friction force

= u X normal force between surfaces
= 0-04x2:67x10°
= 1068 N Ans. (i)
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Work done tofovercome friction per revolution [J = Nm]
riction force [N] X circumfer j
iy 0.[17]8 ence of journal [m]

59-7 J Ans. (ii)

Power expended [W = J/s]

energy per revolution X rev/s
59-7x 50

2985 W =2.985kW Ans. (iii)
Density of oil = 0-9 g/ml = 0-9 kg/litre

Mass flow of oil [kg/s] = volume flow [I/s] x density [kg/1]

18

nnn

K 0-9 =027 kg/s
Q [kJ/s] = m [kgfs] X c [KI/kgK] X (T, - T)) [K]
2985 = 0-27 X 2 X temp. rise

Temp. rise = 5-527K or 5-527°C  Ans. (iv)

'WATER EQUIVALENT of a mass of a substance is the mass of
water that would require the same heat transfer as the mass of that
substance to cause the same change of temperature.

Eqr example, taking an aluminium vessel of mass 2 kg, and the
specific heat of aluminium as 0-912 kJ/kgK: ,

Q = mass X specific heat X temperature change
.For water, Ow = myXcwX(T,-Th)w
- For aluminium, Qg = my X ca X (T, = T})a
Since Q is to be the same quantity of heat,
Ow = Qa .

my X Cy X (T2 _TI)W = my X CAX (TZ—TI)A

and the temperature change is to be the same,
My X Cy = My X Cxp

. c
.My = mAX£
.Taking the specific heat of water as 4-2 kJ/kgK, the water
equivalent of this mass of aluminium is
0912
4.2

= 04343 kg

mw=2X
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That is to say, 0-4343 kg of water would require the same
amount of heat transferred to it as the 2 kg of aluminium to raise it
through the same range of temperature.

It is useful to know the water equivalent of laboratory calo-
rimeters. When water is contained in a vessel, the temperature of
the vessel is the same as that of the water inside, and when the
temperature of the water is changed, the temperature of the vessel
changes with it. The vessel can therefore be considered as an extra
mass of water equal to the water equivalent of the vessel.

Example. The mass of a copper calorimeter is 0-28 kg and it
contains 0-4 kg of water at 15°C. Taking the specific heat of copper
as 0-39 ki/kgK, calculate the heat required to raise the temperature
to 20°C.

Water equivalent of calorimeter

039

= 028x;> = 0:026kg

Heat received by water and calorimeter,
0 K] = m [kg) X ¢ [KI/kgK] x (T, - 1) [K]
= (0-4 +0-026) X 4-2x (20-15)
= 0-426%4-2X%X5
= 8946 kI Ans.

When two substances at different temperatures are mixed
together, heat will transfer from the hotter substance to the colder |
until both become the same temperature. Unless otherwise is stated, ‘ i
it is assumed that no heat is transferred to or from an outside source
during the mixing process and therefore the quantity of heat ab-
sorbed by the colder substance is all at the expense of the loss of
heat by the hotter substance.

Example. In an experiment to find the specific heat of lead, 0-5
kg of lead shot at a temperature of 51°C is poured into an insulated B
calorimeter containing 0-25 kg of water at 13-5°C and the resultant - |
temperature of the mixture is 15-5°C. If the water equivalent of the |
calorimeter is 0-02 kg, find the specific heat of the lead.

Heat received by water and calorimeter when their temperature
_ is raised from 13-5°C to 15-5°C:
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O =mxcx -1y
(0-25 + 0-02) X 42 X (15-5 — 135)
= 027%x42x2Kk]
Heat lost by lead in cooling from 51°C to 15-5°C:
O =mXcx(T3-Ty)
= 0-5xcX (51 -155)
=05%xcx355K]

Heat transferred from the lead is equal to the heat received by
the water and calorimeter: '

0.5%xcx355 = 0-27%x42x%x2
goin 027 x4-2%x2
T 0:5%355

= 01278 KJ/kgK Ans.

'LATENT HEAT is the heat which supplies the energy necessary
to overcome some of the binding forces of attraction between the
molecules of a substance and is responsible for it changing its
physical state from a solid into a liquid, or from a liquid into a
vapour, the change taking place without any change of temperature.

The process of changing the physical state from a solid into 2
liquid is called melting or fusion, and the quantity of heat required
to change unit mass of the substance from solid to liquid at the same
temperature is the latent heat of fusion.

For example, the latent heat of fusion for ice is 335 kJ/kg 2t 0°C.
This means that one kilogramme of ice at 0°C would require 335
kilojoules of heat transferred to it to completely melt it intc ne
kilogramme of water at 0°C. Also, one kilogramme of water at 0°C
would require to lose 335 kilojoules of heat to completely freeze it
into ice at 0°C.

The process of changing the physical state of a substance ‘rom
a liquid into a vapour is called boiling or evaporation a1l tie
quantity of heat to bring about this change at constant tempe:aiure
to unit mass is the latent heat of evaporation.

The latent heat of evaporation of water at atmospheric pressure
is 2256-7 kJ/kg. This means that one kilogramme of water at ! 00°C
would require 2256-7 kilojoules of heat to completely boil :
one kilogramme of steam at 100°C. Also, one kilogramme of ¢'=z
at 100°C would require to lose 2256-7 kilojoules of heat to o
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pletely condense it into one kilogramme of water at 100°C.

The temperature at which a liquid boils and the latent heat of
evaporation depend strictly upon the pressure, the higher the press-
ure, the higher the boiling point and the smaller the amount of latent
heat required to evaporate it. For example, at atmospheric pressure,
the temperature at which water boils is 100°C and the latent heat of
evaporation is 2256-7 kJ/kg, at a pressure of 15 bar (1500 kN/m?)
the boiling point is 198-3°C and the latent heat 1947 kJ/kg, at 30 bar
(3000 kN/m?) the boiling point is 233-8°C and the latent heat 1795
kJ/kg. These values are obtained from steam tables which are
described later.

When heat is transferred to or from a substance which changes
only its temperature, and there is no physical change of state, it is
sometimes referred to as sensible hear. This distinguishes it from
latent heat which changes the physical state of the substance without
change of temperature.

We shall see later that, for a constant pressure process, the heat
energy transferred to a substance is termed enthalpy, then, latent
heat of fusion is termed enthalpy of fusion, and latent heat of
evaporation is termed enthalpy of evaporation, and so on.

Example. Calculate the heat required to be given to 2 kg of ice
at —15°C to change it into steam at atmospheric pressure, taking the
values:

Specific heat of ice = 2-04 kI/kgK
Latent heat of fusion = 335kJ/kg
Specific heat of water = 4-2kJ/kgK
Latent heat of evaporation = 2256-7 ki/kg

Heat to raise the temperature of the ice from —15°C to its melting
point of 0°C, i.e. a temperature rise of 15°C:

Sensible heat = m X ¢ X temp. rise
2x204x15
61-2kJ

Heat to change the ice at 0°C into water at 0°C:

Latent heat = 2% 335
= 670kJ

Heat to raise the temperature of the water from 0°C to its boiling
point of 100°C, i.e. a temperature rise of 100°C:

Sensible heat = 2%x4-2x 100
= 840kJ
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Heat to evaporate the water at 100°C into steam at 100°C:

Latent heat = 2% 2256-7
= 4513-4k]
Total heat = 61-2 + 670 + 840 + 45134
= 6084-6 kJ Ans. ”

Working is simplified by finding the total heat transfer required
per unit mass and then finally multiplying by the total mass, thus,

0 = 2(2-04 x 15 + 335 + 4-2 x 100 + 2256-7)
2(30-6 + 335 + 420 + 2256-7)

2 % 3042-3

6084-6 KJ

Change of temperature, change of quantity of heat energy etc.,
are often written A8, AQ, etc.

TEST EXAMPLES 2

1. A water brake coupled to an engine on test absorbs 70 kW of
power. Find the heat generated at the brake per minute and the mass
flow of fresh water through the brake, in kg/min if the temperature
increase of the water is 10°C. Assume all the heat generated is
carried away by the cooling water.

2. The effective radius of the pads in a single collar thrust block
is 230 mm and the total load on the thrust block is 240 kN when the
shaft is running at 93 rev/min. Taking the coefficient of friction
between thrust collar and pads as 0-025, find (i) the power lost due
to friction, (ii) the heat generated per hour, (iii) the mass flow of oil
in kilogrammes per hour through the block assuming all the heat is
carried away by the oil, allowing an oil temperature rise of 20°C
and taking the specific heat of the oil as 2 ki/kgK.

3. To ascertain the temperature of flue gases, 1-8 kg of copper of
specific heat 0-395 kJ/kgK was suspended in the flue until it
attained the temperature of the gases, and then dropped into 2-27 kg
of water at 20°C. If the resultant temperature of the copper and water
was 37-2°C, find the temperature of the flue gases.

4. Tnanexperiment to find the specific heat of iron, 2-15kg of iron
cuttings at 100°C are dropped into a vessel containing 2-3 litre of
water at 17°C and the resultant temperature of the mixture is 24-4°C.
If the water equivalent of the vessel is 0-18 kg, determine the
specific heat of the iron.

5. 0-5 kg of ice at —5°C is put into a vessel containing 1-8 kg of
water at 17°C and mixed together, the result being a mixture of ice
and water at 0°C. Calculate the final masses of ice and water, taking
the water equivalent of the vessel as 0-148 kg, specific heat of ice
2-04 kJ/kgK, latent heat of fusion 335 ki/kg.




CHAPTER 3
THERMAL EXPANSION"

EXPANSION OF METALS

The effect of increasing the temperature of metals is generally
to cause their dimensions to increase. Most metals expand when
they are heated and contract when they are cooled, the amount of
expansion per degree rise of temperature differs with different
metals. Some alloys are manufactured to have a minimum amount
of expansion over a considerable working temperature range, these
are usually for special purposes such as measuring instruments and
gauges.

Although the expansion is in all diregtions so that there is an
increase in all dimensions, it is sometimes only relevant to consider
the expansion in one direction.

LINEAR EXPANSION. When a linear dimension is under con-
sideration, the amount that a metal will expand lengthwise is ex-

- pressed by its coefficient of linear expansion. This is the increase

in length per unit length per degree increase in temperature. For
instance, if the coefficient of linear expansion of copper is given as
1-7 x 10-5/°C (which is 0-000017 per degree Celsius) it means that
eachmetre of length will increase in length by 1-7 X 10-5 metre when
heated through one degree Celsius. This coefficient may be repre-
sented by o. Hence, representing the original length by I, and
temperature rise by (6, - 6,),

Increase in length = aXx1X(6,-6)).
The new length of the metal will then be:
new length = original length + increase in length
=Il+al (62—91),
= I{1+o(6,-6,)}

Example. A main steam pipe is 6-5 m long when fitted at a
temperature of 15°C. Calculate how much allowance should be
made for its increase in length if it is subjected to a steam tempera-
ture of 300°C, taking the coefficient of linear expansion of the
material as 1-2 x 10-5/°C.
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Increase in length = ot XX (68, - 6;)

= 12x10°%x6-5x% (300 -15)
= 0-02223 m

= 2223 mm Ans.

Example. A brass liner is 270 mm diameter when the tempera-
ture is 17°C. Take the coefficient of linear expansion of the brass
as 1-9 x 10-5/°C and find the temperature to which the liner should
be heated in order to increase the diameter by 2 mm.

Diameter is a linear dimension and therefore the same rule can
be applied as for length. Note that the diameter and increase in
diameter must be expressed in the same units.

Increase in diameter = axd X (6, —6,)
2 = 1:9x10° %270 % (6, -6,)

g 2x10p
Increa te: AT e -7°
creasein temperature = 7057 o 389-7°C
. Required temperature = 17 + 389-7
= 4067°C Ans.

SUPERFICIAL EXPANSION refers to increase in area. The coef-
ficient of superficial expansion is the increase in area per unit area
per degree increase in temperature. Therefore, if A represents orig-
inal area, and (6, — 6,) the increase in temperature, then,

Ipcrease in area = coeff. of superficial expansion X A X (8, —6,).
Consider an area of metal of unit length and unit breadth (Fig. 1) and
let this be heated through one degree.

i — o o ——
Fig.1

The length and breadth will each increase by an amount equal
to a, the coefficient of linear expansion.

originalarea = 1Xx1=1
new length and new breadth = 1+«
newarea = (1+0)?=1+20+02
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Increase inarea = new area — original area
= l+20+02-1

20 + o2

a is a very small quantity for any metal (such as about 1-2 X
10-3 for steel), therefore o2 being the second order of smallness is
a very small quantity indeed and is completely negligible as a
quantity to be added for all practical purposes. We can therefore
take the increase to be 2a. As this is the increase in area per unit
area for one degree increase in temperature, it is the value of the
coefficient of superficial expansion, hence,

Coeft. of superficial expansion = 2 X coeff. of linear expansion
therefore,

Increase inarea = 20X A X (6, -6,).

CUBICAL EXPANSION refers to the increase in volume. The
coefficient of cubical (or volumetric) expansion is the increase in
volun}e per unit volume per degree increase in temperature. There-
fore, if V represents the original volume, and (6, — ;) increase in
temperature, then:

Increase in volume = coeff. of cubical expansion'x Vx(6,-6,).
. Consider a block of metal of unit length, unit breadth, zind ulnit
thickness (Fig. 2) and let this be heated through one degree.

D I
PR~

1/7 l "‘1
- it
< | —F < e g

Fig. 2

The length, breadth and thickness will each increase by an
amount equal to o, the coefficient of linear expansion.

Original volume = I1x1x1l=1
New volume = (1 +a)®
= 1+3a+3c?+0a?
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Increase in volume = new volume — original volume
1+30+302+0°-1

300+ 302 + o3

nwon

o2 and o being the second and third order of smallness respec-
tively, are negligible quantities for addition, hence the increase may
be taken as 3o. As this is the increase in volume per unit volume
per degree increase in temperature, it is the value of the coefficient
of cubical expansion. -

Coeff. of cubical expansion = 3 X coeff. of linear expansion.

Therefore,

Increase in volume

3axVx(6,-6,).

Note that linear refers to any linear dimension such as length,
breadth, thickness, diameter, circumference, and so on, and the
expression for linear expansion can be applied to any of these
dimensions. It is true for internal dimensions as well as external.

The expression for superficial expansion covers any area of the
solid, cross-sectional area, surface area, etc., and holds good for

_internal areas as well as external.
“.1:% The expression for cubical expansion is also applicable for

internal volumes of a hollow vessel.

*“‘Example. A metal sphere is exactly 25 mm diameter at 20°C.
Find the increase in diameter, increase in surface area, and increase
in volume, when heated to 260°C, if the coefficient of linear expan-
sion of the metal is 1-8 x 10-5/°C. '

Increase in temperature = 260 — 20 = 240°C
Increase in diameter = axd X (6,-6,)

‘= 1-8x 105x25%x 240
= 0108 mm Ans. (i)
Surface area of sphere = 7d 2
Jncrease inarea = 200X A X (6,-6;)
= 2x1-8 x 105 x Tx 252 x 240

1696 mm? Ans (ii)
Volume of sphere = %d 3

Increase in volume = 3a XV x(6,-6,)
= 3x1-8x1<r5x1g-x253x240

= 106 mm® Ans. (iii)
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EXPANSION OF LIQUIDS

Liquids have no definite shape of their own, therefore no linear
dimensions, hence the coefficient of cubical expansion of a liquid
is an independent quantity. The coefficient of cubical expansion is
usually represented by B.

Increase in volume = BXVx(6,-6,)
Example. 2500 litres of oil are heated through 50°C. If the

coefficient of cubical expansion of this oil is 0-0008/°C, find the
increase in volume in cubic metres.

2500 litres = 2-5m?
Increase in volume = BXV x(6,-6,)
= 0-0008 x 2-:5x 50
= 0-1m?® Ans.

APPARENT CUBICAL EXPANSION. The tank or vessel which

.contains a liquid will also expand when heated. It is therefore useful

to know the expansion of the liquid relative to its container so that
the correct aliowance can be made for changes of temperature.
The apparent or relative increase in volume of a liquid is the
difference between the volumetric expansion of the liquid and the
volumetric expansion of its container. If both have the same initial
volume and are raised through the same range of temperature, then,
letting suffix L represent the liquid and suffix C the container:
Apparent increase in volume of the 11qu1d ‘
= vol. increase of liquid — vol. increase of contamer
= BLXVX(0,—68;)—Bc X Vx(6,-6))
= BL-B)xVx(0,-86)
The difference between the coefficients of cubical expansxon of
the liquid and its container can therefore be termed the apparent
coefficient of cubical expansion of the liquid.

RESTRICTED THERMAL EXPANSION

If the natural thermal expansion of a metal is restricted, the
metal will be strained from its natural length and the material will
be stressed. To enable the effects of restricted expansion to be seen
here, it is necessary to revise the relationships between stress, strain
and modulus of elasticity.

STRESS is the internal resistance set up in a material when an
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external force is applied. It is expressed as the force carried by the
material per unit area of its cross-section.

force [N]

Stress [N/m?] = PPty

High values of stress are expressed in multiples of the force
unit, such as kN/m? (= 10? N/m?) and MN/m? (= 10¢ N/m?). In some
industries, stress may be expressed in hectobars [hbar], one hecto-
bar = 107 N/m?.

STRAIN is the change of shape that takes place in a material
due to it being stressed. Linear strain is the change of length per unit
length, thus,

change of length
originallength

Linearstrain =

MODULUS OF ELASTICITY of a material is the constant ob-
tained by dividing the stress set up in it by the strain it endures under
that stress, provided the elastic limit is not exceeded.

" stress
Modulus of elasticity (E) = e

Example. A solid steel stay 50 mm diameter and 300 mm long
at a temperature of 25°C is firmly secured at each end so that
expansion is fully restricted. Find the stress set up in the stay and
the equivalent total axial force when it is heated to 150°C, taking
the coefficient of linear expansion of steel as 1-2 X 10-%/°C and its
modulus of elasticity as 206 GN/m?.

If the stay was perfectly free to expand without restriction,

Free expansion = o XX (8,- 6,)
1.2 x 107% x 300 % (150 - 25)
0-45 mm

Free and unrestrained length would then be
300 + 0-45 = 300-45 mm

If prevented from expanding the effect is that the stay is com-
pressed from its natural unstrained length of 300-45 mm to 300 mm,

>
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change of length
original length
_ 045
~ 30045

Strain =

= 0001498

It i's usual, however, to make a slight approximation at this stage
by taking the original cold length of 300 mm instead of the heated
leng'fh of 300-45 mm. The difference in the final result is negligible
and it proves much more convenient in solving more complicated
problems. It will also be seen that by making this slight approxima-

tion the length of the material will not be required because the strain
can be obtained direct from:

change of length

Strain = —&
originallength

_ axXIx(8,-8y
= 1 e s o(6,-6,)

- Hence the strain for this stay can be taken as:

o(6,-6,)
1-2x 105 % 125 =0-0015

Strain

“which is the same as gd5 = 0-0015

300

E [N/m?] = stress [N/m?]
strain

strain X E |
0-0015 x 206 x 10°
3-09 x 10% N/m?
309 MN/m? or 30-9 hbar Ans. (i)
Stress [N/m?] = foree [I]

area [m?]

= Stress

. Total axial force = stress X area

3.09 x 108 x 0-7854 x 0-052
6-068 X 10° N

606-8 kN  Ans. (ii)
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TEST EXAMPLES 3

1. A steam pipe is 3-85 m long when fitted at a temperature of
18°C. Find the increase in length if free to expand, when carrying
steam at a temperature of 260°C, taking the coefficient of linear
expansion of the pipe material as 1-25 x 1075/°C.

9. A solid cast iron sphere is 150 mm diameter. If 2110 kJ of heat
energy is transferred to it, find the increase in diameter, taking the
following values for cast iron: density = 7-21 g/cm?, specific heat=
0-54 kJ/kgK, coefficient of linear expansion = 1-12 X 105°C.

3. A bi-metal control device is made up of a thin flat strip of
aluminium and a thin flat strip of steel of the same dimensions,
connected together in parallel and separated from each other by two
brass distance pieces 2-5 mm long, their centres being 50 mm apart.
Find the radius of curvature of the strips when heated through
200°C, taking the following values for the coefficients of linear

- expansion:

Aluminium o = 2-:5 X 105/°C
Steela. = 1.2x103/°C
Brasso = 2-_0 x 10-3/°C

4. The pipe line of a hydraulic system consists of a total length of
steel pipe of 13-7 m and internal diameter 30 mm. If the coefficient
of linear expansion of the steel is 1-2 % 10-5/°C and coefficient of
cubical expansion of the oil in the pipe is 9 x 10%/°C, calculate the
volumetric allowance in litres to be made for oil overflow from the
pipe when the temperature rises by 27°C.

5. A straight length of steam pipe is to be fitted between two fixed
points with no allowance for expansion. If the compressive Stress
in the pipe is to be limited to 35 hbar (= 350 MN/m?) calculate the
initial tensile stress to be exerted on the pipe when fitted cold at
17°C to allow for a steam temperature of 220°C. Take the coefficient
of linear expansion of the pipe material as 1-12 x 10-5/°C and the
modulus of elasticity as 206 GN/m?.




CHAPTER 4
HEAT TRANSFER

a

Heat is transferred from one system to another by one of the
three methods known as Conduction, Convection, and Radiation, or
by a combination of these.

CONDUCTION

Conduction is the flow of heat energy through a body, or from
one body to another in contact with each other, due to difference
in temperature. The natural flow of heat takes place from a re-
gion of high temperature to a region of lower temperature.

Generally speaking, metals are good conductors of heat. Air,
and some materials such as asbestos, cork, glass wool, are very bad
conductors, these are called insulators and are used to minimise heat
loss. Special plastic base compositions are used to lag boilers, pipes,
casings, etc. to reduce loss of heat energy to the colder outside
surroundings. Cork and fibre glass are common insulating materials
to pack the hollow walls of refrigerating chambers to reduce heat

flow into the cold chambers from the warmer outside surroundings.

The quantity of heat conducted through a material in a given
time depends upon the thermal conductivity of the material, is
proportional to the surface area exposed to the source of heat, is
proportional to the temperature difference between the hot and cold
ends, and is inversely proportional to the distance or thickness
through which the heat is conducted, thus,

area X time X temp. difference
thickness

The thermal conductivity depends upon the nature of the ma-
terial and its ability to conduct heat. This varies for different
materials and sometimes varies slightly for the same material de-
pending upon the temperature range.

The thermal conductivity (k) of a material expresses the quan-
tity of heat energy conducted through unit area in a unit time for
unit temperature difference between two opposite faces of a ma-
terial of unit distance apart.

Considering the heat flow through a flat wall, taking the follow-
ing symbols and basic units, and referring to Fig. 3:

Quantity of heat varies as

&
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\ TEMPERATURE
\ DIFFERENCE
\ TI—TZ

Y- X .

AREA OF
FACE A1

-5 —>
THICKNESS

Fig. 3

Q
A

4

quantity of heat energy conducted, in joules [J].
area through which heat flows, in square metres [m?2].
time of heat flow, in seconds [s].
T, — T, = temperature difference between the two faces [K].
S = thickness of wall, in metres [m].

Then, the units of k the thermal conductivity are Jm/m?s K. For
convenience this is usually shortened by cancelling m into m? and
substituting W watts in the place of J/s.

Jm _ I _ W
msK = msK = mK
Hence, the quantity of heat energy transferred by conducticn is:
kAKT, - T,)
S

Example. Calculate the heat transfer per hour through a solid
brick wall 6 m long, 2-9 m high, and 225 mm thick, when the outer .
surface is at 5°C and the inner surface 17°C, the thermal conductiv-

= W/mK

0=

. ity of the brick being 0-6 W/mK.
n = KW/m K] x A[m?] x ¢[s] x (T} - T,))[K]
o] = S[m]
_ 06x6%x29x3600x(17-5)
- 0-225

1]

2:004% 10%J ;

= 2.004 MJ or 2004 kJ Ans.
Note: that Ty is 17 + 273 = 290K and T3 is 5 + 273 = 278K, their dif-
ference, T1 — T, is the same as 17°C - 5°C.
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Q> >
R = == s e ke
™ T = Tz
. s
N TOTAL,,
\ TEMPERATURE
N T,—T; DIFFERENCE
S ' To
j
~dhz T J:
45‘->L—— SZ—>‘<— 53"'
Fig. 4

COMPOSITE WALL. Consider the transfer of heat energy by
conduction through a wall made up of a number of layers of

different materials, take as an example three slabs of different -

thicknesses as shown in Fig. 4.
For each thickness:
: _ kArxtemp.diff. . o . OS
0= S .". temp. diff. = KAt
- Total drop in temperature across three thicknesses:

05 | 0 , O
Ay, kKA,  ksAsts

T1~T4 =

The same quantity of heat energy is transferred across each

layer through the same area in the same time, therefore 0, A and ¢
are common:
RS 51 By

T, T“—At k1+k2+k3
For any number of layers, let T, represent the total temperature
drop, thatis,
‘ Tp = (T1=T) + (T,—-T3) + (T3—T,) + etc.
and using the summation sign 3 for the sum of the quantities inside
the brackets, that is, :

S| _S S S
Z{k}-kl+k2+k3+etc.
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then,
L _ ATy
o5 ar ™ ] & 25 S}
b

Example. One insulated wall of a cold-storage compartment is
8 m long by 2-5 m high and consists of an outer steel plate 18 mm
thick, an inner wood wall 22-5 mm thick, the steel and wood are 90
mm apart to form a cavity which is filled with cork. If the tempera-
ture drop across the extreme faces of the composite wall is 15°C,
calculate the heat transfer per hour through the wall and the tem-

‘perature drop across the thickness of the cork. Take the thermal

conductivity for steel, cork and wood as 45, 0-045, and 0-18 W/mK
respectively.
For the composite wall,

A B ¢ SRR S

Where TI—T4 = 15K
A= 8%x25=20m?
t = 3600 seconds
s _ 0018 009 . 00225
k[~ 45 0045 = 018
= 0-0004 +2+0-125
= 2:1254
. o e 3
- 15 = 55=Seng X 21254
0= 15 x 20 x 3600
. 2:1254
5082x 10°7

508-2kJ Ans. (i)
Temperature drop across the cork:
_os ‘
Atk
5-082 x 10° x 0-09

= 1411K

= 20 x3600 x 0-045
14-11°C  Ans. (i)
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f Example. A steam pipe is 85 mm external diameter and 25
— oo EoaEzigzgsc oz o m long. It carries 1250 kg of steam per hour at a pressure of 20 bar.

- N T e A ST The steam enters the pipe 0-98 dry and it is to leave the outlet end |
' e : of the pipe with a minimum dryness fraction of 0-96. The pipe is to |
A ~ be lagged with a material having a thermal conductivity of 0-2 |
W/m K and outer surface temperature of 26°C. Any temperature
drop across the wall of the pipe is to be neglected and the rate of
—————————————————— heat transfer through the wall of a thick cylinder is given by:

________________________ |
e S SR RS SR As TRRRER TS 21kS |
Q= per metre length i

Fig.5 where: _ |

k = the thermal conductivity of cylinder material |

6 = temperature difference |

D, = external diameter

D, = intemal diameter
Determine the thickness of the lagging.

f # CYLINDRICAL WALL. A cylindrical wall, e.g. a pipe, could
be considered as being made up of many thin cylindrical elements
all with the same coefficient of thermal conductivity.

In Fig. 5. If dT is the small temperature difference radially

il across the cylindrical element whose thickness is dr, length L and |
‘ : Heat loss = m X hfg (x;—x,) ; |

Wl area A.
dar _ 1250x 1890 X (0-98 — 0-96)
Then Q = kAt|- o b . 3600 |
A= 2L ' » | = 13-125kW , |
: 21tkO |
{ Hence Q = k2nrL (—Q—T- SRl e
1 dr , L n _2]
g Using integration by the use of the calculus'to account for the D,
$ complete cylinder thickness: 13125 2mXx0-2X(212-4-26)
. 251 D
2 dr 2 2
— = —kX2nLt)} -dT ' ~ In
i Q '[rl r I; : . 5 0-085
7 & D) _ 04mx 1864
Oln _7_1 = 2wkLt (T, —Ty) 0085 | ~ 525
' D, | _ 04462
2ckLe (T, —T. , - 2 |-
Q= ———(—r‘——Z) le (0-085) 2-3026 -
2

; In (r_x) D, = 0-085 x 1-563
‘ = 0-1329m

(In x, the natural logarithm of x, is often written loge x)
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1329-85
2

23.9mm Ans.

Notes: (i) at20barts=212-4°C
(ii) lg x, the common (base 10) logarithm of x, is often
written log x
(iii) ratio of diameters is the same as ratio of radii

Thickness

Il

CONVECTION

Convection is the method of transferring heat through a fluid

by the movement of heated particles of the fluid.

Fig. 6 shows a vessel with an inclined tube connected at the

bottom. When this contains water, and heat is applied to the tube,

the heated particles of the water become less dense and rise, denser

particles move to take their place and thus convection currents are
set moving resulting in all the water in the vessel and tube becoming
heated almost uniformly due to the continuous girculation of the
water. This is the principle of the water-tube boiler.
Fig. 6 also shows air in a room heated by convection, the fire,
radiator or other heat source being placed at the bottom of the room.
Fig. 6 also illustrates the air in the room cooled by convection,

 the coolers (such as refrigerator pipes) being situated near the top

of the room. - ’ ,

These above are examples of natural circulation of the fluid and
is referred to as free convection. When the motion of the fluid is
produced mechanically, such as by means of a pump or a fan, it is
referred to as forced convection.

B e g
& N -rfl
B

Zi— p
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RADIATION

Radiation is the transfer of heat energy from one body to
another through space by rays of electro-magnetic waves. The rays

" of heat travel in straight lines in all directions at the same velocity

as light, that is, at nearly 300000 kilometres per second.

Some of the radiant heat falling upon a body is reflected in the
same manner as light is reflected, the remainder is absorbed. Dark
and rough surfaces are good absorbers of radiant heat whereas

. bright and polished surfaces reflect most of the heat and therefore

the amount of absorption is small. A body which is a poor absorber
is also a poor radiator, and a good absorber is a good radiator. A
perfect absorber and radiator of heat energy is termed a “perfect”
black body.

The emissivity of a radiating body is the ratio of the heat emitted
by that body compared with the heat emitted by a perfect black body
of the same surface area and temperature in the same time. Emis-
sivity may be represented by €, and its value for the ideal radiator
is therefore unity.

The STEFAN-BOLTZMANN LAW states that the heat energy
radiated by a perfect radiator is proportional to the fourth power of
its absolute temperature. Hence 0 = quantity of heat energy radi-
ated, A = surface area radiating heat, ¢ = time of radiation, T =
absolute temperature, then: '

Q = AT *x a constant

The value of the constant depends upon the units employed, and
for the basic units of area in square metres, time in seconds, and
absolute temperature in degrees Kelvin, the value of the constant to
give kilojoules of heat energy is 5-67 X 101! kJ/m?sK*%.

Thus, the quantity of heat energy radiated from a hot body of
absolute temperature T to its surroundings at absolute temperature
T, is therefore:

: 0 = 567 x 101! x €At (Ty* - To*)

Example. The temperature of the flame in a furnace is 1277:C
and the temperature of its surrounds is 277°C. Calculate the maxi-
mum theoretical quantity of heat energy radiated per minute per
square metre to the surrounding surface area. -




e W A A g (N R b

\\‘.~

36 REED’S APPLIED HEAT
T, 1550 K
T, 550 K
0 = 5-67x 107! X A(T* - T,%)

5.67 x 10~11 x 1 x 60 x (1550* — 550%)
5.67 % 10-11 x 1 X 60 % 2-705 x 2-1 x 1012
1-933x10°kJ or 19-33 MJ] Anmns. *

Wononn

COMBINED MODES

TRANSFER OF HEAT FROM ONE FLUID TO ANOTHER THROUGH
A DIVIDING WALL. This is a practical application in many engin-
eering appliances. Consider transfer of heat from a fluid to a flat

~ plate, through the plate, and from the plate to another fluid, as

illustrated in Fig. 7. On each side of the plate, a thin film of almost
stagnant fluid clings to the surface, the heat transfer through the film
is by conduction, convection and radiation.

The quantity of heat transfer through the film of fluid per unit
area of surface, in unit time, for unit temperature drop across the
thickness of the film, is expressed by the surface heat transfer
coefficient (h), and this depends to a large extent upon the velocity
of the fluid and the condition of the surfaces. ‘

Since the quantity of heat conducted in a given time is propor- »

tional to the surface area and the temperature drop, then the units
of h are joules per metre? of area per second per degree = J/m?sK
= W/m?K, hence:

O[] = A[W/m2K] x A[m?] x f[s] X (T — T)[K]

Referring to Fig. 7, _ '

Heat transfer through film of fluid A:

e
LT |

T

D

k
-1

iy

1

T

K

l‘lwmi

il
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Q = hAAt(Tl—‘ Tz) TI_TZ = -_hA—%—t
Heat transfer through solid plate:
kAL (T, - Ty o e S0
-« SP . . 2 . 3 . kM[
Heat transfer through film of fluid B:
O = hgAt (T3 — Ty) JoTy~Ty = LhBAt

Total drop in temperature:
Tp = 1 -T)+T-T3)+(T53-T))

_QJ1 S 1
A\ T T hy

. The quantity inside the brackets may be represented by 1/U,

where U is called the overall heat transfer coefficient, then,
PR L ) ;

U hy ke by
hence,

Qo 5
e o, 0 = UA,

Tp
~ Example. A cubical tank of 2 m sides is constructed of metal
plate 12 mm thick and contains water at 75°C. The surrounding air
temperature is 16°C. Calculate (i) the overall heat transfer coeffi-
cient from water to air, and (ii) the heat loss through each side of
the tank per minute. Take the thermal conductivity of the metal as
48 W/mK, the heat transfer coefficient of the water 2-5 kW/m?K,
and the heat transfer coefficient of the air 16 W/m?K.

1 1,5 ¢
LU hy ko hy
1015 1
T 25x10® 48 16
= 0-0004 + 000025 + 0-0625
= 006315 S
U = 1/0:06315=15-34 W/m?K Ans. (i)
Q = UAtTD
= 1584 x22x60x% (75 -16)
= 2-243 x 10°

2243kJ  Ans. (ii)




oA, 95 m 2

|

38 REED’S APPLIED HEAT

f HEAT EXCHANGERS. Common examples of heat exchangers
in which heat is transferred from one fluid to another are: feed
heaters, lubricating oil coolers, gas/air heaters, etc.

To determine the amount of heat transferred in a heat exchanger
it is necessary to know the overall heat transfer coefficient U for the
wall and fluid boundary layers and also the logarithmic mean
temperature difference. S

Heat transferred Q = UAt 6, [J]

PARALLEL FLOW COUNTER FLOW

T — 4T, T J;z
T, i, e T = 1Ty
o h 1\‘
. :
A
T,

Fig 8

For both heat exchangers shown in Fig. 8:

6,-6
8, = 1—%

Where,
6, = the temperature difference between hot and cold fluid at inlet
6, = the temperature difference between hot and cold fluid at
outlet.
0, = mean temperature difference between the fluids, usually,
called the logarithmic mean temperature difference.

f Example. A counter-flow cooler is required to cool 0-5 kg/s
of oil from 50°C to 20°C with a cooling water inlet temperature at
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10°C and mass flow rate of 0-375 kg/s. There are 200 thin walled
tubes of diameter 12-5 mm. Calculate the length of the tube re-
quired.
Overall heat transfer coefficient: 70 W/m2K
Specific heat capacities: oil 1400 J/kgK, water 4200 J/kgK
-Let T, be water outlet temperature.
0 = 0-5% 1400 (50 — 20) = 0-375 x 4200 (T, - 10) = 21000 W

T, = 13-33C

N .. |
h{ezl

naeile) i loes Ta)

- T

(50— 13-33) - (20— 10)

5
_ 2667
1299 -
= 20-53°C
0 = UAt6,
21000 = 70(w x 0-0125 x 1 x 200) x 1 x 20-53
1 =:1-86m Ans.
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TEST EXAMPLES 4

1. Calculate the quantity of heat conducted per minute through a
duralumin circular disc 127 mm diameter and 19 mm thick when
the temperature drop across the thickness of the plate is 5°C. Take
the thermal conductivity of duralumin as 150 W/mK.

7.) A cold storage compartment is 4-5 m long by 4 m wide by 2-5
m high. The four walls, ceiling and floor are covered to a thickness
of 150 mm with insulating material which has a thermal conductiv-
ity of 5-8 x 10 W/mK. Calculate the quantity of heat leaking
through the insulation per hour when the outside and inside face
temperatures of the material is 15°C and —5°C respectively.

3.\ One side of a refrigerated cold chamber is 6 m long by 3-7 m
high and consists of 168 mm thickness of cork between outer and
inner walls of wood. The outer wood wall is 30 mm thick and its
outside face temperature is 20°C, the inner wood wallis 35 mm thick
and its inside face temperature is ~3°C. Taking the thermal conduc-
tivity of cork and wood as 0-042 and 0-2 W/mK respectively,
calculate (i) the heat transfer per second per square metre of surface
area, (ii) the total heat transfer through the chamber side per hour
(iii) the interface temperatures.

4. A flat circular plate is 500 mm diameter. Calculate the theore-
tical quantity of heat radiated per hour when its temperature is

* 215°C and the temperature of its surrounds is 45°C. Take the value

of the radiation constant as 5-67 X 10-1! kJ/m2sK¢*.

5. Hot gases at 280°C flow on one side of a metal plate of 10 mm
thickness and air at 35°C flows on the other side. The surface heat
transfer coefficient of the gases is 31-5 W/m?2K and that of air is 32
W/m2K. The thermal conductivity of the metal plate is 50 W/mK.
Calculate (i) the overall heat transfer coefficient, and (ii) the heat
transfer from gases to air per minute per square metre of plate area.

6. The wall of a cold room consists of a layer of cork sandwiched
between outer and inner walls of wood, the wood walls being each
30 mm thick. The inside atmosphere of the room is maintained at
_20°C when the external atmospheric temperature is 25°C, and the
heat loss through the wall is 42 W/m2. Taking the thermal conduc-
tivity of wood and cork as 0-2 W/mK and 0-05 W/mK respectively,
and the surface heat transfer coefficient between each exposed
wood surface and their respective atmospheres as 15 W/m?K,
calculate (i) the temperatures of the exposed surfaces, (ii) the
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temperatures of the interfaces, and (iii) the thickness of the cork.

f 7. The steam d}'um of a water-tube boiler has hemispherical
ends, ‘the dlam.e.ter is 1-22 m and the overall length is 6 m. Under
steaming conditions the temperature of the shell before lagging was
230°C and the temperature of the surrounds was 51°C. The tempera-
ture of 'the cleading after lagging was 69°C and the surrounds 27°C

Assuming 75% of the total shell area to be lagged and taking the
radiation constant as 5-67 X 10-!! kJ/m?s K¢, estimate the saving in
heat energy per hour due to lagging.

f 8. A pipe 200 mm outside di i
gi%yaolleg?g,s 7\?\/ 7mmll( ﬂ;;cjcs,;gfuijxgxrxrll:ttie;naﬁgvzig; alflxllegrrﬂr‘lx;; zgr‘;fl;ecc}
i Moo kemte - g ce heat transfer coefficient of 10
p‘em{fl rtixciast;,rsr?gztlxiﬁ ac;i :the pipe is 350°C and the ambient tem-
G < fichen v Son i

Heg:t fl;l;w rate through the lagging per metre length of pipe is

In (D/d)

where k i.s the thermal conductivity of the insulation
T is the temperature difference across the insulation

P and.d are the external and internal diameters of the
insulation respectively.

fo. In an inert gas system the boiler exhaust is cooled from 410°C
to 1?{0 C in a parallel flow heat exchanger. Gas flow rate is 0-4 kg/s
co?hng water flow rate is 0-5 kg/s, cooling water inlet temperature:
10°C. Overall heat transfer coefficient from the gas to the water is
140 W/m?K. Determine the cooling surface area required.

Take c, for exhaust gas as 1130 J,
TikgK. p g /kgK and c‘i for water as 4190

Note: logarithmic mean temperature difference 6 =

Where 6, = Ferlnperature difference between hot and cold fluid at
inlet.

Where 6,= teﬁllperature difference between hot and cold fluid at
outlet.
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- f 10. Steam at 0-07 bar condenses on the outside of a thin tube

0-025 m diameter and 2-75 m long. Cooling water of density 1000
kg/m?, ¢, 4-18 ki/kg K, flows through the tube at 0-6 m/s rising in
temperature from 12°C to 24°C. The surface heat transfer coeffi-
cient between steam and tube is 17000 W/m?K. Determine:

(a) the overall heat transfer coefficient 2

(b) the surface heat transfer coefficient between water and tube.

CHAPTER 5
LAWS OF PERFECT GASES

When a substance has been evaporated it can exist as a gas or
vapour and one of its most important characteristics is its elastic
property. For instance, if a certain volume of a liquid is put into a
vessel of large volume, the liquid will only partially fill the vessel,
taking up no more nor less volume than it did before, but when a
gas enters a vessel it immediately fills up every part of that vessel
no matter how large it is. Practically speaking, liquids cannot be
compressed nor expanded, but gases can be compressed into smaller
volumes and expanded to larger volumes.

A perfect gas is a theoretically ideal gas which strictly follows
Boyle’s and Charles’ laws of gases.

Consider a given mass of a perfect gas enclosed in a cylinder
by a gas-tight movable piston. When the piston is pushed inward,
the gas is compressed to a small volume, when pulled outward the
gas is expanded to a larger volume. However, not only is there a
change in volume but the pressure and temperature also change.
These three quantities, pressure, volume and temperature, are re-
lated to each other, and to determine their relationship it is usual to
perform experiments with each one of these quantities in turn kept
constant while observing the relationship between the other two.

In such basic laws, the pressure, the volume and temperature
must all be the absolute values, that is, measured from absolute zero,
and not measured from some artificial level. Absolute values were
explained in Chapter 1, a brief reminder will suffice:

ABSOLUTE PRESSURE (p) is the pressure measured above a
perfect vacuum, obtained by adding the atmospheric pressure to the
gauge pressure :

“Absolute” need not follow the given pressure, it is to be taken
as such unless the pressure is distinctly marked “gauge” to indicate
that it is a pressure gauge reading.

VOLUME (V). The volume of the gas is equal to the full volume
of the vessel containing it. Note that in the case of the cylinder of
an air compressor or reciprocating engine, the total volume of air
or gas includes the volume of the clearance space between the piston
at its top dead centre and the cylinder cover, as well as the piston
swept volume.
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ABSOLUTE TEMPERATURE (7). This is the temperature in de-
grees kelvin measured above the absolute zero of temperature.

TIK1=6["C] + 273

BOYLE’'S LAW

Boyle’s law states that the absolute pressure of fixed mass of a
perfect gas varies inversely as its volume if the temperature remains

unchanged.
1

Py therefore p XV = a constant.
Hence, py XV =pa%xV,

To illustrate this, imagine 2 m? of gas at a pressure of 100 kN/m?
(= 105 N/m? = 1 bar) contained in a cylinder with a gas-tight
movable piston as illustrated in Fig 9. When the piston is pushed
inward the pressure will increase as the gas is compressed to a
smaller volume and, provided the temperature remains unchanged,
the'product of pressure and volume will be a constant quantity for
all positions of the piston. From the known initial conditions the
constant is calculated:

p; X V; = constant
100x 2= 200
and the pressure at any other volume can be determined:
When the volume is 1-5 m?,
pyx1:5= 200
p,’= 1333 kN/m?

When the volume is 1 m?,

ps%x1 = 200
py= 200 kN/m? .
When the volume is 0-5 m?,
psx05= 200
pa= 400 kN/m?

And so on.
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VOLUME m?

Fig. 9

The variation of pressure with change of volume is shown in
Ehf: graph below the cylinder in Fig. 9. The graph produced by
joining up the plotted points is a rectangular hyperbola, conse-
quently we refer to compression or expansion where pV = constant
as hyperbolic compression or hyperbolic _expansion. When the
temperature is constant as in this example, the operation may also
be termed “isothermal”. '

Note that as the ordinates (vertical measurements) represent
pressure, and the abscissae (horizontal measurements) represent
volume, and since the product of pressure and volume is constant,
then all rectangles drawn from the axes with their corners touching
the curve, will be of equal area.

1

Example. 3-5 m? of air at a pressure of 20 kN/m? gauge is
compressed at constant temperature to a pressure of 425 kN/m?
gauge. Taking the atmospheric pressure as 100 kN/m? calculate the
final volume of air.

Initial absolute pressure = 20 +100 =120 kN/m?
Final absolute pressure = 425 + 100 = 525 kN/m?
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piVi= PV
120x3.5= 525%xV,
_ 120x 35 _ @ 3
, = 555 - 0-8 mH Ans.

CHARLES’ LAW

Charles’ law states that the volume of a fixed mass of a perfect
gas varies directly as its absolute temperature if the pressure re-
mains unchanged, also, the absolute pressure varies directly as the
absolute temperature if the volume remains unchanged.

From the above statement we have:

For constant pressure, V o<T' % = constant
h Vi _ v, Vi _ T,
ence, 7:‘— = 'Tz- or -‘—/—2‘ = -772

" For constant volume, p T l;-. = constant
hence El— = p—2 or E!- = Z.l_
i T, T, 123 T,

Example. The pressure of the air in a starting air vessel is 40
bar (= 40 X 105N/m? or 4 MN/m?) and the temperature is 24°C.Ifa

fire in the vicinity causes the temperature to rise to 65°C, find the

pressure of the air. Neglect any increase in volume of the vessel.

As the term “gauge” does not follow the given pressure, it is
assumed that this is the initial absolute pressure.

Initial absolute temperature = 24°C +273=297K
Final absolute temperature = 65°C + 273 =338K

P - P2 : - pil,
Ml ARNAL S
40x 338
P2 = " o97 = 45-52 bar

]

45-52 x 10° N/m? or 4-552 MN/m? Ans.
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COMBINATION OF BOYLE’S AND CHARLES’ LAWS

Each one of these laws states how one quantity varies with
another if the third quantity remains unchanged, but if the three
quantities change simultaneously, it is nécessary to combine these
laws in order to determine the final conditions of the gas.

Referring to Fig. 10 which again represents a cylinder with a
piston, gas-tight so that the mass of gas within the cylinder is always
the same. Let the gas be compressed from its initial state of pressure
p, volume V; and temperature T, to its final state of p,V, and T, but
to arrive at the final state let it pass through two stages, the first to
satisfy Boyle’s law and the second to satisfy Charles’ law.

. T1 N T
1! . gt 1!
X M 11 ’—EV
Ll Ll Ll

BvT, AR A
- wl N\ cel O\
-4 > 2
«“ v w»
- < N w *
o] [AAS = ~ _ b BV

VOLUME VOLUME VOLUME
Fig. 10

Imagine the piston pushed inward-to compress the gas until it
reaches the final pressure of p, and let its volume then be repre-
sented by V. Normally the temperature would tend to increase due
to the work done in compressing the gas, but any heat so generated
must be taken away from it during compression so that its tempera-
ture remains unchanged at T; hence following Boyle’s law:

Vi = pV @ -

Now apply heat to raise the temperature from T, to T, and at the _
same time draw the piston outward to prevent a rise of pressure and
keep it constant at p,. The volume will increase in direct proportion
to the increase in absolute temperature according to Charles’ law:

V., T,
T,

(ii)

v
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By substituting the value of V' from (ii) into (i) this quantity
will be eliminated:

" VoI,
From (ii) V=
T,
Substituting into (i)
VoI,
V, = p, X
P11 = P2 7
2\ o pVa
1 T,

This combined law of Boyle’s and Charles’ is true for a given
mass of any perfect gas subjected to any form of compression or
expansion.

Example. 0-5 m? of a perfect gas at a pressure of 0-95 bar (= 95
kN/m?) and the temperature 17°C are compressed to a volume of
0-125 m3 and the final pressure is 5-6 bar (= 560 kN/m?). Calculate
the final temperature.

Initial absolute temperature = 290K

vy _ piVa
T, T,
95x0-5 _ 560x0-125
2900 L5
7, = 360x0:125 x 290 :
27 7 95%05
= 4274K
= 154-4°C Ans.
CHARACTERISTIC EQUATION

Since pV/T is a constant, its value can be determined fora given
mass of any perfect gas. To form a basis on which to work, the
constant is calculated on the specific volume (v) of the gas, that is,
the volume in cubic metres occupied by a mass of one kilogramme.
The constant so obtained is termed the gas constant, it is represented
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by R and is different for all different gases:

RTZ=R or pv=RT

The volume occupied by m kg of mass being represented by V
then: i

pV = mRT

This expression is called the characteristic equation of a perfect
gas.

Taking air as an example, experiments show that at standard
atmospheric pressure and temperature, that is, at 101-325 kN/m? and
0°C, the specific volume is 0-7734 m®/kg. Inserting these values to
find R: '

' 2y
. T
101-325 [kN/m?] X 0-7734 [m*kg]
273 [K]

0287 kl/kgK
Note the units for R. Repeating the above with the units only:

_ KN xmikg _ KN m? 1
&= K = m kg K

R

Il

kNm _
= TeK - kKNm/kgK = kIkgK
Example. An air compressor delivers 0-2 m? of air at a pressure
of 850 kN/m? and 31°C into an air reservoir. Taking the gas constant
for air as 0-287 kJ/kgK, calculate the mass of air delivered.

pV = mRT
_pv
™= RT
_ 850x02 .
= 0287x 302 — [948ke Ans. -

f UNIVERSAL GAS CONSTANT

The kilogramme-mol of a substance is a mass of that substance
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numerically equal to its molecular weight. The kilogramme-mol
may simply be abbreviated to mol.

As examples, the molecular weight of oxygen is 32, therefore
the mass of one mol of oxygen is 32 kg. The molecular weight of
hydrogen is 2 hence one mol of hydrogen is a mass of 2 kg. And so
on.

f AVOGADRO’S LAW states that under equal conditions of
temperature and pressure, equal volumes of all gases contain the
same number of molecules.

Consider two gases, one of mass m; of molecular weight M, and
containing n, molecules, the other of mass m;, of molecular weight

M, and containing n, molecules:

; my _ mM,
Ratio of masses = — =
my  mM,
For equal volumes of the gases at the same temperature and press-
ure, the gases contain an equal number of molecules, therefore n, =
n, and cancel:

my M,

m, M,
From the characteristic gas equation pV = mRT, substituting for m
= pVIRT:

piVi/R,Ty _ _I‘_l_‘ . PiViR,T, - M,
pVolR T, M, 1 .P2V2R1T1 M,
pV and T cancel because they are equal, therefore,
R, _ M,
R—l‘ = 'M; or RlMl = RzMz

Hence the product of the gas constant R and the molecular
weight M is the same for all gases. This product is termed the
Universal Gas Constant, it is represented by R, and its value has
been found by experiment to be 8-314 kJ/molK.

R0=RM

Any particular gas constant R can therefore be found if its
molecular weight is known.
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Thus, the molecular weight of nitrogen is 28, therefore the gas
constant for nitrogen is:

f DALTON’S LAW OF PARTIAL PRESSURES

This law states that the pressure exerted in a vessel by a mixture
of gases is equal to the sum of the pressures that each separate gas
would exert if it alone occupied the whole volume of the vessel.

The pressure exerted by each gas is termed a partial pressure:
Total pressure of the mixture .
_ partial press. partial press. partial press.
~ due to gas; dueto gas, dueto gas;
p = p1+p2+p3+etc.
From the characteristic gas equation pV = mRT, substituting for
the pressure of each gas, and also for the mixture: '
R R,T. T
mRT _ mRT, +m222+m3R33+

v v, v Vs

etc.

Since it can be considered as though each gas on its own
occupied the whole space then the volume V is common throughout.
The temperature is also common, therefore V and T being common
to all terms will cancel:

mRT T

mR = mR, + myRy + m3Rs + etc.

where m is the total mass of the mixture and R is the gas constant
of the mixture. '

f Example. The analysis by mass of a sample of air is 23- 14%
oxygen, 75-53% nitrogen, 1-28% argon and 0-05% carbon dioxide.
Estimate the gas constant for air (to the nearest four figures) taking
the molecular weights of O,, N,, Ar and CO, as 32, 28, 40 and 44
respectively, and the universal gas constant R, = 8-314 kJ/mol K.
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Ro . .
R = o Considering 1 kg of air:
Oxygen R, = §-'% = 0-2598
mR, = 02314 x0-2598 = 0:06012
; 8314
Nitrogen R, = g = 0-2969
myR, = 0-7553x0-2969 = 02242
Argon R; = 82’% = 0-2078
myR; = 0-0128 X 0-2078 = 0-002661
Carbondioxide R, = % = 0-1889
myR, = 0-0005x 0-1889 = 0-00009445

EZmR = 028707545

02871 _ 42871 kJ/kgK Ans.

R air = 1

' f PARTIAL VOLUMES. If each gas of a mixture in a closed
vessel at the full volume of V and partial pressure p,(p,, etc.), is
considered as being compressed until its pressure is the full pressure
p and its volume is its partial volume V, (V,, etc.), then, since its
temperature remains the same:

pXV=pxV; and p,XV=pXxV,etc.
S (@rtpytetc)XV=px(V,+V,+etc)

hence, the total volume of the mixture is equal to the sum of the

partial volumes of the gases at the same total pressure and tempera-
ture.

2 n therefore:

2V :

the ratio of the partial volumes is equal to the ratio of the partial

pressures. :
Dalton’s law is also applied for the determination of the quan-

tity of air-leakage into steam condensers. An example is given in

Chapter 10 after the study of properties of steam.

Also,
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SPECIFIC HEATS OF GASES

The specific heat (c) of a substance is defined as the quantity
of heat energy required to be transferred to unit mass of that
substance to raise its temperature by one.degree. Hence, the quantity
(Q) of heat in kilojoules required to be given to a mass of m
kilogrammes of the substance to raise its temperature from T; to T,
is:

Q[kJ] = m{kg] X c[kI/kgK] X (T, - T}) [K]

Since the characteristics of gases vary considerably at different
temperatures and pressures, heat energy may be transferred under
an infinite number of conditions, therefore the specific heat can
have an infinite number of different values. Consider, however, two
important conditions under which heat may be transferred, (i) while
the volume of the gas remains constant, (ii) while the pressure of
the gas remains constant. The specific heat of a gas at constant
volume is represented by cy.

The specific heat of a gas at constant pressure is represented by
cp. This is a higher value than ¢y because, when the gas is receiving
heat it must be allowed to expand in volume to prevent a rise in
pressure and, whilst expanding, the gas is expending energy in
doing external work, hence extra heat energy must be supplied
equivalent to the external work done.

Example. A quantity of air of mass 0-23 kg, pressure 100 kN/m?,
volume 0-1934 m? and temperature 20°C is enclosed in a cylinder
with a gas-tight movable piston, and heat energy is transferred to
the air to raise its temperature to 142°C.

(a) If the piston is prevented from moving during heat transfer
so that the volume of the air remains unchanged, calculate (i) the
heat supplied, taking the specific heat at constant volume cy = 0-718
kJ/kgK, and (ii) the final pressure.

(b) If the piston moves to allow the air to expand in volume at
such a rate as to keep the pressure constant, calculate (i) the heat
supplied, taking the specific heat at constant pressure cp = 1-005
kJ/kgK, and (ii) the final volume. -

Initial absolute temperature = 293K
Final absolute temperature = 415K

Temperature rise = 142 - 20 = 122°C = 122K
mXcy X (T,—T,)
023 x0-718 x 122

(a) 0
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20-15kJ Ans. (a)(i)

vy _ V2
T1 T2
The volume is constant .. V, = V; and cancels, ~
T.
Py = 2;—:—3 (which is Charles’ lJaw)
1
_ l%;_;l_s = 141-6 kN/m? Ans. (a)(ii)
(b) Q = mXCPX(T2—'T1)
= 0-23 x 1-005 x 122
= 28-19kJ Ans. (b)(i)
nVi _ paVa
Tl T2

The pressure is constant .". p; = p, and cancels

ViT, e ,
. (which is Charles’ law)
1

_ 0-1934x415
- 293

Va

= 02738 m® Ans. (b)(ii)

Note the difference between the quantity of heat energy sup-
plied to the air in the two cases:

28-19-20-15=8-04 kJ

This amount of heat energy was expended in moving the piston:

Referring to Fig. 11, the piston is pushed forward by the gas at
a constant pressure of, say p[kN/m?]. Let A[m?] represent the area
of the piston, then the total force on the piston is p X A[kN]. If the
piston moves S[metres], the work done, being the product of force
and distance, is p X A X SkNm =kJ]. The product of the area A and

= T
St
g 21 11
= |_J
v, >
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the distance moved S is the volume swept through by the piston,
hence,
Work done =p(V,-V})

In the last example, when the pressure was constant at 100
kN/m? the volume of the air increased from 0-1934 m3to 0-2738 m3
so that the piston swept volume is the difference between these.

Work done = p(V,-V))
100(0-2738 - 0-1934)
100 x 0-0804

8-:04 kKJ

Showing that the extra heat energy given to the air at constant
pressure compared with that at constant volume is the heat energy
expended in doing external work by pushing the piston forward.

ENERGY EQUATION (CLOSED SYSTEMS)

The internal energy (U) of a gas is the energy contained in it as
stored up work by virtue of the movement of its molecules.

JOULE’S LAW states that the internal energy of a gas depends
only upon its temperature and is independent of changes in pressure
and volume. .

By the principle of the conservation of energy, that is, that
energy can neither be created nor destroyed, it follows that the total
heat energy (Q) transferred to a gas will be the sum of the increase
in its internal energy (U, — U,) and any work (W) that is done by
the gas during the transfer of heat energy to it, thus:

Heat energy Increase in External
transferred =  internalenergy + work done
to the gas of the gas _ by the gas

Q= U,-Up+W )

This is known as the First Law of Thermodynamics.

Any of these three terms may be negative i.e. heat rejected
(extracted), decrease of internal energy, work done on the gas
(compression).

These are non-flow (reversible) processes for perfect gases.
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RELATIONSHIP BETWEEN SPECIFIC HEATS. Referring again to
the last example, with Fig. 11, and applying the energy equation:

In the first case, heat energy is supplied to the gas to raise its
temperature from T, to T, at constant-volume, the heat supplied is
mcy(T,— T,) but no work is done because, as the volume is constant,
the piston does not move.

Heat supplied = Increase in + External
internal energy work done
mey(T,—Ty) = (U,-Up) + 0 )

In the second case, heat energy is supplied to raise the tempera-
ture through the same range, from T, to T, at constant pressure.

" The heat supplied is mcp (T, — T;) and external work is done equal

to p(V, — V,). Expressing the work done in terms of temperature
by substituting the value of V from the characteristic gas equation,
and inserting into the energy equation,

mRT, mRT,
P(V2—V1)=P{ 2———‘}=mR<T2—T1>
‘ p p
Heat supplied = Increase in + External
internal energy work done
ch(Tz - Tl) = (U2 = Ul) + mR (Tz - Tl) B
v Up=U; = mep(T,—T1) —mR(T,—T) (ii)

Since the temperature change is the same in each case then the
change in internal energy is the same, hence, from (i) and (ii):

mey(To—Ty) = mep(Ty—Ty) —=mR(To—Ty)
m and (T, — T,) are common to all terms and cancel:
cy = cp—R -
SR = cp—cy
Inserting the values for air as previously given,
R = 1-005-0-718 = 0-287 kJ/kgK
RATIO OF SPECIFIC HEATS. Another important relationship

between the specific heats is the ratio cp/cy, the symbol denoting
this ratio is v:

Cp

'Y=C—v
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and for air this ratio is:

1-005
Y= o718 = 1
Taking this further: 4
Cp .
1= e . Cp = Yoy

substituting this into the relationship:

R =cp—cy
= Yev—Cy
- R =cy(y-1)
orcy = Lo
v-1

‘These expressions will be found useful in later calculations.

ENTHALPY

The enthalpy (H) of any fluid (liquid, vapour, gas) is a conveni-
ent grouping of terms representing (in open systems for reversible
steady-flow processes) the sum of two kinds of energy transfer, i.e.
internal energy (U) and work transfer (pV). \

H= U+pV ()
h = u+pv (J/kg) specific enthalpy

ENERGY EQUATION (OPEN SYSTEMS).

Consider mass of fluid m,, volume V,, entering system.

Work done against resistance = p,V,.

Consider mass of fluid m,, volume V,, leaving system.

Work done against resistance = p,V,.

If m; = m, (steady flow process, mass of fluid within system
constant)

< PV =poVs.

This is a work, or energy, transfer through the system.

Referring to Fig 12, the mass of fluid within the boundary is
constant, i.e. the mass entering equals the mass leaving.
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i 1
] 1 1
my 1 °m [ -
& : \” ; pl 1 & § ——l— '
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l I
i
=W
hy h,

q
Fig. 12

Let hy and b, = specific enthalpy of fluid entering and leaving
the system respectively (kJ/kg).

Letc;andc,; = velocity of fluid entering and leaving the system
respectively (m/s)

Letg = quantity of heat per unit mass crossing the
boundary into the system (kJ/kg)

Letw = external work done per unit mass by the fluid
(KJ/kg)

Assume no change in potential energy, then:

h; + Kinetic Energy, + ¢ = h, + Kinetic Energy, + w.
ie. h+¥i+q=h+V+w
This is known as the Steady Flow Energy Equation.
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Example. The working fluid passes through a gas turbine at a
steady rate of 10 kg/s. It enters with a velocity of 100 m/s and
specific enthalpy of 2000 kJ/kg and leaves at 50 m/s with a specific
enthalpy of 1500 kJ/kg. If the heat lost to surroundings, as the fluid
passes through the turbine, is 40 kJ/kg calculate the power de-

veloped.

Steady flow energy equation:
h, + Vac2+q=h,+ Yac2+w
2000 x 10% + V2 x 1002 — 40 X 10% = 1500 x 10°+ 12 X 50?2 + w
(Note: g is negative as it is heat crossing the boundary out of
the system).
460 x 10° + 1A(100* — 50%) = w
: 46375 x 10° = w

w = 464 X 10°]
power = 4-64 X 10°J/s
, = 4.64 MW
Note: For perfect gases:
hy — by = (g + pv)) — (g + p1vy)

T, = T) + R(T, - Ty)
cp(T, — Ty)
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TEST EXAMPLES 5

1. Assuming compression according to the law pV = constant:
(i) Calculate the final volume when 1 m® of gas at 120 kN/m? is
compressed to a pressure of 960 kN/m?. z

(ii) Calculate the initial volume of gas at a pressure of 1-05 bar
which will occupy a volume of 5-6 m*® when it is compressed to a
pressure of 42 bar.

2. 0-2 m® of gas at a pressure of 1350 kN/m? and temperature
177°C is expanded in a cylinder to a volume of 0-9 m* and pressure
250 kN/m?. Calculate the final temperature.

. 3. A receiver containing 2 m? of air at 10 bar, 20°C has a relief

valve set to operate at 20 bar. If 8% of the air were to leak out,

- calculate the temperature at which the relief valve would operate.
Note: for air R = 287 JkgK

4. An air reservoir contains 20 kg of air at 3200 kN/m? gauge and
16°C. Calculate the new pressure and heat energy transfer if the air
£ | isheated to 35°C. Neglect any expansion of the reservoir, take R for
oy air = 0-287 kJ/kgK, specific heat at constant volume c, = 0-718
kJ/kg K, and atmospheric pressure = 100 kN/m?2.

5. The dimensions of a large room are 12 m by 16-5 m by 4 m.

The air is completely changed once every 30 minutes and the

- temperature is maintained at 21°C. If the temperature of the outside

atmosphere is 30°C, calculate the quantity of heat required to be

extracted from the supply air per hour, and the equivalent power,

taking the density of air at atmospheric pressure and 0°C as 1-293
kg/m3 and the specific heat at constant pressure as 1-005 kJ/kgK.

6. In a steady flow process the working fluid enters and leaves a
horizontal system with negligible velocity. The temperature drop
from inlet to outlet is 480°C and the heat losses from the system are
10 kJ/kg of fluid. Determine the power output from the system for
a fluid flow of 1-7 kg/s.

For fluid cp = 900 J/kg K.

7. Heat energy is transferred to 1-36 kg of air which causes its
temperature to increase from 40°C to 468°C. Calculate, for the two
separate cases of heat transfer at (a) constant volume, (b) constant
pressure:

(i) the quantity of heat energy transferred,

(ii) the external work done,

(iii) the increase in internal energy
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Take cy and cp as 0-718 and 1-005 kJ/kgK respectively.

8. A closed vessel of 500 cm? capacity contains a sample of flue
gas at 1-015 bar and 20°C. If the analysis of the gas by volume is
10% carbon dioxide, 8% oxygen, and 82% nitrogen, calculate the

partial pressure and mass of each constituent in the sample.

R for CO,, O, and N, = 0-189, 0-26 and 0-297 kJ/kg K respec-
tively.

9. A gas is discharged from a horizontal convergent nozzle at a
steady rate of 1 kg/s. Conditions at inlet are 10 bar and 200°C and
at exit 5 bar and 100°C. The change in specific internal energy
passing through the nozzle is 80 kJ/kg and heat lost to the surrounds
is negligible. If the gas enters the nozzle at 50 m/s determine the
exit velocity.

For the gas M is 30 and R, may be taken as 8-314 kJ/molK.

f 10. A vessel of volume 0-4 m? contains 0-45 kg of carbon
monoxide and 1 kg of air at 15°C. Calculate:

(a) the total pressure in the vessel:

(b) the partial pressure of the nitrogen.

Note: Atomic mass relationships; carbon 12, oxygen 16, nitrogen
14.
Universal Gas Constant = 8-314 kJ/mol K.
Air is 23% oxygen by mass.

a0
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CHAPTER 6

EXPANSION AND COMPRESSION OF
PERFECT GASES ~

PRESSURE

VOLUME

Fig. 13

COMPRESSION OF A GAS IN A CLOSED SYSTEM

When a gas is compressed in a cylinder by the inward move-
ment of a gas-tight piston (Fig. 13), the pressure of the gas increases
as the volume decreases. The work done on the gas to compress it
appears as heat energy in the gas and the temperature tends to rise.
This effect can readily be seen with a tyre inflator; in pumping up
the tyre the discharge end of the inflator gets hot due to compressing
the air.

ISOTHERMAL COMPRESSION. Imagine the piston pushed in-
ward slowly to compress the gas and, at the same time, let heat be
taken away via the cylinder walls (by a water-jacket or other means)
to avoid any rise in temperature. If the gas could be compressed in
this manner, at constant temperature, the process would be referred
to as isothermal compression and the relationship between pressure

and volume would follow Boyle’s law as stated in the previous
chapter:

pV=constant .. p,V,=p,V,
ADIABATIC COMPRESSION. Now imagine the piston pushed
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inward quickly so that there is insufficient time for any heat energy
to be transferred from the gas to the cylinder walls. All the work
done in compressing the gas appears as stored up heat energy. The
temperature at the end of compression will therefore be high an.d,
for the same ratio of compression as the first case, the pressure will
consequently be higher. This form of compression, where no heat
energy transfer takes place between the gas and an external source,
is known as adiabatic compression. The relationship between press-
ure and volume for adiabatic compression is:

pVY = constant A A/ AR

where Y (gamma) is the ratio of the specific heat of the gas at
constant pressure to the specific heat at constant volume, thus,

POLYTROPIC COMPRESSION. In practice, neither isothermal
nor adiabatic processes can be achieved perfectly. Some heat energy
is always lost from the gas through the cylinder walls, more es-
pecially if the cylinderis water cooled, but this is never as much as
the whole amount of the generated heat of compression. (;onse—
quently, the compression curve representing the relationship be-
tween pressure and volume lies somewhere between the two
theoretical cases of isothermal and adiabatic. Such compression,
where a partial amount of heat energy exchange take§ place between
the gas and an outside source during the process, is termed poly-
tropic compression and the compression curve follows the law:

pV® = constant < pVir=p,V°

Thus, the law pV™ = constant may be taken as the general case
to cover all forms of compression from isothermal to adiabatic
wherein the value of n for isothermal compression is unity, for
adiabatic compression n = 7, and for polytropic compression n
generally lies somewhere between 1 and ¥. ;

EXPANSION OF A GAS IN A CLOSED SYSTEM

When a gas is expanded in a cylinder (Fig. 14) the pressure falls
and the volume increases as the piston is pushed outward by the
energy in the gas.
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_____,
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PRESSURE

VOLUME

Fig. 14

This is exactly the opposite to compression. Work is done by
the gas in pushing the piston outward and there is a tendency for the
temperature to fall due to the heat energy in the gas being converted
into mechanical energy. Therefore to expand the gas isothermally,
heat energy must be transferred to the gas from an external source
during the expansion in order to maintain its temperature constant.
The expansion would then follow Boyle’s law, pV = constant.

The gas would expand adiabatically if no heat energy transfer,
to or from the gas, occurs during the expansion, the external work
done in pushing the piston forward being entirely at the expense of
the stored up heat energy. Therefore the temperature of the gas will
fall during the expansion. As for adiabatic compression, the law for
adiabatic expansion is pVY = constant.

During polytropic expansion, a partial amount of heat energy

- will be transferred to the gas from an outside source but not

sufficient to maintain a uniform temperature during the expansion.
The law for polytropic expansion is pV™ = constant as it is for
polytropic compression.

With reference to Figs. 13 and 14 note that the adiabatic curve
is the steepest, the isothermal curve is the least steep, and the
polytropic curve lies between the two. Thus, the higher the index of
the law of expansion or compression, the steeper will be the curve.

It must also be noted that for any mode of expansion or com-
pression in a closed system, the combination of Boyle’s and
Charles’ laws, and the characteristic gas equation given in the
previous chapter, are always true:
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\% V.
BTK = constant p——}ll = P___;;
pV = mRT

Example. 0-25 m3 of air at 90 kN/m? and 10°C are compressed
in an engine cylinder to a volume of 0-05m?, the law.of compression
being pV'4 = constant. Calculate (i) the final pressure, (ii) the final
temperature, (iii) the mass of air in the cylinder, taking the charac-
teristic gas constant for air R = 0-287 kJ/kgK.

pr11.4= p2V21.4
90 x 0-25™4 = p, x 0-05'4
_ 9%0x025'4
Pr= oo
= 90 x 54 =856-7 kN/m? Ans. (i)
p\V, _pV,
Lot v L
"90x0-25 _ 856-7 x 0-05
283 13
_ 283x8567x005 _
T, = 90 X 025 = 5388 K
= 265-8°C Ans. (ii)
p,\V,= mRT,
_ 90x025 _
m = 0287x 283 = 0277 kg Ans. (iii)

Example. 0-07 m® of gas at 4-14 MN/m? is expanded in an
engine cylinder and the pressure at the end of expansion is 310
kN/m?2. If expansion follows the law pV135 = constant, find the final
volume.

pr11.35 = p2V21.35
4140 x 0-07'3 = 310X V135

1354 /4140

=0 3
310 = 04774 m’ Ans.

vV, = 007 x

-
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Example. 0-014 m? of gas at 3-15 MN/m? is expanded in a closed
system to a volume of 0-154 m? and the final pressure is 120 kN/m?.
If the expansion takes place according to the law pV™ = constant,
find the value of n.

pVy" = pVy #
3150 % 0-0147 = 120 x 0-1547

3150 _ [0-154]"

120 ~ |0.014

2625= 11

n = 1-363 Ans.

DETERMINATION OF » FROM GRAPH

It will be appreciated that it would be most difficult to obtain
two pairs of sufficiently accurate values of pressure and volume
from a running engine to enable the law of expansion or com-
pression to be determined as in the previous example. One practical
method of finding a fairly close approximation of the law is as
follows:

(i) measure a series of connected values of p and V from the
curve of an indicator diagram, (ii) reduce the equation pV*=C to a
straight line logarithmic equation, (iii) draw a straight line graph as
near as possible through the plotted points of log p and log V to
eliminate slight errors of measurement, (iv) determine the law of
this graph to obtain the value of n. Thus:

pxv =C
logp+nlogV = logC
logp = logC—nlogV

This is the same form of equation as,
y = a-bx

which represents a straight line graph.

The terms log p and log V are the two variables comparable with
y and x respectively, and log C and n are constants comparable with
a and b respectively. The constant z (like constant b) represents the
slope of the straight-line graph and, being a negative value, the line
will slope downwards from left to right.
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Example. The following related values of the pressure p in
kN/m? and the volume V in m* were measured from the compression
curve of an internal combustion engine indicator diagram. Assum-
ing that p and V are connected by the law pV* = C, find the value of
n.

3450 2350- 1725 680 270 130
1% 0-0085 0-0113 00142 00283 (00566 0-0991

The scales of the graph can be of any convenient choice. In this
case both pressure and volume can be expressed in more convenient
units, the pressure in bars (1 bar = 10° N/m? = 10? kN/m?) to

Qo
80-3 15 : N
-1

%~9 O - 2 13 -4 15 16 17 -8 119 20

LOG V

Fig. 15
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proportionally reduce the high figures, and the volume in litres (10°
litres = 1 m3) to express all volumes above unity, thereby avoiding
negative logs and so reducing labour. Hence the following tabulated
values of p and V are in bars and litres respectively with their
corresponding logarithms to obtain graph plotting points from the
respective pairs of log p and log V (base 10 used here).

plbar] logp V (litre] logV
34.5 1-5378 g5 0-9294
235 1-3711 11.3 1.0531
17:25 1-2368 142 1-1523
68 0-8325 28-3 1.4518
27 04314 56-6 1-7528
13 0-1139 99-1 1.9961

The graph is then plotted as shown in Fig. 15. Note that it is not
necessary to commence at zero origin when only the slope of the
line (value of n) is required, a larger graph on the available squared
paper can be drawn by starting and finishing to suit the minimum
and maximum values to be plotted.

‘Choosing any two points on the line such as those shown:

_ decrease of log p
"~ decrease of log V

_ 1:5-045
T 1.95-095

1-35
S = 1.35

log C—135log V'
Cx V135
C Ans.

logp

p
pVi3s

RATIOS OF EXPANSION AND COMPRESSION

‘The ratio of expansion of gas in a cylinder is the ratio of the
volume at the end of expansion to the volume at the beginning of
expansion. It is usually denoted by r.

final volume

Ratio of expansion = r = T
: initial volume

EXPANSION AND COMPRESSION OF PERFECT GASES 69

The ratio of compression is the ratio of the volume of the gas
at the beginning of compression to the volume at the end of com-
pression. This can also be denoted by r.

. . initial volume
Ratio of compression = r = ———————
i - final volume

It will be seen that in each of the above ratios, it is the larger
volume divided by the smaller, therefore, the ratio of expansion and
ratio of compression is always greater than unity.

RELATIONSHIPS BETWEEN TEMPERATURE AND
VOLUME, AND TEMPERATURE AND PRESSURE,
WHEN pV" = C

As stated previously, the equations,

p,Vy bV
PV =R ¥S ek == = —T;
are always true for any kind of expansion or compression of a
perfect gas in a closed system. Some problems arise, however,
where neither p, nor p, are given, and the unknown temperature or
volume has to be solved by substituting the value of one of the
pressures from one equation into the other. Similarly, where neither
volume is given, substitution has to be made for one of the volumes
to obtain the unknown temperature or pressure.
Substitution can be made in one of the above equations to
eliminate either pressure or volume and so derive relationships for
direct solution, as follows.

n n g pZVg
p\Vi = b3 so By = v
Substituting this value of p, into the combined law equation:
p\V, pY,
TN .
pXVixXV, PV,
,xv: T,

T, xVixp,XV, = T,Xp,xVixV,
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T, _ PpX VixV,
T, p,XV,XV}
p, cancels,
dividing V,"by V, =V,"+ V, = V™1,
dividing V,"by V, =V "+ V, =V,
et

n—-1
vl

o).

g R
Il
——
= l~<

¥

Vn
Again from p,V} = p,V3 v = p; :
1
* V = qux_‘/i
1 2 le/,

Substituting this value of V, into the combined law equation:

AR = AL
T, T,

plez"XVz psz2

T, Xpy* T,
T, xp¥xp,xV, = T,Xxp, X PXV,
T, _ plkplz’"sz
T, pixp,XYV,

V, cancels,

dividing p, by p}* = p; + p{"* = p*
dividing p, by p§* = p, + Py = p;*

L_nm
T, g

i
I}
—
SIS
"—v—"_‘
&
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n-1

5.—.— By / (11)
T, D, \11)

Erom (i) and (ii) we have the very useful relationship:

n-1

£={2T4=¥ﬂ7'
T, |V pzjf

For an adiabatic process, the adiabatic index vy is substituted for
the polytropic index n.

Example. Air is expanded adiabatically from a pressure of 800
KN/m? to 128 kN/m?. If the final temperature is 57°C, calculate the
temperature at the beginning of expansion, taking y = 1-4.

1=1
Toeanlal
T, P,
T, _ [s00)”
330  |128
T, = 330%x6-25%

5571K
= 2841°C Ans.

Example. The ratio of compression in a petrol engine is 91to 1.
Find the temperature of the gas at the end of compression if the
temperature at the beginning is 24°C, assuming compression to
follow the law pV* = constant, where n = 1-36.

_ w1
E_ ﬁ‘n 1 x I_z__ hn
T, W T, |V,

T, = 297x 9936 = 655-1K
= 3821°C Ans.

Example. The volume and temperature of a gas at iF
of expansion are 0-0056 m® and 183°C, at the end of exp

values are 0-0238 m> and 22°C respectively. Assuming €xXpansion
follows the law pV” = C, find the value of n.




Vn"

=y

—— e YT Y

e T e

72 REED’S APPLIED HEAT
n-1
T, { Vy
T, Vi
456 _ {0-0238 ot
295 ~ |0:0056
1.546 = 42581
n = 1-301 Ans.
WORK TRANSFER

Firstly, consider a gas expanding at consiant pressure in a
cylinder fitted with a gas-tight piston (also refer to Fig. 11 with notes
in Chapter 5).

Work done [kJ = kN m] = force [kN] X distance [m]

The total force [kN] on the piston is the product of the pressure
p[kN/m?] of the gas and the area A[m?] of the piston and, if the piston
moves through a distance of S metres as the gas expands, then,

Work done=p XA XS

The product of the piston area A and the distance it moves S, is
the volume swept through by the piston, this is also the increase in
volume of the gas in the cylinder. If V, is the volume of the gas at
the beginning of the expansion, and V, is the volume at the end of
expansion, the A X § is equal to V, -V cubic metres, hence,

Work done=p (V,-V))

<—(V,= V) ——=

R Bk LRk
} "/,’. .4,/‘, 3 /’,:,'/‘
p| [ are
T=p(VV)
Rz
Yz s
¥ ya
C'fV,-)

Y3

Fig. 16

Fig. 16 shows the pressure-volume diagram representing work
done at constant pressure. The graph is a straight horizontal line and
the area under it is a rectangle. The area of a rectangle is height X
length which, in this case, is p X (V, — V,). Hence the area under

" the pressure-volume line represents work done.
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Now consider cases where the pressure falls during the expan-
sion of the gas. The formula giving the area under the polytropic
curve representing the general relationship between pressure and
volume, i.e. pV* = C can only be derived satisfactorily by the use of
the calculus. The expression is illustrated in Fig. 16 and derived in
the following example: -

f EJgar_r{ple. A quantity of gas undergoes a non-flow process
from an initial pressure of p; and volume V), to a final pressure p,
and volume V,.

(a) Given that the area beneath the pV curve is given by:

ledV
1

show that the total area beneath the pV curve may be written as:
pV,-p\V,
1-n

(b) During the process a quantity of heat g per unit mass is trans-
ferred. Show that g is given by:

=)o)

pvr=C
¢
P=vy=
Area'=JdeV
1
V.
=C IV Vo dv
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_ pV" (V %—n_ V%—n)

1-n

p,V,-pV,
=

Hear transfer = Change of internal energy + External work

Area = Ans. (a)

PyVa =Yy
=5 @, et
pv = RT

BT, ~T)
g=cy -T)+—7—"

- (cv +1—’f—n)(T2-T1) Ans. (b)

Work done during _ 21V1 =P,
polytropic expansion =  n-—1

This is the general expression for work done. For adiabatic
expansion, n is replaced by 7. For isothermal expansion however,
since the value of n is 1, and as p,V, = p,V, then substitution in this
expression for work will produce 0 + 0 which is indeterminate. A
different expression is therefore necessary to obtain work during
isothermal expansion (see Fig. 16):

pv=C
C
P=y
Area = r pdv
1
V.
2 dV
= C v v
= C (InV,-InV)

1% -
=p Invl
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Work done during

X . =pV
isothermal expansion ¥ lar

where r is the ratio of expansion.

The above expressions give the work done by the gas during
expansion. The same expressions give the work done on the gas
during compression. ,

In the case of expansion the initial condition of p,V; will exceed
the final condition of p,V, and the expression for work will produce
a positive result, indicating that work is done by the gas in pushing
the piston forward. Conversely, for compression, the initial condi-
tion of p;V; will be less than the final condition of p,V, and therefore
a negative result will be obtained, indicating that work is done on
the gas by the piston.

It is important to bear in mind that in calculating work, the units
must be consistent. For example, to express work in kilojoules, the
pressure must be in kN/m? and the volume in m?3, thus,

KNm2xm3=kNm=kJ

Work is transfer of energy, therefore the above can be referred
to as work transfer from the closed system within the boundary of
the cylinder to the external mechanism, or vice-versa. In the first
case, when the gas expands, work is being transferred from the
energy in the gas to the piston, which, in turn, transmits the work
through connecting mechanism to the crank shaft, the work transfer
in this case is referred to as being positive. In the second case, when
the gas is compressed, work is being transferred from the crank
shaft, through the sconnecting mechanism and piston to the gas,
thereby increasing the energy in the gas, and this work transfer is
called negative.

Further, since pV = mRT, the expressions for work may be stated
in terms of mRT instead of pV:

Polytropic expansion

piVi-FV, _ mR (T, -T))

e - R z—1

Isothermal expansion
Work=pV Inr=mRT Inr

Example. 0-04 m? of gas at a pressure of 1482 kN/m? is ex-
panded isothermally until the volume is 0-09 m?. Calculate the work
done during the expansion.
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Work done=pV Inr
final volume _ 0-09 _

- = = 2.95
= ‘nitial volume ~ 004 ~ >
Work done = 1482x 0-04 x 0-81809
= 48-08kJ Ans.

Example. 7-08 litres of air at a pressure of 13-79 bar and
temperature 335°C are expanded according to the law pV'132 =
constant, and the final pressure is 1-206 bar. Calculate (i) the volume
at the end of expansion, (ii) the work transfer from the air, (iii) the
temperature at the end of expansion, (iv) the mass of air in the
system, taking R = 0-287 kJ/kgK.

p,V,1% = pV,i%
1379 x 0-00708!32 = 120-6 x V,!'*2

“32«, 1379
120-6

= 0-04484 m> or 44-84 litres Amns. (i)

Vv, = 000708 x

Note that if the units of pressure and volume are of the same
kind on each side of the equation, the units cancel each other out
and hence any convenient units can be used. The above could
therefore be worked in bars of pressure and litres of volume in which
the question data is given. However, as pointed out, it is essential
to work in fundamental units in such expressions as used in parts
(ii) and (iv) of this problem, it is preferential to use fundamental
units throughout by expressing the pressure in kN/m? and the

volume in m3.
L

V,-p,V. D
Work = P1V1—Pa2Ya
n-1
_ 1379x0-00708— 120-6 x 0-04484
- 1-32-1 '
= 13-61kJ Ans. (ii)
pV: _ PV,
T, T,
1379% 0-00708 _ 120-6 x 0-04484
608 " A

N
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7. = 608 x 120-6 x 0-04484
2 1379 x 0-00708
T, = 3366 K
= 63-6°C Ans. (iii)
piVy = mRT,
Gk 1379 x 0-00708
0-287 x 608

0-05595kg Ans. (iv)

Example. A perfect gas is compressed in a cylinder according
to the law pV'3 = constant. The initial condition of the gas is 1-05
bar, 0-34 m? and 17°C. If the final pressure is 6-32 bar, calculate (i)
the mass of gas in the cylinder, (ii) the final volume, (iii) the final
temperature, (iv) the work done to compress the gas, (v) the change
in internal energy, (vi) the transfer of heat between the gas and
cylinder walls.

Take ¢, = 0-7175 kJ/kgK and R = 0-287 kJ/kgK.

p,V, = mRT,

. _ 105x034
= 0287 x290

04289 kg Ans. (i)

I

pVi*? = p,V,"?
1.05x 03413 = 632xV,13
V, = 034x ”\%‘3’_—5
= 0-08549 m* “Ans. (i)
7, T,
1.05x0-3¢ _ 6-32x008549 i

290 3]

T = 290 x 6-32 x 0-08549

2 1.05 % 034
T, = 4388K
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= 165-8°C Ans. (iii)

Alternatively, the final temperature could be obtained from

n_alw
T, b,
p,\Y,-pV,

n-1

_ 105 % 0-34 - 632 x 0-08549
& 13-1

= -61'1K
Alternatively, the work done could be obtained from:
mR (T, -T,)
n-1

Note that the minus sign indicates that work is done on the gas.
, Work to compress gas = 61-1kJ Ans. (iv)

Increase in internal energy:

U,-U, = mc(T,-T))

0-4289 x 0-7175 % (438-8 — 290)
4578 kJ Ans. (v)

Work done =

Heat supplied _ Increasein Work done
to the gas ~ internal energy by the gas
= 4578-61-1
= -1532K]

The minus sign means that heat is rejected by the gas during
compression, that is, this amount of heat energy is transferred from
the gas to the cylinder wall surrounds.

Transfer of heat = 15-32 kJ Ans. (vi)

A RELATIONSHIP BETWEEN HEAT ENERGY SUPPLIED
AND WORK DONE

Consider polytropic expansion of a gas in a cylinder from initial
conditions represented by state-point 1 to the final conditions of
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state-point 2, and apply the energy equation:

Heat supplied _ Increase in . Work done
_to the gas ~ internal energy " by the gas
L 3 Mo
. mR(T,-Ty)
- L ol s NG o e
mey (T,-T)) + Rl
55, R
Substituting ¢, = ",Y-:—l'
. MR(Tz"Tl) ”?.R(Tl—‘2>
Heat supplied = o + e
Q_mR(T—Tz) mR(T—z)

v mR(T Tz){1 }

- mR(T Tz){y 1-—n+1}

= Work x 1=2
Y- 1

During expansion of gas, work is done by the gas and is a
positive quantity, therefore a positive quantity of heat energy is
supplied from the cylinder walls to the gas.

In compression of a gas, work is done on the gas which is
negative work done by the gas, the result of the above expression
is negative heat supplied, meaning that heat energy is transferred
from the gas to the cylinder walls.

The relations between the properties of a perfect gas in its initial
and final states are the same for both reversible (ideal, frictionless)

steady-flow (open) and the non-flow (closed) processes as detailed
in this chapter.
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TEST EXAMPLES 6

1. Gas is expanded in an engine cylinder, following the law pV" =
constant where the value of n is 1.3. The initial pressure is 2550
kN/m? and the final pressure is 210 kN/m?. If the volume at the end
of expansion is 0-75 m?, calculate the volume at the beginning of
expansion.

2. The ratio of compression in a petrol engine is 8-6 to 1. At the
beginning of compression the pressure of the gas is 98 kN/m? and
the temperature is 28°C. Find the pressure and temperature at the
end of compression, assuming it follows the law pV/?¢ = constant.

3. Gas is expanded in an engine cylinder according to the law pV"

= C. At the beginning of expansion the pressure and volume are
1750 kN/m? and 0-05 m? respectively, and at the end of expansion
the respective values are 122-5 kN/m? and 0-375 m?. Calculate the
value of n.

4. The temperature and pressure of the air at the beginning of
compression in a compressor cylinder are 20°C and 101-3 kN/m?,
and the pressure at the end of compression is 1420 kN/m?. If the law
of compression is pV!3S find the temperature at the end of com-
pression.

5. 0-014 m3of a gas at 66°C is expanded adiabatically in a closed

system and the temperature at the end of expansion is 2°C. Taking
the specific heats of the gas at constant pressure and constant
volume as 1-005 and 0-718 kJ/kgK respectively, calculate the
volume at the end of the expansion.

6. Airis compressed in a diesel engine from 1-17 bar to 36-55 bar.

If the temperatures at the beginning and end of compression are
32°C and 500°C respectively, find the law of compression assuming
it is polytropic.

7. One kg of air at 20 bar, 200°C is expanded to 10 bar, 125°C
by a process which is represented by a straight line on the pV
diagram. - :

- Calculate for the air:
(a) the work transfer;
(b) the change in internal energy;
(c) the heat transfer;
(d) the change in enthalpy.

Note: for air R = 287 J/kg K and ¢, = 1005 J/kg K.
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f 8. A closed and insulated vessel contains 1 kg of air at 213°C
and 1 bar. A second vessel, which is also insulated, has a volume
of 0-2 m? and contains air at 6 bar and 412°C. The two vesseis are
then connected by a pipe of negligible volume.

Calculate:

(a) the final pressure of air in the vessels;

(b) the final temperature of the air in the vessels.
For air: R = 287 JikgK.

f 9. A cylinder fitted with a piston contains 0-1 m? of air at 1 bar
15°C. Heat is supplied to the air until the temperature reaches 500°C
whilst the piston is fixed. The piston is then released and the air
expands according to the law pV?? = C until the pressure is 1 bar.

Calculate:

(a) the final temperature of the air;

(b) the work done during expansion;

(c) the heat transferred during each process.
For the gas c, = 718 JIkgK, R = 287 JlkgK.

f 10. A gas is expanded in a cylinder behind a gas-tight piston.
At the beginning of expansion the pressure is 36 bar, volume 0-125
m?3, and temperature 510°C. At the end of expansion the volume is
1-5 m? and temperature 40°C. Taking R = 0-284 kJ/kgK and ¢, =
0-71 kJ/kgK, calculate (i) the pressure at the end of expansion, (ii)
the index of expansion, (iii) the mass of gas in the cylinder, (iv)
change of internal energy, (v) work done by the gas, (vi) heat
transfer during expansion.
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CHAPTER 7
1.C. ENGINES — ELEMENTARY PRINCIPLES

Internal combustion engines are so named because combustion
of the fuel takes place inside the engine. When the fuel bumns inside
the engine cylinder, it gives out heat which is absorbed by the air
previously taken into the cylinder, the temperature of the air is
therefore increased with a consequent increase in pressure and/or
volume, thus energy is imparted to the piston. The reciprocating
motion of the piston is converted into a rotary motion at the crank
shaft by connecting rod and crank.

The method of igniting the fuel varies. In diesel engines the air
in the cylinder is compressed to a high pressure so that it attains a
high temperature, and when oil fuel is injected into this high
temperature air the fuel immediately ignites. When the ignition of
the fuel is caused solely by the heat of compression, the engine is
classed as a compression-ignition engine. In petrol and paraffin
engines the fuel is usually taken in with the charge of air, com-
pressed and then ignited by an electric spark.

THE FOUR-STROKE DIESEL ENGINE

In this type of engine it takes four strokes of the piston (i.e. two
revolutions of the crank) to complete one working cycle of oper-
ations, hence the name four-stroke cycle.

Fig. 17 illustrates each of these four strokes in one cylinder.
One the cylinder head is shown the fuel valve (or injector) which
lifts to admit oil fuel (under pressure) into the cylinder, the air-in-
duction valve through which air is drawn in, and the exhaust valve
through which the exhaust gases are expelled from the cylinder.
There are two more valves which are not shown here because they
do not operate during the normal working cycle; one is the relief
valve which opens against the compression of its spring when the
pressure in the cylinder rises too high, the other is the air-starting
valve which opens to admit high pressure air into the cylinder to
move the piston and start the engine (on large engines).

L.C. ENGINES — ELEMENTARY PRINCIPLES
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Fig. 18
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THE TWO-STROKE DIESEL ENGINE

The two-stroke diesel engine is so named because it takes two
strokes of the piston to complete one working cycle. Every down-
ward stroke of the piston is a power stroke, every upward stroke is
a compression stroke, the exhaust of the burned gases from the
cylinder and the fresh charge of air is taken in during the late period
of the downward stroke and the early part of the upward stroke. The
exhaust gases pass through a set of ports in the lower part of the
cylinder and the air is admitted through a similar set of ports, the
ports are covered and uncovered by the piston itself which must be
a long one or have a skirt attached so that the ports are covered when
the piston is at the top of its stroke.

As there is no complete stroke to draw the air into the cylinder,
the air must be pumped in at a low pressure from a scavenge pump
or blower, the air supplied is referred to as scavenge-air and the
ports in the cylinder through which the air is admitted are termed
scavenge ports. It is the function of this air to sweep around the
cylinder and so “scavenge” or clean out the cylinder by pushing the
remains of the exhaust gases out, leaving a clean charge of air to be
compressed (see Fig. 19).

PETROL ENGINES

Engines which run with petrol (or paraffin) as the fuel are often
termed “light oil” engines. The main difference between the ma-
jority of petrol engines and the diesel engine is that the petrol engine
takes in a charge of air and petrol vapour, this explosive mixture is
compressed and ignited by an electric spark; whereas in the diesel
engine the cylinder is charged with air only so that only pure air is
compressed and the fuel is injected at the moment ignition and
burning of the fuel is required, ignition being caused solely by the
heat of the compressed air.

When the air is compressed in a diesel engine there is no
possibility of firing before the fuel is injected. In a petrol engine,
an explosive mixture of petrol and air is compressed and there is
danger of the mixture firing spontaneously due to the heat of
compression alone and before the electric spark occurs, therefore
the ratio of compression must be limited to prevent this. The ratio
of compression in diesel engines can be high, such as twelve to one
and upwards whereas the ratio of compression in petrol engines is
much less, in the region of eight or nine to one.
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MEAN EFFECTIVE PRESSURE AND POWER

We have seen in the last chapter that the area of a pV diagram
represents work. The indicator diagrams shown in Figs. 18 and 20
are examples of practical pV diagrams taken off engines by means
of an engine indicator, the areas of these indicator diagrams repre-
sent the work done per cycle.

Fig. 21 shows an indicator which is suitable for taking indicator
diagrams off reciprocating engines up to rotational speeds of about
300 rev/min. In this type, the pressure scale spring is anchored at
its bottom end to the framework, and the top of the piston spindle
bears upwards on the top coil of the spring, the upward motion of
the indicator piston thus stretches the spring.

SPRING
CaP
DRUM WITH BUILT-IN (] SPINDLE PUSHES
COf¢—UPWARDS ON TOP
Cr1— COIL OF SPRING

\l:scou SPRING

‘}, SPRING—>=
INDICATOR 8OTTOM OF
PAPER PRING ANCHORED
HOLDER TO FRAME
GUIDE
PULLEY

J PISTON AND
PISTON ROD
INSIDE

¢— CYLINDER

INDICATOR  COUPLING ——, |

CORD TO SCREW
ON TO ‘ £ l
CHANGE-OVER
cock | S—

ENGINE INDICATOR
Fig. 21

MEAN EFFECTIVE PRESSURE. Consider the two-stroke diesel
engine indicator diagram shown in Fig. 22. The positive work done
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in one cycle of operations by the gas during the burning period and
expansion of the gas is shown by the shaded area of Fig. 22b. The
work done on the air during the compression period, repre
negative work done by the engine is shown by the shaded area o
Fig. 22c. Hence the net useful work done in one cycie is tic
difference between positive and negative work and represented by
the actual diagram of Fig. 22a. Therefore, if the area of
diagram is divided by its length, the average height
which, to scale, is the average or mean pressure effectively
the piston forward and transmitting useful energy to the ¢
during one cycle. This, expressed in N/m? or a suitable multiple o
the basic pressure unit, is termed the indicated mean effeciive
pressure.

T —>

v >

a b c
Fig. 22

The area of the diagram is usually measured by a planimeter.
the area is measured in mm? then dividing this by the length in mm
gives the mean height in mm. The mean height in mm is 103
multiplied by the pressure scale of the indicator spring in N/m* per
mm to obtain the indicated mean effective pressure in N/m*. The
usual convenient multiples of N/m? for such pressures are k
and bars, and the spring may be graduated in either of the

If a planimeter is not to hand, the mean height of the or
diagram may be obtained by the application of the mid-ordinaie
rule.

INDICATED POWER. Power is the rate of doiqg work, that is
the quantity of work done in a given time. The basic unit of pov.<:
is the watt [W] which is equal to the rate of one joule of werk beins
done every second. In symbols:

1W=1J/s=1Nm/s

The watt is a small unit and only suitable for expressing the

power of small machines. For normal powers in: marinc ¢




